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Abstract1

Methods that learn graph topological representations are becoming the usual choice2

to extract features to help solving machine learning tasks on graphs. In particular,3

low-dimensional encoding of graph nodes can be exploited in tasks such as link4

prediction and network reconstruction, where pairwise node embedding similarity5

is interpreted as the likelihood of an edge incidence. The presence of polyadic6

interactions in many real-world complex systems is leading to the emergence7

of representation learning techniques able to describe systems that include such8

polyadic relations. Despite this, their application on estimating the likelihood of9

tuple-wise edges is still underexplored.10

Here we focus on the reconstruction and prediction of simplices (higher-order11

links) in the form of classification tasks, where the likelihood of interacting groups12

is computed from the embedding features of a simplicial complex. Using similarity13

scores based on geometric properties of the learned metric space, we show how the14

resulting node-level and group-level feature embeddings are beneficial to predict15

unseen simplices, as well as to reconstruct the topology of the original simplicial16

structure, even when training data contain only records of lower-order simplices.17

1 Introduction18

Network science provides the dominant paradigm for the study of structure and dynamics of complex19

systems, thanks to its focus on their underlying relational properties. In data mining applications,20

topological node embeddings of networks are standard representation learning methods that help21

solving downstream tasks, such as network reconstruction, link prediction, and node classification [1].22

Complex interacting systems have been usually represented as graphs. This representation however23

suffers from the obvious limitation that it can only capture pairwise relations among nodes, while many24

systems are characterized by group interactions [2]. Indeed, simplicial complexes are generalized25

graphs that encode group-wise edges as sets of nodes, or simplices, with the additional requirement26

that any subset of nodes forming a simplex must also itself form a simplex belonging to the complex.27

Unlike alternative high-order representations, e.g. hypergraphs, which also overcome the dyadic28

limitation of the graph formalism [3], the simplicial downward closure constraint works particularly29

well when studying systems with subset dependencies, such as brain networks and social networks30

(e.g., people interacting as a group also engage in pairwise interactions)31

Due to the increased interest in studying complex systems as generalized graph structures, topological32

representation learning techniques on simplicial complexes are also emerging as tools to solve33

learning tasks on systems with polyadic relations. In particular, here we focus on tasks based on34

reconstruction and prediction of higher-order edges. While for standard graphs these problems35

have been extensively studied with traditional machine learning approaches [4, 5] and representation36

learning [6,7], the literature for their higher-order counterparts is more limited. In fact, reconstruction37

and prediction of higher-order interactions have been investigated mainly starting from pairwise38

data [8, 9] or time series [10, 11], without particular attention to representation learning methods.39

Here we study low-dimensional embeddings of simplicial complexes for link prediction and recon-40

struction in higher-order networks. Our main contributions are: (i) we introduce an embedding41
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framework to compute low-rank representations of simplicial complexes; (ii) we formalize network42

reconstruction and link prediction tasks for polyadic graph structures; and (iii) we show that sim-43

plicial similarities computed from embedding representations outperform classical network-based44

reconstruction and link prediction methods. Since the problems of link prediction and network45

reconstruction are not yet well-defined in the literature for the higher-order case, none of available46

state-of-the-art methods were previously evaluated in terms of both these tasks. In this paper we47

properly delineate the formal steps to perform higher-order link prediction and reconstruction, and48

we make a comprehensive evaluation of different methods adding many variations such as the use of49

multi-node proximities and simplicial weighted random walks.50

2 Related Work51

Representation Learning Beyond Graphs. Representation learning for graphs [1] allows to obtain52

low-dimensional vector representations of nodes that convey information useful for solving machine53

learning tasks. Most methods fit in one of these two categories: shallow node embeddings and54

graph neural networks (GNNs). Shallow methods generate node representations as a result of an55

unsupervised task (e.g., matrix factorization [12]), while GNN methods obtain node vectors from56

iterative message passing operations, e.g. graph convolutions and graph attention networks [13].57

In hypergraph settings, node embedding methods typically leverage hyperedge relations similarly58

to what is done for standard graph edges: for example, spectral decomposition [14], random walk59

sampling [15, 16], autoencoders [17]. Recently, Maleki et al. [18] proposed a hierarchical approach60

for scalable node embedding in hypergraphs. In simplicial complexes, random walks over simplices61

are exploited to compute embeddings of interacting groups with uniform or mixed sizes [19, 20],62

extending hypergraph methods that compute only node representations. Extensions of GNNs have63

been proposed to generalize convolution and attention mechanisms to hypergraphs [21–24] and64

simplicial complexes [25–27].65

Link Prediction and Network Reconstruction Beyond Graphs. The link prediction [4] task pre-66

dicts the presence of unobserved links in a graph by estimating their occurrence likelihood, while67

network reconstruction consists in the inference of a graph structure based on indirect data [28],68

missing or noisy observations [29]. In this work, we use latent embedding variables to assess the69

reconstruction and prediction of a given edge, relying on similarity indices. In higher-order systems,70

link prediction has been investigated primarily for hypergraphs, in particular with methods based on71

matrix factorization [30, 31], resource allocation metric [32], loop structure [33], and representation72

learning [34, 35]. The higher-order link prediction problem was introduced in a temporal setting73

by Benson et al. [9] (reformulating the term simplicial closure [36]), while Liu et al. [37] studied74

the prediction of several higher-order patterns with neural networks. Yoon et al. [38] investigated75

the use of opportune k-order projected graphs to represent group interactions, and Patil et al. [39]76

analyzed the problem of finding relevant candidate hyperlinks as negative examples. Despite this early77

results, reconstruction of higher-order interactions is an ongoing challenge: for example, Young et78

al. [8] proposed a Bayesian inference method to distinguish between hyperedges and combinations of79

low-order edges in pairwise data, while Musciotto et al. [40] developed a filtering approach to detect80

statistically significant hyperlinks in hypergraph data. In addition, some works studied approaches81

for the inference of higher-order structures from time series data [10, 11].82

3 Methods and Tasks Description83

3.1 Reconstruction and Prediction of Higher-order Interactions in Simplicial Complexes84

Simplicial complexes can be considered as generalized graphs that include higher-order interactions.85

Given a set of nodes V , a simplicial complex K is a collection of subsets of V , called simplices,86

satisfying downward closure: for any simplex σ ∈ K, any other simplex τ which is a subset of σ87

belongs to the simplicial complex K (for any σ ∈ K and τ ⊂ σ, we also have τ ∈ K). This constraint88

makes simplicial complexes different from hypergraphs, for which there is no prescribed relation89

between hyper-edges. A simplex σ is called a k-simplex if |σ| = k + 1, where k is its dimension (or90

order). A simplex σ is a coface of τ (or equivalently, τ is a face of σ) if τ ⊂ σ. We denote with nk91

the number of k-simplices in K.92

Given a simplicial complex K, by reconstruction of higher-order interactions we mean the task of93

correctly classifying whether a group of k + 1 nodes s = (i0, i1, . . . , ik) is a k-simplex of K or not.94
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More specifically, we consider S = {s ∈ K : |s| > 1} as the set of interactions (simplices with order95

greater than 0) that belongs to the simplicial complex K. Given any group s = (i0, i1, . . . , ik), with96

the reconstruction task we aim to discern if the elements in s interact within the same simplex, and97

so s ∈ S, or s is a group of lower-order simplices, and so s /∈ S (but subsets of s may be existing98

simplices). When group s interacts within a simplex, we say that s is closed, conversely it is open.99

By higher-order interaction prediction we mean instead the task of predicting whether an interaction100

S∗ that has not been observed at a certain time (i.e., the simplex has not been added to the complex yet)101

will appear in the future. Given any open configuration s̄ ∈ US coming from the set of unobserved102

interactions US =
{
s ∈ 2V : |s| > 1, s /∈ S

}
, namely the complement1 of S , the prediction task is to103

classify which groups will give rise to a simplicial closure in the future (s̄ ∈ S∗ ) versus those that104

will remain open (s̄ ∈ US \ S∗ ).105

3.2 Low-dimensional Embedding of Simplicial Complexes106

Given a simplicial complex K, we want to learn a mapping function f : K → Rd from elements of107

K to a d-dimensional low-rank feature space (d ≪ |K|). The mapping f must preserve topological108

information incorporated in the simplicial complex, in such a way that adjacency relations are109

preserved into geometric distances between vectors of the embedding space. Here we propose that110

representations of simplices can be obtained by random-walking over the inclusions hierarchy of K111

and learning the embeddings space according to the simplex proximity observed through such walks,112

preserving high-order information about the topological structure of the complex itself.113

The navigation of the downward inclusion chain can be performed with usual graph random walk114

sampling, unfolding the simplicial complex in its canonical graph of inclusions, called Hasse Diagram115

(HD): formally, the Hasse Diagram H(K) of complex K is the multipartite graph H(K) = (VH, EH),116

such that each node vσ ∈ VH corresponds to a simplex σ ∈ K, and two simplices σ, τ ∈ K are117

connected by the undirected edge (vσ, vτ ) ∈ EH iff σ is a coface of τ and dim(τ) = dim(σ) − 1.118

In other words, each simplicial order corresponds to a graph layer in H(K), and two simplices in119

different layers are linked if they are (upper/lower) adjacent in the original simplicial complex. The120

optimization problem defined here is independent of the random walk sampling procedure, so that in121

our experiments we test different procedures (listed in §4).122

Inspired by language models such as WORD2VEC [41], we start from a corpus W = {σ1, . . . , σ|W|}123

of simplicial random walks, and we aim to maximize the log-likelihood of a target simplex σi given124

the multi-set CT (σi) = {σi−T . . . σi+1, σi+1 . . . σi+T } of context simplices within a distance T ,125

determined as the number of steps between the target and the context simplex. The objective function126

is as follows:127

max
f

|W|∑
i=1

log Pr( σi | {f(τ) : τ ∈ CT (σi)} ) (1)

where the probability is the soft-max Pr(σi |{f(τ), . . . }) ∝ exp
[∑

τ∈CT (σi)
f(σi) · f(τ)

]
, normal-128

ized via the standard partition function Zi =
∑

κ∈K exp
[∑

τ∈CT (σi)
f(κ) · f(τ)

]
, and it represents129

the likelihood of observing simplex σ given context simplices in CT (σ). This leads to the maximiza-130

tion of the function:131

max
f

|W|∑
i=1

[
− logZi +

∑
τ∈CT (σi)

f(σi) · f(τ)
]

(2)

Our method of choice –SIMPLEX2VEC [20]– is implemented by sampling random walks from H(K)132

and learning simplicial embeddings with continuous-bag-of-words (CBOW) model [41]. To overcome133

the expensive computation of Zi, we train CBOW with negative sampling. While SIMPLEX2VEC is134

conceptually similar to k-SIMPLEX2VEC [19], there are important differences: (i) by fixing k as135

simplex dimension, k-SIMPLEX2VEC uses exclusively upper connections through (k+1)-cofaces and136

lower connections through (k-1)-faces to compute random walk transitions; (ii) random walks focus on137

a fixed dimension, allowing the embedding computation only for k-simplices. SIMPLEX2VEC instead138

computes embedding representations for all simplex orders simultaneously, because the random139

walks are sampled from the entire Hasse Diagram.140

1Here we used 2V to identify the power set of the vertices.

3



Effective Higher-order Link Prediction and Reconstruction from Simplicial Complex Embeddings

4 Experimental Setup141

Here we describe the experimental setup used to quantify the accuracy of SIMPLEX2VEC in recon-142

structing and predicting higher-order interactions. In the next paragraphs we illustrate which datasets143

we use, how we sample non-existing hyperlinks, and how we use them in downstream tasks.144

4.1 Data Processing145

We consider data in the form of collections D of time-stamped interactions {(si, ti), si ∈ F , ti ∈146

T }i=1...N , where each si = (i0, i1, . . . , ik) is a k-simplex of the node set V , F is the set of147

distinct simplices and T is the set of time-stamps at which interactions occur. We split D in148

two subsets, Dtrain and Dtest, corresponding to the 80th percentile t(80) of time-stamps, namely149

Dtrain = {(si, ti) ∈ D, t(0) ≤ ti ≤ t(80)} and Dtest = {(si, ti) ∈ D, t(80) < ti ≤ t(100)}, where150

t(0) and t(100) are the 0th and the 100th percentiles of the set T .151

We use real-world time-stamped data, indicated above with the collection D, from different do-152

mains [9]: face-to-face proximity (contact-high-school and contact-primary-school), email exchange153

(email-Eu and email-Enron), online tags (tags-math-sx), US congress bills (congress-bills), coauthor-154

ships (coauth-MAG-History and coauth-MAG-Geology). When the datasets came in pairwise format, we155

associated simplices to cliques obtained integrating edge information over short time intervals [9].156

We considered, for all datasets, only nodes in the largest connected component of the projected graph157

(two nodes of the projected graph are connected if they appear in at least one simplex of D). In158

addition, to lighten the embedding computations, for congress, tags and coauth datasets we apply a159

filtering approach in order to reduce their sizes: similarly to [42] with the Core set, here we selected160

the nodes incident in at least 5 cliques in every temporal quartiles (except in coauth-MAG-History where161

we applied a threshold of 1 clique per temporal quartile). In the Appendix, we report in a table162

statistics for every dataset after the described pre-processing steps.163

4.2 Random Walk Sampling and Feature Learning164

We build from Dtrain, disregarding time-stamps, a simplicial complex KD
train from which we165

sample random walk realizations for learning low-dimensional embeddings. We consider several166

weighting schemes [20] to bias the random walks between the vertices {vτ} of the HD:167

• Unweighted The jump to a given vτ is made by a uniform sampling among the set of neighbors168

Nσ = N ↓
σ ∪N ↑

σ of the node vσ in the HD (corresponding to faces N ↓
σ and cofaces N ↑

σ of the169

simplex σ in the simplicial complex).170

• Counts. To every node vτ of the HD is attached an empirical weight ωτ , counting the number171

of times that τ appears in the data D. The probability to jump from σ to τ is given by172

pστ = ωτ∑
r∈Nσ

ωr
.173

• LObias. With the definition of transition probability as before, the weight ωτ is defined to174

introduce a bias for the random walker towards low-order simplices: as explained in [20], every175

time a n-simplex σ appears in the data its weight is increased by 1, and the weight of any subface176

of dimension n− k is increased by (n+1)!
(n−k+1)! . There is an equivalent scheme for biasing towards177

high-order simplices, but we empirically observed that the performance of the first one is better.178

• EQbias. Starting from the weight set {ωσ} computed with empirical counts, we attach additional179

weights {ωστ} to the Hasse diagram’s edges in order to have equal probability of choosing180

neighbors from N ↓
σ or N ↑

σ . Transition weights for the downward (upward) step (σ, τ) are181

defined by normalizing ωτ respect to all the downward (upward) weights ωστ ∝ ωτ∑
r∈N↓(↑)

σ
ωr

,182

with the probability of the step given by pστ = ωστ∑
r∈N↓

σ∪N↑
σ
ωσr

183

In all experiments we train SIMPLEX2VEC2 on the Hasse Diagram H(KD
train

) to obtain d-dimen-184

sional feature representations vσ ∈ Rd of every simplex σ ∈ KD
train. Due to the combinatorial185

2We used the WORD2VEC implementation from Gensim (https://radimrehurek.com/gensim/) and ran
the CBOW model with window T = 10 and 5 epochs. We sample 10 random walks of length 80 per simplex as
input to WORD2VEC.
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(b) random walks on 
___the Hasse Diagram

(c) weighting scheme

80%

Community A

Community B

(a) simplicial complex from                                       
___sequential data

(d) simplex2vec embeddings

reconstruction task prediction task

Embedding training interval Future interval 

closed training 
triangles

open training 
structures

future closed 
triangles

open test 
structures

Figure 1: (Left) Schematic view of SIMPLEX2VEC: starting from simplicial sequential data (a), we
construct a simplicial complex on whose Hasse Diagram we sample random walks (b) with different
weighting (c), from which we construct the embedding space (d). (Right) Schematic description of
classification tasks (reconstruction and prediction) in the case of 3-node group interactions.

explosion of the number of simplicial vertices in the HD, we constrain the maximum order of the186

interactions to M ∈ {1, 2, 3} in a reduced Hasse diagram HM (KD
train) referred simply as HM .187

Consequently, every simplex with dimension larger than m = maxM is represented in HM by node188

combinations of size up to m. In Fig. 1 (Left), we show the feature learning process explained before.189

4.3 Similarity Scores and Baseline Metrics190

Using the learned simplicial embeddings we assign to each higher-order link candidate δ a likelihood191

score based on the average pairwise inner product among 0-simplex embeddings of nodes {vi, i ∈ δ}192

or any high-order k-simplices {vσ, σ ⊂ δ}:193

sk(δ) =
1

|
(( δ

k+1)
2

)
|

∑
(σ,τ)∈((

δ
k+1)
2

)

vσ · vτ (3)

To assess the reconstruction and prediction performances of the embedding model, we compare194

likelihood scores defined in Eq. 3 with other baseline metrics:195

• Projected metrics. Local and global node-level features computed from the projected graph. The196

projected graph is defined as Gtrain
D = (V, E), where V is the set of 0-simplices of the complex197

Ktrain
D and E =

{
s ∈ Ktrain

D : |s| = 2
}

is the set of links between training nodes that interacted198

in at least one simplex of Dtrain. Moreover, edges (i, j) can be weighted with the number of199

simplices of D containing both i and j. For triangles-related tasks we considered several 3-way200

metrics computed with the code3 released by [9] (we show the best performant: Harmonic mean,201

Geometric mean, Katz, PPR, Logistic Regression). We exploited also the pair-wise random walk202

measure PPMIT [43], for tetrahedra-related tasks where 4-way implementations of the above203

listed scores are not available. PPMI is widely used as similarity function for node embeddings,204

and variations of the window size T allow to take into account both local and global information.205

• Spectral embedding. Features from the spectral decomposition of the combinatorial k-206

Laplacian [44]. Given the set of boundary matrices {Bk}, which incorporate incidence207

relationships between k-simplices and their (k − 1)-faces4, the unweighted k-Laplacian is208

Lk = BT
kBk +Bk+1B

T
k+1. We consider also the weighted k-Laplacian [45], calculated with209

the substitutions Bk → W
−1/2
k−1 BkW

1/2
k , where every Wk is a diagonal matrix containing210

empirical counts of any k-simplex5. Following the same procedure used in graph spectral211

embeddings [46], we compute the eigenvectors matrix Qk ∈ Rnk×d corresponding to the first212

3https://github.com/arbenson/ScHoLP-Tutorial
4Boundary matrix Bk ∈ {0,±1}nk−1×nk requires the definition of oriented simplices, see [2] for additional

details.
5Weights matrices satisfy the consistency relations Wk = |Bk+1|Wk+1, see [45] for further details.
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Table 1: Number of unobserved configurations obtained with the sampling approach in different
datasets.

Dataset
Unseen configurations sampled from U∆

nE(×103)
0 1 2 3

contact-high-school 3,476 1,150 107 25
email-Eu 8,096 1,392 1,654 186
tags-math-sx 6,229 2,473 5,467 1,725
coauth-MAG-History 9,958 30 60 2

Dataset
Unseen configurations sampled from UΘ

n∆(×103)
0 1 2 3 4

contact-primary-school 17,683 396 19 2 < 1
email-Enron 7,048 400 28 2 < 1
congress-bills 1,462 1,264 325 149 80
coauth-MAG-Geology 15,473 593 30 3 < 1

d smallest non-zero eigenvalues of Lk and we use the rows of Qk as d-dimensional spectral213

embeddings for k-simplices.214

• k-SIMPLEX2VEC embedding. Features learned with an extension of NODE2VEC [19] that samples215

random walks from higher-order transition probabilities6 (e.g., edge-to-edge occurrences) in a216

single simplicial dimension. This model is based on sampling from a uniform structure without217

taking into account simplicial weights.218

Likelihood scores of candidate higher-order links are assigned for the embedding models with the219

same metric of Eq. 3 used for SIMPLEX2VEC embeddings. In k-SIMPLEX2VEC, we sample the same220

number of random walks per simplex, with the same length, of the ones used for SIMPLEX2VEC.221

4.4 Downstream Tasks and Open Configurations Sampling222

Similarly to the standard graph case, non-existing links are usually the majority class and this223

imbalance is even more pronounced in the higher-order case [30] (in graphs we have O(|V|2)224

potential links, but the number of potential hyperlinks/simplices is O(2|V|) in higher-order structures).225

To compensate, we focus the work on 3-node and 4-node groups, reducing the number of potential226

hyperedges to O(|V|3) and O(|V|4) respectively. For a concise presentation, in the next paragraphs227

we describe mainly the 3-way case. Hence, we restrict the set of possible interactions S to be228

exclusively closed triangles ∆ and the corresponding 3-node complementary set U∆:229

∆ =
{
s ∈ Ktrain

D : |s| = 3
}
, U∆ =

(
V
3

)
\∆ (4)

where we used
(V
3

)
as the set of 3-node combinations of elements from V (we instead denote Θ and230

UΘ respectively the observed and unobserved tetrahedra). With the reconstruction task we aim to231

discern those triplets δ interacting as a group in the window [0, t(80)], and so δ ∈ ∆, from those that232

are groups of lower-order simplices, meaning δ ∈ U∆. Moreover, defining ∆∗ as the set of new233

triadic interactions after time t(80), with the prediction task we aim to classify those open groups234

δ̄ ∈ U∆ that will give rise to a simplicial closure (δ̄ ∈ ∆∗ ) respect to those ones that remain open235

(δ̄ ∈ U∆ \∆∗). In Figure 1 (Right), we sketch the task’s formulation based on 2-simplices (3-node236

configurations).237

We perform sampling of fixed-size groups of nodes to collect negative instances for the classification238

tasks, to overcome the impossibility of enumerating all the unseen configurations. In practice239

we sample stars, cliques and other network motifs [39] from the projected graph to collect group240

configurations with distinct densities of lower-order interactions. We independently sample nodes to241

obtain (more likely) groups with unconnected units. For each sampled 3-node group δ we count the242

number of involved training edges nE(δ), and we analyse tasks performances for open configurations243

characterized by fixing nE(δ) ∈ {0, 1, 2, 3}. For 4-node configurations, instead of nE(δ), we consider244

the number of training triangles n∆(δ) ∈ {0, 1, 2, 3, 4} to differentiate open groups. In Table 1 we245

report the number of open configurations randomly selected from U∆ and UΘ. We extracted 107246

samples of open configurations for each pattern (stars, cliques, motifs and independent node groups).247

We claim that quantities nE(δ) and n∆(δ) are related to the concept of hardness of non-248

hyperlinks [39], i.e. the propensity of open groups to be misclassified as closed interaction, and249

they influence the difficulty of downstream classification tasks. In fact, increasing the number of250

lower-order faces -nE or n∆- engaged into a fake hyperlink, the latter becomes more and more251

structurally similar to true hyperlinks, making the classification task more difficult.252

6https://github.com/celiahacker/k-simplex2vec
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Figure 2: Performance on 3-way link reconstruction (a)(c) and prediction (b)(d) for SIMPLEX2VEC and
k-SIMPLEX2VEC with: (a)(b) similarity score s0 varying the parameter nE ; (c)(d) score sk (with k in
{0, 1}) on highly edge-dense open configurations (nE = 3). Metrics are computed in unweighted
representations, with SIMPLEX2VEC trained on Hk+1 when showing results for metric sk. The label
unbalancing in each sample is uniformly drawn between 1:1 and 1:5000. A schematic view of positive
and negative examples is reported for each classification task.

5 Results and Discussion253

With the previously described setup, we conducted experiments with 3-node configurations on datasets254

contact-high-school, email-Eu, tags-math-sx, coauth-MAG-History and with 4-node configurations on255

the remaining ones. Due to the limited space available, we only report 3-way results leaving the 4-way256

analysis in the Appendix. We also include there supplemental experiments with hypergraph-based257

embeddings not shown in the main text.258

We highlight the classification performance when using different embedding similarities sk(δ)259

on open configurations with different nE(δ) (in the case of triangles, or n∆(δ) for tetrahedra).260

For each case, triangles and tetrahedra classification, we examine: (i) the comparison with k-261

SIMPLEX2VEC embeddings in the unweighted scenario, to study how different embedding models262

learn statistical patterns from the simplicial structure; (ii) the comparison with classical metrics in263

the weighted scenario, to study how the addition of empirical weights influences the embedding264

performance respect to traditional weighted approaches.265

Results are presented in terms of average binary classification scores, where test sets are generated by266

randomly chosen open and closed groups. Contrarily to previous work [9, 35], we evaluate models267

without a fixed class imbalance because we cannot access the entire negative classes (e.g., U∆ and268

U∆ \∆∗ respectively in 3-way reconstruction and prediction). Instead, in every test set we uniformly269

sample the cardinality of the two classes to be between 1 and the number of available samples270

according to the task. We report calibrated AUC-PR scores [47] to account the difference in class271

imbalance as a consequence of our sampling choice7. In Figure 2, for a fair comparison with the272

other projected and embedding metrics, we report the similarity sk training SIMPLEX2VEC on Hk+1.273

Best average scores are chosen for embedding models with a grid search on vector sizes in the list274

{8, 16, 32, 64, 128, 256, 512, 1024}.275

5.1 Reconstruction and Prediction of 3-way Interactions: the Unweighted Scenario and276

k-SIMPLEX2VEC277

5.1.1 Comparison of Pair-wise Node Proximities278

In Figure 2(a)(b), we show evaluation metrics on higher-order link classification (reconstruction and279

prediction) for 3-way interactions, computed with unweighted node-level information from different280

models, varying the quantity nE(δ) referred to the open configurations. We recall that in this case281

7For this purpose we fix the reference class ratio π0 = 0.5. See [47] for additional details. We also tested the
AUC-ROC metric with similar findings.
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Table 2: Balanced AUC-PR scores for higher-order link reconstruction (Top) and prediction (Bottom)
on 3-node groups, with the hardest class of negative configurations (nE = 3). Best scores for different
methods are reported in boldface letters; among these ones, the best overall score is blue shaded and
the second best score is grey shaded.

Features Type
Dataset

contact-high-school email-Eu tags-math-sx coauth-MAG-History
s0(δ) s1(δ) s0(δ) s1(δ) s0(δ) s1(δ) s0(δ) s1(δ)

Neural

Hasse diagram H1

Unweighted 57.5±1.9 51.4±1.2 72.0±0.3 64.0±0.2 66.7±0.2 57.1±0.1 41.1±0.9 75.5±1.1
Counts 79.5±1.0 84.4±0.9 76.3±0.4 73.3±0.2 80.5±0.1 87.8±0.1 41.6±1.0 76.0±1.1
LObias 81.6±2.4 89.5±0.8 76.1±0.3 71.2±0.2 76.9±0.1 83.7±0.1 41.7±0.7 57.7±1.2

Embedding

Hasse diagram H2

Unweighted 55.5±3.0 99.5±0.1 61.0±0.4 97.9±0.0 66.7±0.1 95.1±0.0 40.0±0.5 83.1±1.3
Counts 57.0±1.3 91.2±0.9 54.5±0.2 92.6±0.1 66.2±0.1 89.4±0.1 35.3±0.4 82.1±1.3
LObias 84.7±2.2 91.9±0.8 80.6±0.3 81.6±0.2 77.9±0.1 84.3±0.1 57.3±1.0 70.4±1.4
EQbias 72.7±1.1 89.2±0.7 71.8±0.3 75.0±0.2 78.2±0.2 88.0±0.1 39.3±0.7 87.3±1.1

Spectral Combinatorial Laplacians Unweighted 52.4±3.7 77.0±1.3 67.3±0.3 65.3±0.2 58.4±0.2 50.7±0.1 72.1±1.1 63.5±1.4
Embedding Weighted 70.4±1.6 75.3±1.6 79.4±0.2 76.4±0.1 79.9±0.1 50.4±0.1 82.3±1.0 68.4±1.2

Projected
Harm. mean

Weighted

85.5±1.5 74.0±0.2 83.1±0.1 53.3±1.1
Geom. mean 85.8±1.1 72.5±0.2 86.8±0.1 52.9±1.3

Metrics Katz 78.6±1.1 65.6±0.2 81.8±0.1 49.2±1.5
PPR 76.9±1.4 70.7±0.2 81.8±0.1 74.8±1.3

Features Type
Dataset

contact-high-school email-Eu tags-math-sx coauth-MAG-History
s0(δ) s1(δ) s0(δ) s1(δ) s0(δ) s1(δ) s0(δ) s1(δ)

Neural

Hasse diagram H1

Unweighted 62.9±5.2 50.6±4.7 68.5±0.7 57.6±0.5 63.2±0.3 54.0±0.5 69.5±8.2 63.2±6.6
Counts 74.2±3.0 73.0±3.4 74.3±0.8 67.3±0.7 74.3±0.4 84.0±0.3 68.7±8.4 66.6±8.6
LObias 70.6±2.8 65.6±5.3 70.5±0.6 64.5±0.8 71.3±0.5 79.1±0.5 68.8±8.7 66.5±8.7

Embedding

Hasse diagram H2

Unweighted 62.5±6.3 69.5±4.9 66.2±0.7 67.8±0.6 62.5±0.2 83.1±0.2 65.9±8.5 55.6±8.0
Counts 64.3±3.6 72.8±3.6 61.8±0.7 69.1±0.6 62.9±0.3 82.3±0.3 67.3±8.2 61.0±9.6
LObias 69.7±3.5 65.4±5.1 69.0±0.6 60.3±0.6 71.2±0.7 79.2±0.4 67.3±7.9 64.2±9.6
EQbias 72.4±3.6 73.5±3.5 71.3±0.6 66.1±0.6 71.2±0.4 82.3±0.3 67.8±8.6 65.7±9.3

Spectral Combinatorial Laplacians Unweighted 56.4±3.6 56.7±6.8 63.8±0.6 53.5±0.7 55.1±0.2 50.4±0.2 57.8±6.0 56.4±5.7
Embedding Weighted 66.5±5.3 56.1±6.5 65.2±0.8 55.6±0.7 72.8±0.4 50.3±0.3 70.1±8.3 53.5±6.8

Projected
Harm. mean

Weighted

71.4±4.3 64.5±0.8 79.0±0.2 61.6±8.2
Geom. mean 73.1±3.8 66.7±0.8 83.3±0.2 62.4±7.7

Metrics Katz 69.3±3.7 63.2±0.6 77.8±0.3 62.4±7.0
PPR 69.8±3.9 68.8±0.5 75.7±0.4 57.7±4.6
Logistic Regression Unweighted 68.7±3.1 68.1±0.7 81.2±0.2 65.4±6.9

k-SIMPLEX2VEC is equivalent to the standard embedding of the projected graph. Hasse diagram H1282

scores s0(δ) computed with SIMPLEX2VEC perform overall better than proximities of the projected283

graph (i.e., k-SIMPLEX2VEC scores) in almost all cases, meaning that the information given by the284

pairwise structures is enriched by considering multiple layers of interactions, even without leveraging285

interaction weights (both in Gtrain
D and Ktrain

D ).286

Generally, we observe an expected decrease in performance for every model with respect to parameter287

nE . For example, a few datasets show less sensitivity in the performance of prediction tasks to varia-288

tions of nE(δ) (e.g., email-Eu). We ascribe this difference to domain-specific effects and peculiarities289

of those datasets. Embedding similarity s0(δ) from H1 diagram outperforms k-SIMPLEX2VEC prox-290

imities in almost every reconstruction task, except for coauth-MAG-History on open configurations291

with nE = 3. In prediction tasks, we observe the same advantage of SIMPLEX2VEC respect to292

k-SIMPLEX2VEC, except in contact-high-school where the models perform similarly on nE < 2.293

5.1.2 Comparison of Higher-order Edge Proximities294

In the previous sections the metric s0(δ) was computed from feature representations of 0-simplices.295

Here we analyse instead how performances change when we use embedding representations of296

1-simplices (edge representations) to compute s1(δ). Intuitively, group representations like 1-simplex297

embeddings should convey higher-order information useful to improve classification with respect to298

node-level features.299

In Figure 2(c)(d), we show evaluation metrics on higher-order link classification for 3-way interactions,300

comparing unweighted node-level and edge-level information from different models, fixing the301

quantity nE(δ) = 3 referred to the open configurations. We consider fully connected triangle302
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configurations because, besides being the harder configurations to be classified, they consist in the set303

of links necessary to compute s1(δ).304

Generally we notice an increase in classification scores when using s1(δ) similarity rather s0(δ)305

with SIMPLEX2VEC embeddings. The performance gain is quite large (between 30% and 100%)306

in all reconstruction tasks, and for prediction tasks it is noticeable on contact-high-school and307

tags-math-sx while it is even negative on coauth-MAG-History. This is also true for k-SIMPLEX2VEC in308

the majority of datasets, but with a reduced gain.309

5.2 Reconstruction and Prediction of 3-way Interactions: Role of Simplicial Weights310

Previously we showed that feature representations learned through the hierarchical organization of the311

HD enhance the classification accuracy of closed triangles, when considering unweighted complexes.312

We now integrate these results by studying the effect of introducing weights. In particular, we analyze313

the importance of weighted interactions in our framework, focusing on the case where fully connected314

open triangles are the negative examples for downstream tasks.315

In Table 2 (Top) we show higher-order link reconstruction results: simplicial similarity s1(δ) on316

the unweighted HD H2 outperforms all other methods, in particular weighted metrics based on317

Laplacian similarity and projected graph geometric mean, allowing almost perfect reconstruction318

in 3 out of 4 datasets. Compared with projected graph metrics, this was expected since 3-way319

information is incorporated in H2, and the optimal scores reflect the goodness of fit of the embedding320

algorithm. Weighting schemes Counts and EQbias also obtain excellent scores with s1(δ) metric,321

while metric s0(δ) benefits from the use of LObias weights. Differently, even simplicial similarity322

s1(δ) on Hasse diagram H1 outperforms baseline scores in half of datasets (with weighting schemes323

Counts and LObias), showing the feasibility of reconstructing 2-order interactions from weighted324

lower-order simplices (vertices in H1 are simplices of dimension 0 and 1) similarly to previous work325

on hypergraph reconstruction [8].326

In Table 2 (Bottom) we show higher-order link prediction results. Overall, SIMPLEX2VEC embeddings327

trained on H1 with Counts and EQbias weights give better results: in contact-high-school and328

email-Eu with s0(δ) metric, in tags-math-sx with s1(δ) metric. In dataset coauth-MAG-History the329

unweighted s0(δ) score is outperformed uniquely by the weighted L0 embedding, with weighted330

simplicial counterparts resulting in similar performances. In the space of projected graph scores,331

good results are obtained with geometric mean and logistic regression, which were among the best332

metrics in one of the seminal works on higher-order link prediction [9].333

Finally, we observe that weighting schemes for neural simplicial embeddings overall positively334

contribute to classification tasks both for reconstruction and prediction.335

6 Conclusions and Future Work336

In this paper, we introduced SIMPLEX2VEC for representation learning on simplicial complexes.337

In particular, we focused on formalizing reconstruction and link prediction tasks for higher-order338

structures, and we tested the proposed model on solving such downstream tasks. We showed that339

SIMPLEX2VEC-based representations are more effective in classification than traditional approaches340

and previous higher-order embedding methods. In particular, we prove the feasibility of using341

simplicial embedding of Hasse diagrams in reconstructing system’s polyadic interactions from lower-342

order edges, in addition to adequately predict future simplicial closures. SIMPLEX2VEC enables343

the investigation of the impact of different topological features, and we showed that weighted and344

unweighted models have different predictive power. Future work should focus on understanding these345

differences through the analysis of link predictability [48,49] with higher-order edges as a function of346

datasets’ peculiarities. Future work includes algorithmic approaches to tame the scalability limits set347

by the combinatorial structure of the Hasse diagram, which could for example be tackled via different348

optimization frameworks [50, 51] and hierarchical approaches [18, 52].349
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A Appendix497

A.1 Datasets Table498

In Table A1, we report statistics for every considered dataset after the pre-processing steps (extraction499

of the largest projected component and filtering of unfrequent nodes).500

A.2 Beyond 3-way Interactions: Tetrahedra501

Unweighted Analysis. In Figure A1(a), we show node-level evaluation metrics for 4-way higher-502

order reconstruction. Metric s0(δ) of SIMPLEX2VEC computed on H1 shows overall slightly503

better performances respect to k-SIMPLEX2VEC similarities, especially when the density of tri-504

angles is low (n∆ < 3). In coauth-MAG-Geology we observe also a remarkable increment of k-505

SIMPLEX2VEC reconstruction scores for negative examples with increasing n∆(δ), and this is also506

observable in email-Enron. In Figure A1(b), we report node-level evaluation metrics for 4-way507

higher-order prediction. Node-level SIMPLEX2VEC embedding performs better than k-SIMPLEX2VEC,508

on contact-primary-school and, to a lesser extent, on coauth-MAG-Geology. In email-Enron and509
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Table A1: Summary statistics of empirical datasets, referring to the largest connected component
of the projected graph. In order: total number of time-stamped simplices |D|; number of unique
simplices |F|; number of training nodes |V| and edges |E| in the first 80% of D; number of triangles
in the first 80% |∆| / new triangles in the last 20% |∆∗|; number of training tetrahedra in the first
80% |Θ| / new tetrahedra in the last 20% |Θ∗|.

Dataset |D| |F| |V| |E| |∆|/|∆∗| |Θ|/|Θ∗|

contact-high-school 172,035 7,818 327 5,225 2,050 / 320 218 / 20
contact-primary-school 106,879 12,704 242 7,575 4,259 / 880 310 / 71
email-Eu 234,559 25,008 952 26,582 143,280 / 17,325 631,590 / 82,945
email-Enron 10,883 1,512 140 1,607 5,517 / 1,061 14,902 / 3,547
tags-math-sx 819,546 150,346 893 60,258 167,306 / 34,801 101,649 / 26,344
congress-bills 103,758 18,626 97 3,207 32,692 / 371 90,316 / 3,309
coauth-MAG-History 114,447 11,072 4,034 9,255 4,714 / 1,297 3,966 / 1,008
coauth-MAG-Geology 275,565 29,414 3,835 27,950 17,946 / 3,852 12,072 / 3,168

congress-bills SIMPLEX2VEC performance increases when the density of triangles is low (n∆ ≤ 2).510

Higher-order similarity measures from k-SIMPLEX2VEC in Figure A1(c)(d), are outperformed511

by the SIMPLEX2VEC ones in many cases, especially s2(δ) metric for contact-primary-school,512

email-Enron and congress-bills in reconstruction tasks. In prediction tasks with email-Enron and513

coauth-MAG-Geology SIMPLEX2VEC obtain mainly good results overcoming the simplicial baseline.514

These results generally confirm our previous findings on 3-way tasks, which displayed an increasing515

classification capability when using higher-order proximities sk (k > 0) for SIMPLEX2VEC.516

Weighted Analysis. In Table A2 (Top) we show reconstruction scores of tetrahedra, when simplicial517

embeddings are trained on Hasse diagram H2 and negative examples are given by open 4-way518

configurations with four triangular faces. Due to H2 characteristics, feature learned from the519

simplicial complex are not aware of tetrahedral structures and this task results on reconstructing 4-520

node groups from training data with at most triadic structures. Previous work analyzed the problem of521

higher-order edge reconstruction from pair-wise data [8], but here we focus on a not previously studied522

task based on triadic data. From the comparison with spectral embeddings and PPMI proximities, we523

notice that SIMPLEX2VEC weighted s2(δ) similarity (LObias and EQbias) is the best on half of the524

datasets in classifying closed tetrahedra respect to triangle-rich open groups. In email-Enron weighted525

L1 embedding outperforms the unweighted (and weighted ones) s0(δ) simplicial metric, while in526

coauth-MAG-Geology the best score is given by the unweighted PPMI1 (which is also the best projected527

metric in the other 3 datasets). In Table A2 (Bottom) we report classification scores for the prediction528

of simplicial closures on tetrahedra, when neural embeddings are trained on Hasse diagram H3 (we529

empirically observed better results respect to H2). We compare these results with spectral embeddings530

and PPMI projected metrics in predicting which mostly triangle-dense configurations will close in a531

tetrahedron in the last 20% of data. Unusually, best scores obtained with SIMPLEX2VEC come from532

the unweighted setting in email-Enron and congress-bills with respectively s1(δ) and s2(δ) metrics.533

There is not a unique best metric, which was also observed in the 3-way prediction reports of Table 2534

(Bottom). Spectral embedding outperforms neural methods for contact-primary-school (unweigthed535

s2) and coauth-MAG-Geology (weighted s0).536
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Figure A1: Performance on 4-way link reconstruction (a)(c) and prediction (b)(d) for SIM-
PLEX2VEC and k-SIMPLEX2VEC with: (a)(b) similarity score s0 varying the parameter n∆; (c)(d)
score sk (with k in {0, 1, 2}) on highly triangle-dense open configurations (n∆ = 4). Metrics are
computed in unweighted representations, with SIMPLEX2VEC trained on Hk+1 when showing results
for metric sk. Label unbalancing in each sample is uniformly drawn between 1:1 and 1:5000. A
schematic view of positive and negative examples is reported for each classification task.

Table A2: Balanced AUC-PR scores for higher-order link reconstruction (Top) and prediction
(Bottom) on 4-node groups, with the hardest class of negative configurations (n∆ = 4). Best scores
for different methods are reported in boldface letters; among these ones, the best overall score is blue
shaded and the second best score is grey shaded.

Dataset Neural Embedding (Hasse Diagram H2) Spectral Embedding (Combinatorial Laplacians) Projected Graph PPMI Metric
s0(δ) s1(δ) s2(δ) s0(δ) s1(δ) s2(δ) T = 1 T = 10 T = ∞

contact-primary-school

Unweighted 52.9±3.3 45.2±2.7 64.5±2.8 Unweighted 52.1±3.8 58.2±2.0 53.4±3.0 51.5±3.1 50.2±3.0 50.2±3.0Counts 48.4±3.0 46.2±2.8 59.1±3.3
LObias 50.6±3.2 61.6±3.3 70.7±3.9 Weighted 54.0±2.8 55.9±2.8 53.4±2.1 47.9±3.1 47.0±2.7 48.5±2.5EQbias 45.2±3.6 47.0±3.0 58.5±3.3

email-Enron

Unweighted 69.0±0.4 56.0±0.4 58.2±0.3 Unweighted 69.0±0.5 68.0±0.4 55.5±0.3 68.5±0.4 66.7±0.5 66.9±0.4Counts 60.6±0.5 61.3±0.5 54.0±0.4
LObias 68.0±0.5 46.5±0.5 57.4±0.5 Weighted 71.1±0.4 79.0±0.3 76.9±0.2 58.3±0.4 57.9±0.5 62.0±0.5EQbias 62.1±0.7 44.4±0.3 53.1±0.4

congress-bills

Unweighted 63.1±0.2 64.4±0.1 51.8±0.2 Unweighted 56.1±0.2 58.4±0.1 49.8±0.1 65.9±0.1 66.0±0.1 65.9±0.1Counts 43.1±0.1 70.4±0.1 72.5±0.1
LObias 49.0±0.1 74.2±0.1 60.6±0.2 Weighted 55.0±0.1 62.8±0.2 55.3±0.2 49.1±0.1 47.8±0.1 47.3±0.1EQbias 65.7±0.2 69.0±0.1 74.2±0.1

coauth-MAG-Geology

Unweighted 71.6±0.5 34.6±0.3 84.2±0.7 Unweighted 62.6±0.6 61.7±0.9 49.3±0.9 86.0±0.4 77.8±0.4 75.5±0.5Counts 40.5±0.3 36.2±0.4 74.1±0.3
LObias 64.1±0.5 34.4±0.3 73.3±0.5 Weighted 85.8±0.7 65.7±0.5 44.9±0.7 76.3±0.6 71.9±0.5 70.6±0.6EQbias 36.7±0.3 37.5±0.2 79.2±0.4

Dataset Neural Embedding (Hasse Diagram H3) Spectral Embedding (Combinatorial Laplacians) Projected Graph PPMI Metric
s0(δ) s1(δ) s2(δ) s0(δ) s1(δ) s2(δ) T = 1 T = 10 T = ∞

contact-primary-school

Unweighted 56.4±1.8 58.6±2.3 66.8±2.4 Unweighted 82.1±4.0 85.4±1.7 85.9±3.1 49.3±2.2 45.8±1.6 45.7±1.7Counts 63.0±2.7 67.8±0.7 72.2±1.6
LObias 60.4±1.6 61.2±2.2 62.4±2.6 Weighted 57.8±2.4 81.3±4.4 70.6±1.5 61.1±2.3 47.4±1.6 48.6±1.6EQbias 62.7±2.0 65.6±1.2 68.3±2.2

email-Enron

Unweighted 88.3±6.6 98.0±2.1 96.9±2.3 Unweighted 92.7±2.9 67.6±5.7 97.1±1.8 50.3±0.2 50.9±0.5 50.8±0.5Counts 77.0±5.6 88.7±4.0 83.5±4.5
LObias 60.5±3.1 73.7±5.4 88.4±4.0 Weighted 84.8±5.6 88.7±3.7 95.8±2.4 55.8±2.2 53.3±1.3 54.7±1.5EQbias 57.9±2.5 84.9±3.6 80.4±5.6

congress-bills

Unweighted 47.9±0.1 34.0±0.0 77.7±0.3 Unweighted 60.8±0.2 64.3±0.3 48.8±0.2 74.7±0.2 74.7±0.2 74.7±0.2Counts 49.9±0.2 37.4±0.1 74.6±0.3
LObias 40.2±0.2 76.9±0.3 74.0±0.3 Weighted 40.2±0.1 53.1±0.3 50.8±0.2 40.2±0.1 40.8±0.1 40.2±0.1EQbias 64.2±0.2 58.4±0.3 71.4±0.2

coauth-MAG-Geology
Unweighted 55.1±7.7 60.1±7.2 74.8±4.8 Unweighted 57.0±6.9 48.1±7.8 52.1±7.3 50.7±3.5 54.6±6.3 55.3±7.4Counts 54.0±5.9 74.1±3.6 78.6±4.4
LObias 75.9±5.0 84.2±2.9 73.9±4.3 Weighted 88.5±3.2 52.0±7.7 52.7±7.3 54.9±4.5 56.1±5.9 55.3±4.8EQbias 51.3±4.7 76.1±4.3 72.8±6.1

14



Effective Higher-order Link Prediction and Reconstruction from Simplicial Complex Embeddings

A.3 Additional Comparison with Hypergraph-based Methods537

Random Walk Encodings. In Figures A2 and A3 we compare classification scores respectively538

for reconstruction and prediction of higher-order links, among SIMPLEX2VEC and skip-gram node539

embeddings generated with 1st-order random walks [14] on the unweighted hypergraph structure of540

the input data (we use the same setup for WORD2VEC : T = 10, 5 epochs, 10 random walks of length541

80 per node). Even SIMPLEX2VEC is trained with Unweighted walk transitions, leading to a similar542

1st-order random walk strategy (but, on a different topological structure). The hypergraph contains543

hyperedges (formed by at least 2 nodes) that are simplices of Hk, where k = 2, 3 is the order of544

simplices involved in the classification task. Even comparing node-level similarity indices, we notice545

that SIMPLEX2VEC outperforms hypergraph-based node embeddings in the majority of the datasets,546

except in the reconstruction of densely connected configurations for co-authorship data.547
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Figure A2: Performance on higher-order link reconstruction for SIMPLEX2VEC (trained on H1)
compared with walk-based hypergraph embeddings, with similarity scores s0. On the left are
shown similarity scores varying the parameter nE for 3-node interactions; on the right similarity
scores varying the parameter n∆ for 4-node interactions. Metrics are computed in unweighted
representations. Label unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.
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Figure A3: Performance on higher-order link prediction for SIMPLEX2VEC (trained on H1) compared
walk-based hypergraph embeddings, with similarity scores s0. On the left are shown similarity scores
varying the parameter nE for 3-node interactions; on the right similarity scores varying the parameter
n∆ for 4-node interactions. Metrics are computed in unweighted representations. Label unbalancing
in each sample is uniformly drawn between 1:1 and 1:5000.
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Hyper-SAGNN Embeddings. In Figures A4 and A5 we compare classification scores respectively for548

reconstruction and prediction of higher-order links, among SIMPLEX2VEC and Hyper-SAGNN [23]549

node embeddings on the unweighted hypergraph structure of the input data. Due to the model archi-550

tecture, we compute hyperedge likelihood scores for Hyper-SAGNN combinining embeddings with551

the same euclidean functional form optimized during model training, as e0(δ) = 1
|δ|

∑
i∈δ |di − si|2,552

where the pair (si,di) corresponds to the (static, dynamic) embeddings of node i as explained in the553

paper. In this setup we notice that SIMPLEX2VEC outperforms Hyper-SAGNN embeddings in the554

larger part of experiments.555

One of the main drawbacks of existing hypergraph-based methods (e.g., [16, 18, 23, 24]) is that they556

are limited to compute 0-simplex representations (node embeddings), making impossible the use of557

higher-order proximities (computed with interaction embeddings, like edges and triangles) similarly558

to the ones showed in Figures 2 and A1 (c)(d).559
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Figure A4: Performance on higher-order link reconstruction for SIMPLEX2VEC (trained on H1)
compared with Hyper-SAGNN node embeddings, with similarity scores s0. On the left are shown
similarity scores varying the parameter nE for 3-node interactions; on the right similarity scores vary-
ing the parameter n∆ for 4-node interactions. Metrics are computed in unweighted representations.
Label unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.
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Figure A5: Performance on higher-order link prediction for SIMPLEX2VEC (trained on H1) compared
with Hyper-SAGNN node embeddings, with similarity scores s0. On the left are shown similarity
scores varying the parameter nE for 3-node interactions; on the right similarity scores varying the
parameter n∆ for 4-node interactions. Metrics are computed in unweighted representations. Label
unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.
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