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A PROBLEM SETTING

A.1 TRAFFIC MODEL

The traffic model consider here is as follows: users appear and disappear continuously and each
belongs to a specific class. The characteristics of those classes describe statistically the traffic. Each
class has the following attributes:

• Data size D: the size of data a user of that class asks for.

• Maximum Latency L: the maximum number time slots within which the user needs to
successfully receive the packet of size D, so as to be satisfied.

• Importance α: used to dictate the scheduler to prioritize some classes, for users with more
privileged contracts (SLAs) demanding better service and higher reliability.

• Arrival probability p: the probability a new user belonging to this class arrives in the sys-
tem.

We denote C the set of classes. Every user entering the system, belongs to a class c ∈ C with
probability pc and is characterized by the tuple (Dc, Lc, αc). We assume that a maximum number
K of users can coexist per time slot. We also assume that a new user appears whenever a previous
one has reached the maximum time it can be present in the system. For example, if a user appears at
time t = 1, belonging to a class c ∈ C with Lc = 4, then even if it gets immediately and immediately
successfully its requested packet of size Dc at t = 1, it will still remain in the system until a new
user appears at t = 5 belonging to a class c′ ∈ C with probability pc′ . Therefore, at every time slot
a set Ut (with constant cardinality |Ut| = K) of users is observed, with some of them belonging to
set Uactt ⊆ Ut, with some demanding resources from the base station as being unsatisfied and some
being already satisfied. The assumption of always K users is alleviated by adding the null class c0
with Dc0 = 0, αc0 = 0 and Lc0 > 0. A “user” of the null class is equivalent to no user has appeared
and the fact that the number of user can fluctuate over time is incorporated.

The rationale behind this specific traffic model is as follows: (i) it is a traffic model under which
users with different strict data and latency requirements come and go, and is both quite generic
and tractable enough to permit to benchmark (this does not apply to DRL since it is model-free)
(ii) the traffic remains uninfluenced by the scheduler decisions. On the contrary when the common
assumption that whenever a user is satisfied a new one arrives with some probability per time slot
is made, then the scheduler performance affects the statistics of the traffic because at a given time
interval, a scheduler with abundant resources will see more users than one with poor resources, since
more resources means satisfying users earlier leading with that model to (statistically) more users
appearing.

A.2 GEOMETRY, CHANNEL AND RATE MODEL

A.2.1 GEOMETRY

The users are assumed to be uniformly distributed within a concentric ring. Therefore the distance
of a user u from the base station is a random variable with a probability density function: fd(du) =

2du
d2
max−d2

min
,du ∈ [dmin,dmax]. Furthermore we assume that the mobility of the users is not too

high to change significantly within their limited time interval they are active and experience a big
change in the power of the received signal. Consequently, their distances from the base station are
kept constant. In contrast, the modification of the channel due to small scale fading (i.e. small scale
mobility) is taken into account and described below.

A.2.2 CHANNEL

Multiple users can be served simultaneously and in this work we assume that they are allocated on
different orthogonal frequency bands (avoiding interference between them). We also assume that
they experience flat block fading and therefore every user has a constant channel gain for a given
time slot and throughout all the available frequency band from which is served. Let a user u that
appeared at time t0, with channel gain at time t is gu,t =

Cpl|hu,t|2
σ2
N

d
−npl
u with npl being the pathloss
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exponent, Cpl a constant to account for the constant losses and σ2
N is the noise power spectrum

density. The distance du remains constant throughout out the lifespan of user u but there is a small
scale Rayleigh fading changing in every time slot according to the Markovian model:

hu,t0 ∼ CN (0, 1)

hu,t = ρhu,t−1 + Z, with Z ∼ CN (0, 1− ρ2), t > t0

where CN (0, v) represents a circular complex normal distribution with zero mean and variance v.
The parameter ρ = J0(2πfdTslot) ∈ [0, 1] (Tan & Beaulieu, 2000) determines the time correlation
of the channel where J0(·) being the zeroth-order Bessel function of the first kind, fd the maximum
Doppler frequency (determined by the mobility of the users) and Tslot the slot duration. If ρ = 0
(high mobility at the small scale level), in every time slot the user has an independent realization of
the fading distribution. If ρ = 1 (absence of mobility), the fading is constant throughout the user’s
lifespan.

A.2.3 RATE

We assume the Shannon rate formula is valid and that the base station operates on capacity level
providing to user u at time t data equal to wu,t log2(1 + gu,tPu,t), where Pu,t is the transmitted
energy per channel use/symbol and wu,t the assigned bandwidth. An outage happens when the
user’s data requirement is higher than what the channel can support. For instance if we consider
transmission at given time tu to user at distance du from the base station, belonging to class c ∈ C
with resources (wu,t,Pu,t) then the probability of failing to correctly decode its packet equals to:

P failu (wu,t,Pu,t; du) = P(wu,t log2(1 + gu,tPu,t) < Du|du) = P(|hu,t|2 < ζu,td
npl
u )

= 1− e−ζu,td
npl
u (2)

with ζu,t=
σ2
N (2Du/wu,t − 1)

CplPu,t
. Now if the location du of this user is unknown by the scheduler

(corresponds who will appear in the future), the error probability becomes

P failu (wu,t,Pu,t) = P(wu,t log2(1 + gu,tPu,t) < Du) =

∫ dmax

dmin

P failu (wu,t,Pu,t; d)fd(d)dd

= 1−
Γ( 2

npl
, ζu,td

npl
min)−Γ( 2

npl
, ζu,td

npl
max)

nplζ
2/npl
u,t (d2

max − d2
min)/2

(3)

where Γ(s, x) =
∫∞
x
ts−1 e−t dt is the upper incomplete gamma function. For the sake of simplicity,

we overloaded notation by allowing x in Dx, αx, Lx to either denote a class x or a user x belonging
to a class with those characteristics.

A.3 SCHEDULING PROCEDURE

The base station is called to appropriately use in every time-slot its energy and bandwidth resources
to satisfy its users. We concentrate only on the bandwidth distribution, assuming no power adapta-
tion and simplifying the base station job that spends a fixed amount of energy per channel use, i.e.,
Pu,t = P,∀u, t. If the available bandwidth at the base station’s disposal is W then the scheduler

aims to find the (wu1,t, wu2,t, ...) ∈ R
|Uactt |
≥0 with u1, u2, ... ∈ Uactt such that∑
u∈Uactt

wu,t ≤W, ∀t

and maximize over the time horizon the accumulated reward for every satisfied user which is de-
scribed by the following objective “gain-function”:

G =
∑
t

∑
u∈Uactt

αu1{wu,t log2(1+gu,tP) > Du}. (4)

We stress out that a user u remains on the set Uactt for a time interval less or equal to its maximum
acceptable latency Lu. If not satisfied within that interval then he does not contribute positively to
the objective G.
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As implied by (4), the retransmission protocol adopted is Hybrid Automatic Repeat reQuest (HARQ-
type I) with rate adaptation. If a user fails to correctly decode the received packet then this packet
is ignored (no buffering at the receiver side) and the user waits until the base station sends again
the same packet to try to decode. Finally, as stated previously, we consider two different CSI cases.
In the first scenario, statistical CSI, only statistical properties of channel and location are known at
current time tc and the future, while, in the second scenario, full CSI, the exact value of the channels
hu,tc ,∀u ∈ Uacttc and the location of the users (and so du∀u ∈ Uacttc ) are known at the current time
tc.

B SCHEDULING METHODS

B.1 FRANK WOLFE

In this section we deal with the case where the scheduler knows all the statistical properties of the
system, i.e. channel and traffic. We write the problem in an optimization form on which the Frank
Wolfe method is applied to decide the resource allocation.

Let first concentrate on the case of a single user u0 appearing at time t0. The current time is tc ∈
[t0, t0 + Lu0

− 1]. We denote by −→w u0,t = (wu0,t0 , wu0,t0+1, ..., wu0,t) the assigned bandwidth
from time t0 (beginning of transmission for user u0). Additionally, let Au0,t be a binary random
variable which if Au0,t = 1 then u0 is still unsatisfied at the end of time slot t (after receiving−→w u0,t resources) and Au0,t = 0 otherwise. Given that at the beginning of time t user u0 is still
unsatisfied and that we know the resource allocation wu0,t is scheduled to be done at time t, we
define Φ(−→w u0,t; du0

) to be the probability that wu0,t is still not enough when the location du0
is

known but the channel hu0,t is unknown:

Φ(−→w u0,t; du0
) =

{
P(Au0,t = 1|−→w u0,t−1,du0

, Au0,t−1=1), t > t0
P(Au0,t = 1|du0), t = tc = t0.

(5)

The average contribution of user u0 to the gain function (4) on the time interval [tc, t] is given by
the following equation, derived by applying the chain rule for conditional probability:

g[tc,t]u0
=g(wu0,tc , ..., wu0,t; du0) =


0, if tc > t0 and Au0,tc−1=0

αu0

(
1−

t∏
j=tc

Φ(−→w u0,j ; du0)
)
, else. (6)

Now we consider that the average contribution on the gain function (4) for the the future users fol-
lowing the user u0. The next user (if it exists) appears at time t1 = t0 + Lu0 , and so on. Therefore
we consider the users noted as u1, u2, . . . that will appear at t1 = t0 + Lu0 , t2 = t1 + Lu1 , . . .. We
denote that with probabilities pc1 , pc2 , . . . they will belong to classes c1, c2, . . ., respectively (and
one of these classes may be the null class). These classes will determine the maximum latencies
Lu1

, Lu2
, . . . and consequently the time arrivals t1, t2, . . . all being random variables. As we con-

sider here future users, even their locations are unknown. Consequently we need to average over the
locations the equations (5) and (6) to obtain their contribution on the gain function (4). So for i ≥ 1
if −→w ui,t = (wui,ti , wui,ti+1, ..., wui,t), we have

g[ti,t]ui =g(wui,ti , ..., wui,t) = αu0

(
1−

t∏
i=tc

Φ(−→w ui,i)
)

(7)

where the contribution looking at time t with t < ti + Lui starts at time ti for user ui and where

Φ(−→w ui,t) =

{
P(Aui,t = 1|−→w ui,t−1, Aui,t−1=1), t > ti
P(Aui,t = 1), t = ti.

(8)

Hence, the averaged value of gain function for the sequence of users u0, u1, ... (so when one user at
most is active per time slot, i.e. K = 1) starting at the current time tc is:
G(wu0,tc , ..., wu0,t1−1, wu1,t1 , ...) =

g[tc,t1−1]u0
(.; du0

) +
∑
c1∈C

(
pc1 · g[t1,t2−1]u1

(.) +
∑
c2∈C

(
pc2 · g[t2,t3−1]u2

5.) +
∑
c3∈C

(...)

))
. (9)
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From (9), we observe a tree structure3 that when a user vanishes there is a summation over all the
possibilities of the classes that the new user can belong to. Therefore a number of branches is
equal to the number of possible classes (|C|). To manage the scalability issue, we cut the tree by
considering only T future time slots and work with the finite horizon [tc, tc + T − 1].

Finally, the general case with multiple users served simultaneously (K > 1) is easy to be considered
by just computing K ”parallel trees”. With a slight abuse of notation, we consider that the first
subscript of the variables w now refers to the index of the tree (and implicitly to a specific user). As
a consequence, the variables for the scheduled bandwidth resources over an horizon of length T can
be put into the following matrix:

Wtc =


w1,tc w1,tc+1 · · · w1,tc+T−1
w2,tc w2,tc+1 · · · w2,tc+T−1

...
...

. . .
...

wK,tc wK,tc+1 · · · wK,tc+T−1


and the average gain for these resources takes the following form:

G(Wtc) =

K∑
k=1

G(wk,tc , wk,tc+1, · · · , wk,tc+T−1). (10)

Finally we arrive at our optimization problem whose solution constitutes the benchmark procedure
for the statistical CSI case is the following one at current time tc:

max
Wtc∈R

K×T
≥0

G(Wtc) (11)

s.t.
K∑
k=1

wk,t ≤W, ∀t ∈ {tc, . . . , tc+T−1}. (12)

It can be easily shown that the objective functionG(·) is non-concave with multiple local optimums.
In contrast, the constraints given by equation (12) describe a compact and convex domain set which
allows the application of so-called Frank-Wolfe algorithm (Frank & Wolfe, 1956). The idea behind
this algorithm is as follows: at each iteration, the algorithm starts from a point and approximates the
objective function around it with a linear (first-order) approximation. Then it solves the correspond-
ing Linear Programming problem (LP) to find the best solution which will be the starting point of
the next iteration. The procedure terminates when the algorithm converges to a local optimum, i.e.,
when the objective function does not increase anymore significantly. In order to exhibit a solution
close to the global optimum, the algorithm is repeated Ninit times with different randomly chosen
initial points. At the end, we peak the best local optimum.

We provide some general remarks:

• The above benchmark procedure takes into account the past through (5) since all the previ-
ously allocated resources are involved.
• The procedure at current time tc proposes a solution for the scheduler for both the current

time tc and for the future [tc+1, tc+T −1]. Nevertheless, as this procedure will be recom-
puted at time tc + 1 (once the actions proposed for time tc is applied and new information
about the transmission’s success or failure are available), the actions proposed at time tc for
time tc + 1 are generally not applied. Obviously we will apply at time tc + 1 the solution
advocated by the procedure computed at time tc + 1.
• The Frank-Wolfe method is sublinear but the computation of the objective function

(10) and its partial derivatives grow exponentially with T which leads in practice to a
slow and cumbersome method if one wants to account for the impact of distant future (not
to mention that to be sure to retrieve a good local optimum we have to repeat the process
Ninit times).
• Lastly, the algorithm treats the “mean” case. It does not specify what really happens in

the future since it only evaluate what happens in the future on average (for example over
3A simple way to be computed is recursively
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every possible class of future user). It would be possible to address for every future scenario
differently but by skyrocketing the number of variables and constraints, making the already-
slow benchmark procedure slower.

B.1.1 CALCULATING THE EXPRESSIONS

Hereafter, we concentrate on calculating (5) and (8) for different channel model subcases. The rest
of the benchmark procedure is straightforward4.

• The i.i.d. fading channel case (ρ = 0): It is the simplest subcase since there are no time depen-
dencies on the fading, so equations (5) and (8) become

Φ(−→w u0,t; du0
) = P failu0

(wu0,t, P ; du0
), and (13)

Φ(−→w ui,t) = P failui (wui,t, P ), i ≥ 1. (14)

We remind the users ui for i ≥ 1 follow the user u0, and therefore we average over their unknown
locations.
• The constant fading channel case (ρ = 1): Now the channel is the same for each retransmission
on the user. For user u0, the channel is invariant but unknown. Only its location is known. At time
t > t0, we have

Φ(−→w u0,t; du0
) = P(wu0,t log(1+gu0

P) < Du0
|wu0,t′ log(1+gu0

P) < Du0
,∀t′ ∈ [t0, t−1], du0

)

=
P(wu0,t′′ log(1 + gu0

P) < Du0
,∀t′′ ∈ [t0, t]|du0

)

P(wu0,t′ log(1 + gu0
P) < Du0

,∀t′ ∈ [t0, t−1]|du0
)
.

Therefore we obtain

Φ(−→w u0,t; du0) =


P failu0

(max{−→w u0,t}, P ; du0
)

P failu0 (max{−→w u0,t−1}, P ; du0
)
, if t > t0

P failu0
(wu0,t, P ; du0

), if t = t0.

(15)

For the case of the future users (ui with i ≥ 1), the equations remain the same with the only change
that the location of the users is unknown as well. So in equation (15), we just need to omit the du
similarly to the i.i.d. case.
• The general Markovian case (ρ ∈ (0, 1)): Let us focus on the user u0 and we are looking at the
time t = t0 + 1. According to (Nuttall, 1975, eq: 37), we have:

Φ(−→w u0,t0+1; du0
) =

∫ xu0,0

0

∫ xu0,1

0

P(|hu0,t0+1|=x |y)P(|hu0,t0 |=y)dxdy

= 1−
e−x

2
1Q1(

xu0,0
σR

,
ρxu0,1
σR

)− e−x
2
u0,0Q1(

ρxu0,0
σR

,
xu0,1
σR

)

2(1− e−x
2
u0,0)

(16)

with xui,j =
√
ζui,ti+jd

−
npl
2 , i ∈ {0, 1} and QM be the Marcum Q-function.

For the future users (ui, i ≥ 1), we have at time t = ti + 1 (we remind that user ui starts its
transmission at time ti):

Φ(−→w u,ti+1) =

∫ dmax

dmin

Φ(−→w ui,ti+1; dui)fd(d)dd. (17)

where Φ(−→w ui,ti+1; dui) is given by (16) by replacing u0 with ui. This equation (17) is already
intractable whereas we are just focusing on the two first adjacent retransmissions. Obviously, it is
even worse if we consider more retransmissions. Therefore the benchmark procedure will be only
designed for ρ = 0 or ρ = 1, even if tested in the general case ρ ∈ (0, 1). More precisely, for any ρ,
we apply the benchmark procedure designed for either ρ = 0 or ρ = 1, and keep the best result.

4Perhaps it is tricky to also find the derivative of (3) which is required for the first-order approximation in
the Franck-Wolfe algorithm. So we get

dP fail
u

dw
=

∫ dmax

dmin

dP(|h|2 < ζu,td
npl)

dζu,t
fd(d)dd

dζu,t
dw

=
Γ(

2+npl
npl

, ζu,td
npl
min)−Γ(

2+npl
npl

, ζu,td
npl
max)

nplζ
(2+npl)/npl
u,t (d2

max − d2
min)/2

dζu,t
dw
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This case is much more complicated due to the correlation between the channel realizations. Ac-
tually, at time t, the distribution of hu,t given the past (which is not known in practice) is Ricean

distributed. More precisely, if the user u is active at t − 1 and t, we have P(|hu,t|=x
∣∣∣|hu,t−1|) =

Rice(x; vR = ρ|hu0,t−1|, σ2
R = 1−ρ2

2 ) where vR and σ2
R are the so-called Ricean parameters.

B.2 KNAPSACK AND INTEGER LINEAR PROGRAMMING

In this section we deal with the case where the scheduler has full-CSI, i.e. knows the complete state
of the system/environment. Let first work on the user u0 at the current time tc(tc ≥ t0) for which
both the channel hu0,tc and location du0 is known. But the future channels hu0,t for t > tc are only
statistically known. The user u0 is unsatisfied at t iff the allocated bandwidth wu0,t is smaller than
the following threshold

wthu0,t =
Du0

log2(1 + gu0,tP)
.

Consequently, the error probability of user u0 defined by (5) can be expressed:

Φ(−→w u0,t; du0
) =

{
P(wu0,t < wthu0,t|Au0,t−1 = 1, hu0,tc , du0

), if t > tc
1{wu0,tc < wthu0,tc}, if t = tc.

(18)

In this case, we remark that the probabilities are not necessary continuous due the indicator function
in (18). Consequently, the gain function described in (10) is now non-continuous over the variables
wk,tc∀k (because we know exactly the channel gains at tc and indicator functions occur at this time),
but continuous for wk,t, t > tc corresponding to the future. To overcome this problem, we split the
problem into two cases;

• Immediate horizon (T = 1): we focus only on the current time tc and the effects on the
future are omitted. We reach to a Knapsack which is myopically optimal.

• Finite horizon (T > 1): we take into account the future but we assume the channel real-
ization and the location at time t ∈ [tc, tc + T − 1] are known in advance, i.e., when the
algorithm is run at time tc. We write the problem as an integer linear programming (ILP)
and the algorithm functions as an oracle providing an upper bound.

B.2.1 IMMEDIATE HORIZON: T = 1

In this case, the optimization problem can be entirely restated. The variables to be optimized are
xu,tc which is 1 if user u is active at time tc or 0 otherwise. The cost in bandwidth is wthu,tcxu,tc
because we assume that if an user is active, then the scheduler provides to it the minimum bandwidth
it required to do a transmission without failure. Then the contribution in the gain function is αuxu,tc .
Therefore the optimization problem can written as follows

max
xu,tc

∑
u∈Uacttc

αuxu,tc

s.t.
∑

u∈Uacttc

wthu,tcxu,tc ≤W

xu,tc ∈ {0, 1}, ∀u ∈ Uacttc .

This problem is a Knapsack problem, which corresponds to maximizing the total value by choosing
from a set of objects a proper subset. Every object has its value but also a weight that prevents from
picking all of them since the total weight of the chosen subset should not overreach the capacity
level. It is a well known NP-complete problem with various efficient algorithms for solving it and
we used the library OR-TOOLS of Google.

B.2.2 FINITE HORIZON: T > 1

As remarked previously, the original problem described by (18) is mixed, i.e. discrete over some
variables and continuous over others. One idea is to approximate the indicator function with a

16



Under review as a conference paper at ICLR 2021

continuous function5 in order to apply the Frank-Wolfe algorithm again as in the case of statistical
CSI. We do not follow this way since the number of bad local optimums grow up and also it is
very dependent on the choice of the approximating function. Hereafter, we assume that for the
future T − 1 time slots, the base station knows exactly how many and where users will appear,
of which class and what will be their channels. The base station thus acts as an oracle capable to
perfectly calibrate the scheduling to future fluctuations. We obtain therefore an upper bound of the
performance of our policies.

Connecting this problem with a knapsack problem is not successful. Let us assume in the time
interval [tc, tc + T − 1] the oracle knows a set of UTtc users/objects appear in total. We can think of
having T different knapsacks (one for each t ∈ [tc, tc+T −1] and all of capacityW ), which we aim
to fill with users/objects from the set UTtc . The goal is to maximize the overall value of the chosen
objects, i.e. satisfied users. This corresponds to a “multiple knapsack problem” but with a crucial
difference. In contrast to “multiple knapsack problem”, the weight of each object/user fluctuates
over time as a consequence of the channel variability which changes the required resources/weight.
That means that every object has a different weight depending on the knapsack it will be put it.
Even considering ρ = 1, the constant channel does not help much since for some time slots in
[tc, tc + T − 1] a user can happen to be either “unborn” or “dead”. In those time slots we have to
assume a different weight at those time slots that will be something greater than W so as to make it
impossible to fit in the knapsacks corresponding to those time slots.

Finally we address our problem using a more generic (and slower) approach after formulat-
ing it as a Integer Linear Programming. As mentioned, inside the lifespan t ∈ Ilife =
[max(tc, tu),min(tu+Lu−1, tc+T−1)] of a user u ∈ UTtc , wthu,t are the (accurately predicted
by the oracle) required bandwidth to satisfy u at time t given his channel gain gu,t. Outside
t ∈ [tc, tc + T − 1]/Ilife, wthu,t is given a value greater than W so as to prevent any allocation.
The formulation is

max
xu,t

∑
u∈UTtc

αu

tc+T−1∑
t=tc

xu,t

s.t.
∑
UTtc

wthu,txu,t ≤W, ∀t ∈ [tc, tc+T−1]

tc+T−1∑
t=tc

xu,t ≤ 1, ∀u ∈ UTtc

xu,t ∈ {0, 1}, ∀t ∈ [tc, tc+T−1] and ∀u ∈ UTtc .

To solve this ILP optimization for every time step, we used the software CPLEX of IBM which
relies on the Branch and Cut algorithm (Mitchell, 2002).

C PARAMETERS OF THE SETTING

The distance dependent path loss is set to be 120.9 + 37.6 log10(d) in dB which is compliant to LTE
standard (LTE, 2018) and in our setting it translates to the constant loss component Cpl = 10−12.09

and path loss exponent npl = 3.76. The AWGN power is σ2
N = −149dBm/Hz (see appendix A.2).

For the DRL model we softly update the target policy and value network with momentum 0.005. We
use replay buffer of capacity 5000 samples. The batch size is 64 and the learning rates equal to 0.001.
The discount factor is set to γ = 0.95. With constant probability of 0.25 we explore according to
what described in 3.2.1. We use NQ = 50 of quantiles to describe the distribution. The φuser is
consisted of to fully connected layers with the hidden to be of dimension 10 and also its output.
The input/output channels ratio of both frelu and flinear is 10/10. We remark that the number of
parameters is relatively low (around 1000). We tried to increase but due to the high variance of the
environment overfitting could not be avoided. Keeping also low the number of parameters makes it
fast and cheap (both for energy and hardware) solution for practical use.

5So, the form 1{w > wth
u,tc} needs to be changed into continuous function for which when w < wth

u,tc it is
equal to 0 in order to avoid giving less than wth

u,tc resource at user u and then it goes as fast as possible to 1.
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