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A PROOFS

A.1 PROOF OF THEOREM 1

We first state a lemma which is a direct implication of Lemma 3.6 of Ghodrati and Panaretos [2022]. For η ∈ RK+1, we
define

Tη(x) :=

M∑
k=0

ηkGB(k,K−1+k)(x).

Note that we have extended the definition of the map Tη from Θ to RK+1.

Lemma 1. For ϵ > 0, we have the following expansion of the expected risk around θ1:

R(θ1 + ϵη) = R(θ1) + ϵDηR(θ1) +
ϵ2

2
||Tη||2L2(Q)

where

DηR(θ1) =

∫
W2(Ω)×W2(Ω)

∫ 1

0

(Tθ(F
−1
µ (p))− F−1

ν (p))Tη(F
−1
µ (p))dpdP (µ, ν)

is the directional derivative of R(θ1) in the direction of η.

Proof of Theorem 1. We apply Theorem 3.2 of Syring and Martin [2023] to derive the stated contraction rate.

We need to show that the loss function ℓθ satisfies the sub-exponential condition:

There exists an interval (0, ω̄) and constant K > 0 such that for all ω ∈ (0, ω̄) and for all sufficiently small
δ > 0, for θ ∈ Θ,

||Tθ − Tθ0
||L2(Q) > δ =⇒ Pe−ω(ℓθ−lθ0

) < e−Kωδ2 . (1)

We also need to show that the prior Π puts sufficient amount of mass on “neighborhood” Gn of the true parameter θ0:

log Π(Gn) ≳ −nϵ2n, (2)

where Gn is defined as
Gn := {θ ∈ Θ : u(θ,θ0) ≤ ϵ2n, v(θ,θ0) ≤ ϵ2n}, n = 1, 2, . . . ,

and u(θ,θ0) and v(θ,θ0) are the mean and variance of excess risk:

u(θ,θ0) :=
1

2
P (d2W(Tθ#µ, ν)− d2W(Tθ0

#µ, ν)) = R(θ)−R(θ0),
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and

v(θ,θ0) := P

((
1

2
d2W(Tθ#µ, ν)− 1

2
d2W(Tθ0#µ, ν)

)2)
− u(θ,θ0)

2.

We first show that the sub-exponential condition (1) is satisfied. By compactness of Ω, we have that for all θ ∈ Θ and all
(µ, ν) in the support of P ,

ℓθ(µ, ν)− ℓθ0
(µ, ν) < C,

for some constant C > 0. Thus, by Section 3.4.1 of Syring and Martin [2023],

Pe−ω(ℓθ−lθ0
) ≤ exp

(
− ωu(θ,θ0) + Cω3v(θ,θ0)

)
,

for ω small enough.

Now, consider θ1,θ2 ∈ Θ, and let η = θ2 − θ1. By Lemma 1, we have

R(θ1 + ϵη) = R(θ1) + ϵDηR(θ1) +
ϵ2

2
||Tη||2L2(Q)

where DηR(θ1) is the directional derivative of R(θ1) in the direction of η.

For any θ ∈ Θ, let η = θ − θ0, applying the expansion above with ϵ = 1, we have

R(θ)−R(θ0) = DηR(θ0) +
1

2
||Tη||2L2(Q).

Since θ0 is the minimizer of R, we have DηR(θ0) = 0, and thus

u(θ,θ0) = R(θ)−R(θ0) =
1

2
||Tη||2L2(Q) =

1

2
||Tθ − Tθ0

||2L2(Q). (3)

We also have that

|d2W(Tθ1
#µ, ν)− d2W(Tθ2

#µ, ν)| ≲ |dW(Tθ1
#µ, ν)− dW(Tθ2

#µ, ν)|
≤ dW(Tθ1

#µ, Tθ2
#µ)

= ||Tθ1
− Tθ2

||L2(µ)

≲ ||Tθ1
− Tθ2

||L2(Q).

where the second inequality follows from triangle inequality, and the equality follows from that W2(Ω) is flat. Therefore, it
follows that

v(θ,θ0) ≲ ||Tθ − Tθ0
||2L2(Q) ≲ u(θ,θ0). (4)

Combining (3) and (4), We obtain

Pe−ω(ℓθ−lθ0
) ≤ exp

(
− C1ωu(θ,θ0)

)
= exp

(
− 1

2
C1ω||Tθ − Tθ0 ||2L2(Q)

)
for some constant C1 > 0. It follows that ||Tθ − Tθ0

||L2(Q) > δ implies that

Pe−ω(ℓθ−lθ0
) ≤ exp

(
− 1

2
C1ωδ

2

)
,

and Condition (1) is verified.

We now verify the prior mass condition (2). We note that our prior specification satisfies

Π({||θ − θ0||2 ≤ δ) ≳ δK+1,
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where || · ||2 is the 2-norm on RK+1. Since ||θ − θ0||2 ≤ δ implies ||Tθ − Tθ0 ||L2(Q) ≲ δ, it follows that

Π({||Tθ − Tθ0 ||L2(Q) ≤ δ) ≳ δK+1.

Since ||Tθ − Tθ0
||L2(Q) ≤ δ implies {u(θ,θ0) ≲ δ2, v(θ,θ0) ≲ δ2}, we have

Π(Gn) ≳ Π({θ : ||Tθ − Tθ0
||L2(Q) ≤ ϵn}) ≳ ϵK+1

n .

Therefore, with ϵn = n−1/2(log n)1/2, we have

log Π(Gn) ≳ − log n ≳ −nϵ2n.

Thus, the prior mass condition is satisfied, and the proof is completed.

A.2 PROOF OF THEOREM 2

For each m = 1, 2, . . . , we define

R̃m(θ) :=
1

2

∫
W2(Ω)×W2(Ω)

d2W(Tθ#µ̂m, ν̂m)dP (µ, ν). (5)

Also define the mean and variance of excess risk as

um(θ,θ0) :=
1

2
P (d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ0#µ̂m, ν̂m)) = R̃m(θ)− R̃m(θ0),

and

vm(θ,θ0) := P

((
1

2
d2W(Tθ#µ̂m, ν̂m)− 1

2
d2W(Tθ0#µ̂m, ν̂m)

)2)
− um(θ,θ0)

2.

We first prove the following lemma bounding um(θ,θ0) and vm(θ,θ0) in terms of ||Tθ − Tθ0 ||2L2(Q) and r−1
m .

Lemma 2.
||Tθ − Tθ0 ||2L2(Q) − r−1

m ≲ um(θ,θ0) ≲ ||Tθ − Tθ0 ||2L2(Q) + r−1
m ,

vm(θ,θ0) ≲ ||Tθ − Tθ0
||2L2(Q) + r−2

m .

Proof. We first have the following decomposition of um(θ,θ0):

R̃m(θ)− R̃m(θ0) = R̃m(θ)−R(θ)︸ ︷︷ ︸+R(θ)−R(θ0)︸ ︷︷ ︸+R(θ0)− R̃m(θ0)︸ ︷︷ ︸ . (6)

We bound each of the three terms on the RHS of (6).

R̃m(θ)−R(θ) = P

(
d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ#µ, ν)

)
= P

(
d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ#µ̂m, ν) + d2W(Tθ#µ̂m, ν)− d2W(Tθ#µ, ν)

)
.

We have that

P

(
d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ#µ̂m, ν)

)
= P

((
dW(Tθ#µ̂m, ν̂m)− dW(Tθ#µ̂m, ν)

)(
dW(Tθ#µ̂m, ν̂m) + dW(Tθ#µ̂m, ν)

))
≥ P

(
− dW(ν̂m, ν)

(
dW(Tθ#µ̂m, ν̂m) + dW(Tθ#µ̂m, ν)

))
≳ P (−dW(ν̂m, ν))

≳ −r−1
m ,
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where the first inequality follows from the reverse triangle inequality, and the last inequality follows from our assumption.
We also have that

P

(
d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ#µ̂m, ν)

)
= P

((
dW(Tθ#µ̂m, ν̂m)− dW(Tθ#µ̂m, ν)

)(
dW(Tθ#µ̂m, ν̂m) + dW(Tθ#µ̂m, ν)

))
≤ P

(
dW(ν̂m, ν)

(
dW(Tθ#µ̂m, ν̂m) + dW(Tθ#µ̂m, ν)

))
≲ r−1

m

by an application of the triangle inequality.

Similarly, we can show that

−r−1
m ≲ P

(
d2W(Tθ#µ̂m, ν)− d2W(Tθ#µ, ν)

)
≲ r−1

m .

It follows that the first term on the RHS of (6) can be bounded as

−r−1
m ≲ R̃m(θ)−R(θ) ≲ r−1

m .

Using the same calculation, we also have the bound for the third term on the RHS of (6):

−r−1
m ≲ R(θ0)− R̃m(θ0) ≲ r−1

m .

For the second term on the RHS of (6), we recall from the proof of Theorem 1 that

R(θ)−R(θ0) =
1

2
||Tθ − Tθ0 ||2L2(Q).

Thus, we obtain the following bound for um(θ,θ0):

||Tθ − Tθ0
||2L2(Q) − r−1

m ≲ um(θ,θ0) ≲ ||Tθ − Tθ0
||2L2(Q) + r−1

m .

Now we try to obtain the upper bound for vm(θ,θ0). By triangle inequality,

|dW(Tθ#µ̂m, ν̂m)− dW(Tθ0#µ̂m, ν̂m)|
≤ |dW(Tθ#µ̂m, ν̂m)− dW(Tθ#µ, ν)|+ |dW(Tθ#µ, ν)− dW(Tθ0#µ, ν)|

+|dW(Tθ0#µ, ν)− dW(Tθ0#µ̂m, ν̂m)|

Similar calculations as above lead to

|dW(Tθ#µ̂m, ν̂m)− dW(Tθ#µ, ν)| ≲ r−1
m

and
|dW(Tθ0

#µ, ν)− dW(Tθ0
#µ̂m, ν̂m)| ≲ r−1

m .

We also have that

|dW(Tθ#µ, ν)− dW(Tθ0
#µ, ν)| ≤ dW(Tθ#µ, Tθ0

#µ)

= ||Tθ − Tθ0
||L2(µ)

≲ ||Tθ − Tθ0
||L2(Q).

Since
vm(θ,θ0) ≲ P (|dW(Tθ#µ̂m, ν̂m)− dW(Tθ0

#µ̂m, ν̂m)|2),

it follows that
vm(θ,θ0) ≲ ||Tθ − Tθ0

||2L2(Q) + r−2
m .
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We are now in a position to prove Theorem 2.

Proof of Theorem 2. Let An := {θ ∈ Θ : ||Tθ − Tθ0 ||L2(Q) > Mϵn}. The Gibbs posterior probability of An is given by

Πn(An) =
Nm

n (An)

Dm
n

=

∫
An

exp
(
− ωn

(
R̃m

n (θ)− R̃m
n (θ0)

))
Π(dθ)∫

Θ
exp

(
− ωn

(
R̃m

n (θ)− R̃m
n (θ0)

))
Π(dθ)

.

Note that m(n) is assumed to be a deterministic function of n. We aim to show that PnΠn(An) → 0 as n → ∞. We define
the set

Gm
n := {θ ∈ Θ : um(θ,θ0) ≤ ϵ2n, vm(θ,θ0) ≤ ϵ2n}.

By Lemma 2 and the assumption ϵ2n > r−1
m , Gm

n is implied by the event

Hm
n := {θ ∈ Θ : ||Tθ − Tθ0

||2L2(Q) ≤ c(ϵ2n − r−1
m )},

for some constant c > 0. We thus have
Π(Gm

n ) ≥ Π(Hm
n ) ≳ ϵK+1

n ,

from which it follows that
log Π(Gm

n ) ≳ −nϵ2n.

Since the excess loss
ℓθ(µ̂

m, ν̂m)− ℓθ0(µ̂
m, ν̂m)

is bounded for all θ and (µ̂m, ν̂m), when
||Tθ − Tθ0

||2L2(Q) > ϵn,

we apply Section 3.4.1 of Syring and Martin [2023] to obtain

Pe−nω(R̃m
n (θ)−R̃m

n (θ0)) ≤ exp
(
− nc0ω

(
||Tθ − Tθ0 ||2L2(Q) − r−1

m(n) − r−2
m(n)

))
≤ exp

(
− nc1ω(ϵ

2
n − r−1

m )
)

≤ exp
(
− nc2ωϵ

2
n

)
for some constants c0, c1, c2 > 0. By Fubini’s Theorem, we have

PnNn(An) =

∫
An

Pe−ωn(R̃m
n (θ)−R̃m

n (θ0))Π(dθ) ≤ exp
(
− nc2ωM

2ϵ2n

)
.

Following essentially the same lines as the proof of Lemma 1 of Syring and Martin [2023], we obtain

Pn

(
Dm

n >
1

2
Π(Gm

n )e−2ωnϵ2n

)
→ 1,

as n → ∞.

Let bmn = 1
2Π(G

m
n )e−2ωnϵ2n , we have

Pn(Dm
n ≤ bmn ) → 0

as n → ∞. Since

Πn(An) ≤ Nm
n (An)

Dm
n

1(Dm
n > bmn ) + 1(Dm

n ≤ bmn )

≤ b−1
n Nm

n (An) + 1(Dm
n ≤ bmn )

It follows that
PnΠn(An) → 0

as n → ∞. The proof is completed.
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B ADDITIONAL SIMULATION STUDIES

In order to evaluate the robustness of our proposed model and posterior sampling strategy, we conduct additional simulation
studies aimed at investigating its behavior under mis-specification. Specifically, we replicate the simulation settings
described in the main article, wherein the true optimal transport map is generated using BP basis functions with a polynomial
order of K = 50. However, in the model fitting process, we set the polynomial order to K = 20. The outcomes of these
experiments are illustrated in Figures 1, 2, and 3.

Upon examination of the results, we observe that despite the mis-specification in the model fitting, the true opti-
mal transport maps are successfully recovered in all scenarios. This suggests that our proposed model and posterior sampling
strategy exhibit robustness to mis-specification, demonstrating their effectiveness in capturing underlying patterns even
when the model assumptions are not entirely met.

Figure 1: Simulation 1. Top left: n=5 (ω = 500). Top right: n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom right:
n=100 (ω = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.
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Figure 2: Simulation 2. Top left: n=5 (ω = 500). Top right: n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom right:
n=100 (ω = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.
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Figure 3: Simulation 3. Top left: n=5 (ω = 500). Top right: n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom right:
n=100 (ω = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.
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