A Generalized Bayesian Approach to Distribution-on-Distribution Regression
(Supplementary Material)

A PROOFS
A.1 PROOF OF THEOREM 1

We first state a lemma which is a direct implication of Lemma 3.6 of Ghodrati and Panaretos| [2022]. For n € RE+1, we
define

M
Ty(z) == anGB(k,K—1+k) ().
k=0

Note that we have extended the definition of the map 75, from © to RE+L,

Lemma 1. For ¢ > 0, we have the following expansion of the expected risk around 01 :

2
€
R(O) +en) = R(8:) + Dy R(61) + S1[Tull3q)

where

Dy R(6:) = /

/ (To(F; (9)) — Fy(0) T (F(9))dpdP (1, v)
Wa () x Wa () Jo

is the directional derivative of R(01) in the direction of .

Proof of Theorem 1. We apply Theorem 3.2 of |Syring and Martin| [2023]] to derive the stated contraction rate.
We need to show that the loss function /g satisfies the sub-exponential condition:

There exists an interval (0,w) and constant K > 0 such that for all w € (0,&) and for all sufficiently small
6> 0,for0 c 0O,

| To — Too||L2(q) > 6 —> Pew(olog) o= Kwo®, (1)
We also need to show that the prior II puts sufficient amount of mass on “neighborhood” G,, of the true parameter 6:
log II(G,) = —ne?, (2)

where G,, is defined as
Gn:={0€0:u(6,00) <,v(0,00) <}, n=1,2,...,

and u(6,0y) and v(0, 8y) are the mean and variance of excess risk:
1
u(ea 00) = Ep(di%\i(TH#“a V) - d%\i(Tso#uv V)) = R(e) - R(eo),
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and
2
0(6.00) = P( (58Totn0) ~ G Totnn) ) ) = ul6.60)

We first show that the sub-exponential condition (I) is satisfied. By compactness of 2, we have that for all 8 € © and all
(14, v) in the support of P,

é@(/-h V) - 690 (p’a V) < 07
for some constant C' > 0. Thus, by Section 3.4.1 of [Syring and Martin| [2023]],

Pe—w(te~log) < oxp ( — wu(8,80) + Cw?v(8, 00)),
for w small enough.

Now, consider 61,605 € ©, and let n = 05 — 6;. By Lemmal[l] we have

2
€
R(61 + en) = R(61) + Dy R(0:1) + §|\Tn\|2L2(Q)
where D, R(61) is the directional derivative of R(6) in the direction of 7.
For any 8 € ©, let n = 0 — 6, applying the expansion above with € = 1, we have
1

R(0) — R(60) = D,,R(80) + §||T,7||32(Q).

Since 6y is the minimizer of R, we have D, R(6,) = 0, and thus
1 1
u(6,60) = R(6) — R(0o) = 5”%”%2(@ =576 — To, |7 2(q)- 3)

We also have that

|d%/\) (T91 #/L, V) - d%/\} (T92 #:U" V)| S ‘dW(Tgl #Na V) - dW (T92 #M? V)|
< dw(Te, #u. To, #1)
HT91 - TGzHLz(u)

S 7o, — To,llr2(q)-

where the second inequality follows from triangle inequality, and the equality follows from that W5 () is flat. Therefore, it
follows that

v(6,00) < [|To — To, |I72(q) < u(®. 60). )
Combining (@) and (@), We obtain

Pefw(egfleo)

IN

exp (— Crwu(6,0y))
= exp (— %CleTg - Tgo||2L2(Q))
for some constant C'; > 0. It follows that || Ty — T, ||12(q) > ¢ implies that
Pe~w(to—log) < exp < — ;C1w52),
and Condition (T) is verified.

We now verify the prior mass condition (2)). We note that our prior specification satisfies

I({]|0 — || < &) 2 65T,



where || - ||z is the 2-norm on R¥+1. Since ||@ — Oo||> < & implies || Tp — To,||12(q) < 6. it follows that
H({[|To — To,|Ir2(@) < 6) 2 6.
Since ||Tp — To, || 12(q) < 6 implies {u(6,00) < 62,v(0,00) < 67}, we have
(Gn) 2 T({0 : [|To — Toyll12() < en}) Z e -
Therefore, with €,, = n’1/2(10g n)1/2, we have
logII(G,,) > —logn = —ne>.

Thus, the prior mass condition is satisfied, and the proof is completed. O

A.2 PROOF OF THEOREM 2

Foreachm =1,2,..., we define

Rm(0) =

: / A2 (To#ii™, 0™)dP (1, v). (5)
Wa () X W2 (£2)

Also define the mean and variance of excess risk as

U (8,00) 1= 5 Py (To# ™, 0™) — B3y (To, #4™,™)) = B (6) ~ R (Bo),
and )
vm(0,800) = P(< 2o (To#Ep™, 0™) — %dQ (To, #i™, Am)) ) — U, (0, 00)°.
We first prove the following lemma bounding ., (0, 8¢) and v,,, (0, 6¢) in terms of ||Ty — Tp, | \%Q(Q) and ;!

Lemma 2.
ITo — Toyl|72(0) = ' < um(6,00) S [|To — Too |72 + m

vm(0,00) S [|To — To,|72q) +

Proof. We first have the following decomposition of u,, (8, 6o):

R™(6) — R™(80) = R™(0) — R(6) + R(8) — R(8,) + R(60) — R™(60). 6)

We bound each of the three terms on the RHS of ().

R(0) - R(6) P(C@v(To#ﬂm, o) — &y Ty, u>>

( 2 Ty, ™) — div(Te#/lm,V)ﬂLd?/v(Te#ﬂm,V)—d%v(To#u,V))-

‘We have that

i

d To#ﬂm Am> _ d)z/v(TB#ﬂm7 V))

P( dw(To#™, 0™) — dw(To# ™, v)) (dw (To#a™, ™) + dw(%#ﬂ’”»”)))
(-
(

> P(—dw (m (dW(Te#um ") + dw(To#™,v)))
Z P dW ﬁm
> 1



where the first inequality follows from the reverse triangle inequality, and the last inequality follows from our assumption.
We also have that

P(d%(Te#ﬂm, D"™) — dyy (To#i™, u))

_ P((dw(Te#ﬂm7 ™) — dyo(To ™, 1) (dyo (To ™, ™) + dyy (To#i™, u)))

IN

P(dw(ﬁm, v) (dw (To#i™, 0™) + dw (To#i™, V)))
S ot

m

by an application of the triangle inequality.

Similarly, we can show that

T S P(d%v (To#tii™ v) = iy (Tottp, v)) ST
It follows that the first term on the RHS of (6] can be bounded as
—ry' S R™(0) ~ R(6) St
Using the same calculation, we also have the bound for the third term on the RHS of @:
~rm' S R(60) — R™(60) Syt

For the second term on the RHS of @), we recall from the proof of Theorem 1 that
1
R(6) — R(8o) = 5||To — Tooll72(0)-
Thus, we obtain the following bound for u,,, (8, 0y):

ITo — Toy l72(0) = ' < um(8,600) < || To — Tay |72y + rm -

Now we try to obtain the upper bound for v,, (8, 8;). By triangle inequality,
ldw (To#i™, 0™) — dy (To, #4™, 0™)|

< ldw(Te#a™, ™) — dyw (To#u, v)| + |dw(Te#u, v) — dw(To,#i, )|
+dw (T, #1,v) — dyw(To, #4™, 0™)|

Similar calculations as above lead to
|dw (To#™, 0™) — dw (To#p, v)| S 7’

and
‘dW(TGO#M’ V) - dW(TBO#ﬂma ﬁm)‘ 5 r'r_nl'
We also have that

|dW (TB#Mv V) - dW (TBO #:U/7 V)| < dW (TB#:U/> Teo #M)
= |[To — Toy |22 (1)

A

[T — Toy || L2(q)-

Since
vm(0,00) S P(ldw(To#a™, 0™) — dyw(To, #0™,0™)[?),
it follows that
vin(0,60) S [1To — Tool2(q) + T -



We are now in a position to prove Theorem 2.

Proof of Theorem 2. Let A, := {0 € © : ||Tp — To,||12(q) > Men}. The Gibbs posterior probability of A,, is given by
N (An)
D
fAn exp ( — wn(R;”(O) — R;”(Oo)))l_[(dG)
Joexp (= wn (R (0) — R (60)))T1(d6)

m,(4,) =

Note that m(n) is assumed to be a deterministic function of n. We aim to show that P"II,,(A,) — 0 as n — oco. We define
the set
Gm:=1{0€O:u,(0,00) < v,(0,00) <}

-1
m

By Lemmaand the assumption €2 > -1, G™ is implied by the event

H}' = {0 € ©: [|Ty — Toyl[72(q) < clen =)}

for some constant ¢ > 0. We thus have

(GY) > TI(H") 2 et
from which it follows that

log II(G™) > —neé?.

Since the excess loss

ZB (/’)/m7 l)m> _ 600 (l’l’ﬂl, ﬁm)
is bounded for all € and (4™, 2""), when

HTG - Teo”%"’(@) > €n,

we apply Section 3.4.1 of |Syring and Martin|[2023] to obtain

Pe—nw(RT (6)~RT (60)) exp ( _ nCow(HTo ~Toyll3a(@) ~ by — T;%n)»

exp (— naiw(ep — ;1Y)

exp ( — nCQUJGi)

ININ IA

for some constants ¢y, ¢1, ce > 0. By Fubini’s Theorem, we have

PN, (A,) = /

Pef‘*’"(ézm(9)713‘:;"(90))1_[((10) < exp ( - TLCQWM2€$L>.
An

Following essentially the same lines as the proof of Lemma 1 of |Syring and Martin|[2023]], we obtain
n m 1 my _—2wne>
P*"( D > §H(Gn )e =1,
as n — o0.

2
Let b = LI1(G")e~2“"n, we have

as n — oo. Since

M4 < My iy oy <o)
< b NT(Ag) + LDy < B

It follows that
P"1I,(A,) — 0

as n — oo. The proof is completed.



B ADDITIONAL SIMULATION STUDIES

In order to evaluate the robustness of our proposed model and posterior sampling strategy, we conduct additional simulation
studies aimed at investigating its behavior under mis-specification. Specifically, we replicate the simulation settings
described in the main article, wherein the true optimal transport map is generated using BP basis functions with a polynomial
order of K' = 50. However, in the model fitting process, we set the polynomial order to K = 20. The outcomes of these
experiments are illustrated in Figures[I] [2] and 3]

Upon examination of the results, we observe that despite the mis-specification in the model fitting, the true opti-
mal transport maps are successfully recovered in all scenarios. This suggests that our proposed model and posterior sampling
strategy exhibit robustness to mis-specification, demonstrating their effectiveness in capturing underlying patterns even
when the model assumptions are not entirely met.
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Figure 1: Simulation 1. Top left: n=5 (w = 500). Top right: n=20 (w = 200). Bottom left: n=50 (w = 100). Bottom right:
n=100 (w = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.
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Figure 2: Simulation 2. Top left: n=5 (w = 500). Top right: n=20 (w = 200). Bottom left: n=50 (w = 100). Bottom right:
n=100 (w = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.
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Figure 3: Simulation 3. Top left: n=5 (w = 500). Top right: n=20 (w = 200). Bottom left: n=50 (w = 100). Bottom right:
n=100 (w = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.
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