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SUMMARY OF THE APPENDIX

This appendix contains additional details, including mathematical proofs, experimental details and
additional results. The appendix is organized as follows:

• Section A contains proof of Proposition 1.

• Section B lists the statistics of the datasets and training details.

• Section C introduces the results of some readout functions which aims at comparing removing
methods in a different way, such as relearn time, activation distance and membership inference
attack results.

• Section D are the results of removing mechanisms on other datasets and model architectures, which
is a supplement to the Figure 2.

• Section E shows the results of removing mechanisms with limited remain data, which is a supple-
ment to the Figure 3.

A PROOF OF PROPOSITION 1

A property of Fisher matrix F is that it can be used to approximate KL-divergence between two
distributions p(y|x,w), p(y|x,w′) (by Taylor expansion of KL(w,w′) with respect to w′),

KL(w,w′) = Ex,yp(y|x,w) log
p(y|x,w)
p(y|x,w′)

≈ 1

2
(w − w′)TF (w − w′).

Proof. First we recall that the stationaries of L(w,D) satisfy normal equation,

XXTw∗ = |D|Fw∗ = b,
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where c1 = maxj b
2
r,j , c2 = maxj b

2
f,j . The last inequality is based on the fact Fr,jj ≤ Fjj . Putting

them together we have,∑
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∑

j
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F 2
r,jj

.

B EXPERIMENT SETTINGS

We list the data statistics and training setups in Table 3 and Table 4.

Dataset CIFAR10 CIFAR100 MNIST Tiny-ImageNet

# images 50K/10K 50K/10K 60K/10K 100K/10K
# class 10 100 10 200
Img Size 32*32 32*32 28*28 64*64

Table 3: Statistics on datasets.

Experiments CIFAR10/100 MNIST Tiny-ImageNet

Training epochs 160 30 160
Batch size 128 128 32
Init learning rate 0.1 0.1 0.1
Optimizer SGD SGD SGD
Learning rate scheduler step N/A step
Learning rate decay (epoch) [80, 120] N/A [80, 120]
Learning rate decay factor 10 N/A 10
Momentum 0.9 0.9 0.9
Warmup epochs 0 0 20

Table 4: Detailed experiment setups.

15



Under review as a conference paper at ICLR 2023

C ADDITIONAL READOUT FUNCTIONS

We use different evaluate metrics to compare different removing mechanisms, include: (i) Re-learn
time (in epochs) for unlearned model to recover performance on Df while training on the whole
dataset D, (ii) Activation distance between unlearned model ŵr and model trained without forget
set w∗

r , (iii) Success rate of membership inference attack on the forget data Df . The membership
inference is formulated as a binary classification task, and we use two-layer fully connected network
of width 256 and 128. All the evaluate metrics is ideally as the same as the model trained without
forget data w∗

r .

C.1 RELEARN TIME
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Figure 6: Re-learn time (in epochs) for removing mecha-
nisms.

Figure 6 shows the results of relearn time
(in epochs) on dataset D. We count
the epochs for fine tuning the unlearned
model to achieve the same loss on the for-
get data Df as original model. We exper-
iment on the 4 main settings and calcu-
late the average epochs for each remov-
ing mechanism. And the results show
that FisherMask method performs
well on the re-learn time readout func-
tion, and TF-IDF, ActivationMask
method have a longer re-learn time com-
paring with Finetune baseline. The
results indicate that although we can un-
learn the information to make the accu-

racy of unlearn category approach zero, there still remains information inside the model to recover
performance quickly when original dataset is provided.

Settings\Criterions Original RansomMask Finetune TF-IDF FisherNoise ActivationMask GradMask FisherMask
U R U R U R U R U R U R U R U R

ResNet20 CIFAR10 1.89 0.19 0.78 0.19 0.80 0.19 0.79 0.19 1.34 0.42 0.80 0.18 0.79 0.19 0.76 0.18
GoogLeNet CIFAR100 1.84 0.48 1.45 0.48 1.61 0.48 1.43 0.48 1.58 1.64 0.88 0.49 0.81 0.50 0.77 0.48
MNIST VGG16 2.00 0.02 1.19 0.05 0.88 0.02 0.61 0.02 1.74 1.18 1.30 0.02 1.37 0.03 1.54 0.02
DenseNet Tiny-ImageNet 1.79 0.68 1.54 0.70 1.52 0.70 1.50 0.70 1.04 0.84 1.47 0.70 1.28 0.70 1.07 0.70

Table 5: Results of activation distance between unlearned model with various unlearn mechanisms and
re-trained model without seeing forget set. Activation distance is computed as: Ex∼p(x)

[
||fŵr)(x)−

fw∗
r
(x)||1

]
. U and R indicate forget and remain set, respectively.

Settings\Criterions Original RansomMask Finetune TF-IDF FisherNoise ActivationMask GradMask FisherMask

ResNet20 CIFAR10 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GoogLeNet CIFAR100 1.00 0.22 0.52 0.23 0.00 0.00 0.00 0.00
MNIST VGG16 1.00 0.43 0.40 0.25 0.01 0.56 0.31 0.41
DenseNet Tiny-ImageNet 0.71 0.31 0.32 0.31 0.00 0.21 0.06 0.00

Table 6: Recall of membership inference attack on forget set Df .

C.2 ACTIVATION DISTANCE

Table 5 shows the results on subset U and R of activation distance for models combining different
removing strategies. We use the activation distance (Golatkar et al., 2020b) to measure the distance
between unlearned model ŵr and retrained model w∗

r : Ex∼p(x)

[
||fŵr)(x)−fw∗

r
(x)||1

]
, where fw(x)

is the activation (post-softmax) on x with parameter w.

From the results, we can find that unlearned model with FisherMask method is closest to the re-
trained model on CIFAR10/100 dataset. ActivationMask and GradMaskmethods achieve a sim-
ilar performance on both datasets, while TF-IDF, FisherNoise, RandomMask and Finetune
methods show a good performance on CIFAR10, whereas do not on CIFAR100. On dataset MNIST,
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TF-IDF method achieves a better performance on both subset U and R. Other methods have a
larger activation distance on dataset U and all methods have a similar good performance on dataset
R except FisherNoise. On dataset Tiny-ImageNet, FisherNoise method achieves a better
forget performance on dataset U but has a largest activation distance on remain dataset R. And
FisherMask still has a relatively good results on both U and R dataset compared to the rest
methods.

C.3 MEMBERSHIP INFERENCE ATTACK

Here we use Membership Inference to test the ability of data deletion and evaluate how much could
the model leak the information about forget set. Consider the adversary attempts to query the model
and guess a particular sample (or a particular class) was used to train the model. And the unlearning
mechanism fails if the adversary inspect the existence of deleted data from the unlearned model. We
consider the scenario where the adversary only has black-box access to the model, which means the
adversary can only get the input and output without knowing the model architecture.

The attack model is trained with the shadow training technique following Shokri et al. (2017), and
the goal is to recognize the intrinsic differences in the behavior of target model and distinguish from
members and non-members according to the model output. We use 20 shadow models to imitate
the behavior of target model and each of them is trained on a similar dataset as the target model to
strengthen the attack model. We randomly split the training set in half to crate member dataset and
non-member dataset for each shadow model. And the attack model is trained on a syntactic dataset
which is constructed by the output probabilities of shadow models labeled with the ground truth about
the membership.

Here we present the membership inference attack results on Table 6. We list the recall on the forget
dataset Df . Considering the original model is trained on the dataset D, the attack model should
have a high recall on the training subset Df . And if the unlearn method could unlearn information
successfully, then the attack model could fail to gain information about Df . The results show
that FisherNoise method could unlearn completely on all the four datasets. FisherMask and
GradMask method have similar performance, both of them unlearn completely on all datasets
except MNIST. ActivationMask performs well on the CIFAR10/100 dataset, but can not avoid
information leaking on the remain datasets. The rest baselines RandomMask, Finetune and
TF-IDF can only forget completely on CIFAR10 dataset.
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D RESULTS OF REMOVING MECHANISMS
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Figure 7: Results of different architectures on CIFAR10 dataset.

0 10 20 30

Epoch

0

20

40

60

80

F
or

ge
t

A
cc

cifar100 vgg16

RandomMask

Finetune

TF-IDF

ActivationMask

FisherMask

GradMask

0 10 20 30

Epoch

0

10

20

30

40

50

60

R
em

ai
n

A
cc

cifar100 vgg16

RandomMask

Finetune

TF-IDF

ActivationMask

FisherMask

GradMask

Retrain

0 10 20 30

Epoch

0

20

40

60

80

F
or

ge
t

A
cc

cifar100 resnet50

RandomMask

Finetune

TF-IDF

ActivationMask

FisherMask

GradMask

0 10 20 30

Epoch

0

10

20

30

40

50

60

R
em

ai
n

A
cc

cifar100 resnet50

RandomMask

Finetune

TF-IDF

ActivationMask

FisherMask

GradMask

Retrain

0 10 20 30

Epoch

0

20

40

60

80

F
or

ge
t

A
cc

cifar100 densenet

RandomMask

Finetune

TF-IDF

ActivationMask

FisherMask

GradMask

0 10 20 30

Epoch

0

10

20

30

40

50

60

70

R
em

ai
n

A
cc

cifar100 densenet

RandomMask

Finetune

TF-IDF

ActivationMask

FisherMask

GradMask

Retrain

Figure 8: Results of different architectures on CIFAR100 dataset.
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Figure 9: Results of different architectures on MNIST dataset.
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Figure 10: Results of different architectures on Tiny-ImageNet dataset.
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E EXPERIMENT WITH LIMITED REMAIN DATA
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Figure 11: Results on different architectures with limited remain data.
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