

Training-Free Generalization on Heterogeneous Tabular Data via Meta-Representation

Han-Jia Ye, QiLe Zhou, De-Chuan Zhan

Nanjing University {yehj, zhouql, zhandc}@lamda.nju.edu.cn

Table Representation Learning Workshop at NeurIPS 2023

Background: Learning with tabular data

The inherent heterogeneities across different tabular datasets hinder the effective sharing of knowledge.

Task: One model that generalizes on heterogeneous tabular datasets

Possible Solutions

- TabPFN_[1] : enable model to work on datasets with different numbers of features by zero-padding.
- LLM_[2,3]: assumes the existence of attribute names, each instance could be transformed into a text.
- Dimension-invariant transformation[4,5]: transform raw data of different dimensions into consistent dimension.

^[1] Tabpfn: A transformer that solves small tabular classification problems in a second. In ICLR, 2023.

^[2] Tabllm: few-shot classification of tabular data with large language models. In AISTATS, 2023.

^[3] Anypredict: Foundation model for tabular prediction. CoRR, 2023.

^[4] Meta-learning from tasks with heterogeneous attribute spaces. In NeurIPS, 2020.

^[5] Distribution embedding networks for generalization from a diverse set of classification tasks. TMLR, 2022.

Our Solution

- Meta representation: standardize diverse datasets so that a joint deep neural network can be applied.
- Transforms any instance, irrespective of its original dimensionality, into a set of K-dimensional vectors, one for each of the C classes.

Meta-representation

Extract class-specific prototypes.

TabPTM on Classification Tasks

• An adaptive metric compatible with heterogeneous tasks:

dist
$$(\mathbf{x}_i, \mathbf{x}_j) = \left(\sum_{k=1}^d w_k \cdot |\mathbf{x}_{ik} - \mathbf{x}_{jk}|^p\right)^{\frac{1}{p}}, \quad w_k = \text{normalize}(\text{MI}(\mathbf{X}_{k}, \mathbf{Y}))$$

• Meta representation:

$$\phi_c(\mathbf{x}_i) = \left[\text{dist}(\mathbf{x}_i, \mathbf{x}_1), \dots, \text{dist}(\mathbf{x}_i, \mathbf{x}_j), \dots, \text{dist}(\mathbf{x}_i, \mathbf{x}_K) \right] \in \mathbb{R}^K$$

- The architecture: outputs the class-wise classification scores
 - One MLP outputs the score. (TabPTM)
 - One MLP outputs class-wise representation, combined with Transformer. (TabPTM[†])

$$[s(\mathbf{x}_i)_1, \dots, s(\mathbf{x}_i)_C] = \text{Transformer}\left([\text{MLP}(\phi_1(\mathbf{x}_i)), \dots, \text{MLP}(\phi_C(\mathbf{x}_i))]\right)$$

TabPTM on Regression Tasks

Modify the meta representation as the concatenation of distance with neighbors as well as corresponding labels. $\phi(x_i) = \left[\text{dist}(x_i, x_1), \dots, \text{dist}(x_i, x_j), \dots, \text{dist}(x_i, x_K), y_1, \dots, y_j, \dots, y_K \right] \in \mathbb{R}^{2K}.$

Meta-representation (for regression)

The idea could be extended to the regression scenario.

Prediction with metarepresentation

Experiments

	SVM	XGBoost	MLP	FT-T	TabCaps	DANets	TabPFN	XTab	DEN	TabPTM	TabPTM [†]
BC	67.24	68.10	64.48	65.17	67.93	67.59	67.59	66.55	63.62	68.79	67.93
BW	97.14	97.23	96.64	97.07	96.36	97.64	97.14	97.50	96.71	99.29	98.57
BWD	97.37	96.23	96.32	97.26	97.02	97.64	97.15	96.14	94.74	95.61	96.49
ECD	77.78	78.89	77.41	75.19	79.63	82.96	77.78	83.07	78.89	84.07	85.19
HC	52.46	53.11	51.64	52.30	52.30	53.77	53.44	48.36	51.80	51.80	51.94
HH	81.36	83.05	82.88	78.64	81.36	83.39	81.02	83.22	78.47	79.66	80.51
HV	30.00	34.50	34.50	29.25	34.00	35.00	30.00	32.00	28.75	36.50	33.00
HOC	85.14	87.84	82.57	83.51	83.24	79.05	83.78	71.49	66.89	85.68	86.08
MAM	81.87	83.94	82.23	84.77	83.99	83.32	84.61	83.89	75.39	82.38	83.16
SPE	67.92	63.40	68.68	68.87	68.30	63.58	70.94	70.00	64.34	70.19	70.00
MEAN	73.82	74.63	73.74	73.20	74.41	74.39	74.35	73.22	69.96	75.40	75.29

	SVM	XGBoost	MLP	FT-T	TabCaps	DANets	XTab	DEN	TabPTM	TabPTM [†]
churn	85.25	85.99	85.66	85.92	85.61	85.34	85.60	72.48	85.45	85.45
crowd	42.00	47.17	43.53	39.80	45.83	46.57	42.73	35.13	44.47	44.97
eye	56.35	72.36	60.98	62.87	58.15	57.93	56.55	43.04	61.94	62.22
htru	97.96	98.11	98.09	98.09	98.03	97.94	98.05	94.18	97.94	97.96
jm1	81.21	81.62	81.03	81.87	80.90	80.82	81.03	80.49	77.53	80.88
satellite	99.31	99.41	99.29	<mark>99.1</mark> 5	99.03	99.06	99.13	99.03	97.52	99.25
MEAN	77.01	80.78	78.10	76.54	77.93	77.94	77.18	70.73	77.48	78.46
Time (s)	2.3×10^{2}	1.8×10^{3}	8.7×10^{3}	4.7×10^{3}	5.4×10^{2}	8.0×10^{3}	3.2×10^{2}	7.7×10^{2}	5.7	6.2

Discussion and Conclusion

- Utilize meta-representations to reduce attribute heterogeneity and enable the pre-training of a joint model over tabular datasets.
- Explore how to make predictions based on the meta-representations, and the pre-trained TabPTM is capable of generalizing to unseen tabular datasets without additional training.
- Meta-representation is validated as an effective way for tabular classification and regression. TabPTM shows promising capabilities in generalizing to unseen datasets.
- A trade off between Specialized model and Generalized model.