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ABSTRACT
Portrait video editing has attracted wide attention thanks to its
practical applications. Existing methods either target fixed-length
clips or perform temporally inconsistent per-frame editing. In this
work, we present a brand new system, StreamEdit, which is pri-
marily designed to edit streaming videos. Our system follows the
ideology of editing propagation to ensure temporal consistency.
Concretely, we choose to edit only one reference frame and warp
the outcome to obtain the editing results of other frames. For this
purpose, we employ awarpingmodule, aided by a probabilistic pixel
correspondence estimation network, to help establish the pixel-wise
mapping between two frames. However, such a pipeline requires
the reference frame to contain all contents appearing in the video,
which is scarcely possible especially when there exist large motions
and occlusions. To address this challenge, we propose to adaptively
replace the reference frame, benefiting from a heuristic strategy
referring to the overall pixel mapping uncertainty. That way, we
can easily align the editing of the before- and after-replacement ref-
erence frames via image inpainting. Extensive experimental results
demonstrate the effectiveness and generalizability of our approach
in editing streaming portrait videos. Code will be made public.

CCS CONCEPTS
• Computing methodologies → Video editing; Generative
Multimedia; Computer vision;.

KEYWORDS
portrait video processing, propagation-based video editing, diffu-
sion model;

1 INTRODUCTION
Portrait video editing plays a critical role in enhancing aesthetics in
content creation, bolstering viewer engagement in live streaming,
and improving immersive experiences in virtual reality. The evolu-
tion of generative models[8, 12, 18, 24, 41] has markedly improved
the performance of portrait editing, particularly in terms of fidelity.
Nevertheless, portrait video editing remains a complex task due
to the requirement for high precision in capturing and modifying
subtle expressions and movements while maintaining excellent
temporal consistency.
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While numerous methods have been proposed to achieve con-
sistent portrait editing, they often encounter various drawbacks.
Talking head [19, 48, 52, 54, 59, 62] uses extensive human face pri-
ors and successfully enables highly consistent long video editing;
however, its applicability is greatly limited as edits are constrained
to the head only. Recent advancements in Text-to-Image diffusion
models[8, 18, 41] have inspired a wave of zero-shot video editing
techniques [11, 34, 49, 51] that incorporate temporal modules with
cross attention. Despite these developments, they only manage to
alleviate temporal flickering rather than eliminate it entirely due
to the inherent randomness in the generation process. Reference-
based [21, 22, 38, 50] and atlas-based [25, 33] propagation methods
find it challenging to capture subtle movements, particularly in
longer videos, a scenario in which the efficacy of both the reference
frame and the atlas diminishes.

In this study, we propose a method for portrait video editing that
incorporates probabilistic pixel correspondence. Specifically, we
combine the strengths of landmark-based, propagation-based and
large-model-based method by designing landmark warping mod-
ules that utilize pre-trained DINOv2 features. This approach allows
us to capture small facial movements with the initialized landmarks,
while other parts can be reconstructed leveraging the capabilities
of DINOv2 features. As a result, our pipeline is not restricted to
the head and can also handle body parts. Another challenge we
address is the appearance of occluded regions, especially in longer
videos, where pixels may not correspond to the reference image. To
identify these non-corresponding pixels, we propose a probabilistic
correspondence estimation network that takes the reference and
current image as inputs and outputs dense correspondences and
uncertainties for each pixel. Leveraging the learned uncertainty, we
introduce an adaptive reference replacement scheme to dynamically
update the reference image.

With our proposed pipeline, we can perform high-fidelity por-
trait editing while maintaining excellent temporal consistency. We
carry out comprehensive experiments, which demonstrate that our
method surpasses all baseline measures in video reconstruction
quantitatively, and it also significantly outperforms in user stud-
ies. Keys to our approach are the proposed modules: probabilistic
pixel correspondence estimation and adaptive reference replace-
ment. The former module effectively captures the fine details of
movement, while the latter adjusts the reference to accommodate
occluded content. We conduct ablation studies for these modules,
demonstrating their efficacy. Furthermore, we illustrate that our
model, once trained on the initial frames, can seamlessly transfer to
subsequent incoming frames. This design highlights our solution’s
potential for streaming applications.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Prompt: A Zelda girl is taking a selfie. Prompt: A Man in Monet's Paintings is smiling.

Figure 1: Photo-realistic portrait video editing results. Our approach to photo-realistic portrait video editing yields impressive
results, which has a unique capability to effectively handle motions and occlusion from portrait videos. Consequently, it
generates images that are high infidelity andmaintain temporal consistency, ensuring the continuity of the narrative throughout
the video sequence.

2 RELATEDWORK
Portrait video processing. Portrait video processing has attracted
considerable attention due to its profound practical applications.
This field encompasses a range of tasks, from human video edit-
ing [22, 25, 28, 29, 33, 43], human style transfer [9, 10, 23, 42] to talk-
ing head video generation [15, 19, 40, 46, 48, 52, 54, 57–59, 62, 63], all
of which extensively leverage human priors like facial landmarks.

Yao et al. [55] and Tzaban et al. [44] employ facial landmarks to
align and crop the target face area for facial editing in real videos.
However, their approaches only incorporate facial priors in the
pre-processing stage, leading to inconsistent results. Furthermore,
Kim et al. [26] applies a pretrained landmark detection model to
extract per-frame motion information. Following this process, they
introduces a landmark encoder to ensure temporal consistency in
face video editing In addition to facial landmark priors, 3D mor-
phable priors are also used in video editing. Cao et al. [4] integrate
a 3DMM reconstruction module, designed to decompose a video
portrait into pose, expression, and identity coefficients.

While the methods mentioned above focus on real face video
editing, the study of human stylization is also a well-established
field with broad applications in many areas. DST [27] is the pioneer-
ing method that integrates geometry priors, such as face keypoints,
into one-shot, domain-agnostic style transfer, yielding remarkable
outcomes. Cui et al. [6] introduce a method for one-shot stylization
of full-body human images very recently.

In talking head video synthesis, a number of studies [15, 58,
59, 63] utilize facial landmarks, identified by an off-the-shelf face
model [14], as the anchor points of the face. Following this, the facial
motion flow, derived from these landmarks, is transferred from a
driving face video. Nevertheless, the motion flow in these studies is
susceptible to cumulative errors due to the inaccuracies inherent in
the face model. To circumvent this limitation, some other works [19,
40, 48, 62] resort to unsupervised learning, which provides a more
accurate representation of facial motion by incorporating improved
mechanisms that model the motion transformation between two
sets of keypoints. While these methods are constrained to using
facial landmarks as priors, leading to difficulties in dealing with
other body parts like hands. Our approach goes beyond integrating
facial landmark priors; it also employs DINOv2 [32] features and a
cross-attention [45] mechanism for precise alignment of body parts.
The pretrained DINOv2 features can also adapt to unseen upcoming
frames, endowing our method with the capacity for streamability.
Propagation-based consistent video editing. Consistent video
editing [20–22, 25, 28, 29, 33, 38, 43, 50] is a longstanding prob-
lem in computer vision field, and our work is closely intertwined
with addressing this challenge. We mainly discuss the propagation-
based techniques [20–22, 38, 43, 50], which involve initially editing
a keyframe and then propagating these edits throughout all the
video frames. Although this kind of approach is simple and compu-
tationally efficient, it may lead to inaccuracies and inconsistencies
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Figure 2: Pipeline Overview. (a) The introduction of Adaptive Reference Replacement (ARR), a module that utilizes an uncer-
tainty map to dynamically determine whether to update a reference frame, aims to handle self-occlusion cases, such as hair, as
depicted in the illustration above.(b) Probabilistic Pixel Correspondence Estimation (PPCE) utilizes DINOV2 features and face
landmark information to estimate the displacement of the reference frame and uncertainty map.(c) The process of propagating
the edited results involves utilizing the uncertainty map to guide the inpainting process, ensuring that only pixels with a high
likelihood of error are modified.

when edits are propagated across the temporal dimension. More-
over, when applied to human-centric videos, these methods often
yield inferior results due to their lack of specifically tailored de-
signs for human subjects. A primary issue with these methods is
their reliance on a single reference frame, which makes handling
motions and occlusions a challenge. A viable solution is to “envi-
sion" the occluded area. With the progress in generative models
like GANs [12, 24] and diffusion models[8, 18, 41], image inpaint-
ing [1, 7, 30, 39, 56] has demonstrated potential in creating contex-
tually fitting and plausible content. In our work, we resort to the
image inpainting technique. More specifically, we perform inpaint-
ing guided by a learned uncertainty map. This approach allows
us to inpaint the smallest possible set of pixels, thereby ensuring
maximum consistency.
Video editing via large generative models. The advances in
diffusion models [8, 18, 41] have remarkably improve the generated
outputs in text-to-image (T2I) tasks. Cutting-edge T2I diffusion
models, including DALL-E series [2, 35, 36], Imagen [17], and Stable
Diffusion [37], possess billions of parameters and have been trained
on extensive images. As such, they boast exceptional generative
capabilities.

Building upon these T2I models, numerous derivative models [3,
31, 47, 60] have emerged, incorporating additional conditions such
as depth maps, edge maps, and normal maps to enhance the control-
lability of the generation process. Based on these works, T2I-based
video editing is gaining increasing popularity. Approaches such
as Tune-A-Video [51], FateZero [34], Vid2Vid-Zero [49] and To-
kenFlow [11] delve into the latent space of diffusion models and
strive for feature space matching across frames. For instance, they
establish cross-frame attention maps to enhance consistency in
video editing. Despite their advancements, these methods have not
yet fundamentally addressed the issue of consistency especially
for long videos, largely due to the manipulation solely within the
features. Instead, we employ a hybrid approach that combines facial
landmarks with DINOv2 features and achieve superior consistency
and quality.

3 METHOD
Our framework follows the ideology of editing propagation, which
entails first modifying a keyframe as the reference image and then
disseminating these alterations across all the video frames. The
consistency of the video is ensured by constraining the video’s
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Prompt: Avatar, a Girl is Talking

Prompt: Van Gogh, a Man is Holding a Microphone

Prompt: A Wonder Woman is making a peace sign. 

Prompt: A metal robot is making a peace sign. 

Prompt: An ice sculpture is talking. 

Prompt: A girl with painted flowers is talking. 

Figure 3: More qualitative results. Our approach showcases its effectiveness in not just modifying head and facial movements
but also effectively managing simple hand gestures. Additionally, we can also edit facial details, such as painting flowers on the
face, while maintaining facial structural stability.

appearance to be sampled from a single 2D image. This method-
ology is essentially constructed on a substantial premise, which
assumes that pixels in different frames corresponding to the same
points should maintain identical colors. However, in real-world
scenarios, this assumption does not hold true. In cases of occlusion
or large motions, pixels cannot consistently locate their legitimate
corresponding points in the reference image. Consequently, these
occluded regions may lead to inconsistencies. This limitation also
implies that such an approach can only be applied to videos of a
fixed length. To generalize the editing propagation process so that

it can handle longer videos featuring extensive motion and occlu-
sion, our StreamEdit incorporates the following submodules, as de-
picted in fig. 2: Dense Probabilistic Pixel Corresponding (section 3.1),
Adaptive Reference Replacement (section 3.2) and Uncertainty-driven
Inpainting (section 3.3) for streamable editing.

3.1 Probabilistic Pixel Correspondence
The key of the editing propagation is to find the dense correspon-
dence between the current image 𝐼curr and the reference image
𝐼ref. Our goal is to learn a function 𝐹warp : (𝑢, 𝑣) → (𝑢′, 𝑣 ′), where
(𝑢, 𝑣) ∈ 𝐼curr, (𝑢′, 𝑣 ′) ∈ 𝐼ref.
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Dino-Landmarks guided dense correspondence. In order to
handle complex motions and occlusions associated with human
objects in video sequences, we propose to employ the face land-
marks to guide the dense warping 𝐹warp. As shown in fig. 2, we
first extract the facial landmarks from each frame in the video. We
then calculate the barycentric interpolation to obtain a dense warp
field 𝐹Lwarp on the face. This process enables us to obtain a partially
warped image via landmarks interpolation: 𝐼Lwarp = 𝐹Lwarp (𝐼curr).
While facial landmarks ensure smooth and dense interpolation on
the face region, it is challenging to generalize to other parts of the
human portrait. Hence, to harmonize the warp field 𝐹Lwarp with
other parts of the portrait, we leverage the pre-trained feature en-
coder, DINOv2 [32], to extrapolate the correspondence from the
facial region.By leveraging the highly robust DINOV2 feature, we
not only achieve precise alignment of the face and body but also
effectively handle the matching of regions with intricate texture
details, including hair and teeth. The advanced capabilities of DI-
NOV2 enable us to perform accurate warping and alignment, even
in areas with complex textures, ensuring a seamless and natural
result.

Specifically, the features of the reference image, warped image
and current image extracted by DINOv2 are denoted as Fref, Fwarp
and Fcurr respectively. Furthermore, we introduce a novel cross-
attention mechanism to enhance the image features and produce
comprehensive and dense correspondences:

Iwarp, Iunc = CrossAttn(Fcurr, Fref, F
′
warp), (1)

where 𝐼warp is the warped image from reference image and 𝐼unc is
the uncertainty map.
Uncertainty modeling. For the image propagation, the photomet-
ric consistency assumption may be violated by the illumination
changes and occlusions. However, we can assume the the photo-
metric residuals of |Iref − Icurr | will satisfy the laplace distribution
when only noises are added in this system. Inspired by the previous
methods which assume the noise as a laplacian distribution [53],
the negative log-likelihood to be minimized is

− log 𝑝 (𝑦 |𝑦, 𝜎) = |𝑦 − 𝑦 |
𝜎

+ log𝜎 +𝐶,

Lunc =
|𝑦 − 𝑦 |
𝜎

+ log𝜎 +𝐶
(2)

where 𝐶 is a constant and 𝜎 is the uncertainty predicted from Iunc.

3.2 Adaptive Replacement of Reference Image
The uncertainty module aids in determining whether pixels can lo-
cate their correspondence in the reference image. For longer videos,
occluded areas and unseen scenes can create inconsistencies. This
issue confines previous methods to operating only within limited
video lengths. To overcome this, we propose an adaptive strat-
egy for replacing the reference image, which allows for dynamic
changes to the reference image. For a long video V = {I1, I2, ..., I𝑛},
we take the first image I1 as the initial reference imageIref, and
construct the first window 𝑆 = I1, ..., I𝑆+1, here 𝑆 is the maximum
length of the current sliding windows. And the last frame I𝑆+1 in
the window find its correspondences to the current reference im-
age Iref with the probabilistic pixels correspondence module above
Iunc, Iwarped = 𝐹warp (Iref, I𝑆+1). If the uncertainty map Iunc is above

a certain threshold, we will decide to split the video into a new
sliding window and a new reference image Iref′ . This adaptive re-
placement technique ensures effective handling of scenarios where
the reference frame is insufficient to cover the entire video content.
It also ensures the preservation of pixel correspondence for the
majority of frames. By selectively updating only a small number of
error pixels, it guarantees excellent continuity, thereby maintaining
the overall coherence of the video.

3.3 Uncertainty-driven Inpainting for Editing
After learning the dense warping and uncertainty, the video edit-
ing can be consistently propagate within the local windows as
shown in fig. 2. Firstly, we edited the first reference image by
the text guided image editing algorithms such as ControlNet [60]:
I0edit = Φ(I0ref, 𝑡𝑒𝑥𝑡), and we can propagate the result using the wrap
result during reconstrcution process. Using the dense correspon-
dence between the current image 𝐼curr and the reference image
𝐼ref. Leavaging the function 𝐹warp. We can propagate the editing
result by Icurredit = 𝐹warp (I0edit). And for the sliding windows split in
the section 3.2, the new appending reference image is first get the
warping by the learnt probabilistic corresponding module, and we
mask those pixels and inpaint them with the existed inpainting
networks.

3.4 Training Losses
To supervise the correspondence between the queried images and
the multiple reference images. The overall training objective is
expressed as follows:

Ltotal = 𝛼1Lrec + 𝛼2Lunc,

Lrec =
𝑀∑︁

𝑖=1,Ij∈Ω𝑖

| |I𝑗 −W(I𝑗 , I𝑖ref) | |,
(3)

where 𝛼1, 𝛼2 are two hyper parameters and Ω𝑖 is the images set in
the adaptive replacement of I𝑖ref,W is the warping operation.

4 EXPERIMENTS
4.1 Experimental Setup
In order to demonstrate the superior performance and robustness of
our method, we conducted comprehensive experiments. Firstly, we
evaluated the stability and temporal consistency of our method on
long videos through a rigorous analysis on the HDTF [61] dataset,
which comprises 57 high-resolution human videos exceeding one
minute in duration. Furthermore, to demonstrate the practical appli-
cability of our method, we extensively tested our text-based edited
results on a diverse set of web videos featuring complex scenes,
encompassing a wider range of expressions and more pronounced
body movements. We also demonstrate that with the trained mod-
els, we can apply edits to the newly incoming frames in streaming
videos. Finally, we conducted an ablation study to demonstrate the
effectiveness of the modules designed in our approach.

For the specific implementation details, we utilized Segment-
Anything-track (SAMtrack) [5] to extract segmentation results of
foreground figures from the video. Additionally, we employed Me-
diaPipe [13] to extract face landmarks. The training process was
conducted with a maximum of 40,000 iterative steps, with periodic
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Figure 4: Reconstruction comparison on HDTF [61] dataset.
We compare our method with Layered Neural Atlas (LN-
Atlas) [25] and CoDeF [33], demonstrating the superiority of
our method.

evaluations every 10,000 iterations to assess whether the uncer-
tainty of frames exceeded the predetermined threshold. On a single
NVIDIA 3090 GPU, the average training time for a video comprising
150 frames, each with a size of 768x432 pixels, was approximately
45 minutes. Regarding inference time, it can achieve a speed of
nearly 5 frames per second.

4.2 Reconstruction Quality on HDTF
For reconstruction testing, we sampled a thousand consecutive
frames from each video in the HDTF [61] test set. To evaluate the
quality of the reconstructions, we employed three widely used
metrics: structural similarity index (SSIM), peak signal-to-noise
ratio (PSNR), and perceptual image similarity (LPIPS). In table 1,
we present a comparison of our StreamEdit method with state-of-
the-art layered representation-based approaches, namely Layered
Neural Atlas [25] and CoDeF [33]. It can be observed that our
StreamEdit obtains the best results compared with other competi-
tive methods. Besides, as illustrated in fig. 4, our approach excels
in effectively preserving detailed facial movements in long videos.

Table 1: Reconstruction result on the HDTF [61] dataset.

Models SSIM (%) ↑ PSNR ↑ LPIPS ↓
Layered Neural Atlas [25] 94.7 29.63 0.072

CoDeF [33] 95.2 30.51 0.066
StreamEdit 97.4 33.41 0.027

Prompt: Cyberpunk, a Man is Smiling

Figure 5: Editing Results with Background Motion. Our
method learns complex pixel-level matching relationships
for layered foreground and background elements, thus en-
abling users to edit videos with camera motion.

4.3 Editing Results on Diverse Web Videos
To further assess the effectiveness and practicality of our approach,
we conducted extensive evaluations using rich web videos that
encompassed a broader range of micro-expressions and head move-
ments. We employed both objective metrics and human preferences
to evaluate the performance.

For text fidelity evaluation, we utilized the average CLIPScore [16]
between the output video frames and their corresponding text de-
scriptions as a measure. This metric quantifies the degree of fidelity
between the generated visual content and the intended textual rep-
resentation. Moreover, to gauge human preference, we enlisted the
participation of 77 volunteers. We presented them with the base-
line editing results and the corresponding text descriptions and
requested them to score ranging from 1 to 5 on four dimensions:
Motion Coherence (MC), Text Fidelity (TF), Temporal Consistency
(TC), and Overall Quality. The average score across the volunteers
was then computed to derive the final result for each evaluation
metric.

We conducted both quantitative and qualitative comparisons of
our method with Tune-A-Video [51], FateZero [34], CoDeF [33]
and TokenFlow [11]. The results presented in fig. 6 provide com-
pelling evidence that our method excels in maintaining consistency
while editing details, such as teeth and hair. It is essential to pre-
serve intricate facial movements as they play a pivotal role in ef-
fectively conveying emotions. However, baseline methods fail to
preserve complex facial movements, such as eye closure and mouth
movements, resulting in poor editing results. Tune-A-Video [51]
faces challenges in ensuring consistent positioning of the charac-
ters relative to the original video, resulting in significant spatial
displacement. Insufficient understanding of the semantics of the
learned canonical images in CoDeF [33] results in distorted facial
expressions. In the case of Tokenflow [11], its propagation in an
implicit space limits its ability to capture subtle movements and
results in similar editing.

Additionally, the user study in table 2 shows that our approach
outperforms the others in terms of visual results, particularly in
maintaining temporal consistency. As evident in table 2, our method
achieves the highest human preference in all aspects and outper-
forms all baselines by a large margin.

Furthermore, our approach successfully learns pixel correspon-
dence for both portrait regions and background regions, as illus-
trated in fig. 2. This capability enables natural background editing,
such as adjustments caused by camera motion. Notably, our method
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Figure 6: Visual results on Diverse Web Videos. We compare our method against Tune-A-Video(TAV) [51],FateZero [34],
CoDeF [33], TokenFlow(TF) [11].

Table 2: Quantitative results on Diverse Web Videos.

Model CLIPScore ↑ MC ↑ TF ↑ TC↑ Overall ↑
Tune-A-Video [51] 27.62 3.13 3.29 3.02 3.00

FateZero [34] 28.13 3.71 3.67 3.4 3.21
CoDeF [33] 28.87 3.41 3.50 3.27 3.29

TokenFlow [11] 28.57 3.62 3.73 3.59 3.52
StreamEdit (ours) 27.87 4.53 4.25 4.48 4.36

effectively handles background motion, resulting in consistent and
high-quality edits, as demonstrated in the fig. 5.

4.4 Streamability Demonstration
We evaluate the streamability of our pipeline. Our model is op-
timized on the initial 1000 frames and the editing outcomes are
tested on the subsequent 500 frames. As depicted in fig. 7, our model
exhibits the ability to generalize to new frames, provided that the
reference has been updated.

Moreover, we conducted speed tests to evaluate the efficiency of
our editing process. Once the training of the reconstruction is com-
pleted, our method achieves an impressive editing processing speed
of 10 frames per second. In comparison, Tune-A-Video[51] oper-
ates at a significantly slower speed of 0.6 fps, while TokenFlow[11]
performs even lower at 0.3 fps. These results clearly indicate the
superior efficiency of our method in terms of editing speed.

Prompt: Cyberpunk, a Man is Talking

Figure 7: Streamability demonstration. Once trained on the
initial frames, our pipeline can seamlessly generalize to
newly incoming frames without the need for further fine-
tuning.

4.5 Ablation Studies
In this section, we perform ablation studies to demonstrate the
effectiveness of the proposed Probabilistic Pixel Correspondence
Estimation (PPCE) and Adaptive Reference Replacement (ARR).
The PPCE module plays a crucial role in modeling pixel-to-pixel
correlations, enhancing the overall performance of our method. On
the other hand, the ARR module proves to be highly effective in
handling emerging objects and addressing challenges arising from
self-occlusion scenarios.
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Figure 8: Visualization of Intermediate Results. From the
PCA results, it can also be observed that the features of
DINOV2 are highly robust. Besides, it is apparent that the
query patch on the face effectively captures relevant informa-
tion corresponding to the respective region in the reference
frame.

Effect of probabilistic pixel correspondence estimation. In
fig. 8, we present the visualized cross-attention map of Landmarks-
Attention module, revealing that the query patch on the face ef-
fectively captures information related to the corresponding re-
gion in the reference frame. This demonstrates that our designed
Landmarks-Attention module further refines the DINOv2 [32] fea-
ture and enhances its applicability for matching. Additionally, by
utilizing the mapping of landmarks between the reference and cur-
rent video frames as the initial value, we simplify the process of
fitting eye motion. The quantitative results in table 3 and the quali-
tative results in fig. 9 demonstrate that the absence of Landmarks-
Guided warp module module leads to a noticeable decrease in PSNR
due to the inability to accurately model closed-eye actions.

Table 3: Ablation studies.

PPCE ARR SSIM (%) ↑ PSNR ↑ LPIPS ↓
✓ 98.1 31.28 0.024

✓ 98.0 31.11 0.021
✓ ✓ 99.1 34.58 0.014

Effect of adaptive reference replacement. The ARR module
is essential for effectively dealing with occlusions and updating
the reference frame. Removing ARR would result in the absence of
hair when the head is turned sideways, as demonstrated in fig. 9.
Furthermore, the quantitative results presented in table 3 provide
additional evidence of the module’s effectiveness.

5 CONCLUSION AND DISCUSSION
In this research, we introduce a novel approach to portrait video
editing that leverages the integration of landmark warping and
DINOv2 [32] features, facilitated by the utilization of probabilis-
tic pixel correspondence. By employing this method, we achieve
high-fidelity edits that retain temporal consistency, making them
particularly well-suited for streaming scenarios. This innovative

Dinov2 feature PCA result Attention Map 

+Query Patch Current frame

 

  

 

   

Ours

w/o ARR

GT

w/o PPCE

Figure 9: Qualitative Ablation Study. The PPCE and ARR
modules are necessary for accurate modeling of closed-eye
actions and handling occluded object parts, respectively.

combination of techniques allows for precise and seamless modifi-
cations throughout the video, resulting in visually appealing and
coherent results.

Our StreamEdit offers a new perspective on tackling the task of
long portrait video editing, where the editing is performed only
once on the first video frame and then propagated to the subse-
quent frames with learned pixel correspondence. Besides the novel
pipeline, the key challenges lie in learning accurate per-pixel cor-
respondence and adequately replacing the reference frame to con-
stantly adapt to the unseen video stream.

Our design enjoys three advantages: (1) temporally consistent
portrait video editing with large motions, (2) customization of edit-
ing on both the portrait and the background, (3) editing beyond a
fixed video clip by taking streamability into account.

Nonetheless, we encounter several challenges. The first limita-
tion lies in the slow speed of DINOv2 feature extraction, which
can significantly impact the real-time editting performance. This
limitation restricts the system’s responsiveness and may not be
suitable for scenarios that require fast editting, such as interac-
tive applications or live events. The second limitation arises from
the bais of ControlNet[60] towards generating individuals with
their eyes glued to the screen. This bias can make it challenging
to achieve accurate eye alignment, leading to a mismatch of eyes
in the editing results. This limitation adversely affects the visual
realism and quality of the rendered individuals.

Despite these issues, our results showcase the potential for high-
speed, temporally coherent portrait editing. We anticipate that
future efforts will focus on advancing this framework, aiming to
enhance its generalization capability while further accelerating its
performance.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Streamable Portrait Video Editing with Probabilistic Pixel Correspondence ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester.

2000. Image inpainting. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. 417–424.

[2] James Betke, Gabriel Goh, Li Jing, and et al. 2023. Improving image generation
with better captions. https://https://cdn.openai.com/papers/dall-e-3.pdf.

[3] Tim Brooks, Aleksander Holynski, and Alexei A Efros. 2023. Instructpix2pix:
Learning to follow image editing instructions. In IEEE Conf. Comput. Vis. Pattern
Recog.

[4] Meng Cao, Haozhi Huang, HaoWang, XuanWang, Li Shen, ShengWang, Linchao
Bao, Zhifeng Li, and Jiebo Luo. 2021. UniFaceGAN: A Unified Framework for
Temporally Consistent Facial Video Editing. IEEE Trans. Image Process. 30 (2021),
6107–6116.

[5] Yangming Cheng, Liulei Li, Yuanyou Xu, Xiaodi Li, Zongxin Yang, Wenguan
Wang, and Yi Yang. 2023. Segment and Track Anything. arXiv preprint
arXiv:2305.06558 (2023).

[6] Aiyu Cui and Svetlana Lazebnik. 2023. One-Shot Stylization for Full-Body Human
Images. arXiv preprint arXiv:2304.06917 (2023).

[7] Ugur Demir and Gozde Unal. 2018. Patch-based image inpainting with generative
adversarial networks. arXiv preprint arXiv:1803.07422 (2018).

[8] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on
image synthesis. In Adv. Neural Inform. Process. Syst.

[9] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015. A neural algorithm
of artistic style. arXiv preprint arXiv:1508.06576 (2015).

[10] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using convolutional neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2414–2423.

[11] Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. 2023. TokenFlow:
Consistent Diffusion Features for Consistent Video Editing. arXiv preprint
arxiv:2307.10373 (2023).

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Adv. Neural Inform. Process. Syst.

[13] Ivan Grishchenko, Artsiom Ablavatski, Yury Kartynnik, Karthik Raveendran, and
Matthias Grundmann. 2020. Attention mesh: High-fidelity face mesh prediction
in real-time. arXiv preprint arXiv:2006.10962 (2020).

[14] Xiaojie Guo, Siyuan Li, Jinke Yu, Jiawan Zhang, Jiayi Ma, Lin Ma, Wei Liu, and
Haibin Ling. 2019. PFLD: A practical facial landmark detector. arXiv preprint
arXiv:1902.10859 (2019).

[15] Sungjoo Ha, Martin Kersner, Beomsu Kim, Seokjun Seo, and Dongyoung Kim.
2020. MarioNETte: Few-Shot Face Reenactment Preserving Identity of Unseen
Targets. In Assoc. Adv. Artif. Intell.

[16] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. 2021.
Clipscore: A reference-free evaluation metric for image captioning. arXiv preprint
arXiv:2104.08718 (2021).

[17] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey
Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet,
et al. 2022. Imagen video: High definition video generation with diffusion models.
arXiv preprint arXiv:2210.02303 (2022).

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. In Adv. Neural Inform. Process. Syst.

[19] Fa-Ting Hong, Longhao Zhang, Li Shen, and Dan Xu. 2022. Depth-aware genera-
tive adversarial network for talking head video generation. In IEEE Conf. Comput.
Vis. Pattern Recog.

[20] Allan Jabri, Andrew Owens, and Alexei Efros. 2020. Space-time correspondence
as a contrastive random walk. In Adv. Neural Inform. Process. Syst.

[21] Varun Jampani, Raghudeep Gadde, and Peter V Gehler. 2017. Video propagation
networks. In IEEE Conf. Comput. Vis. Pattern Recog.

[22] Ondřej Jamriška, Šárka Sochorová, Ondřej Texler, Michal Lukáč, Jakub Fišer,
Jingwan Lu, Eli Shechtman, and Daniel Sỳkora. 2019. Stylizing video by example.
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