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1 PROVIDES MORE IMPLEMENTATION
DETAILS OF PROBABILISTIC PIXEL
CORRESPONDENCE ESTIMATION (PPCE)

1.1 Module Details
The proposed PPCE module comprises three main components:
feature extraction, landmarks attention, and two output heads. The
feature extraction component leverages the DINOV2 [4] method to
extract texture features from input frames, while the mediapipe [2]
framework is employed to extract 486 facial keypoints, providing
precise information about facial landmarks such as the position of
the eyes, nose, and mouth.

The landmarks interpolation component plays a crucial role in
aligning the facial keypoints between the reference image and the
current frame. By employing dense interpolation using triangular
center of gravity interpolation with sparse face keypoints, the mod-
ule achieves accurate transformation and warping of the reference
frame features to match the corresponding regions in the current
frame.

To establish the correspondence between the current frame and
the reference frame, the module utilizes cross attention. Specifically,
the features extracted from the current frame serve as query, while
the features from the reference frame and the transformed reference
frame features (transformed through landmarks interpolation) act
as keys and values simultaneously. This enables the module to
learn the matching relationship between the query features and
the reference features.

The module includes two output heads, each serving a distinct
purpose. The first head predicts the displacement map, which pro-
vides precise information about the movement or shifting between
the reference frame and the current frame. The second head pre-
dicts the uncertainty map, which indicates the model’s confidence
level in its predictions. The architecture employed for these output
heads is DPT decoder [7], which is well-suited for generating dense
predictions.

1.2 Triangular Barycentric Interpolation of
Landmarks

To establish the transformation between the current image (𝐼curr)
and the reference image (𝐼ref), we can directly compute the trans-
formation for landmarks by calculating the differences (delta) in
their x and y coordinates.

For the remaining facial points, we can utilize triangular barycen-
tric interpolation based on the neighboring landmarks to estimate
their corresponding transformations. Let’s denote the delta in x and
y coordinates for a given landmark 𝑃landmark in the reference image
and its corresponding landmark 𝑃 ′landmark in the current image as
Δ𝑥landmark and Δ𝑦landmark.

To compute the delta in x and y coordinates for any point within
a triangle defined by three landmarks, 𝑃𝑖ref and 𝑃

𝑗

ref and 𝑃
𝑘
ref, in the

Ref Curr

QK V

Warp

Cross Attn 

Unc -dpt Warp -dpt

Feature Extraction DINOV2 Feature

Face Landmarks

Figure 1: Providesmore implementation details of Probabilis-
tic Pixel Correspondence Estimation (PPCE). PPCE module
comprises three main components: feature extraction, land-
marks attention, and two output heads.

reference image, we use the barycentric coordinates (𝛼, 𝛽,𝛾 ) as well
as the deltas for the corresponding landmarks in the current image.

The formula to compute the delta in x and y coordinates for a
pixel coordinate (𝑢, 𝑣) within the triangle is as follows:

Δ𝑥 = 𝛼 · Δ𝑥𝑖ref + 𝛽 · Δ𝑥 𝑗ref + 𝛾 · Δ𝑥𝑘ref (1)

Δ𝑦 = 𝛼 · Δ𝑦𝑖ref + 𝛽 · Δ𝑦 𝑗ref + 𝛾 · Δ𝑦𝑘ref (2)

Here, Δ𝑥𝑖ref, Δ𝑥
𝑗

ref, and Δ𝑥
𝑘
ref represent the delta in x coordinates

for the landmarks 𝑃𝑖ref, 𝑃
𝑗

ref, and 𝑃
𝑘
ref, respectively. Similarly, Δ𝑦𝑖ref,

Δ𝑦
𝑗

ref, and Δ𝑦𝑘ref represent the delta in y coordinates for the corre-
sponding landmarks.

By applying this formula to each pixel coordinate within the
triangles defined by the landmarks, we can estimate the delta in x
and y coordinates for the remaining facial points, thus achieving
dense correspondence between the current and reference images.
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Table 1: Comparative Preference Results on Diverse Web Videos.

Model Motion Consistency ↑ Text Fidelity ↑ Temporal Consistency↑ Overall ↑
Tune-A-Video [8] 1.69v.s.98.31(ours) 11.69v.s.88.31(ours) 0.39v.s.99.16(ours) 0.89v.s.99.11(ours)

FateZero [6] 7.64v.s.92.36(ours) 17.54v.s.82.46(ours) 3.62v.s.96.38(ours) 5.75v.s.94.25(ours)
CoDeF [5] 2.76v.s.97.24(ours) 10.18v.s.89.82(ours) 1.87v.s.98.13(ours) 3.90v.s.96.10(ours)

TokenFlow [1] 10.85v.s.89.15(ours) 26.32v.s.73.68(ours) 8.19v.s.91.81(ours) 12.29v.s.87.71(ours)

2 INTRODUCES ADDITIONAL RESULTS
2.1 Ablation study on the model size of DINOV2
To investigate the influence of the model size of DINOV2[4] on its
performance, we conducted ablation experiments on a subset of 8
videos from the HDTF [10] dataset. It is important to mention that
the results reported in the original paper were obtained using the
smallest DINOV2 architecture, ViT-S/14.

To evaluate the quality of the reconstructions, we employed three
widely used metrics: structural similarity index (SSIM), peak signal-
to-noise ratio (PSNR), and perceptual image similarity (LPIPS).

Table 2: Ablation study on the model size of DINOV2.

Arch SSIM (%) ↑ PSNR ↑ LPIPS ↓
ViT-S/14 97.1 33.39 0.029
ViT-B/14 97.6 33.71 0.025
ViT-L/14 97.8 33.83 0.024
ViT-g/14 98.3 34.11 0.021

Table2 presents a comparison of the results obtained with DI-
NOV2 models of different sizes, revealing the impact of model
capacity on reconstruction performance. It is evident that as the
model size increases, the reconstruction performance improves.
This improvement can be attributed to the larger number of pa-
rameters in larger models, allowing them to capture more intricate
patterns and relationships in videos.

However, it is important to note that larger models also come
with increased computational requirements for both training and
inference. Therefore, when deciding on the model size, it is crucial
to consider the available computational resources and the specific
accuracy requirements of video editting task.

By analyzing DINOV2’s performance under various model sizes,
we gain valuable insights into the trade-off between model com-
plexity and performance. These insights enable researchers and
practitioners to make informed decisions when selecting the opti-
mal model size for video editting tasks, striking a balance between
accuracy and computational efficiency.

2.2 Comparative preference results from the
user study

To gather human preferences, we recruited 77 volunteers who
actively participated in our study. We presented them with both
our edited results and baseline editing results, accompanied by
corresponding textual descriptions. Subsequently, we requested the
volunteers to rate the results on a scale of 1 to 5, considering four
dimensions: motion consistency, text fidelity, temporal consistency,
and overall quality.

Initially, in the original article, we calculated the average scores
provided by the volunteers to determine the final results for each
assessment metric. However, we acknowledged that each individual
had their own subjective criteria for evaluating the results. To
address this variability, we opted to calculate relative preferences.

By comparing the scores assigned by each volunteer for the different
editing outcomes, we obtained relative preference statistics that
offer a more dependable basis for comparing the editing results.

As shown in Table 1, our method, consistently achieved higher
scores across all evaluation metrics compared to the other mod-
els. Our results indicate superior performance in terms of motion
consistency, text fidelity, temporal consistency, and overall quality.

2.3 Comparison of streamability
We conducted streamability tests on a subset of 8 videos extracted
from the HDTF dataset [10]. To ensure a fair evaluation, we divided
each video into two segments: the first 1000 frames were utilized
for training, while the remaining 500 frames were employed for
testing. The reconstructed results were then assessed to evaluate
the streamability performance.

Table 3: Streamability Performance.

SSIM (%) ↑ PSNR ↑ LPIPS ↓
95.7 31.89 0.041

Measuring streamability for time-dependentmodels like CoDeF [5]
and Atlas [3] Networks can indeed be challenging. As shown in
Table 3, the quality of the reconstruction results tends to degrade
compared to the first 1000 frames. However, even under such cir-
cumstances, our method demonstrates superior performance with
remarkable streamability capabilities.

3 DISCUSSES THE LIMITATIONS OF OUR
APPROACH

Two notable limitations are related to the slow speed of DINOV2 [4]
feature extraction and the challenges associated with controlnet’s
bias in generating individuals with their eyes glued to the screen.

The first limitation lies in the slow speed of DINOV2 [4] feature
extraction, which can significantly impact the real-time editting
performance. The computational complexity of extracting features
using DINOV2 [4] may hinder the ability to generate feature repre-
sentations quickly enough for real-time editting applications. This
limitation restricts the system’s responsiveness and may not be
suitable for scenarios that require fast editting, such as interactive
applications or live events.

The second limitation arises from ControlNet’s [9] bias towards
generating individuals with their eyes glued to the screen. This
bias can make it challenging to achieve accurate eye alignment,
leading to a mismatch of eyes in the editing results. This limitation
adversely affects the visual realism and quality of the rendered
individuals.
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