
Appendices

A Constructing and training a LODE-GP

The construction of a LODE-GP, as discussed in the proof of Theorem 1, involves the following
steps:

1. Calculate the SNF symbolically using SageMath [60]

2. Construct the covariance function for the GP-prior h ∼ GP(0, k), according to Lemma 1
and the last line of Equation 3

3. Calculate the final LODE-GP through the pushforward with the matrix V , including the
matrix multiplication V · k · V ′ and applying the derivatives to k

This construction gives us our LODE-GP, which we train using the standard GP training procedure.
All SE kernels that are part of the LODE-GPs have randomly initialized signal variance σ and length-
scale " values chosen uniformly from [−3, 3], which are passed through an exp, during calculation,
to ensure numerical stability (e.g. preventing negative lengthscales) and smooth training. We use an
Adam optimizer with a learning rate of 0.1 for 300 training iterations in all experiments, further we
use the GPyTorch multitask likelihood, since the LODE-GP inherits the class of a GPyTorch multi-
task GP. We reduced the noise constraint for the likelihood from 1e−4 to 1e−10. GPyTorch uses
the softplus operation to ensure the constraint. We performed calculations with 64 bit precision.

Training and evaluation was done on our server equipped with a Intel(R) Core(TM) i9-10900K CPU
@ 3.70GHz and 64GB RAM running at 3200MHz. All calculations were done on the CPU.

Training was done on 25 datapoints and was repeated ten times for noisy and noise-free, for both
LODE-GP and GP.

At no point in training or evaluation is any data or GP output scaled, i.e. we use all the data as is.

B Additional details on experiments and results

We compare the values for the GP and LODE-GP parameters across the three experiments in Table 3.
The values for the parameters are their actual values as used in the calculation, i.e. after applying the
softplus and exp functions. The behaviour discussed in Section 5 is clearly visible in the maximum
LODE-GP lengthscale for the bipendulum, where it sometimes learns a basically constant function.
For the bipendulum and the three tank experiments, the LODE-GP generally learns a higher length-
scale, which translates to a smoother behaviour in the outputs.

Analyzing the eigenvalues for the LODE-GP and GP shows that the LODE-GP produces roughly
half as many non-zero eigenvalues (i.e. eigenvalue λ > 1e−6) compared to the GP, as shown in
Table 4. This behaviour is expected since the LODE-GP is underlying additional strong constraints
due to the inductive bias, which is reflected in its eigenvalues.

B.1 Calculating the ODE error

To calculate the error in satisfying the ODEs via finite differences, we generate uniformly distributed
datapoints in the evaluation interval and add duplicate points, shifted by a step of ∆ = 1e − 3.
We generate either 500 or 333 datapoints, dependent on whether only the first or also the second
derivative is necessary, ensuring that always a total of 1000 datapoints are created.

We pass the data to the GP resp. LODE-GP and extract the resulting mean function. The first and
second derivative are then approximated using forward difference.

To ensure numerical stability in the calculation of the second derivative, we pass the first order
forward difference result through a low-pass filter, removing high frequency noise from the result.

To finally calculate the ODE error, we insert the finite difference values for the corresponding deriva-
tives in the original ODEs and average over the error for each ODE.

15

Table 3: The trained hyperparameters for the bipendulum (top), heating (middle) and three tank
(bottom) experiments, for the noisy and noise-free settings. The GP trains three, resp. five, signal
variances, for simpler presentation we show the mean of the signal variance parameters. For the
LODE-GP three tank system we also use the mean of the two SE kernels that are created.

Parameter Median Std. deviation Minimum Maximum

LODE-GP noisy noise 6.7521e-05 0.000149199 4.91994e-05 0.000470599
signal variance 0.0617262 0.0351961 7.22543e-06 0.0879048
lengthscale 1.24498 3.62295 1.18036 13.4538

LODE-GP no noise noise 0.000306269 0.000178327 1.7952e-11 0.000413706
signal variance 0.000298894 0.109973 6.91032e-06 0.354441
lengthscale 1.82798 0.86266 0.69606 3.54208

GP noisy noise 8.60043e-05 1.53343e-05 4.62593e-05 9.75798e-05
signal variance 0.00222937 0.00135264 0.000539298 0.0056802
lengthscale 0.786804 0.0557031 0.709304 0.86083

GP no noise noise 2.66449e-09 2.13689e-08 5.74964e-11 5.48067e-08
signal variance 0.0436976 0.0591215 3.70462e-05 0.152265
lengthscale 1.25061 0.0776317 1.09688 1.34608

LODE-GP noisy noise 0.000186034 3.64772e-05 0.000135545 0.000243457
signal variance 10.0713 4.51968 0.412769 15.3753
lengthscale 5.46155 0.553268 3.7435 5.86303

LODE-GP no noise noise 1.41396e-06 1.97306e-06 4.83248e-10 5.48139e-06
signal variance 6.43588 0.520707 5.76422 7.13915
lengthscale 5.06497 0.109923 4.87297 5.2045

GP noisy noise 0.000169646 2.93415e-05 0.000132707 0.000218817
signal variance 1.26965 0.763973 0.542204 3.03235
lengthscale 4.20254 0.198991 3.8563 4.47665

GP no noise noise 1.61976e-11 5.0974e-13 1.57147e-11 1.72362e-11
signal variance 6.29899 1.27418 3.36005 7.5202
lengthscale 5.08887 0.175657 4.77775 5.26459

LODE-GP noisy noise 0.00287473 0.000523729 0.00238355 0.00393084
signal variance 0.58266 0.192348 0.323803 0.913425
lengthscale 5.41985 1.00242 4.31772 7.55746

LODE-GP no noise noise 1.18695e-11 6.09864e-13 1.05086e-11 1.23305e-11
signal variance 44.2332 5.66572 32.4225 51.8143
lengthscale 6.66897 0.116321 6.42639 6.8065

GP noisy noise 0.00281939 0.000507194 0.00176329 0.00377263
signal variance 0.00104692 0.000369078 0.000433981 0.00150992
lengthscale 5.52465 1.15024 3.01939 6.5203

GP no noise noise 1.6506e-11 3.734e-13 1.58496e-11 1.72428e-11
signal variance 0.00304028 0.00140299 0.00170012 0.006194
lengthscale 4.42061 0.113491 4.20928 4.69174

16

Table 4: Median number of eigenvalues greater than zero (i.e. eigenvalue λ > 1e−6) for the experi-
ments with the LODE-GP and the GP. The total number of eigenvalues for the bipendulum/heating
and three tank are 3000 and 5000, respectively.

eigenvalues greater zero

Bipendulum LODE-GP 29
GP 76

Heating LODE-GP 14
GP 39

Three tank LODE-GP 18.5
GP 32.5

B.2 Bipendulum

We illustrate how a LODE-GP covariance function might look like by showing the (1,1) entry for
the bipendulum LODE-GP covariance function:

σ2 exp

(
− (x1 − x2)2

2"2

)
·
(
(x1 − x2)4

"8
− 6 · (x1 − x2)2

"6
+

3 + g · (x1 − x2)2

"4
− g

"2
+

g2

4

)

System details Since the bipendulum has been thoroughly discussed in the paper, we just briefly
mention the system equations, operator matrix and the SNF:

[
x′′(t) + "1f ′′

1 (t) + gf1(t)
x′′(t) + "2f ′′

2 (t) + gf2(t)

]
= 0 =

[
∂2
t + g

!1
0 − 1

!1
0 ∂2

t + g
!1

− 1
!2

]

︸ ︷︷ ︸
A

·
[
f1(t)
f2(t)
u(t)

]

case "1 = 1 #= "2 = 2:

[
1 0
− 1

2 1

]

︸ ︷︷ ︸
U

[
∂2
t + g 0 −1
0 ∂2

t + g
2 − 1

2

]

︸ ︷︷ ︸
A





0 − 4
g

2∂2
t +g
2

0 − 2
g

∂2
t +g
2

−1 − 4∂2
t +4g
g (∂2

t + g
2)(∂

2
t + g)





︸ ︷︷ ︸
V

=

[
1 0 0
0 1 0

]

︸ ︷︷ ︸
D

To generate the data we use the following solution to the ODE (cf. Figure 7):

[
f1(t)
f2(t)
u(t)

]
=





− 41 sin(3 t)
100 (t+1) − 3 cos(3 t)

5 (t+1)2
+ sin(3 t)

5 (t+1)3

81 sin(3 t)
2000 (t+1) −

3 cos(3 t)
10 (t+1)2

+ sin(3 t)
10 (t+1)3

− 3321 sin(3 t)
10000 (t+1) + 987 cos(3 t)

500 (t+1)2
− 3929 sin(3 t)

500 (t+1)3
− 36 cos(3 t)

5 (t+1)4
+ 12 sin(3 t)

5 (t+1)5



 (5)

Training details To train a LODE-GP we generate uniformly spaced training data from Equation 5
in the interval [1, 6] to which we add noise of the form 0.012 · σn for σn ∼ N (0, 1), i.e. noise
with standard deviation 0.012 (2% of the maximal signal value). The data is shown in Figure 7. To
validate our results, e.g. using RMSE, we generate uniformly spaced evaluation data from Equation 5
in the interval [1, 11], without adding noise.

B.3 Heating

System details Original system equations:
[
−f ′

1(t)− a · (f1(t)− f2(t)) + u(t)
−f ′

2(t)− b · (f2(t)− f1(t))

]
= 0 =

[
∂t + a −a −1
−b ∂t + b 0

]

︸ ︷︷ ︸
A

·
[
f1(t)
f2(t)
u(t)

]

17

2 4 6 8
−0.2

−0.1

0

0.1

0.2

f1

Noisy data
Posterior mean
Noise free data
2σ confidence

2 4 6 8
−0.2

−0.1

0

0.1

0.2

f2

Noisy data
Posterior mean
Noise free data
2σ confidence

2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6
u

Noisy data
Posterior mean
Noise free data
2σ confidence

2 4 6 8
−0.2

−0.1

0

0.1

0.2
Data
Posterior mean
Original data
2σ confidence

2 4 6 8
−0.2

−0.1

0

0.1

0.2
Data
Posterior mean
Original data
2σ confidence

2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6
Data
Posterior mean
Original data
2σ confidence

2 4 6 8 10

0

5

10

f1(t)
f2(t)
u(t)

Figure 7: The posterior LODE-GP models for the bipendulum system, trained on noisy data (top)
and noise-free data (bottom). The black stars indicate the datapoints (with or without noise), the
red line is the solution to the ODEs, the blue dashed line is the LODE-GPs posterior mean, the
transparent blue area is the 2σ confidence interval. In the bottom plot, a sample from the GP is
shown.

18

−6 −4 −2 0 2 4 6

−1

0

1

2

f1

Noisy data
Posterior mean
Noise free data
2σ confidence

−6 −4 −2 0 2 4 6

−1

0

1

2

f2

Noisy data
Posterior mean
Noise free data
2σ confidence

−6 −4 −2 0 2 4 6

−4

−2

0

2

u

Noisy data
Posterior mean
Noise free data
2σ confidence

−6 −4 −2 0 2 4 6

−1

0

1

2 Data
Posterior mean
Original data
2σ confidence

−6 −4 −2 0 2 4 6

−1

0

1

2 Data
Posterior mean
Original data
2σ confidence

−6 −4 −2 0 2 4 6

−4

−2

0

2

Data
Posterior mean
Original data
2σ confidence

−5 0 5

−4

−2

0

2

f1(t)
f2(t)
u(t)

Figure 8: The posterior LODE-GP models for the heating system, trained on noisy data (top) and
noise-free data (bottom). The black stars indicate the datapoints (with or without noise), the red line
is the solution to the ODEs, the blue dashed line is the LODE-GPs posterior mean, the transparent
blue area is the 2σ confidence interval. In the bottom plot, a sample from the GP is shown.

The SNF of the ODEs with all relevant matrices:
[
1 0 0
0 1 0

]

︸ ︷︷ ︸
D

=

[
0 −1

b
b ∂t + a

]

︸ ︷︷ ︸
U

[
∂t + a −a −1
−b ∂t + b 0

]

︸ ︷︷ ︸
A




1 0 ∂t + b
0 0 b
0 −1

b ∂2
t + (b+ a) ∂t





︸ ︷︷ ︸
V

To generate data, we use the following solution to the heating ODEs (cf. Figure 8).
[
f1(t)
f2(t)
u(t)

]
=




1
2 cos

(
1
2 t
)
exp

(
− 1

10 t
)
+ 9

10 exp
(
− 1

10 t
)
sin
(
1
2 t
)

exp
(
− 1

10 t
)
sin
(
1
2 t
)

19
10 cos

(
1
2 t
)
exp

(
− 1

10 t
)
− 16

25 exp
(
− 1

10 t
)
sin
(
1
2 t
)



 (6)

Training details To train a LODE-GP we generate uniformly spaced training data from Equation 6
in the interval [−5, 5] to which we add noise of the form 0.02 · σn for σn ∼ N (0, 1), i.e. noise with

19

Table 5: The trained parameter values for a and b by the LODE-GP and their relative error from
their actual value, for training data with noise (top) and without noise (bottom). Smaller rel. errors
are better.

a b relative error a relative error b

2.92218 0.983648 0.0259396 0.0163522
2.9831 0.997748 0.00563382 0.00225164
2.99933 0.991803 0.00022441 0.00819681
3.00912 1.01786 0.00304097 0.0178581
2.92706 0.984112 0.0243126 0.0158881
2.92016 0.968457 0.0266129 0.0315435
2.96962 0.989062 0.0101259 0.0109384
3.00482 0.990055 0.00160732 0.00994511
3.00571 1.00561 0.00190434 0.00560704
3.02601 0.998836 0.0086684 0.00116403

3.00065 1.00025 0.000217934 0.000254375
3.02079 0.989905 0.00693057 0.0100952
3.00042 1.00132 0.000139129 0.00132404
3.00002 1.00177 0.00000558486 0.00176581
2.97293 1.03124 0.00902484 0.0312367
2.98821 1.01434 0.00392941 0.0143379
3.0007 0.99991 0.00023333 0.0000902065
2.98481 1.02509 0.00506387 0.0250855
2.99362 1.01282 0.00212785 0.0128176
3.00045 1.00002 0.000149713 0.0000185651

standard deviation 0.02 (1% of the maximal signal value). The data is shown in Figure 8. To validate
our results, e.g. using RMSE, we generate uniformly spaced evaluation data from Equation 6 in the
interval [−9, 9], without adding noise.

Additional results We present the exact parameter values trained by the LODE-GP in Table 5. It
can be seen that the LODE-GP consistently learn the system parameters a and b with a small relative
error, even despite noise.

20

B.4 Three tank

Original system equations:

[−f ′
1(t) + u1(t)

−f ′
2(t) + u1(t) + u2(t)
−f ′

3(t) + u2(t)

]
= 0 =

[−∂t 0 0 1 0
0 −∂t 0 1 1
0 0 −∂t 0 1

]

︸ ︷︷ ︸
A

·





f1(t)
f2(t)
f3(t)
u1(t)
u2(t)





The SNF of the ODEs with all relevant matrices:

[
1 0 0
−1 1 0
1 −1 1

]

︸ ︷︷ ︸
U

[−∂t 0 0 1 0
0 −∂t 0 1 1
0 0 −∂t 0 1

]

︸ ︷︷ ︸
A





0 0 0 −1 0
0 0 0 0 −1
0 0 1 1 −1
1 0 0 −∂t 0
0 1 0 ∂t −∂t





︸ ︷︷ ︸
V

=

[
1 0 0 0 0
0 1 0 0 0
0 0 −∂t 0 0

]

︸ ︷︷ ︸
D

We use the following solution to the ODEs (cf. Figure 9).




f1(t)
f2(t)
f3(t)
u1(t)
u2(t)




=





exp(− t
2)

exp(− t
4)

exp(− t
4)− exp(− t

2)

− exp(− t
2)

2

− exp(− t
4)

4 +
exp(− t

2)
2




(7)

Training details To train a LODE-GP we generate uniformly spaced training data from Equation 7
in the interval [1, 6] to which we add noise of the form 0.08 · σn for σn ∼ N (0, 1), i.e. noise with
standard deviation 0.08 (10% of the maximal signal value). The data is shown in Figure 9. To
validate our results, e.g. using RMSE, we generate uniformly spaced evaluation data from Equation 7
in the interval [1, 11], without adding noise.

For the three tank system we hard coded the case −x = x, which is a legal operation since we can
take out the −1 as part of a left matrix multiplication and integrate it in the U matrix, which does
not influence the LODE-GP.

21

2
4

6
8

−
1

−
0.
50

0.
51

f 1

N
oi

sy
da

ta
Po

st
er

io
rm

ea
n

N
oi

se
fr

ee
da

ta
2σ

co
nfi

de
nc

e

2
4

6
8

−
1

−
0.
50

0.
51

f 2

N
oi

sy
da

ta
Po

st
er

io
rm

ea
n

N
oi

se
fr

ee
da

ta
2σ

co
nfi

de
nc

e

2
4

6
8

−
1

−
0.
50

0.
51

f 3

N
oi

sy
da

ta
Po

st
er

io
rm

ea
n

N
oi

se
fr

ee
da

ta
2σ

co
nfi

de
nc

e

2
4

6
8

−
1

−
0.
50

0.
51

u
1

N
oi

sy
da

ta
Po

st
er

io
rm

ea
n

N
oi

se
fr

ee
da

ta
2σ

co
nfi

de
nc

e

2
4

6
8

−
1

−
0.
50

0.
51

u
2

N
oi

sy
da

ta
Po

st
er

io
rm

ea
n

N
oi

se
fr

ee
da

ta
2σ

co
nfi

de
nc

e

2
4

6
8

−
1

−
0.
50

0.
51

D
at

a
Po

st
er

io
rm

ea
n

O
rig

in
al

da
ta

2σ
co

nfi
de

nc
e

2
4

6
8

−
1

−
0.
50

0.
51

D
at

a
Po

st
er

io
rm

ea
n

O
rig

in
al

da
ta

2σ
co

nfi
de

nc
e

2
4

6
8

−
1

−
0.
50

0.
51

D
at

a
Po

st
er

io
rm

ea
n

O
rig

in
al

da
ta

2σ
co

nfi
de

nc
e

2
4

6
8

−
1

−
0.
50

0.
51

D
at

a
Po

st
er

io
rm

ea
n

O
rig

in
al

da
ta

2σ
co

nfi
de

nc
e

2
4

6
8

−
1

−
0.
50

0.
51

D
at

a
Po

st
er

io
rm

ea
n

O
rig

in
al

da
ta

2σ
co

nfi
de

nc
e

2
4

6
8

10

−
0.
4

−
0.
20

0.
2

0.
4

0.
6

0.
8

f 1
(t
)

f 2
(t
)

f 3
(t
)

u
1
(t
)

u
2
(t
)

Fi
gu

re
9:

Th
e

po
st

er
io

rL
O

D
E-

G
P

m
od

el
sf

or
th

e
th

re
e

ta
nk

sy
st

em
,t

ra
in

ed
on

no
is

y
da

ta
(to

p)
an

d
no

is
e-

fr
ee

da
ta

(b
ot

to
m

).
Th

e
bl

ac
k

st
ar

si
nd

ic
at

e
th

e
da

ta
po

in
ts

(w
ith

or
w

ith
ou

tn
oi

se
),

th
e

re
d

lin
e

is
th

e
so

lu
tio

n
to

th
e

O
D

Es
,t

he
bl

ue
da

sh
ed

lin
e

is
th

e
LO

D
E-

G
Ps

po
st

er
io

rm
ea

n,
th

e
tra

ns
pa

re
nt

bl
ue

ar
ea

is
th

e
2σ

co
nfi

de
nc

e
in

te
rv

al
.I

n
th

e
bo

tto
m

pl
ot

,a
sa

m
pl

e
fr

om
th

e
G

P
is

sh
ow

n.

22

Comparison to Latent Force Model We compare our LODE-GP with the LFM introduced by
[2]. To do so we set the variables from Equation 3 in [2] as follows: Dq = 0, Bq = 0,

Srq =

[−1 0
−1 −1
0 −1

]
. Further we calculate the covariance function as the solution of the integral

k =
∫ t2
0

∫ t1
0 exp−(x1−x2)

2

dx1dx2, effectively setting " = 1 and σ = 1. Following the steps of [2],
we get a GP that can estimate the solution of the three tank systems differential equations.

The resulting GP marginalizes the (in their model considered) latent function u1 and u2 and only
considered the three data channels f1, f2, and f3. To calculate the ODE error, we inserted the
original data for the channels u1 and u2 into the calculation.

For a fair comparison with our LODE-GP, we also marginalize u1 and u2 there. Similarly as for the
LFM, we have set " = 1 and σ = 1.

The resulting ODE errors of the two models are as shown in Table 6. The performance of the
marginalized LODE-GP is better but comparable to the LFM. The performance of the full LODE-
GP, having learned all 5 channels and also set all lengthscales and signal variances to 1, shows a
signifcant increase in performance.

Table 6: The ODE error of the LFM, the small LODE-GP, and the full LODE-GP. Smaller is better.

ODE 1 error ODE 2 error ODE 3 error

(marginalized) LFM 0.042816 0.507017 0.013084

marginalized LODE-GP 0.031331 0.025065 0.008595

full LODE-GP 1.210e-05 1.285e-05 1.081e-05

C Discussion of the code and runtime

We use GPyTorch as the core of our code and build our LODE-GP on top of their work, which makes
it an essential part of our implementation. Nevertheless, it could be replaced with other GP libraries
if the kernel would be rewritten for those. We use SageMath to calculate the symbolic SNF, given
the system of ODEs. In our current implementation, SageMath is a necessary library, but could be
replaced by any other computer algebra system, with a Python interface, that symbolically solves
the SNF for matrices A ∈ R[x]m×n over the polynomial ring R[x], and additionally the function
field R(a1, . . . , ak)[x] if there are parameters in the ODEs.

Training a LODE-GP on 25 multidimensional5 datapoints with the stated training specifications
needed, in the median, between 3 and 5 seconds per training and, 7 seconds for the three tank
system, due to its greater size, as shown in Table 7. This result is in accordance to our findings
in Section 5, where we discuss that the O(n2) calculation takes longer, whereas the O(n3) stays
roughly the same. Due to the small number of datapoints, the O(n2) calculations have a strong
influence on the runtime.

The GP needed roughly 15 seconds per training run.

Additionally, generating the model, i.e. the SNF calculation, preparing the differentiated covariance
function and initializing the model object, took averagely 0.3 seconds. Of this time, the SNF calcu-
lation takes, on average, 0.15 seconds. These calculations are performed only once for the model
and are neglegtable, compared to the training runtime.

During development, we encountered an interesting problem we want to document for other devel-
opers. Namely that PyTorch only trains parameters that are part of the model object itself (i.e. which
can be called using the self keyword). For example, we can’t just use a list, that is part of the model
object, in which we store the covariance functions, this would cause PyTorch to not recognize the
parameters and not train them. In our case, the various kernels and ODE parameters, that are added
dynamically, required us to give each parameter and kernel a name and add it to the kernel individu-
ally. We also store a position matrix with references to the respective kernel at that position, e.g. for

5The data is three dimensional for the bipendulum and heating system and five dimensional for the three
tank system.

23

Table 7: Median training runtime, in seconds, for 300 iterations on 25 datapoints, for the LODE-GP
and the GP, for each of the systems. Smaller is better.

training runtime

Bipendulum LODE-GP 5.02
GP 2.34

Heating LODE-GP 3.12
GP 2.2

Three tank LODE-GP 7.49
GP 1.07

the bipendulum covariance function we have a 3 × 3 matrix with different kernel objects for each
position.

Additionally, we want to highlight the On-Line Encyclopedia of Integer Sequences, which we used
to find the construction formula of the number sequence for the general SE kernel derivative.6

D Proof for base covariance function construction

We prove the following Lemma

Lemma 1. Covariance functions for solutions of the scalar linear differential equations d · f = 0
with constant coefficients, i.e. d ∈ R[∂t], are given by Table 8 for d is primary, i.e. a power of an
irreducible real polynomial. In the case of a non-primary d, each primary factor di of d =

∏!−1
i=0 di

is first translated to its respective covariance function ki separately before they are added up to give
the full covariance function k(t1, t2) =

∑!−1
i=0 ki(t1, t2).

Table 8: Primary operators d and their corresponding covariance function k(t1, t2).

d k(t1, t2)

1 0

(∂t − a)j
(∑j−1

i=0 ti1t
i
2

)
· exp(a · (t1 + t2))

((∂t − a− ib)(∂t − a+ ib))j
(∑j−1

i=0 ti1t
i
2

)
· exp(a · (t1 + t2)) · cos(b · (t1 − t2))

mid 0 exp(− 1
2 (t1 − t2)2)

Proof. For a function f we have 1 · f = 0 if and only if f = 0. Such functions are described by the
zero covariance function (and zero mean function).

The real differential equation (∂t−a)j · f = 0 only has the analytic solutions given symbolically by∑j−1
i=0 ai ·ti ·exp(a·t) for arbitrary ai ∈ R. This is a finite dimensional space and hence (as for linear

regressions problems) a covariance function is given by
∑j

i=0

(
ti1 · exp(a · t1)

)
·
(
ti2 · exp(a · t2)

)
=(∑j−1

i=0 ti1t
i
2

)
· exp(a · (t1 + t2)).

The real differential equation ((∂t−a)2+ b2)j = ((∂t−a− ib)(∂t−a+ ib))j only has the analytic
solutions given symbolically by exp(a · t) ·

∑j−1
i=0 ti · (ai · cos(b · t) + bi · sin(b · t)) for arbitrary

6http://oeis.org/A096713

24

http://oeis.org/A096713

ai ∈ R. This is again finite dimensional space and hence a covariance function is given by
j∑

i=0

(
ti1 · exp(a · t1) · cos(b · t1)

)
·
(
ti2 · exp(a · t2) · cos(b · t2)

)

+
j∑

i=0

(
ti1 · exp(a · t1) · sin(b · t1)

)
·
(
ti2 · exp(a · t2) · sin(b · t2)

)

=

(
j−1∑

i=0

ti1t
i
2

)
· exp(a · (t1 + t2)) · (cos(b · t1) · cos(b · t2) + sin(b · t1) · sin(b · t2))

=

(
j−1∑

i=0

ti1t
i
2

)
· exp(a · (t1 + t2)) · cos(b · (t1 − t2)).

The factor cos(b · (t1 − t2)) is sometimes called the cosine covariance function.

For a smooth function f ∈ C∞(R,R), the equation 0 · f = 0 poses no restriction. Hence, by
[40, Prop. 1], the squared exponential covariance function yields a GP with realizations densely
contained in the space C∞(R,R).

E Licenses and versions

We use Python 3.9.7, which uses the PSF license agreement.

We use GPyTorch version 1.5.0 for our experiments, GPyTorch is distributed under the MIT license.

We use SageMath version 9.5, released 2022-01-30, for our experiments, SageMath is distributed
under the CC BY-SA 4.0 license.

25

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] There is no

potential negative societal impact outside of specially crafted edge cases like physical
behavior of rockets, which apply to all works which solve differential equations and
can’t be mitigated for algorithmic solutions like ours.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See the appendix for

a proof of Lemma 1
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See the appendix
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [No] Data was manually synthetically generated

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [No] Not present in our data

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [No] No human data
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [No] No human data
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [No] No human data

26

