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Appendices

A Proof of Main Results

A.1 Proof of Theorem 1

Proof. Let I/, denote the minimizer of the population risk over D with the representation g4, then
we can decompose the difference between r (h MO M) —-r (h N©OG N) into two parts:
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J can further be decomposed into:
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Clearly, J12 < 0 since h o4 is the minimizer of the empirical risk over D with the representation g .
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Since ¢ is bounded by a constant C, we have 0 < £ (h o gp(x),y) < C for any (x,y). As one
pair (x;, y;) changes, the above equation cannot change by at most % Applying McDiarmid’s[4]
inequality, we obtain that with probability 1 — §/2:
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To proceed the proof, we introduce a popular result of Rademacher complexity in the following
lemmal2]:

Lemma 1. Let U, {U;};~, be i.i.d. random variables taking values in some space U and F C [a,b]¥
is a set of bounded functions. We have
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Proof of lemma 1. Denote {U/}.~ | be ghost examples of {U;}!",, i.e. U/ be independent of each
other and have the same distribution as U;. Then we have,
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where 01, ..., 0, is i.i.d. {£1} -valued random variables with P (o, = +1) =P (0; = —1) = 1/2.
(a) (b) are obtained by the tower property of conditional expectation; (c) follows from the definition
of Rademacher complexity of F. O

Consider the function class:

lriogp = {(x,y) = L(hogm(x),y) | h€ H,gm € G}

let F = {46, in lemma 1, then we have equation (7) can be upper bound by 2R, ({+0g,,). To
directly work with the hypothesis function class, we need to decompose the Rademacher term which



consists of the loss function classes. We center the function ¢'(h o gap(x),y) = €(h o gm(x),y) —
£(0,y). The constant-shift property of Rademacher averages[2] indicates that
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Since ¢’ is Lipschitz in its first coordinate with constant L and ¢'(h o gr(0),y) = 0, applying the
contraction principle[2], we have:
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Combining the above discussion, we obtain:
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A.2 Proof of Theorem 2

Proof. Let hq denote the minimizer of the population risk over D with the representation g, then
we have:
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Js is the centering empirical risk. Following the similar analysis in Theorem 1, we obtain:
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with probability 1 — . Combining the above discussion yields the result:
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A.3 Proof of Proposition 1

Proof. With the [5 loss, we have
Ex ynnrogr ) {€(h o g(x),y) — €(h* o g*(x),y)} = Ex U BTATx— ﬂ*TA*TXH
Define the covariance matrix[9] for two linear projections A, A’ as follows:
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where Y denotes the covariance matrix of the distribution Py. Then the latent representation quality
of A becomes:
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For sufficiently large Cj, the constrained minimizer of (32) is equivalent to the unconstrained
minimizer. Following the standard discussion of the quadratic convex optimization [3], if
I'11(A,A*) > 0 and detT';;(A, A*) # 0, the solution of the above minimization problem is
,3 = Fll(A, A*)’1F12(A, A*),@*, and
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where I's., (A, A*) is the Schur complement of I'( A, A*), defined as:
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Under the orthogonal assumption, A M 1s nonsingular. Notice that A A cannot be orthonormal in our
settings. And ) is also invertible. Therefore, the Schur complement of I'(A x, A*) exists,
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Hence, 77(A o() = 0. Given the above discussion, we obtain:
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B The Composite Framework in Applications

As we stated in Section 3, our model well captures the essence of lots of existing multi-modal
methods [1, 6,7, 11, 10, 8]. Below, we explicitly discuss how these methods fit well into our general
model, by providing the corresponding function class G under each method.

Audiovisual fusion for sound recognition [6]: The audio and visual models map the respective
inputs to segment-level representations, which are then used to obtain single-modal predictions,
h, and h,, respectively. The attention fusion function n44;,, ingests the single-modal predictions,
h, and h,, to produce weights for each modality, o, and «,,. The single-modal audio and visual
predictions, h, and h,, are mapped to h, and h,, via functions n, and n, respectively, and fused
using the attention weights, o, and o,,. In summary, g has the form:

g:ﬁav:aa®ﬁa+a1)®ﬁv



Channel-Exchanging-Network [11]: A feature map will be replaced by that of other modalities at
the same position, if its scaling factor is lower than a threshold. g in this problem can be formulated as
a multi-dimensional mapping g := (f1,-- - , far), where subnetwork f,,(z) adopts the multi-modal
data x as input and fuses multi-modal information by channel exchanging.

Other Fusion Methods [7, 10, 8, 1]: Methods in these works can be formulated into the form we
mentioned in the example in Section 3. Specifically, recall the example, g has the form: @1 @ 2
.-+ @ @, where @ denotes a fusion operation, (e.g., averaging, concatenation, and self-attention),
and ¢y, is a deep network which uses each modality data (%) as input. Under these notations:

¢ For the early-fusion BERT method in [8], the temporal features are concatenated before
the BERT layer and only a single BERT module is utilized. Here, the @ is a concatenation
function, and ¢ has the form (g1, p2).

* [10, 7]discussed different fusion methods by choosing @. (i) Max fusion: the @ is the
maximum function and g := maz {1, -, }; (i) Sum fusion: g := > @p,; (i)
averaging; (iv) self-attention and so on.

* The fusion section in the survey [1] provides many works which can be incorporated into
our framework.

C Discussions on Training Setting

Existing works on multi-modal training demonstrates that naively fusing different modalities results
insufficient representation learning of each modality [10, 5]. In our experiments, we train our multi-
modal model using two methods: (1), naively end-to-end late-fusion training; (2), firstly train the
uni-modal models and train a multi-modal classifier over the uni-modal encoders. As shown in Table 1
and Table 2, naively end-to-end training is unstable, affecting the representation learning of each
modality, while fine-tuning a multi-modal classifier over trained uni-modal encoders is more stable
and the results are more consistent with our theory. Noting that we use the late-fusion framework
here, similar to [10, 5].

Table 1: Latent representation quality vs. The number of the sample size on IEMOCAP. In this table,
we show the results from naively end-to-end late-fusion training

Modalities Test Acc (Ratio of Sample Size)
1074 1073 102 107! 1
T 23.66+1.28 29.08+3.34 45.63+0.29 48.30£1.31 49.93+0.57

TA 25.06+1.05 34.28+4.54 47.2841.24 50.461+0.61 51.08+0.66
TV 24.71£0.87 38.37+3.12 46.54+£1.62 49.50£1.04 53.03+0.21
TVA 24.71£0.76  32.244+1.17 46.39+£3.82 50.75+1.45 53.89+0.47

Table 2: Latent representation quality vs. The number of the sample size on IEMOCAP. In this table,
we fristly train the uni-modal models and train a multi-modal classifier over the uni-modal encoders
to get multi-modal results.

Modalities Test Acc (Ratio of Sample Size)
1074 1073 102 107! 1
T 23.66+1.28 29.08+3.34 45.63+0.29 48.30£1.31 49.93+0.57

TA 22.74£1.86 35.14+0.38 49.15+£0.43 50.61£0.28 51.78+0.08
TV 23.64+0.07 36.64+1.79 46.91+0.68 48.96+0.47 53.24+0.35
TVA 25.40+1.06 40.87+2.47 50.67+0.63 52.54+0.60 54.55+0.29
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