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Appendices

A Proof of Main Results

A.1 Proof of Theorem 1

Proof. Let h′
M denote the minimizer of the population risk over D with the representation ĝM, then

we can decompose the difference between r
(
ĥM ◦ ĝM

)
− r

(
ĥN ◦ ĝN

)
into two parts:

r
(
ĥM ◦ ĝM

)
− r

(
ĥN ◦ ĝN

)
(1)

= r
(
ĥM ◦ ĝM

)
− r (h′

M ◦ ĝM)︸ ︷︷ ︸
J1

+ r (h′
M ◦ ĝM)− r

(
ĥN ◦ ĝN

)
︸ ︷︷ ︸

J2

(2)

J1 can further be decomposed into:

J1 = r
(
ĥM ◦ ĝM

)
− r̂

(
ĥM ◦ ĝM

)
︸ ︷︷ ︸

J11

+ r̂
(
ĥM ◦ ĝM

)
− r̂ (h′

M ◦ ĝM)︸ ︷︷ ︸
J12

(3)

+ r̂ (h′
M ◦ ĝM)− r (h′

M ◦ ĝM)︸ ︷︷ ︸
J13

(4)

(5)

Clearly, J12 ≤ 0 since ĥM is the minimizer of the empirical risk over D with the representation ĝM.
And J11 + J13 ≤ 2 suph∈H,gM∈GM

|r(h ◦ gM)− r̂(h ◦ gM)|.

sup
h∈H,gM∈GM

|r̂ (h ◦ gM)− r (h ◦ gM)|

= sup
h∈H,gM∈GM

∣∣∣∣∣ 1m
m∑
i=1

ℓ (h ◦ gM(xi), yi)− E(x′,y′)∼D [ℓ (h ◦ gM(x′), y′)]

∣∣∣∣∣
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Since ℓ is bounded by a constant C, we have 0 ≤ ℓ (h ◦ gM(x), y) ≤ C for any (x, y). As one
pair (xi, yi) changes, the above equation cannot change by at most 2C

m . Applying McDiarmid’s[4]
inequality, we obtain that with probability 1− δ/2:

sup
h∈H,gM∈GM

|r̂ (h ◦ gM)− r (h ◦ gM)| (6)

≤E(xi,yi)∼D sup
h∈H,gM∈GM

∣∣∣∣∣ 1m
m∑
i=1

ℓ (h ◦ gM(xi), yi)− E(x′,y′)∼D [ℓ (h ◦ gM(x′), y′)]

∣∣∣∣∣ (7)

+ C

√
2 ln(2/δ)

m
(8)

To proceed the proof, we introduce a popular result of Rademacher complexity in the following
lemma[2]:

Lemma 1. Let U, {Ui}mi=1 be i.i.d. random variables taking values in some space U and F ⊆ [a, b]U

is a set of bounded functions. We have

E

[
sup
f∈F

(
E[f(U)]− 1

m

m∑
i=1

f (Ui)

)]
≤ 2Rm(F) (9)

Proof of lemma 1. Denote {U ′
i}

m
i=1 be ghost examples of {Ui}mi=1, i.e. U ′

i be independent of each
other and have the same distribution as Ui. Then we have,

E

[
sup
f∈F

(
E[f(U)]− 1

m

m∑
i=1

f (Ui)

)]
(10)

=E

[
sup
f∈F

(
1

m

m∑
i=1

(E[f(U)]− f (Ui))

)]
(11)

(a)
=E

[
sup
f∈F

(
1

m

m∑
i=1

E [f (U ′
i)− f (Ui) | {Ui}mi=1]

)]
(12)

≤E

[
E

[
sup
f∈F

(
1

m

m∑
i=1

(f (U ′
i)− f (Ui))

)
| {Ui}mi=1

]]
(13)

(b)
=E

[
sup
f∈F

(
1

m

m∑
i=1

(f (U ′
i)− f (Ui))

)]
(14)

=E

[
sup
f∈F

(
1

m

m∑
i=1

σi (f (U ′
i)− f (Ui))

)]
(15)

≤E

[
sup
f∈F

1

m

m∑
i=1

σif (U ′
i)

]
+ E

[
sup
f∈F

1

m

m∑
i=1

σif (Ui)

]
(16)

(c)
=2Rm(F). (17)

where σ1, . . . , σm is i.i.d. {±1} -valued random variables with P (σi = +1) = P (σi = −1) = 1/2.
(a) (b) are obtained by the tower property of conditional expectation; (c) follows from the definition
of Rademacher complexity of F .

Consider the function class:

ℓH◦GM := {(x, y) 7→ ℓ (h ◦ gM(x), y) | h ∈ H, gM ∈ GM}

let F = ℓH◦GM in lemma 1, then we have equation (7) can be upper bound by 2Rm(ℓH◦GM). To
directly work with the hypothesis function class, we need to decompose the Rademacher term which
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consists of the loss function classes. We center the function ℓ′(h ◦ gM(x), y) = ℓ(h ◦ gM(x), y)−
ℓ(0, y). The constant-shift property of Rademacher averages[2] indicates that

Rm(ℓH◦GM) ≤ Rm(ℓ′H◦GM
) +

C√
m

Since ℓ′ is Lipschitz in its first coordinate with constant L and ℓ′(h ◦ gM(0), y) = 0, applying the
contraction principle[2], we have:

Rm(ℓ′H◦GM
) ≤ 2LRm(H ◦GM)

Combining the above discussion, we obtain:

J1 ≤ 8LRm(H ◦GM) +
4C√
m

+ 2C

√
2 ln(2/δ)

m

For J2, by the definition of h′
M:

J2 = inf
hM∈H

[
r (hM ◦ ĝM)− r

(
ĥN ◦ ĝN

)]
(18)

≤ sup
hN∈H

inf
hM∈H

[r (hM ◦ ĝM)− r (hN ◦ ĝN )] (19)

= inf
hM∈H

[r (hM ◦ ĝM)− r(h∗ ◦ g∗)]− inf
hN∈H

[r (hN ◦ ĝN )− r(h∗ ◦ g∗)] (20)

= η(ĝM)− η(ĝN ) (21)
= γS(M,N ) (22)

Finally,

r
(
ĥM ◦ ĝM

)
− r

(
ĥN ◦ ĝN

)
≤ γS(M,N ) + 8LRm(H ◦ GM) +

4C√
m

+ 2C

√
2 ln(2/δ)

m

with probability 1− δ
2 .

A.2 Proof of Theorem 2

Proof. Let h̃M denote the minimizer of the population risk over D with the representation ĝM, then
we have:

η(ĝM) (23)

= r(h̃M ◦ ĝM)− r(h∗ ◦ g∗) (24)

≤ r(ĥM ◦ ĝM)− r̂(ĥM ◦ ĝM)︸ ︷︷ ︸
J1

+ r̂(ĥM ◦ ĝM)− r̂(h∗ ◦ g∗)︸ ︷︷ ︸
J2

+ r̂(h∗ ◦ g∗)− r(h∗ ◦ g∗)︸ ︷︷ ︸
J3

(25)

J2 is the centering empirical risk. Following the similar analysis in Theorem 1, we obtain:

J1 + J3 ≤ sup
h∈H,gM∈GM

|r(h ◦ gM)− r̂(h ◦ gM)|+ sup
h∈H,g∈G

|r(h ◦ g)− r̂(h ◦ g)| (26)

≤ 4LRm(H ◦ GM) + 4LRm(H ◦ G) + 4C√
m

+ 2C

√
2 ln(2/δ)

m
(27)

with probability 1− δ. Combining the above discussion yields the result:

η(ĝM) ≤ (28)

4LRm(H ◦ GM) + 4LRm(H ◦ G) + 4C√
m

+ 2C

√
2 ln(2/δ)

m
+ L̂(ĥM ◦ ĝM,S) (29)
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A.3 Proof of Proposition 1

Proof. With the l2 loss, we have

Ex,y∼h⋆◦g⋆(x){ℓ(h ◦ g(x), y)− ℓ(h⋆ ◦ g⋆(x), y)} = Ex

[∣∣∣ β⊤A⊤x− β⋆⊤A⋆⊤x
∣∣∣2]

Define the covariance matrix[9] for two linear projections A, A′ as follows:

Γ(A,A′) = Ex

 A⊤x
(
A⊤x

)⊤
A⊤x

(
A′⊤x

)⊤
A′⊤x

(
A⊤x

)⊤
A′⊤x

(
A′⊤x

)⊤


=

[
A⊤ΣA A⊤ΣA′

A′⊤ΣA A′⊤ΣA′

]
=

[
Γ11(A,A⋆) Γ12(A,A⋆)
Γ21(A,A⋆) Γ22(A,A⋆)

]
(30)

where Σ denotes the covariance matrix of the distribution Px. Then the latent representation quality
of A becomes:

η(A) = inf
β:∥β∥≤Cb

Ex

[∣∣∣ β⊤A⊤x− β⋆⊤A⋆⊤x
∣∣∣2] (31)

= inf
β:∥β∥≤Cb

[β,−β⋆] Γ(A,A⋆) [β,−β⋆]
⊤ (32)

For sufficiently large Cb, the constrained minimizer of (32) is equivalent to the unconstrained
minimizer. Following the standard discussion of the quadratic convex optimization [3], if
Γ11(A,A⋆) ≻ 0 and det Γ11(A,A⋆) ̸= 0, the solution of the above minimization problem is
β = Γ11(A,A⋆)−1Γ12(A,A⋆)β⋆, and

η(A) = β⋆Γsch(A,A⋆)β⋆⊤ (33)

where Γsch(A,A⋆) is the Schur complement of Γ(A,A⋆), defined as:

Γsch(A,A⋆) (34)

= Γ22(A,A⋆)− Γ21(A,A⋆)Γ11(A,A⋆)−1Γ12(A,A⋆) (35)

Under the orthogonal assumption, ÂM is nonsingular. Notice that ÂN cannot be orthonormal in our
settings. And

∑
is also invertible. Therefore, the Schur complement of Γ(ÂM,A⋆) exists,

Γsch(ÂM,A⋆) = A⋆⊤ΣA⋆ −
(
A⋆⊤ΣÂM

)(
Â⊤

MΣÂM

)−1 (
Â⊤

MΣA⋆
)
= 0 (36)

Hence, η(ÂM) = 0. Given the above discussion, we obtain:

γS(M,N ) = η(ÂM)− η(ÂN ) (37)

= 0− inf
β:∥β∥≤Cb

Ex

[∣∣∣ β⊤Â⊤
Nx− β⋆⊤A⋆⊤x

∣∣∣2] ≤ 0 (38)

B The Composite Framework in Applications

As we stated in Section 3, our model well captures the essence of lots of existing multi-modal
methods [1, 6, 7, 11, 10, 8]. Below, we explicitly discuss how these methods fit well into our general
model, by providing the corresponding function class G under each method.

Audiovisual fusion for sound recognition [6]: The audio and visual models map the respective
inputs to segment-level representations, which are then used to obtain single-modal predictions,
ha and hv, respectively. The attention fusion function nattn, ingests the single-modal predictions,
ha and hv, to produce weights for each modality, αa and αv. The single-modal audio and visual
predictions, ha and hv, are mapped to h̃a and h̃v via functions na and nv respectively, and fused
using the attention weights, αa and αv . In summary, g has the form:

g = h̃av = αa ⊙ h̃a +αv ⊙ h̃v
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Channel-Exchanging-Network [11]: A feature map will be replaced by that of other modalities at
the same position, if its scaling factor is lower than a threshold. g in this problem can be formulated as
a multi-dimensional mapping g := (f1, · · · , fM ), where subnetwork fm(x) adopts the multi-modal
data x as input and fuses multi-modal information by channel exchanging.

Other Fusion Methods [7, 10, 8, 1]: Methods in these works can be formulated into the form we
mentioned in the example in Section 3. Specifically, recall the example, g has the form: φ1 ⊕ φ2 ⊕
· · · ⊕ φM , where ⊕ denotes a fusion operation, (e.g., averaging, concatenation, and self-attention),
and φk is a deep network which uses each modality data x(k) as input. Under these notations:

• For the early-fusion BERT method in [8], the temporal features are concatenated before
the BERT layer and only a single BERT module is utilized. Here, the ⊕ is a concatenation
function, and g has the form (φ1, φ2).

• [10, 7]discussed different fusion methods by choosing ⊕. (i) Max fusion: the ⊕ is the
maximum function and g := max {φ1, · · · , φM}; (ii) Sum fusion: g :=

∑
φm; (iii)

averaging; (iv) self-attention and so on.

• The fusion section in the survey [1] provides many works which can be incorporated into
our framework.

C Discussions on Training Setting

Existing works on multi-modal training demonstrates that naively fusing different modalities results
insufficient representation learning of each modality [10, 5]. In our experiments, we train our multi-
modal model using two methods: (1), naively end-to-end late-fusion training; (2), firstly train the
uni-modal models and train a multi-modal classifier over the uni-modal encoders. As shown in Table 1
and Table 2, naively end-to-end training is unstable, affecting the representation learning of each
modality, while fine-tuning a multi-modal classifier over trained uni-modal encoders is more stable
and the results are more consistent with our theory. Noting that we use the late-fusion framework
here, similar to [10, 5].

Table 1: Latent representation quality vs. The number of the sample size on IEMOCAP. In this table,
we show the results from naively end-to-end late-fusion training

Modalities Test Acc (Ratio of Sample Size)

10−4 10−3 10−2 10−1 1

T 23.66±1.28 29.08±3.34 45.63±0.29 48.30±1.31 49.93±0.57
TA 25.06±1.05 34.28±4.54 47.28±1.24 50.46±0.61 51.08±0.66
TV 24.71±0.87 38.37±3.12 46.54±1.62 49.50±1.04 53.03±0.21

TVA 24.71±0.76 32.24±1.17 46.39±3.82 50.75±1.45 53.89±0.47

Table 2: Latent representation quality vs. The number of the sample size on IEMOCAP. In this table,
we fristly train the uni-modal models and train a multi-modal classifier over the uni-modal encoders
to get multi-modal results.

Modalities Test Acc (Ratio of Sample Size)

10−4 10−3 10−2 10−1 1

T 23.66±1.28 29.08±3.34 45.63±0.29 48.30±1.31 49.93±0.57
TA 22.74±1.86 35.14±0.38 49.15±0.43 50.61±0.28 51.78±0.08
TV 23.64±0.07 36.64±1.79 46.91±0.68 48.96±0.47 53.24±0.35

TVA 25.40±1.06 40.87±2.47 50.67±0.63 52.54±0.60 54.55±0.29
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