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ABSTRACT

As machine learning models grow in complexity and increasingly rely on publicly
sourced data, such as the human-annotated labels used in training large language
models, they become more vulnerable to label poisoning attacks. These attacks,
in which adversaries subtly alter the labels within a training dataset, can severely
degrade model performance, posing significant risks in critical applications. In this
paper, we propose FLORAL, a novel adversarial training defense strategy based
on support vector machines (SVMs) to counter these threats. Utilizing a bilevel op-
timization framework, we cast the training process as a non-zero-sum Stackelberg
game between an attacker, who strategically poisons critical training labels, and
the model, which seeks to recover from such attacks. Our approach accommodates
various model architectures and employs a projected gradient descent algorithm
with kernel SVMs for adversarial training. We provide a theoretical analysis
of our algorithm’s convergence properties and empirically evaluate FLORAL’s
effectiveness across diverse classification tasks. Compared to robust baselines and
foundation models such as RoBERTa, FLORAL consistently achieves higher robust
accuracy under increasing attacker budgets. These results underscore the potential
of FLORAL to enhance the resilience of machine learning models against label
poisoning threats, thereby ensuring robust classification in adversarial settings.

1 INTRODUCTION

The susceptibility of machine learning models to the integrity of their training data is a growing
concern, particularly as these models become more complex and reliant on large volumes of publicly
sourced data, such as the human-annotated labels used in training large language models (Kumar
et al., 2020; Cheng et al., 2020; Wang et al., 2023). Any compromise in training data can severely
undermine a model’s performance and reliability (Dalvi et al., 2004; Szegedy et al., 2013), with
potentially catastrophic consequences in high-stakes domains including fraud detection (Fiore
et al., 2019), medical diagnosis (Finlayson et al., 2019), biological design (Bal et al., 2024b), and
autonomous driving (Deng et al., 2020).

One of the most insidious forms of threat is the data poisoning (causative) attacks (Barreno et al.,
2010), where adversaries subtly manipulate a subset of the training data, causing the model to learn
erroneous input-output associations. These attacks can involve either feature or label perturbations.
Unlike feature poisoning, which alters the input data itself, (triggerless) label poisoning is particularly
challenging to detect because only the labels are modified, leaving the input data unchanged, as
illustrated in Figure 2. Deep learning models are inherently vulnerable to random label noise (Zhang
et al., 2017), and this susceptibility is magnified when the noise is adversarially crafted to be more
damaging. Figure 1b illustrates this vulnerability: The RoBERTa model (Liu et al., 2019) fine-tuned
for sentiment analysis suffers substantial performance degradation under label poisoning attacks (Zhu
et al., 2022), with severity growing as the attacker’s budget increases. In contrast, Figure 1c highlights
FLORAL’s effectiveness in mitigating these attacks. Here, the adversarially labelled dataset is
generated by poisoning the labels of the most influential training points (see Appendix C.3 for details).

∗Corrresponding author. Code is available at https://github.com/melisilaydabal/floral.
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(a) FLORAL illustration.
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(b) RoBERTa.
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(c) FLORAL.
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Figure 1: (a): The illustration of FLORAL defense, adversarial training under label poisoning attacks.
(b): The test accuracy degradation of RoBERTa fine-tuned on the IMDB dataset with adversarial
labels, showing its vulnerability to such attacks. (c): FLORAL effectively mitigates the impact of
label poisoning in (b), achieving significantly higher robust accuracy.

A line of work has addressed label poisoning through designing triggerless attacks against SVMs (Big-
gio et al., 2012; Xiao et al., 2012; 2015), backdoor attacks in vision contexts (Chen et al., 2022; Jha
et al., 2023) or combining label poisoning with adversarial attacks (Fowl et al., 2021; Geiping et al.,
2021). Defense mechanisms typically focus on filtering (sanitization) techniques (Laishram & Phoha,
2016; Paudice et al., 2018), kernel correction (Biggio et al., 2011), intrinsic dimensionality-based sam-
ple weighting (Weerasinghe et al., 2021) or robust learning (Steinhardt et al., 2017). Adversarial train-
ing (AT) (Goodfellow et al., 2015; Madry et al., 2017) is a widely adopted empirical defense against
data poisoning—particularly for feature perturbations—framing the interaction as a zero-sum game
and training models on adversarially perturbed data (Huang et al., 2015; Kurakin et al., 2016). How-
ever, as shown in our experiments (Section 4.1), conventional AT does not adequately defend against
label poisoning attacks, and its direct application to label poisoning remains largely unexplored.

In this paper, we address robust classification under label poisoning attacks and introduce FLORAL
(Flipping Labels for Adversarial Learning), an SVM-based adversarial training defense that can
be seamlessly adapted to other model architectures. We formulate our defense strategy as a bilevel
optimization problem (Robey et al., 2024), enabling a computationally efficient generation of optimal
label attacks, and forming a non-zero-sum Stackelberg game between an attacker (or adversary),
targeting critical training labels, and the model, recovering from such attacks. We propose a projected
gradient descent algorithm tailored for kernel SVMs to solve the bilevel optimization problem. Our
experiments on various classification tasks demonstrate that FLORAL improves robustness in the
face of adversarially manipulated labels by effectively leveraging the inherent robustness of SVMs
combined with the strengths of adversarial training, achieving enhanced model resilience against
label poisoning while maintaining a balance with classification accuracy.

Contributions. Our main contributions are the following.

• We propose FLORAL, a support vector machine-based adversarial training strategy that defends
against label poisoning attacks. To the best of our knowledge, this is the first work to introduce
adversarial training as a defense specifically for label poisoning attacks. We consider kernel
SVMs in our formulation, however, as we show in our experiments, the method can be easily
integrated with other models such as neural networks.

• We utilize a bilevel optimization formulation for the robust learning problem, leading to a
non-zero-sum Stackelberg game between an attacker who poisons the labels of influential training
points and the model trying to recover from such attacks. We provide a projected gradient descent
(PGD)–based algorithm to solve the game efficiently.

• We theoretically analyze the local asymptotic stability of our algorithm by proving that its iterative
updates remain bounded and characterizing its convergence to the Stackelberg equilibrium.

• We empirically analyze FLORAL’s effectiveness through experiments on various classification
tasks against robust baselines as well as foundation models such as RoBERTa. Our results
demonstrate that as the attacker’s budget increases, FLORAL maintains higher robust accuracy
compared to baselines trained on adversarial data.

• Finally, we show the generalizability of FLORAL against attacks from the literature, alfa,
alfa-tilt (Xiao et al., 2015) and LFA (Paudice et al., 2018), which aim to maximize the
difference in empirical risk between classifiers trained on tainted and untainted label sets.
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Figure 2: Sensitivity of the decision boundary to label poisoning attacks. The vulnerability of
data points differs between feature perturbation and label poisoning attacks. Given a perfect classifier,
points near the decision boundary are less robust to feature attacks (Zhang et al., 2021; Xu et al.,
2023), leading to localized shifts in classification regions when the attack is performed. In contrast,
the decision boundary has a broader sensitivity with respect to label poisoning attacks which can affect
both near-boundary and distant points. By injecting incorrect labels, these attacks can create more
widespread disruption and an overall degradation in classifier performance across the input space.

2 PROBLEM STATEMENT AND BACKGROUND

We tackle the problem of robust binary classification in the presence of label poisoning attacks (see
Section 3 for an extension to multi-class classification). Given a training dataset D = {(xi, yi) ∈
(X ,Y)}ni=1, where X ⊆ Rd are the input features and Y = {±1} are the binary labels (potentially in-
volving adversarial labels), we consider a kernel SVM classifier fλ(x) := sign(

∑
j λjyjk(x, xj)+b),

parametrized by λ ∈ Rn and bias b ∈ R, which assigns a label to each data point and is derived
from the following quadratic program (dual formulation) (Boser et al., 1992; Hearst et al., 1998):

D(fλ;D) : min
λ∈Rn

1

2
λTQλ− 1Tλ (1)

subject to yTλ = 0, 0 ≤ λ ≤ C, (2)

where Q ∈ Rn×n is a positive semi-definite matrix, with elements Qij = yiyjKij and 1 is the
n-dimensional vector of all ones. Here, K is the Gram matrix with entries Kij = k(xi, xj),∀i, j ∈
[n] := {1, . . . , n}, derived from a kernel function k. A common kernel choice is the radial basis
function (RBF), given as k(xi, xj) = exp(−γ ∥xi − xj∥2), with width parameter γ. The parameter
C ≥ 0 is a regularization term, balancing the trade-off between maximizing the margin and
minimizing classification errors. In this formulation, each dual variable λi, i ∈ [n] corresponds to
the Lagrange multiplier associated with the misclassification constraint for the training point xi.

3 THE FLORAL APPROACH

In the context of label poisoning attacks, the attacker’s objective is to maximize the model’s test
classification error by subtly altering the labels in the training dataset to an optimal adversarial
configuration. Adversarial training (Goodfellow et al., 2015; Madry et al., 2017) can be extended
to counter these attacks and minimize model sensitivity to disruptive labels by actively optimizing
for robustness under worst-case scenarios. In this setting, the attacker generates the optimal label
attack within a budget of k flips to maximize the model’s loss, while the model seeks parameters that
minimize this worst-case loss. A straightforward, yet naive (Robey et al., 2024), way to implement
this approach would be to use the following minimax formulation:

min
λ∈Rn

1

n

n∑
i=1

 max∑
i∈[n] 1{yi ̸=ỹi}=k

ỹi∈Y,i∈[n]

L (fλ(xi), ỹi)

 , (3)

where L denotes a loss function, which in the case of the kernel SVM is related to the hinge
loss (Smola & Schölkopf, 1998), and ỹ represents the adversarial label set. This formulation is
problematic for multiple reasons:

1. Misaligned objectives: The loss is only a surrogate for the test accuracy, which is the actual
quantity of interest to both the learner and the attacker. However, from an optimization
perspective, maximizing an upper bound (such as the hinge loss in SVMs) on the classification
error as in (3) is not meaningful as such a bound does not represent the true objective of the
attacker. Hence, a non-zero-sum formulation would allow for a more nuanced representation
of the attacker’s objectives (Yasodharan & Loiseau, 2019).
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Algorithm 1 FLORAL

1: Input: Initial kernel SVM model fλ0
, training dataset D0 = {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ {±1},

attacker budget B ∈ {0, . . . , n}, parameter k, where k ≪ B, learning rate η > 0.
2: for round t = 1, . . . , T do
3: ỹt ← Solve (7-9) via randomized top-k : randomly selecting k points from top B w.r.t. λt−1.
4: Dt ← {(xi, ỹ

t
i)}ni=1 */ Adversarial dataset with selected k poisoned labels

5: Compute gradient of the objective (4),∇λD(fλt−1
;Dt), based on λt−1,Dt as given in (10).

6: Take a PGD step λt ← PROX S(ỹt)(λt−1 − η∇λD(fλt−1
;Dt)), based on (11-12). */ AT

7: end for
8: return fλT

2. Ineffective defense against critical points: In the case of an SVM-based classifier, the minimax
formulation would only safeguard against attacks targeting data points with the largest hinge loss,
i.e., those farthest from the decision boundary. These attacks are easily distinguishable (Xiao
et al., 2012) as, e.g., soft margin SVMs are shown to be robust to outliers (Smola & Schölkopf,
1998). In contrast, attacks targeting the critical points that define the decision boundary (support
vectors) would be more effective in degrading the classifier’s performance.

3. Combinatorial explosion: Even if a bilevel formulation is employed where the attacker
minimizes the margin, the problem remains computationally challenging. Ordering data points
by their margin and then searching for the best adversarial label set within a budget constraint
results in a vast combinatorial space.

As a result of these, we formulate our adversarial training routine as a non-zero-sum Stackelberg
game (Von Stackelberg, 2010; Conitzer & Sandholm, 2006) and propose FLORAL defense using
the bilevel optimization formulation (Bard, 2013):

D(fλ;D) : min
λ∈Rn

1

2
λTQ̃λ− 1Tλ

(4)

subject to ỹ(λ)Tλ = 0 (5)
0 ≤ λ ≤ C (6)

where ỹ(λ) ∈ arg max
y′∈Yn,u∈{0,1}n

λTu (7)

subject to y′i = yi(1− 2ui),∀i ∈ [n] (8)∑
i∈[n]

1{yi ̸= y′i} = k. (9)

In the outer (model’s) problem, defined by (4-6), the SVM classifier is derived under an adversarial
label set. The key difference from the formulation in Section 2 is that the elements of Q̃ are defined
as Q̃ij = ỹiỹjKij . Meanwhile, the inner (attacker’s) problem, given by (7-9) identifies the top-k
most influential data points affecting the model’s decision boundary. The intuition behind this
approach is similar to identifying the most responsible training points for the model’s prediction
as in (Koh & Liang, 2017). However, rather than relying on influence functions (Hampel, 1974),
the attacker leverages the dual variables λ, which provides direct access to such influential points.
These points correspond to the support vectors, and the higher the value of a dual variable, the more
critical that data point is in determining the model’s decision boundary.

We address the bilevel optimization problem in (4-9) as a non-zero-sum Stackelberg game
(Von Stackelberg, 2010) between the learning model, and the attacker acting as the leader and
follower, respectively, as shown in Figure 1a. The game begins with an initial kernel SVM model
fλ0

and a training dataset D0, and proceeds iteratively. In each round t, the model shares its dual
parameters with the attacker, who then generates an adversarially labelled dataset Dt using a
randomized top-k rule. That is, the attacker identifies the top-B data points based on their λt−1

values, (constrained by the budget B) and flips the labels of k randomly chosen points among them.
We incorporate randomization to account for the attacker’s budget and to reduce the risk of settling
in local optima. Adversarial training is performed via a projected gradient descent step using λt−1

and Dt, after which the updated parameters, λt, are shared with the attacker. This iterative interplay
between the attacker and defender model forms a soft-margin kernel SVM robust to adversarial label
poisoning. Our overall approach is detailed in Algorithm 1.
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FLORAL’s effectiveness. FLORAL iteratively exposes the model to learn adversarial configurations
of the decision boundary. Hence, when the training data is clean, the training process proactively
adjusts the model to be less sensitive to the influence of individual poisoned labels. In cases where
poisoned labels are already present in the initial training data, FLORAL effectively neutralizes their
impact by implicitly sanitizing the corrupted labels. This behavior is evaluated empirically and
detailed in Section 4.1 and Appendix D.

The attacker’s capability. The attacker solves (7-9) with respect to the shared model parameters λ,
generating label attacks by targeting the most influential support vectors. This white-box attack (Wu
et al., 2023) assumes that the attacker can access model parameters. To reflect practical constraints,
we limit the attacker’s budget to at most B label poisons per round, from which k points are randomly
selected. While this scenario may still seem to give the attacker significant power, notably, (i) relying
on secrecy for security is generally considered poor practice (Biggio et al., 2013), and (ii) our method
is designed to defend against the strongest possible attacker. Even in black-box attack scenarios,
where the attacker lacks parameter access, FLORAL remains effective for generating transferable
attacks (Zheng et al., 2023). In such cases, the attacker could fit a kernel SVM on the available data
and apply a similar selection rule to craft adversarial labels.

Gradient of the objective (4). In each round, the adversarial training PGD step requires computing
the gradient ∇λD(fλ;D) of the objective (4) based on λt−1 and Dt, which is defined as

∇λD(fλt−1
;Dt) = Q̃λt−1 − 1, (10)

where Q̃ is the matrix with entries Q̃ij = ỹti ỹ
t
jKij ,∀i, j ∈ [n], detailed in Appendix B.

Projection. The feasible set S changes in each round t depending on the adversarial label set
ỹt (see (6)). We introduce the variable zt := λt−1 − η∇λD(fλt−1 ;Dt) and define the projection
operator PROXS(ỹt)(zt) : Rn → Rn as follows:

PROXS(ỹt)(zt) : λt ∈ arg min
λ∈Rn

1

2
∥λ− zt∥2 (11)

subject to ỹt
T

λ = 0, 0 ≤ λ ≤ C. (12)
However, solving this quadratic program for large-scale instances is computationally challenging
unless the specific problem structure is exploited. Therefore, we provide a scalable and efficient
implementation of Algorithm 1 that relies on a fixed point iteration strategy as detailed in Section 3.2.

A form of geometry-aware AT. FLORAL aligns with geometry-aware AT principles (Zhang et al.,
2021). Support vectors with large Lagrange multipliers (λ) play a critical role in defining the decision
boundary (Hearst et al., 1998). In FLORAL, the attacker strategically identifies these points using
a randomized top-k rule. This method inherently integrates the geometric proximity to the decision
boundary into the label attack, targeting points that significantly impact the hinge loss.

Robust multi-class classification. We extend our algorithm to multi-class classification tasks, as
detailed in Algorithm 3 in Appendix F. The primary modification involves adopting a one-vs-all
approach and considering multiple attackers, each corresponding to a different class.

3.1 STABILITY ANALYSIS

We theoretically analyze the stability of FLORAL (Algorithm 1) by (i) demonstrating that
its iterative updates are bounded and (ii) characterizing its convergence to the Stackel-
berg equilibrium. For simplicity of notation, let us define the update rule at round t as
λt := PROXS(yt)(zt) = PROXS(yt)(λt−1 − η∇λf(λt−1, yt)), where PROX is defined in (11-12).
We use the operator LFLIP : X × Y → Y to define label poisoning attack formulated in (7-9).

Lemma 1. Let (λ̂, ŷ(λ̂)) denote a Stackelberg equilibrium, i.e., ŷ(λ̂) := LFLIP(λ̂) and λ̂ :=

PROXS(ŷ(λ̂))(ẑ) = PROXS(ŷ(λ̂))(λ̂ − η∇λf(λ̂, ŷ(λ̂))) and {λt}Tt=0 be the sequence of iterates
generated by FLORAL (Algorithm 1). The following bound holds for the iterates:

∥λt − λ̂∥∞ ≤ ∥zt − ẑ∥∞ + κy∥yt − ŷ(λ̂)∥∞ (13)
where κy is a constant defined by the PROX operator and index set corresponding to λt ∈ (0, C),
as detailed in Appendix A.1, and ∥ · ∥∞ denotes the infinity norm.

Proof. See Appendix A.1 for the proof.
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Lemma 2. Let (λ̂, ŷ(λ̂)) denote the Stackelberg equilibrium as before. The following bound holds
for the non-projected iterates {zt}Tt=0 of FLORAL (Algorithm 1):

∥zt − ẑ∥∞ ≤ κλ∥λt−1 − λ̂∥∞ + κ′
y∥yt − ŷ(λ̂)∥∞ (14)

where κλ and κ′
y are kernel dependent constants that are below 1 for small enough η.

Proof. See Appendix A.2 for the proof.

Theorem 3.1 (ε-local asymptotic stability). The Stackelberg equilibrium (λ̂, ŷ(λ̂)) defined as before,
is ε-locally asymptotically stable for the Stackelberg game solved via Algorithm 1 for a small enough
step size η. This implies that for every ε > 0, there exists δ > 0 such that

∥λ0 − λ̂∥∞ < δ ⇒ ∥λt − λ̂∥∞ < ε,∀t > 0 and λt → λ̂. (15)

Proof (sketch). The proof relies on characterizing the distance between the update λt at round t

and the equilibrium λ̂ using Lemma 1 and Lemma 2, then leveraging the fact that the label flipping
operator (LFLIP) formulated in (7-9) returns the same adversarial label set when λt is within an
ε distance from the equilibrium. The complete proof is given in Appendix A.3, with the global
convergence result discussed in Appendix A.4.

3.2 LARGE-SCALE IMPLEMENTATION

We scale our algorithm for large problem instances by approximating the projection operation (step 6
in Algorithm 1) via a fixed-point iteration method, as outlined in Algorithm 2. The key idea leverages
the optimal λ⋆ expression from Appendix A.1 and involves an iterative splitting of variables based
on non-projected λ values within the range [0, C]. In each iteration, the variable µ is updated using
the expression in Appendix A.1 until convergence to a specified error ϵ is achieved.

Algorithm 2 PROJECTIONVIAFIXEDPOINTITERATION

1: Input: Non-projected λ0, adversarial label set ỹ = {ỹi}ni=1, yi ∈ {±1}, parameters {C, ϵ} > 0.
2: Initialize µ0 = 0.
3: for round t = 1, . . . , Tproj do
4: λt = CLIP[0,C](λ0 − µt−1ỹ) */ Clip to satisfy constraint in (12)
5: if λtỹ = 0 then
6: return λt

7: end if
8: IC , Iz ← indices of λt ≥ C, λt ∈ (0, C) */ Variable splitting
9: η ← max(| Iz |, 1) */ To avoid empty Iz case

10: µt ← η−|Iz|
η µt−1 +

1
η (
∑

i∈IC
Cỹi +

∑
i∈Iz

λi
tỹi)

11: if | µt − µt−1 |≤ ϵ then
12: return CLIP[0,C](λ0 − µtỹ)
13: end if
14: end for

3.3 RELATED WORK

Label poisoning. Biggio et al. (2012) first analyzed label poisoning attacks, showing that flipping
a small number of training labels severely degrades SVM performance. Xiao et al. (2012) later
formalized optimal label flip attacks under budget constraints as a bilevel optimization problem,
which then expanded to transferable attacks on black-box models (Zhao et al., 2017), considering
arbitrary attacker objectives. Beyond SVMs, recent works have explored label poisoning in backdoor
attack scenarios, where adversaries inject triggers or alter triggerless data with poisoned labels
in multi-label settings (Jha et al., 2023; Chen et al., 2022). In contrast, our approach focuses on
triggerless poisoning attacks.

Defenses against these attacks include heuristic-based kernel correction (Biggio et al., 2011), which
uses expectation for Q in (4), though assuming independent label flipping with equal probability–a
condition not guaranteed in practice. Other defenses such as clustering-based filtering (Laishram &
Phoha, 2016; Tavallali et al., 2022), data complexity analysis (Chan et al., 2018), re-labeling (Paudice
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et al., 2018) and label smoothing (Rosenfeld et al., 2020) offer straightforward solutions, however,
they do not scale well to high-dimensional or large datasets. Sample weighting based on local
intrinsic dimensionality (LID) (Weerasinghe et al., 2021; Ma et al., 2018) shows promise, but relies
on accurate and computationally expensive LID estimation. Our approach, however, avoids strong
assumptions about the data distribution or the attacker, preserves feasibility, and scales effectively
to large-scale problem instances as demonstrated in Section 4. Additionally, while learning under
noisy labels (Frénay & Verleysen, 2013; Natarajan et al., 2013; Hallaji et al., 2023; Zhang et al.,
2024) may seem relevant, our work focuses specifically on adversarial label noise (Biggio et al.,
2011), where the adversary intentionally crafts the most damaging label perturbations.

Adversarial training (AT). Adversarial examples, introduced by Szegedy et al. (2013), revealed
how small perturbations cause misclassification in deep neural networks (DNNs). Building on
this, AT (Goodfellow et al., 2015) emerged as a prominent defense, training models on both
original and adversarially perturbed data. Defenses have utilized adversarial examples generated
by methods such as the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015), PGD (Madry
et al., 2017), Carlini & Wagner attack (Carlini & Wagner, 2017), among others (Chen et al., 2017;
Moosavi-Dezfooli et al., 2015). For SVMs, Zhou et al. (2012) formulated convex AT for linear
SVMs, later extended to kernel SVMs by Wu et al. (2021) via doubly stochastic gradients under
feature perturbations. Despite this progress, AT for label poisoning remains underexplored. FLORAL
fills this gap, by leveraging AT specifically for label poisoning scenarios, using PGD to train models
on poisoned datasets rather than generating adversarial examples.

In parallel, game-theoretical approaches have modeled adversarial interactions as simultaneous
games (Bal et al., 2024a), where classifiers and adversaries select strategies independently (Dalvi
et al., 2004), or as Stackelberg games with a leader-follower dynamic (Brückner & Scheffer, 2011;
Zhou et al., 2019; Chivukula et al., 2020). AT has further linked these concepts, particularly
in simultaneous zero-sum games (Hsieh et al., 2019; Pinot et al., 2020; Pal & Vidal, 2020) to
non-zero-sum formulations (Robey et al., 2024). We adopt a sequential setup, using the Stackelberg
framework where the leader commits to a strategy and the follower responds accordingly.

4 EXPERIMENTS

In this section, we showcase the effectiveness of FLORAL across various robust classification tasks,
utilizing the following datasets:

• Moon (Pedregosa et al., 2011): We employed a synthetic benchmark dataset, D = {(xi, yi)}2000i=1
where xi ∈ R2 and yi ∈ {±1}. Adversarial versions are generated by flipping the labels of points
farther from the decision boundary of a linear classifier trained on the clean dataset, using label
poisoning levels (%) of {5, 10, 15, 20, 25}. The details on the adversarial datasets are given in
Appendix C.1.

• IMDB (Maas et al., 2011): A benchmark review sentiment analysis dataset with D =
{(xi, yi)}50000i=1 where xi ∈ R768 and yi ∈ {±1}. For SVM training, we extracted 768-
dimensional embeddings from the fine-tuned RoBERTa (Liu et al., 2019). We created adversarial
datasets by fine-tuning the RoBERTa-base model on the clean dataset to identify influential train-
ing points based on the gradient with respect to the inputs, then flipping their labels at poisoning
levels (%) of {10, 25, 30, 35, 40}.

• MNIST (Deng, 2012): In Appendix E.3, we provide the additional experiments with the MNIST
dataset in detail.

Experimental setup. For all SVM-based methods, we used RBF kernel, exploring various values
of C and γ. We conducted five replications with different train/test splits, including the corresponding
adversarial datasets for each dataset. In all FLORAL experiments, we constrain the attacker’s capability
with a limited budget. That is, the attacker identifies the most influential candidate points, with
B = 2k, from the training set and randomly selects k ∈ {1, 2, 5, 10, 25} to poison, where k represents
the % of points relative to the training set size. Detailed experimental configurations are provided in
Appendix C (see Table 3).

Baselines. We benchmark FLORAL against the following baselines:
1. (Vanilla) SVM with an RBF kernel, which serves as a basic benchmark (Hearst et al., 1998).
2. LN-SVM (Biggio et al., 2011) applies a heuristic-based kernel matrix correction.
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Table 1: Test accuracies of methods trained on the Moon dataset, averaged over five runs. Highlighted
values indicate the best performance in the "Best" (peak accuracy during training) and "Last"
(final accuracy after training) columns. This notation is consistently applied in the subsequent tables.
FLORAL outperforms baselines in most of the settings, providing a particularly robust defense in
highly adversarial scenarios. See Appendix E.1 (Table 4) for the results of other settings.

Setting

Method
FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last
Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.966 0.966 0.965 0.957 0.926 0.926 0.964 0.937 0.940 0.940 0.903 0.903 0.881 0.881 0.964 0.964
Dadv = 10% C = 10, γ = 1 0.924 0.907 0.912 0.900 0.859 0.855 0.927 0.853 0.869 0.868 0.907 0.907 0.894 0.894 0.908 0.907
Dadv = 15% C = 10, γ = 1 0.924 0.917 0.892 0.823 0.826 0.826 0.871 0.871 0.893 0.829 0.906 0.858 0.892 0.823 0.883 0.826
Dadv = 20% C = 10, γ = 1 0.875 0.865 0.840 0.771 0.788 0.787 0.854 0.853 0.839 0.758 0.859 0.763 0.840 0.771 0.830 0.755
Dadv = 25% C = 10, γ = 1 0.801 0.768 0.753 0.717 0.693 0.647 0.740 0.655 0.754 0.693 0.779 0.697 0.766 0.721 0.747 0.690

Table 2: Test accuracies of methods trained on the IMDB dataset, averaged over five replications.
FLORAL demonstrates superior robustness compared to baselines, particularly in more adversarial
scenarios. See also Figures 1b-1c.

Setting

Method
FLORAL RoBERTa SVM LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last
Clean 0.9113 0.9113 0.9119 0.9110 0.9113 0.9113 0.9113 0.9113 0.9116 0.9113 0.9108 0.9108 0.9116 0.9115
Dadv = 10% 0.9039 0.9039 0.9048 0.9031 0.9039 0.9039 0.9029 0.9028 0.9039 0.9039 0.9010 0.9010 0.9039 0.9039
Dadv = 25% 0.8896 0.8896 0.8827 0.8612 0.8887 0.8886 0.8860 0.8860 0.8889 0.8888 0.8771 0.8769 0.8885 0.8883
Dadv = 30% 0.8801 0.8801 0.8675 0.8357 0.8792 0.8792 0.8771 0.8771 0.8797 0.8797 0.8325 0.8324 0.8795 0.8795
Dadv = 35% 0.8713 0.8713 0.8270 0.8053 0.8660 0.8660 0.8646 0.8646 0.8695 0.8695 0.7667 0.7667 0.8700 0.8700
Dadv = 40% 0.8636 0.8636 0.7792 0.7717 0.8574 0.8584 0.8515 0.8515 0.8589 0.8589 0.7060 0.7060 0.8594 0.8594

3. Curie (Laishram & Phoha, 2016), utilizes the DBSCAN clustering (Ester et al., 1996) to identify
and filter-out poisoned data points.

4. LS-SVM (Paudice et al., 2018) applies label sanitization based on k-NN (Cover & Hart, 1967).
5. K-LID (Weerasinghe et al., 2021), a weighted SVM based on kernel local intrinsic dimensionality.
6. NN: A DNN trained using the SGD optimizer with momentum, serving as a non-linear baseline.
7. NN-PGD: A DNN trained with PGD-AT (Madry et al., 2017), to evaluate a robust model

designed to withstand feature perturbation attacks under label poisoning.
8. RoBERTa (Liu et al., 2019), used in experiments with IMDB dataset to assess a fine-tuned

transformer-based language model’s robustness under label poisoning.

Appendix G includes further comparisons with a least squares classifier using randomized smoothing
(Rosenfeld et al., 2020) and a filtering-out defense based on regularized synthetic reduced nearest
neighbor (Tavallali et al., 2022) on the Moon and MNIST datasets.

Performance metrics. We assess our method using two key metrics: robust and clean accuracy,
tracked over a test set with clean labels during training. Unlike feature perturbation studies, where
robust accuracy is gauged on adversarially perturbed test examples (Yang et al., 2020), in our study,
robust accuracy reflects model performance tested on clean labels using adversarially labelled training
data, thereby indicating the models’ resilience and generalization capabilities under poisoning.
Conversely, clean accuracy measures the performance of models trained and tested on clean-labelled
data, offering a benchmark for comparison under both adversarial and non-adversarial conditions.
We additionally report hinge loss on the clean-labelled test data (see Appendix E.2) in experiments
with the IMDB dataset.

4.1 EXPERIMENT RESULTS

In this section, we report the performance of FLORAL against the baseline methods on the Moon
dataset, followed by the results of its integration with RoBERTa on the IMDB dataset.

Moon. As reported in Table 1 and Figure 3, FLORAL achieves higher robust accuracy across
almost all settings compared to baseline methods. Notably, in scenarios with more severe poisoning
levels, FLORAL significantly outperforms all baselines, which experience a marked drop in their
accuracy. We report results under various kernel hyperparameters in Appendix E.1 (see Table 4 and
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FLORAL Vanilla SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Figure 3: Test accuracy of methods on the Moon dataset under varying label poisoning levels. For
SVM models, C = 10, γ = 1 are used. See Appendix E (Figure 7) for results with other settings.
As the label poisoning level increases, the accuracy of methods generally declines, however, FLORAL
maintains higher robust accuracy across all adversarial settings, without compromising clean accuracy.

Figure 7). We additionally visualize the decision boundaries of trained methods on the test dataset
in Figure 4, which shows that FLORAL produces a smoother decision boundary compared to the
baselines, promoting generalization (see Figure 18 in Appendix E for the complete results).

When the initial training data is clean, FLORAL provides a proactive defense by introducing
adversarial labels during training, thereby effectively reducing the model’s sensitivity to potential
label attacks. Notably, FLORAL matches performance on par with vanilla SVM on clean data,
demonstrating that its robust framework maintains high accuracy without compromising clean
accuracy. In scenarios with already poisoned training data, FLORAL achieves robustness through
two key mechanisms: (i) implicitly sanitizing corrupted labels, while (ii) introducing additional
adversarial labels to further reduce model sensitivity to attacks. We analyze this sanitization effect
in detail in Appendix D and show that FLORAL sanitizes 25− 35% portion of the initial poisoned
training labels. Furthermore, FLORAL operates on dynamically evolving adversarial datasets during
training, unlike baselines that are trained on fixed adversarially labelled datasets. This dynamic
strategy introduces new adversarial labels in each round, further testing and enhancing the model’s
robustness. These capabilities position FLORAL as a superior defense over baselines, particularly
in maintaining robust accuracy under more challenging adversarial scenarios.

FLORAL offers several distinct advantages over existing baselines, e.g., unlike LN-SVM, FLORAL
does not rely on the strong assumption that training labels are independently flipped with equal
probability. Compared to Curie, FLORAL avoids a filter-out system that risks discarding data with
valuable feature representations. Further, in terms of scalability, Curie’s dependence on distance
metrics makes it vulnerable to the curse of dimensionality, diminishing its clustering performance
in high-dimensional and complex datasets. To ensure a fair comparison, we calibrated the noise,
confidence level, and threshold value parameters of LN-SVM, Curie, and LS-SVM baselines,
aligning them with the poisoning level in each dataset. This ensures that the baselines are at their
strongest configurations, highlighting the robustness and scalability of FLORAL.

IMDB. We integrate FLORAL as a robust classifier head for RoBERTa. The test performance on the
IMDB dataset, shown in Table 2 and Figures 1b-1c, reveals that FLORAL significantly improves ro-
bustness, outperforming fine-tuned RoBERTa along with other baselines. Our approach also converges
faster to lower loss values, in more adversarial scenarios (see Table 5 and Figure 8 in Appendix E.2).

In Appendix E.2, we analyze the changes in influential training points—those that most affect model
predictions—when applying FLORAL to RoBERTa-extracted embeddings (see Figures 9-10). The
results reveal some overlap in the identified points, under clean train data scenario. However, as the
training data becomes more adversarial, FLORAL identifies different critical points, which effectively
shape the decision boundary and contribute to improved robust accuracy.

Adaptability. As shown with the IMDB experiments, FLORAL integrates seamlessly with other
model architectures (e.g., RoBERTa, NNs) by utilizing the last-layer embeddings for training. We
additionally demonstrate this in Appendix I, FLORAL integrated with an NN learns more robust
representations and achieves higher robust accuracy on the Moon and MNIST datasets.
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(a) FLORAL (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(b) SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(c) NN (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(d) NN-PGD (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

Figure 4: The decision boundaries on the Moon test dataset under varying label poisoning levels.
SVM models use an RBF kernel with C = 10 and γ = 0.5. FLORAL generates a smooth decision
boundary compared to baseline methods, which show drastic changes due to adversarial training
label manipulations. For the complete results with other baselines, see Appendix E (Figure 18).

Sensitivity analysis. We further examined the sensitivity of our approach to the attacker’s budget,
and the results are detailed in Appendix E.4 with Figure 12.

Generalizability. We demonstrate the effectiveness of FLORAL under different attacks: alfa,
alfa-tilt (Xiao et al., 2015) and LFA (Paudice et al., 2018) in Appendix H. Our experiments
on the Moon and MNIST (Deng, 2012) datasets again confirmed that FLORAL can also defend and
achieve higher robust accuracy in the presence of other types of label attacks.

Limitations. Defense strategies may not be universally effective against all label poisoning attacks
due to their non-adaptive nature (Papernot et al., 2016). Our defense strategy relies on a white-box
attack, where the attacker can access the model. While we also show the performance of our approach
under various label attacks from the literature, its efficacy may vary under different attack scenarios.

5 CONCLUSION

In this paper, we address the vulnerability of machine learning models to label poisoning attacks and
propose FLORAL, an adversarial training defense strategy based on kernel SVMs. We formulate the
problem using bilevel optimization and frame the adversarial interaction between the learning model
and the attacker as a non-zero-sum Stackelberg game. To compute the game equilibrium that solves
the optimization problem, we introduce a projected gradient descent-based algorithm and analyze its
local stability and convergence properties. Our approach demonstrates superior empirical robustness
across various classification tasks compared to robust baseline methods.

Future research includes exploring SVM-based transfer attacks or integrating our approach to robust
fine-tuning of foundation models for supervised downstream tasks. Additionally, a detailed analysis
of how FLORAL alters the most influential training points for model predictions, e.g. when integrated
with foundation models such as RoBERTa could provide interesting insights.
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A THEORETICAL ANALYSIS PROOFS

In this section, we present the proofs for the local asymptotic stability analysis of FLORAL (Algo-
rithm 1). We begin by proving Lemma 1 in Section A.1, which establishes that the distance of the
updates of Algorithm 1 from the equilibrium of the game is bounded. In Section A.2, we prove
Lemma 2, demonstrating that the distance of the non-projected updates from the equilibrium of the
game is also bounded. Lastly, in Section A.3, we provide the proof of Theorem 3.1, which shows the
local asymptotic stability of our algorithm, with a derivation of a global convergence result presented
in Section A.4.

A.1 PROOF OF LEMMA 1

Our objective is to prove that the distance of the iterates of Algorithm 1 from the Stackelberg
equilibrium (λ̂, ŷ(λ̂)), specifically λt− λ̂, is bounded. We begin by recalling the update rule at round
t, λt := PROXS(yt)(zt) = PROXS(yt)(λt−1 − η∇λf(λt−1, yt)), where yt = ŷ(λt−1), S(yt) is the
feasible region defined by constraints (12), using the labels at round t. The operator PROX is defined
below.

Definition 1 (PROX operator). The operator PROXS(yt)(zt) : Rn → Rn denotes the projection of
zt ∈ Rn onto the convex set S(yt) at round t of Algorithm 1. PROX minimizes the Euclidean distance
and is defined by the following optimization problem:

PROXS(yt)(zt) : λt ∈ arg min
λ∈Rn

1

2
∥λ− zt∥2 (16)

subject to yTt λ = 0 (17)
0 ≤ λ ≤ C (18)

Equivalently, PROXS(yt) solves the following optimization problem:

min
λ∈Rn

0≤λ≤C

sup
µ∈R

1

2
∥λ− zt∥2 + µyTt λ. (19)

Lemma 3 (Bounded iterates). The sequence {λt} generated by the iterative update rule λt :=
PROXS(yt)(zt) = PROXS(yt)(λt−1 − η∇λf(λt−1, yt)) is bounded, i.e., ∥λt∥∞ ≤ C,∀t ≥ 0.

Proof. This follows immediately from the definition of S(yt).

In the following, our aim is to quantify the sensitivity of (19) with respect to its arguments yt and zt.
Let λ⋆ denote the optimal solution to the projection operation. We can express this solution through
the following steps. First, we simplify the expression by omitting the index t in (19). Then, we
exploit the fact that the objective function is convex-concave with convex constraints, which allows
us to interchange the order of the min and the sup. This yields

min
λ∈Rn

0≤λ≤C

sup
µ∈R

1

2
∥λ− z∥2 + µyTλ

= sup
µ∈R

min
λ∈Rn

0≤λ≤C

1

2
∥λ− z + µy∥2 − 1

2
µ2∥y∥2.

At this stage, the optimization problem over λ reduces to the minimization of a quadratic function
over box constraints. We can therefore express λ⋆ based on the optimal choice µ⋆ for µ as follows:

λ⋆
i =


0, if zi − µ⋆(z, y)yi ≤ 0

zi − µ⋆(z, y)yi, if 0 < zi − µ⋆(z, y)yi < C

C, if zi − µ⋆(z, y)yi ≥ C

 and choose µ⋆(z, y) such that yTλ⋆ = 0,

∀i ∈ {1, . . . , n}. We use the notation µ⋆(z, y) to highlight the dependency of the multiplier µ⋆ on
the variable z and the label y.

We introduce the CLIP[0,C](·) operator which clips the value of the given input to the interval [0, C].
This operator yields the following compact expression for λ⋆:

λ⋆ = CLIP[0,C](z − µ⋆(z, y)y), where µ⋆(z, y) is chosen such that yTλ⋆ = 0. (20)
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By substituting the previous expression for λ⋆ into the equality constraint, we obtain

yTCLIP[0,C](z − µ⋆(z, y)y) = 0, (21)
which provides an equation that implicitly defines µ⋆(z, y). We further simplify (21) by indexing the
components of z − µ⋆(z, y)y with respect to their values, which yields

0 =
∑
i∈IC

Cyi +
∑
i∈Iz

yi(zi − µ⋆(z, y)yi)

=
∑
i∈IC

Cyi +
∑
i∈Iz

ziyi −
∑
i∈Iz

µ⋆(z, y)y2i

=
∑
i∈IC

Cyi +
∑
i∈Iz

ziyi −
∑
i∈Iz

µ⋆(z, y). (from y2i = 1)

where Iz := {i | λi = zi − µ⋆(z, y)yi ∈ (0, C)} with cardinality | Iz | and IC := {i | λi =
zi − µ⋆(z, y)yi ≥ C}. We further solve for µ⋆, which yields

µ⋆(z, y) =
1

| Iz |

(∑
i∈IC

Cyi +
∑
i∈Iz

ziyi

)
.

This equation implicitly defines µ⋆(z, y), which represents the basis for the fixed point iteration
introduced in Algorithm 2.

This equation will also be the basis for computing sensitivities, i.e. quantifying how λ⋆ and µ⋆ change
when altering z or λ. We first compute ∂λ⋆

∂z . For a data point i, the following can be stated:

∂λ⋆
i

∂z
=

{
eTi −

∂µ⋆(z,y)
∂z yi, if zi − µ⋆(z, y)yi ∈ (0, C)

0, else,
(22)

where ei is the ith standard basis vector. Differentiating the constraint (17) yields

0 =
∂(yTλ⋆)

∂z
=

n∑
i=1

∂λ⋆
i

∂z
yi

=
∑
i∈Iz

(
eTi yi −

∂µ⋆(z, y)

∂z
y2i

)
.

Substituting y2i = 1 into the previous equation yields

∂µ⋆(z, y)

∂z
=

∑
i∈Iz

eTi yi

| Iz |
, (23)

where Iz with cardinality | Iz | is defined previously. From (22) and (23), we have

∂λ⋆
i

∂z
=

eTi −
∑

j∈Iz

eTj yj

|Iz| yi, if i ∈ Iz
0, if i /∈ Iz.

Therefore, we conclude that ∥∥∥∥∂λ⋆
i

∂z

∥∥∥∥
∞
≤ 1,∀i ∈ [n], (24)

where we have exploited the fact that yi ∈ {±1}.
We further note that in the situation Iz = ∅, λ⋆ ∈ {0, C}, a change in z or y will not affect λ⋆ unless
z = µ⋆y or z = C + µ⋆y. As a result, we have for Iz = ∅, ∂λ⋆

∂z = ∂λ⋆

∂y = 0 (a.e.).

We now compute ∂λ⋆

∂y . For a data point i, the following holds:

∂λ⋆
i

∂y
=

{
−∂µ⋆(z,y)

∂y yi − eTi µ
⋆(z, y), if i ∈ Iz

0, if i /∈ Iz.
(25)
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Differentiating the constraint (17) with respect to y yields

0 =
∂(yTλ⋆)

∂y
= λ⋆T

+

n∑
i=1

∂λ⋆
i

∂y
yi

= λ⋆T

+
∑
i∈Iz

(
−∂µ⋆(z, y)

∂y
|yi|2 − yiµ

⋆(z, y)eTi

)
.

It follows from |yi|2 = 1 that

∂µ⋆(z, y)

∂y
=

λ⋆T − µ⋆(z, y)
∑
i∈Iz

yie
T
i

| Iz |
. (26)

From (25) and (26), we obtain the following.

∂λ⋆
i

∂y
=

−
yiλ

⋆T

|Iz| + µ⋆(z, y)

(
yi

∑
j∈Iz

eTj yj

|Iz| − eTi

)
, if i ∈ Iz

0, if i /∈ Iz.
As a result, we conclude using Lemma 3 that the following bound holds ∀i ∈ [n]∥∥∥∥∂λ⋆

i

∂y

∥∥∥∥
∞
≤ ∥λ∥∞
| Iz |

+ | µ⋆(z, y) |≤ C

| Iz |
+ | µ⋆ |︸ ︷︷ ︸
κy

, (27)

where κy is a constant that only depends on C and the features of the dataset.

From (24) and (27), we conclude that

∥λt − λ̂∥∞ = ∥λ⋆(zt, yt)− λ⋆(zt, ŷ(λ̂)) + λ⋆(zt, ŷ(λ̂))− λ⋆(ẑ, ŷ(λ̂))∥∞
≤ κy∥yt − ŷ(λ̂)∥∞ + ∥zt − ẑ∥∞.

A.2 PROOF OF LEMMA 2

Our objective is to prove that the distance of the non-projected updates of Algorithm 1 from the
Stackelberg equilibrium (λ̂, ŷ(λ̂)), specifically zt − ẑ, is bounded.

We begin by recalling the update rule at round t, λt := PROXS(yt)(zt) = PROXS(yt)(λt−1 −
η∇λf(λt−1, yt)), where yt = ŷ(λt−1), S(yt) is the feasible set defined by constraints (12), using
the labels at round t. We further recall the Stackelberg equilibrium (λ̂, ŷ(λ̂)), i.e.,

λ̂ := PROXS(ŷ(λ̂))(ẑ) = PROXS(ŷ(λ̂))(λ̂− η∇λf(λ̂, ŷ(λ̂)))

ŷ(λ̂) := LFLIP(λ̂),

where the operator LFLIP : X × Y → Y defines the label poisoning attack formulated in (7-9). We
conclude the following:

zt = λt−1 − η∇λf(λt−1, yt)

ẑ = λ̂− η∇λf(λ̂, ŷ(λ̂))

zt − ẑ = λt−1 − λ̂− η
(
∇λf(λt−1, yt)−∇λf(λ̂, ŷ(λ̂))

)
.

We apply the mean value theorem for functions with multiple variables to the previous expression
which allows us to rewrite zt − ẑ as

= λt−1 − λ̂− η
(
∇λf(λt−1, yt)−∇λf(λ̂, yt) +∇λf(λ̂, yt)−∇λf(λ̂, ŷ(λ̂))

)
= λt−1 − λ̂− η

(
∇2

λf(ξλ, yt)(λt−1 − λ̂) +∇2
λyf(λ̂, ξy)(yt − ŷ(λ̂))

)
,

where ξλ ∈ (λ̂, λt−1) and ξy ∈ (ŷ(λ̂), yt). The last equation can be restated as:

zt − ẑ = (I − η∇2
λf(ξλ, yt))(λt−1 − λ̂)− η∇2

λyf(λ̂, ξy)(yt − ŷ(λ̂)), (28)
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where I denotes the identity matrix. We have defined the gradient of the objective in (10) as
∇λf(λ, y) = Q̃λ − 1, where Q̃ is the matrix with entries Q̃ij = yiyjKij ,∀i, j ∈ [n], using the
simplified notation. We express the second-order partial derivatives as:

∇2
λf(λ; y) = K ⊙ yyT, (29)

∇2
λyf(λ; y) = K ⊙ yλT + I ⊙ (K(λ⊙ y)1T), (30)

where K is the Gram matrix, I is the n× n identity matrix, 1 is the all-one vector and ⊙ denotes the
Hadamard product. From (28), (29) and (30), we obtain

zt − ẑ = (I − η
(
(K ⊙ yty

T
t )
)
(λt−1 − λ̂)

− η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
(yt − ŷ(λ̂)).

We take the infinity norm and conclude:

∥zt − ẑ∥∞ = ∥(I − η
(
K ⊙ yty

T
t

)
)(λt−1 − λ̂)

− η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
(yt − ŷ(λ̂))∥∞

≤ ∥(I − η
(
K ⊙ yty

T
t

)
)(λt−1 − λ̂)∥∞

+ ∥ − η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
(yt − ŷ(λ̂))∥∞ (triangle inequality)

= ∥(I − η
(
K ⊙ yty

T
t

)
)(λt−1 − λ̂)∥∞

+ ∥η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
(yt − ŷ(λ̂))∥∞ (homogeneity)

≤ ∥(I − η
(
K ⊙ yty

T
t

)
)∥∞︸ ︷︷ ︸

κλ

∥λt−1 − λ̂∥∞

+ ∥η
(
K ⊙ ξyλ̂

T + I ⊙ (K(λ̂⊙ ξy)1
T)
)
∥∞︸ ︷︷ ︸

κ′
y

∥yt − ŷ(λ̂)∥∞. (homogeneity)

This implies that

∥zt − ẑ∥∞ ≤ κλ∥λt−1 − λ̂∥∞ + κ′
y∥yt − ŷ(λ̂)∥∞.

We note that κλ ≤ 1 if the learning rate η is chosen small enough.

A.3 PROOF OF THEOREM 3.1

Let (λ̂, ŷ(λ̂)) denote the Stackelberg equilibrium, i.e.,

λ̂ := PROXS(ŷ(λ̂))(ẑ) = PROXS(ŷ(λ̂))(λ̂− η∇λf(λ̂, ŷ(λ̂)))

ŷ(λ̂) := LFLIP(λ̂),

where the operator LFLIP : X × Y → Y defines the label poisoning attack formulated in (7-9). We
further assume that the LFLIP operator returns a unique set of adversarial labels at the Stackelberg
equilibrium (λ̂, ŷ(λ̂)), which implies that there are no ties with respect to λ̂ values. As a result, there
exists a small enough constant δ′ > 0 such that for any λ0 with ∥λ0 − λ̂∥∞ < δ′, the corresponding
ŷ(λ0) satisfies ŷ(λ0) = ŷ(λ̂). (Indeed, as long as δ′ is small enough, such that the top-k entries
between λ̂ and λ0 agree, ŷ(λ0) = ŷ(λ̂) will be satisfied.)

By combining Lemma 1 and Lemma 2 we conclude

∥λ1 − λ̂∥∞ ≤ κy∥ŷ(λ0)− ŷ(λ̂)∥∞ + ∥z1 − ẑ∥∞ ≤ ∥z1 − ẑ∥∞ ≤ κλ∥λ0 − λ̂∥∞ < κλδ
′,

where we used the fact that ŷ(λ0) = ŷ(λ̂). The learning rate η is chosen small enough, such that
κλ < 1 and therefore ∥λ1 − λ̂∥∞ < κλδ

′ < δ′. We therefore conclude by induction on t that
∥λt − λ̂∥∞ < κt

λδ
′ for all t > 0. This readily implies λt → λ̂. Moreover, choosing δ = min{ϵ, δ′}

concludes ∥λt − λ̂∥∞ < ϵ and concludes the proof.
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A.4 GLOBAL CONVERGENCE RESULT

The previous section provides the proof of Theorem 3.1, which provides a local stability and
convergence result. Under additional assumptions on the constants κy and κ′

y that capture the
sensitivity of the iterates λt with respect to changes in the labels, one can derive a global convergence
result, as summarized by the following proposition:

Proposition 1. Let (λ̂, ŷ(λ̂)) denote the Stackelberg equilibrium as before and let δ′ = (λ̂{k} −
λ̂{k+1})/2 > 0, where λ̂{1} denotes the largest entry of λ̂, λ̂{2} the second larges entry of λ̂, etc.
Provided that

2(κy + κ′
y)k

1− κλ
< δ′

holds and that the step-size η is chosen to be small enough, the iterates {λt} of FLORAL are
guaranteed to converge to λ̂ from any initial condition λ0.

Proof. As a result of Lemma 1 and Lemma 2 we conclude that

∥λt − λ̂∥∞ ≤ κy∥ŷ(λt−1)− ŷ(λ̂)∥∞ + ∥zt−1 − ẑ∥∞
≤ (κy + κ′

y)∥ŷ(λt−1)− ŷ(λ̂)∥∞ + κλ∥λt−1 − λ0∥∞.

We further take advantage of the fact that ∥ŷ(λ) − ŷ(λ̂)∥∞ ≤ 2k for any λ (at most k labels are
flipped), which implies

∥λt − λ̂∥∞ ≤ κλ∥λt−1 − λ0∥∞ + 2(κy + κ′
y)k.

The previous inequality is satisfied for all t, and can be used to conclude that

∥λt − λ̂∥∞ ≤ κt
λ∥λ0 − λ̂∥∞ +

2(κy + κ′
y)k

1− κλ
(31)

holds for all t (this can be verified by an induction argument). As a result, there exists an integer
t′ > 0 such that ∥λt−λ̂∥∞ < δ′ for all t > t′. This implies, due to the choice of δ′, that ŷ(λt) = ŷ(λ̂)
for all t > t′. We therefore conclude that for all t > t′ + 1

∥λt − λ̂∥∞ ≤ κλ∥λt−1 − λ̂∥∞.

This readily implies λt → λ̂, due to the fact that κλ < 1, and implies the desired result.

B THE GRADIENT OF THE OBJECTIVE (4)

We begin by recalling the kernel SVM dual formulation (Boser et al., 1992; Hearst et al., 1998):

D(fλ;D) : min
λ∈Rn

1

2

n∑
i=1

n∑
j=1

λiλjyiyjKij −
n∑

i=1

λi

subject to
n∑

i=1

λiyi = 0

0 ≤ λi ≤ C, ∀i ∈ [n],

where K represents the Gram matrix with entries Kij = k(xi, xj),∀i, j ∈ [n] := {1, . . . , n},
derived from a kernel function k. We consider the pth data point and apply differentiation of a double
summation to the objective, which yields

∂ (D(fλ;D))
∂λp

=
1

2

 n∑
i=1

λiyiypKip +

n∑
j=1

λjypyjKpj

− 1

= yp

n∑
i=1

λiyiKip − 1. (from the symmetry of the kernel function)

In compact form, we obtain the following.
∇λD(fλ;D) = Qλ− 1,

where Q is the matrix with entries Qij = yiyjKij ,∀i, j ∈ [n] and 1 is the vector of all ones.
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C EXPERIMENT DETAILS

For our experiments, we set the hyperparameter values as given in Table 3. We provide the experiment
details as follows.

• We initialize the model fλ0
with parameters set to 0. In FLORAL, however, the attacker uses a

randomized top-k rule to identify the B most influential support vectors based on the λ values.
Due to the 0 initialization of λ, a warm-up period is required, which we set to 1 round for all
SVM-related methods.

• To train kernel SVM classifiers for all SVM-related methods other than FLORAL, we use our PGD-
based Algorithm 1 with a dummy attack, that is, we eliminate the adversarial dataset generation
step and employ vanilla PGD training.

• For large datasets such as IMDB, we implement projection via fixed point iteration as given in
Algorithm 2 in Section 3.2 instead of constructing a quadratic program as defined in (11-12).

Table 3: Hyperparameter values.

Symbol Hyperparameter Value
n The size of the training dataset Moon: 500, IMDB: 20000
T The number of training rounds Moon: 500, IMDB: 1000

Tproj The number of projection via fixed point iteration rounds 1000
B The attacker budget Moon: {10, 20, 50, 100, 250}, IMDB: {500, 2500, 5000, 12500}
k The number of labels to poison Moon: {5, 10, 25, 50, 125}, IMDB {250, 1250, 2500, 6250}
C Regularization parameter for soft-margin SVM Moon: {10, 100}, IMDB: 10
γ RBF kernel parameter Moon: {0.5, 1, 10}, IMDB: 0.005
ϵ Error rate for projection via fixed point iteration 1e− 21
η Learning rate Optimized over the set {0.0001, 0.0003, 0.0005, 0.0007}, for RoBERTa: 2e− 05

Learning rate scheduler Moon: a decay rate of 0.1 at every {100, 200} rounds (optimized), for RoBERTa: linear scheduler
The model architecture for NN and NN-PGD Fully connected MLP with 2 hidden layers with 32 units each
Batch size 32
NN-PGD perturbation amount 8/255
NN-PGD step size 2/255
SGD optimizer momentum value 0.9

C.1 DATASETS

• Moon is a benchmark dataset for binary classification tasks, generated directly using the
scikit-learn library (Pedregosa et al., 2011). It contains two-dimensional input examples
with each feature taking value in the range [−2.5, 2.5]. We generate its adversarial versions by
flipping the labels of farthest points from the decision boundary of a linear classifier trained on the
clean dataset, using label poisoning levels (%) of {5, 10, 15, 20, 25}. We provide the visualizations
of the Moon training dataset with clean and adversarial labels in Figure 5.

• IMDB review sentiment analysis benchmark dataset (Maas et al., 2011) contains train and test
datasets, each containing 25, 000 examples. We used randomly selected 20, 000 points from the
training set as training examples, and the rest as validation examples. We fine-tuned the RoBERTa-
base model 1 (Liu et al., 2019) on this dataset and extracted features (768-dimensional embeddings)
to train SVM-related models on this dataset. We generated adversarially labelled datasets using
the fine-tuned RoBERTa-base model on the clean dataset. Specifically, we identified the most
influential training points based on the gradient of loss with respect to the inputs and flipped their
labels under various poisoning levels (%) of {10, 25, 30, 35, 40}.

(a) Clean. (b) Dadv = 5%. (c) Dadv = 10%. (d) Dadv = 25%.

Figure 5: Illustrations of the Moon training sets from an example replication, using clean and
adversarial labels with poisoning levels: 5%, 10%, 25%.

1The pre-trained RoBERTa-base model can be found in https://huggingface.co/FacebookAI/
roberta-base.
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C.2 BASELINES

In our main experiments, we compared FLORAL against the baseline methods by carefully selecting
their hyperparameters using the domain knowledge, which we detail below.

• LN-SVM (Biggio et al., 2011) applies a heuristic-based kernel matrix correction by assuming that
every label in the training set is independently flipped with the same probability. It requires a
predefined noise parameter µ, which we set to µ ∈ {0.05, 0.1, 0.15, 0.2, 0.25} by leveraging the
domain label poisoning knowledge, i.e. using the poisoning levels of the adversarial datasets.

• For Curie (Laishram & Phoha, 2016), we set the confidence parameter to
{0.95, 0.90, 0.85, 0.8, 0.75}. To compute the average distance, we considered k = 20
neighbors in the same cluster for the Moon dataset and k = 1000 neighbors for the IMDB dataset
experiments.

• For LS-SVM (Paudice et al., 2018), we use the relabeling confidence threshold from
{0.95, 0.90, 0.85, 0.8, 0.75}, again aligning with the poisoning level of the adversarial datasets. For
its k-NN step, we considered k = 20 and k = 1000 neighbors for the Moon and IMDB datasets,
respectively.

• NN baseline is a fully connected multi-layer perceptron with two hidden layers with 32 units each,
trained using the SGD optimizer with 0.9 momentum and binary cross-entropy loss. For additional
experiments on the MNIST dataset, a similar architecture with two hidden layers having {32, 10}
units is employed.

• NN-PGD is based on the same NN architecture as above, trained with PGD-AT (Madry et al.,
2017) using a standard perturbation budget of 8/255 and a step size of 2/255.

C.3 ROBERTA EXPERIMENT DETAILS

We fine-tune the RoBERTa-base model1 on the IMDB review sentiment analysis dataset2. We fine-
tune the model for three epochs with no warm-up steps, using the AdamW optimizer, weight decay
0.01, batch size 16, and learning rate 2e−05 with a linear scheduler, using a single NVIDIA A100
40GB GPU. We extract the last layer embeddings of the trained model for experiments with FLORAL
integration.

D EFFECTIVENESS ANALYSIS OF FLORAL DEFENSE

As explained in Section 3, FLORAL takes a proactive defense when the initial training data is clean,
iteratively adjusting the model to reduce sensitivity to potential label poisoning attacks by exposing
it to adversarial decision boundary configurations through adversarial training. Conversely, when
the training data is already contaminated with adversarial labels, FLORAL mitigates their effect by
implicitly sanitizing the corrupted labels.

To demonstrate how FLORAL defenses under already poisoned training data, we further analyze
the efficacy of FLORAL by measuring its "recovery" rate of poisoned labels. That is, we quantify
FLORAL’s rate of disrupting the initial attack (%) on the adversarially labelled training sets, averaged
over replications.

As reported in Figure 6a on the adversarial Moon datasets, FLORAL is able to disrupt the initial label
attack (already inherited in the training set), at a 25− 35% rate. This contributes to the success of
the FLORAL in achieving higher robust accuracy in training with adversarial datasets. Moreover, we
provide example illustrations (Figures 6b-6d) that show which poisoned data points are recovered by
FLORAL under the randomized top-k attack.

2The IMDB review sentiment dataset can be found in https://huggingface.co/datasets/
stanfordnlp/imdb.
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(b) A trace for recovered points on Dadv = 5%.
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(c) A trace for recovered points on Dadv = 10%.
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(d) A trace for recovered points on Dadv = 25%.

Figure 6: The average percentage of "recovered" poisoned labels by FLORAL over the adversarial
Moon datasets containing {5, 10, 25} (%) poisoned labels. As shown in (a), FLORAL is able to
recover, on average, 25 − 35% of the poisoned labels. The plots (b)-(d) illustrate example traces,
showing which poisoned data points are recovered by FLORAL.
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E ADDITIONAL EXPERIMENTAL RESULTS

We provide additional experimental results under various hyperparameter settings for the Moon
dataset in Appendix E.1. In Appendix E.2, we first report a comprehensive comparison of FLORAL
against other baselines on the IMDB dataset, followed by an analysis of how FLORAL shifts the most
influential training points for RoBERTa’s predictions on the IMDB dataset. In Appendix E.3, we
provide experiments on the MNIST (Deng, 2012) dataset. Finally, we present a sensitivity analysis
with respect to the attacker’s budget in Appendix E.4.

E.1 MOON

We report the clean and robust test accuracy of methods under different (non-optimal) kernel hyper-
parameter choices and considering label poisoning levels {5, 10, 25}(%) in Figure 7 and Table 4.

When the kernel hyperparameters are not optimally chosen, NN-PGD shows superior performance
in less adversarial scenarios compared to SVM-based methods. However, it also demonstrates
significant sensitivity to label attacks in 25% adversarial settings, against all other baselines. FLORAL
particularly advances by maintaining a higher robust accuracy in more adversarial settings.
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FLORAL Vanilla SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Figure 7: Comparison of clean and robust test accuracy of methods trained on the Moon dataset under
different kernel hyperparameter choices. For all SVM-related models, the first row corresponds to the
setting (C = 10, γ = 0.5), whereas the second row shows the setting (C = 100, γ = 10). As the
level of label poisoning increases, the accuracy of models trained on adversarial datasets generally
declines. When the kernel parameters are not optimally chosen, FLORAL demonstrates superior
performance, particularly under the 25% attack.

E.2 IMDB
We report the test accuracy and loss performance of FLORAL against RoBERTa on the IMDB dataset
in Figure 8 and Table 2. As demonstrated, FLORAL consistently exhibits superior accuracy and a
smaller loss in more adversarial problem instances, without sacrificing the clean performance. This
shows the effectiveness of FLORAL in achieving robust classifiers when integrated with foundation
models such as RoBERTa.
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Table 4: Test accuracies of methods trained on the Moon dataset. Each entry shows an average of
five runs. Highlighted values indicate the best performance in the "Best" (peak accuracy during
training) and "Last" (final accuracy after training) columns.

Setting

Method
FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last
Clean C = 10, γ = 0.5 0.954 0.950 0.952 0.952 0.960 0.960 0.966 0.964 0.933 0.933 0.924 0.924 0.952 0.952 0.947 0.947
Dadv = 5% C = 10, γ = 0.5 0.941 0.941 0.938 0.938 0.926 0.926 0.964 0.937 0.933 0.933 0.892 0.892 0.938 0.938 0.933 0.933
Dadv = 10% C = 10, γ = 0.5 0.915 0.874 0.878 0.878 0.859 0.855 0.927 0.853 0.868 0.868 0.889 0.889 0.874 0.874 0.868 0.868
Dadv = 25% C = 10, γ = 0.5 0.769 0.738 0.717 0.651 0.693 0.647 0.740 0.655 0.717 0.653 0.731 0.661 0.696 0.656 0.717 0.653

Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.966 0.966 0.965 0.957 0.926 0.926 0.964 0.937 0.940 0.940 0.903 0.903 0.881 0.881 0.964 0.964
Dadv = 10% C = 10, γ = 1 0.924 0.907 0.912 0.900 0.859 0.855 0.927 0.853 0.869 0.868 0.907 0.907 0.894 0.894 0.908 0.907
Dadv = 25% C = 10, γ = 1 0.801 0.768 0.753 0.717 0.693 0.647 0.740 0.655 0.754 0.693 0.779 0.697 0.766 0.721 0.747 0.690

Clean C = 100, γ = 10 0.965 0.964 0.966 0.964 0.960 0.960 0.966 0.964 0.950 0.949 0.932 0.931 0.964 0.964 0.966 0.964
Dadv = 5% C = 100, γ = 10 0.955 0.940 0.951 0.937 0.926 0.926 0.964 0.937 0.951 0.940 0.888 0.888 0.947 0.945 0.951 0.940
Dadv = 10% C = 100, γ = 10 0.910 0.877 0.895 0.874 0.859 0.855 0.927 0.853 0.894 0.888 0.889 0.881 0.896 0.875 0.895 0.876
Dadv = 25% C = 100, γ = 10 0.740 0.720 0.697 0.693 0.693 0.647 0.740 0.655 0.697 0.694 0.760 0.744 0.701 0.687 0.697 0.693

Table 5: Test accuracy and loss of methods trained on the IMDB dataset. Each entry shows an average
of five replications. Highlighted values indicate the best performance in the "Best" (peak accuracy
during training) and "Last" (final accuracy after training) columns. FLORAL demonstrates superior
robust accuracy and lower test loss compared to RoBERTa, particularly in more adversarial scenarios.

Setting

Accuracy Loss
FLORAL RoBERTa FLORAL RoBERTa

Best Last Best Last Best Last Best Last
Clean 0.911 0.911 0.911 0.911 0.196 0.216 0.229 0.282
Dadv = 10% 0.903 0.903 0.904 0.903 0.234 0.259 0.227 0.231
Dadv = 25% 0.889 0.889 0.882 0.861 0.310 0.333 0.337 0.365
Dadv = 30% 0.880 0.880 0.867 0.835 0.353 0.366 0.428 0.428
Dadv = 35% 0.871 0.871 0.827 0.805 0.381 0.395 0.496 0.496
Dadv = 40% 0.863 0.863 0.779 0.771 0.428 0.439 0.551 0.551
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Figure 8: Test accuracy ((a)-(b)) and test loss ((c)-(d)) of methods on the IMDB dataset. FLORAL
integration outperforms fine-tuned RoBERTa in maintaining better test accuracy and converging
faster to lower loss, even when trained on extracted embeddings with heavily adversarial labels.
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Analysis on influential training points. We further analyze how the influential training points
(affecting the model’s predictions) identified by FLORAL and RoBERTa change.

To illustrate, Figure 10 shows an example from a replication where both models are trained on a
dataset with 40% adversarially labelled examples. We also provide the result for RoBERTa fine-tuned
on the clean dataset. For FLORAL, the most influential points are selected from the most important
support vectors, while for RoBERTa, these are the points yielding the largest loss gradient with respect
to the input. The example clearly demonstrates that FLORAL, implemented on RoBERTa-extracted
embeddings, shifts the most important training point for the model’s decision boundary. FLORAL
identified a more descriptive point compared to others as given in Figure 10, however, further analysis
is required to determine whether FLORAL consistently identifies such training points across all cases.

Additionally, we investigate the overlap in influential training points between the two methods. To this
end, for each method, we extract the 25% most influential training points (for the model predictions)
among the training dataset, and measure how much overlap between these two sets. In Figure 9, we
report the percentage of "common" influential points identified from the IMDB dataset, averaged over
replications, with error bars denoting the standard deviation. The left figure shows the percentage
overlap between FLORAL trained on the IMDB dataset with different poison levels and RoBERTa
fine-tuned on clean labels. Whereas, the right plot shows the overlap between both models trained on
the dataset with different poison levels. On the clean dataset, although there are some differences,
both methods almost identify the same set of influential points. However, as adversarial labels
increase, the overlap decreases. This shows that FLORAL extracts more critical points that enhance
the model’s robustness in adversarial settings, as supported by its superior robust accuracy, already
shown in Figure 8 in Section 4.1.
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Figure 9: The percentage of "common" influential points identified by FLORAL and RoBERTa from
the IMDB dataset, averaged over replications, with error bars denoting the standard deviation. "Clean"
shows the dataset with clean labels, whereas adversarial datasets contain {10, 25, 30, 35, 40}(%)
poisoned labels. Even when both methods are fine-tuned on the clean dataset, slight differences
emerge in the identified influential training points. The discrepancy increases as the dataset becomes
more adversarial, highlighting that FLORAL adjusts the influential training points affecting the
model’s predictions.
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Sitting down to watch the 14th season of the Bachelor ("On the Wings of Love"), I knew I would be in for an "interesting" time. I had watched some of the
previous seasons of the Bachelor in passing; watching an episode or two and missing the next three or so. I find that the Bachelor is often appealing and
intriguing, though its quality and morality are often lacking.<br /><br />"On the Wings of Love" details the journey taken by Jake, a 31 year old
commercial pilot from Dallas, Texas, to find true love, as true a love as one can find in a season-long reality-drama dating show. Jake meets 25
beautiful girls from all over the country. He begins to get to know them a bit, but it is mostly superficial; how well can you get to know someone in a
few 5 minute conversations? Jake tries to make his true intentions known from the very beginning, at least to the audience. He noted that he doesn't just
want love or a good time, but he wants a fiancé or wife. We can only assume that he has made this clear to the women in the competition as well. If that
is the case, it might explain, to a degree, some of the women's actions. The women are super competitive. While they don't even know Jake at all yet,
they are still in it to win it no matter what the cost.<br /><br />Not only were the women competitive, but they were also confident and catty. Threats,
backstabbing, and warnings of "Watch out!" all show that these women weren't there for a good time either. Jake noted that he was not just looking for
sex appeal, but looking for "a connection." However, the girls pulled out all the stops to try to impress Jake with said sex appeal. They arrived at the
mansion in skimpy dresses – either low-cut or short.<br /><br />While some girls seemed to maintain their sense of decorum, others missed that memo
altogether. One girl, Channy, noted that Jake was a "good guy" to whom she could be a "naughty girl." She went on to say that Jake could land on her
"runway anytime." She got flack from the other girls for her provocative statement which showed their take on these situations.<br /><br />So, a reality
dating show couldn't be that bad, could it? Besides the obvious issue of sex-driven attraction, there are other issues that mar this seemingly harmless
show. Is this the right way to find a future mate; vying for someone's attention by flaunting oneself to extreme proportions? Unfortunately, however,
that is what America has reduced dating to these days: pleasure and sex without commitment and a little happiness on the side.<br /><br />Another problem
is the premature emotional attachment by which many of the girls bound themselves to Jake. A few girls in particular seemed to be overly attached. One
girl said "If I don't get that first impression rose it will kill me!" As mentioned before, they don't even know him yet and she was talking about a
specific rose, not just one of the 15 roses to keep from being eliminated.<br /><br />Michelle, in particular, seemed to have some issues with attachment
to Jake. The other girls noticed it too. After one particular Michelle outburst, Vienna asserted that Michelle had a "mental breakdown and we've only
been here an hour." Michelle got the last rose of the evening on the first show –narrowly missing elimination –and was extremely emotional about it. The
other girls thought it was simply ridiculous. Another girl also cried, but because she was eliminated.<br /><br />It began with Survivor, and from there
it just took off –reality TV. It shows our entertainment interests as a country; if we weren't watching the shows and giving them good ratings, the
networks would not continue to run them. The only logical conclusion that can be drawn is that enough of America is hooked. One thing is clear: America
(in general) loves reality TV and its ensuing trappings.<br /><br />This begs me to question: why is it that we even like reality TV? What is it about it
that draws us to it? Is it because we see the similarities to our own lives, or is it because we want to be sure that we are more stable and less
pathetic than others? Whatever it is that draws us to it, we should be careful of the media and entertainment that we allow to fill our minds. I'm not
saying that all reality TV shows are bad; however, I am saying that we need to evaluate each one.<br /><br />Episodes used for critique: Season Premier
and Episode 2.

(negative)

FLORAL(Dadv=40%):

This documentary on schlockmeister William Castle takes a few cheap shots at the naive '50s-'60s environment in which he did his most characteristic
work--look at the funny, silly people with the ghost-glasses--but it's also affectionate and lively, with particularly bright commentary from John
Waters, who was absolutely the target audience for such things at the time, and from Castle's daughter, who adored her dad and also is pretty perceptive
about how he plied his craft. (We never find out what became of the other Castle offspring.) The movies were not very good, it makes clear, but his
marketing of them was brilliant, and he appears to have been a sweet, hardworking family man. Fun people keep popping up, like "Straight Jacket"'s Diane
Baker, who looks great, and Anne Helm, whom she replaced at the instigation of star Joan Crawford. Darryl Hickman all but explodes into giggles at the
happy memory of working with Castle on "The Tingler," and there's enough footage to give us an idea of the level of Castle's talent--not very high, but
very energetic. A pleasant look at a time when audiences were more easily pleased, and it does make you nostalgic for simpler movie-going days.

(positive)

Someone actually gave this movie 2 stars. There's a very high chance they need immediate professional help as anyone who doesn't spend 30 seconds to see
if you can award no stars is quite literally scary.<br /><br />This film is ... well ... I guess it's pretty much some kind of attempt at a horrible porn
/ snuff movie with no porn or no real horrible bits (apart from the acting, plot, story, sets, dialogue and sound). I wrongly assumed it was about
zombies. <br /><br />Watching it is actually quite scary in fairness; you're terrified someone will come over and you'll never be able to describe what
it is and they'll go away thinking you're a freak that watches home-made amateur torture videos or something along those lines. <br /><br />I'm so taken
aback I'm writing this review on my mobile so I don't forget to attempt to bring the rating down further than the current 1.6 to save others from the
same horrible fate that I just suffered. <br /><br />I worst film I've ever seen and I can say (with hand on heart) it will never, never be topped.

(negative)

RoBERTa(fine-tuned on clean):

RoBERTa(fine-tuned on Dadv=40%):

Figure 10: Note: Figure might contain offensive content. The most influential training point for
the model’s predictions, identified by FLORAL and RoBERTa from the IMDB dataset. FLORAL
implemented on RoBERTa extracted-embeddings changes the most important training point for the
model’s decision boundary.
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E.3 MNIST

To demonstrate the generalizability of FLORAL across diverse datasets, we provide additional
experiments on the MNIST dataset (Deng, 2012). Similar to (Rosenfeld et al., 2020), we consider
classes 1 and 7 which leads to a dataset of D = {(xi, yi)}13007i=1 where xi ∈ R784 and yi ∈ {±1},
with 784 pixel values for each image.

We perform the randomized top-k label poisoning attack described in Section 3 and report the clean
and robust test accuracy performance of methods in Figure 11 and Table 6. The results show that
FLORAL maintains a higher robust accuracy compared to most of the baselines. While Curie behaves
almost on par, FLORAL achieves higher robust accuracy. Although NN baselines perform better
on clean and 5% adversarially labelled datasets, they show a significant accuracy decrease when
the training dataset gets more adversarial.
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FLORAL Vanilla SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Figure 11: Clean and robust test accuracy of methods trained on the MNIST-1vs7 dataset. "Clean"
refers to the dataset with clean labels, while the adversarial datasets contain {5, 10, 25} (%) poisoned
labels. For all SVM-related models, the setting C = 5, γ = 0.005 is used. As the level of
label poisoning increases, models trained on adversarial datasets generally demonstrate a decline
in accuracy. However, FLORAL maintains a higher robust accuracy level compared to most of the
baselines and behaving on par with the Curie method.

Table 6: Test accuracies of methods trained over the MNIST-1vs7 dataset. Each entry shows
the average of five replications with different train/test splits. Highlighted values indicate the best
performance in the "Best" (peak accuracy during training) and "Last" (final accuracy after training)
columns.

Setting

Method
FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last
Clean C = 5, γ = 0.005 0.992 0.991 0.992 0.992 0.993 0.993 0.995 0.994 0.987 0.987 0.990 0.990 0.978 0.977 0.987 0.987
Dadv = 5% C = 5, γ = 0.005 0.988 0.984 0.980 0.974 0.989 0.982 0.989 0.949 0.979 0.979 0.984 0.979 0.978 0.977 0.979 0.979
Dadv = 10% C = 5, γ = 0.005 0.984 0.978 0.964 0.920 0.982 0.930 0.982 0.894 0.965 0.940 0.974 0.974 0.978 0.977 0.966 0.945
Dadv = 25% C = 5, γ = 0.005 0.853 0.830 0.741 0.741 0.738 0.738 0.763 0.750 0.712 0.712 0.887 0.822 0.796 0.795 0.712 0.712

E.4 SENSITIVITY ANALYSIS

In our experiments with the Moon dataset under varying label poisoning levels, we consider attacker
budgets B = 2k under varying k values, and report the best performing setting in Figure 3 in
Section 4.1.

However, we further investigate the sensitivity of FLORAL to the attacker’s budget B, by considering
levels B ∈ {5, 10, 25, 50, 125}, with results presented in Figure 12. As demonstrated, FLORAL
shows superior performance under a constrained attacker budget in the clean label scenario, as
expected, since an increasing number of adversarially labelled examples during training degrades
clean test accuracy. In contrast, baseline methods operate on a fixed dataset. However, as the dataset
gets more adversarial, FLORAL outperforms under higher attacker budgets.
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Figure 12: The sensitivity of FLORAL to the attacker’s budget B. "Clean" refers to the dataset with
clean labels, while the adversarial datasets contain {5, 10, 25}(%) poisoned labels. The performance
under setting (C = 10, γ = 1) is presented. As the level of label poisoning increases, FLORAL
performs better under higher attacker budget settings.

F EXTENSION TO MULTI-CLASS CLASSIFICATION

We extend our algorithm to multi-class classification tasks, as detailed in Algorithm 3. The primary
modification involves adopting a one-vs-all approach (Hsu & Lin, 2002) by employing kernel
SVM model fm

λ0
for each class m ∈ M and associating multiple attackers am,m ∈ M for the

corresponding classifiers. In each round t, the attackers identify the Bm most influential data points
with respect to λm

t values of the corresponding models under their constrained budgets Bm, and
gather them into a set Bt. Among the points in Bt, the labels of top-k influential data points are
poisoned according to a predefined label poisoning distribution q. The dataset with adversarial labels
is then shared with each kernel SVM model and local training is applied via PGD training step.

Algorithm 3 FLORAL-MultiClass

1: Input: Initial kernel SVM models fm
λ0

for each class m ∈ M, training dataset
D0 = {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ {±1}, attackers’ budgets Bm, parameter k, where
k ≪ min{Bm}m∈M, learning rate η, a pre-defined label flip distribution q.

2: for round t = 1, . . . , T do
3: Initialize Bt ← ∅.
4: for m ∈M do
5: Bmt ← Identify top-Bm support vectors w.r.t. λm

t−1 values by solving (7-9).
6: end for
7: Bt ←

⋃
m∈M Bmt .

8: ỹt ← randomized top-k : Randomly select k points among Bt and poison their labels w.r.t. q.
9: Dt ← {(xi, ỹ

t
i)}ni=1 */ Adversarial dataset with selected k poisoned labels

10: for m ∈M do
11: Compute gradient of the objective (4),∇λD(fm

λt−1
;Dt), based on λm

t−1,Dt as given in (10).

12: Take a PGD step λm
t ← PROX S(ỹt)(λ

m
t−1 − η∇λD(fλm

t−1
;Dt)). */ Adversarial training

13: end for
14: end for
15: return {fm

λT
}m∈M

G COMPARISON AGAINST ADDITIONAL METHODS

We additionally compare FLORAL against least squares classifier using randomized smoothing (RS)
(Rosenfeld et al., 2020), and regularized synthetic reduced nearest neighbor (RSRNN) (Tavallali
et al., 2022) methods on the Moon and MNIST-1vs7 datasets. RS provides a robustness certification
for a linear classifier under label-flipping attacks. Whereas, RSRNN, conceptually similar to Curie
(Laishram & Phoha, 2016), provides a filtering-out defense based on clustering.
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We evaluated the performance under different noise (q) and l2 regularization (λ) hyperparameter
values for the RS method suggested in (Rosenfeld et al., 2020), whereas we considered varying
number of centroids K, penalty coefficient λ, cost complexity coefficient α, for the RSRNN method,
using referenced values in the study (Tavallali et al., 2022) for the MNIST dataset.

The results presented in Tables 7-10 demonstrate that FLORAL consistently outperforms both RS
and RSRNN across all datasets and experimental settings. While RSRNN achieves comparable
performance on the MNIST dataset, it still falls short of FLORAL. The performance of the RS method,
which employs a linear classifier with a pointwise robustness certificate, aligns with expectations, as
its simpler classifier limits its ability to capture complex patterns. In contrast, FLORAL utilizes kernel
SVMs, enabling it to effectively model intricate patterns within the data and achieve superior results.

Table 7: Test accuracies of FLORAL against randomized smoothing (RS) method (Rosenfeld et al.,
2020) on the Moon dataset. Each entry shows an average of five runs. We evaluated the performance
under different noise (q) values for RS.

Setting
Method

FLORAL RS (q = 0.1, λ = 0.01) RS (q = 0.3, λ = 0.01) RS (q = 0.4, λ = 0.01)
Clean C = 10, γ = 1 0.968 0.557 0.509 0.509
Dadv = 5% C = 10, γ = 1 0.963 0.552 0.509 0.509
Dadv = 10% C = 10, γ = 1 0.954 0.540 0.509 0.509
Dadv = 25% C = 10, γ = 1 0.776 0.520 0.505 0.505

Table 8: Test accuracies of FLORAL against randomized smoothing (RS) method (Rosenfeld et al.,
2020) on the MNIST-1vs7 dataset. Each entry shows an average of five runs. We evaluated the
performance under different noise (q) and l2 regularization (λ) hyperparameter values for RS, as
suggested in (Rosenfeld et al., 2020).

Setting
Method

FLORAL RS (q = 0.1, λ = 0.01) RS (q = 0.3, λ = 0.01) RS (q = 0.4, λ = 0.01) RS (q = 0.1, λ = 12291) RS (q = 0.3, λ = 12291) RS (q = 0.4, λ = 13237)
Clean C = 5, γ = 0.005 0.991 0.973 0.921 0.836 0.940 0.846 0.732
Dadv = 5% C = 5, γ = 0.005 0.984 0.921 0.876 0.800 0.895 0.802 0.701
Dadv = 10% C = 5, γ = 0.005 0.978 0.868 0.831 0.768 0.830 0.745 0.673
Dadv = 25% C = 5, γ = 0.005 0.830 0.706 0.693 0.669 0.548 0.594 0.595

Table 9: Test accuracies of FLORAL against regularized synthetic reduced nearest neighbor (RSRNN)
(Tavallali et al., 2022) trained on the Moon dataset. Each entry shows an average of five runs. We
evaluated the performance under different hyperparameter values (number of centroids K, penalty
coefficient λ, cost complexity coefficient α) for the RSRNN method.

Setting
Method

FLORAL RSRNN (K = 2, α = 0.01, λ = 0.1) RSRNN (K = 10, α = 0.01, λ = 0.1) RSRNN (K = 10, α = 0.1, λ = 1) RSRNN (K = 20, α = 0.01, λ = 0.1)
Clean C = 10, γ = 1 0.968 0.505 0.629 0.688 0.617
Dadv = 5% C = 10, γ = 1 0.963 0.502 0.547 0.603 0.512
Dadv = 10% C = 10, γ = 1 0.954 0.502 0.532 0.566 0.482
Dadv = 25% C = 10, γ = 1 0.776 0.494 0.434 0.476 0.439

Table 10: Test accuracies of FLORAL against regularized synthetic reduced nearest neighbor (RSRNN)
(Tavallali et al., 2022) trained on the MNIST-1vs7 dataset. Each entry shows an average of five runs.
We evaluated the performance under different cost complexity coefficient (α) values for the RSRNN
method.

Setting
Method

FLORAL RSRNN (K = 10, α = 0.1, λ = 1.0) RSRNN (K = 10, α = 1.0, λ = 1.0)
Clean C = 5, γ = 0.005 0.991 0.619 0.692
Dadv = 5% C = 5, γ = 0.005 0.984 0.599 0.441
Dadv = 10% C = 5, γ = 0.005 0.978 0.432 0.408
Dadv = 25% C = 5, γ = 0.005 0.830 0.403 0.408

H EXPERIMENTS UNDER DIFFERENT LABEL ATTACKS

To show the generalizability of our approach in the presence of otherlabel poisoning attack types,
we further compare FLORAL against baselines on adversarial datasets generated using the alfa,
alfa-tilt (Xiao et al., 2015) and LFA attacks (Paudice et al., 2018).
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H.1 EXPERIMENTS WITH THE ALFA-TILT ATTACK

We further evaluate FLORAL’s performance in the presence of alfa-tilt attack (Xiao et al., 2015)
on the Moon and MNIST-1vs7 datasets. We report the results on the Moon datasets in Table 11,
whereas we present the results for MNIST-1vs7 dataset in Figure 13 and Table 12.

As shown with the results on the Moon dataset, FLORAL is able to achieve a higher "Best" robust accu-
racy level throughout the training process. Furthermore, FLORAL’s effectiveness under alfa-tilt
attack is best shown on the MNIST dataset. As reported in Figure 13 and Table 12, FLORAL achieves
an outperforming robust accuracy level compared to baseline methods on all adversarial settings.
This demonstrates the potential of FLORAL defense against other label poisoning attacks.

Table 11: Test accuracies of methods trained over the Moon dataset with adversarial labels generated
by the alfa-tilt (Xiao et al., 2015) attack. Each entry shows the average of five replications.
Highlighted values indicate the best performance in the "Best" (peak accuracy during training) and
"Last" (final accuracy after training) columns.

Setting

Method
FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last
Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.972 0.957 0.944 0.939 0.948 0.948 0.962 0.943 0.956 0.956 0.940 0.939 0.898 0.896 0.937 0.936
Dadv = 10% C = 10, γ = 1 0.971 0.928 0.910 0.886 0.915 0.914 0.940 0.906 0.930 0.930 0.920 0.902 0.898 0.896 0.926 0.926
Dadv = 25% C = 10, γ = 1 0.893 0.824 0.787 0.722 0.837 0.750 0.837 0.720 0.786 0.723 0.792 0.759 0.792 0.791 0.770 0.708

Table 12: Test accuracies of methods trained on the MNIST-1vs7 dataset under alfa-tilt poi-
soning attack (Xiao et al., 2015). Each entry shows the average of five replications with different
train/test splits. Highlighted values indicate the best performance in the "Best" (peak accuracy
during training) and "Last" (final accuracy after training) columns.

Setting

Method
FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last
Clean C = 5, γ = 0.005 0.992 0.991 0.992 0.992 0.993 0.993 0.995 0.994 0.987 0.987 0.990 0.990 0.978 0.977 0.987 0.987
Dadv = 5% C = 5, γ = 0.005 0.991 0.990 0.980 0.980 0.991 0.958 0.988 0.955 0.979 0.979 0.987 0.987 0.980 0.979 0.978 0.978
Dadv = 10% C = 5, γ = 0.005 0.984 0.982 0.970 0.970 0.986 0.917 0.988 0.909 0.966 0.966 0.974 0.974 0.979 0.978 0.965 0.965
Dadv = 25% C = 5, γ = 0.005 0.811 0.788 0.713 0.713 0.795 0.739 0.824 0.754 0.703 0.701 0.734 0.734 0.526 0.526 0.707 0.705
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Figure 13: Clean and robust test accuracy of methods trained on the MNIST-1vs7 dataset under
alfa-tilt poisoning attack (Xiao et al., 2015). "Clean" refers to the dataset with clean labels,
while the adversarial datasets contain {5, 10, 25} (%) poisoned labels. For all SVM-related models,
the setting C = 5, γ = 0.005 is used. FLORAL achieves outperforming robust accuracy level
compared to baseline methods on all adversarial settings, clearly demonstrating the potential of
FLORAL as a defense against other types of label poisoning attacks.
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H.2 EXPERIMENTS WITH THE ALFA ATTACK

The alfa attack is generated under the assumption that the attacker can maliciously alter the training
labels to maximize the empirical loss of the original classifier on the tainted dataset. From this,
the attacker’s objective is formulated as maximizing the difference between the empirical risk for
classifiers under tainted and untainted label sets.

We experimented on the Moon dataset and considered label poisoning levels (%) of {5, 10, 25}.
The illustrations of the Moon dataset with clean and alfa-attacked adversarial labels are given
Figure 14. We report the results under alfa attack in Figure 15 and Table 13. As shown, FLORAL
is especially effective against vanilla SVM in maintaining higher robust accuracy in adversarial
settings. NN-based methods again fail drastically as the dataset becomes more adversarial under
alfa attack. Although LS-SVM shows premise in moderate adversarial scenarios, it fails to be
effective considering clean and most adversarial performance. Furthermore, FLORAL demonstrates
superior performance compared to all baselines in the most adversarial setting (with 25% poisoned
labels).

(a) Clean. (b) Dadv = 5%. (c) Dadv = 10%. (d) Dadv = 25%.

Figure 14: Illustrations of the Moon training sets from an example replication, using clean and
alfa-attacked adversarial labels with poisoning levels: 5%, 10%, 25%.

Table 13: Test accuracies of methods trained over the Moon dataset with adversarial labels generated
by the alfa attack. Each entry shows the average of five replications with different train/test splits.
Highlighted values indicate the best performance in the "Best" (peak accuracy during training) and
"Last" (final accuracy after training) columns.

Setting

Method
FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last
Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.963 0.950 0.954 0.946 0.875 0.875 0.963 0.958 0.942 0.942 0.934 0.933 0.964 0.964 0.942 0.942
Dadv = 10% C = 10, γ = 1 0.954 0.902 0.914 0.893 0.836 0.816 0.918 0.895 0.914 0.907 0.915 0.914 0.955 0.954 0.914 0.907
Dadv = 25% C = 10, γ = 1 0.776 0.763 0.750 0.750 0.693 0.658 0.693 0.645 0.729 0.729 0.741 0.741 0.740 0.740 0.729 0.729

H.3 EXPERIMENTS WITH THE LFA ATTACK

We additionally evaluate FLORAL’s effectiveness compared to baselines in the presence of LFA attack
(Paudice et al., 2018) on the Moon dataset. As results are shown in Figure 16 and Table 14, FLORAL
demonstrates significant performance when the label poisoning attack level is high, i.e., 10% or 25%.
However, under those settings, LS-SVM (Paudice et al., 2018) baseline shows faster convergence,
which is expected as the LS-SVM (Paudice et al., 2018) method is specifically crafted against the LFA
attack. Considering that LS-SVM fails in clean test performance, it is clear that FLORAL provides a
generalizable defense.
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Figure 15: Clean and robust test accuracy of methods trained on the Moon dataset under alfa
poisoning attack. "Clean" refers to the dataset with clean labels, while the adversarial datasets
contain {5, 10, 25}(%) poisoned labels. As the level of label poisoning increases, models trained on
adversarial datasets generally demonstrate a decline in accuracy. However, FLORAL demonstrates a
gradually improving robust accuracy performance, particularly when the attack intensity increases to
25%.
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Figure 16: Clean and robust test accuracy of methods trained on the Moon dataset under LFA
poisoning attack (Paudice et al., 2018). "Clean" refers to the dataset with clean labels, while the
adversarial datasets contain {5, 10, 25} (%) poisoned labels. For all SVM-related models, the setting
C = 1, γ = 1.0 is used. As the level of label poisoning increases, models trained on adversarial
datasets generally demonstrate a decline in accuracy. However, FLORAL demonstrates a gradually
improving robust accuracy performance, particularly when the attack level is 10% or 25%.

Table 14: Test accuracies of methods trained over the Moon dataset with adversarial labels gener-
ated by the LFA (Paudice et al., 2018) attack. Each entry shows the average of five replications.
Highlighted values indicate the best performance in the "Best" (peak accuracy during training) and
"Last" (final accuracy after training) columns.

Setting

Method
FLORAL SVM NN NN-PGD LN-SVM Curie LS-SVM K-LID

Best Last Best Last Best Last Best Last Best Last Best Last Best Last Best Last
Clean C = 10, γ = 1 0.968 0.966 0.968 0.968 0.960 0.960 0.966 0.964 0.940 0.940 0.941 0.941 0.881 0.881 0.966 0.966
Dadv = 5% C = 10, γ = 1 0.957 0.954 0.967 0.967 0.906 0.906 0.955 0.930 0.948 0.948 0.940 0.940 0.880 0.880 0.943 0.943
Dadv = 10% C = 10, γ = 1 0.943 0.937 0.919 0.918 0.903 0.903 0.917 0.872 0.938 0.938 0.931 0.931 0.933 0.932 0.900 0.900
Dadv = 25% C = 10, γ = 1 0.922 0.903 0.822 0.822 0.695 0.695 0.757 0.753 0.853 0.853 0.892 0.846 0.907 0.906 0.900 0.900
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I INTEGRATION WITH NEURAL NETWORKS

As demonstrated with the IMDB experiments in Section 4.1, FLORAL can be integrated with complex
model architectures, e.g. a transformer-based language model such as RoBERTa, serving as a robust
classifier head that enhances model robustness on classification tasks.

Similarly, FLORAL can be directly incorporated into neural networks by utilizing the last-layer
embeddings (the xi’s in Algorithm 1) as inputs. These extracted representations can then be trained
using FLORAL, resulting in more robust feature representations. Notably, our theoretical analysis
remains valid under this integration, ensuring the approach’s soundness.

To demonstrate this further, we performed additional experiments on the Moon and MNIST-1vs7
(Deng, 2012) datasets, by integrating FLORAL with a neural network.

From Figure 17, we can conclude that FLORAL integration achieves a higher robust accuracy level
compared to plain neural network training.
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Figure 17: Clean and robust test accuracy performance of neural network vs FLORAL-integrated
neural network trained on the Moon (the first row) and MNIST-1vs7 (the second row) datasets.
The results demonstrate that FLORAL integration helps to achieve a higher robust accuracy level.
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(a) FLORAL (Clean). (b) Dadv = 5%. (c) Dadv = 10%. Dadv = 25%.

(d) SVM (Clean). (e) Dadv = 5%. (f) Dadv = 10%. (g) Dadv = 25%.

(h) NN (Clean). (i) Dadv = 5%. (j) Dadv = 10%. (k) Dadv = 25%.

(l) NN-PGD (Clean). (m) Dadv = 5%. (n) Dadv = 10%. (o) Dadv = 25%.

(p) LN-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(q) Curie (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(r) LS-SVM (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

(s) K-LID (Clean). Dadv = 5%. Dadv = 10%. Dadv = 25%.

Figure 18: The decision boundaries on the Moon test dataset with various label poisoning levels. SVM-
related models use an RBF kernel with C = 10 and γ = 0.5. FLORAL generates a relatively smooth
decision boundary compared to baseline methods, particularly in 25% adversarial setting, where
baselines show drastic changes in their decision boundaries as a result of adversarial manipulations.
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