
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MORSE: FASTER SAMPLING FOR ACCELERATING DIF-
FUSION MODELS UNIVERSALLY

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present Morse, a simple and universal framework for accelerating
diffusion models. The key insight of Morse is to reformulate the iterative generation
(from noise to data) process via taking advantage of fast jump sampling and
adaptive residual feedback strategies. Specifically, Morse involves two models
called Dash and Dot that interact with each other. The Dash model is just the
pre-trained diffusion model of any type, but operates in a jump sampling regime,
creating sufficient space for sampling efficiency improvement. The Dot model
is significantly faster than the Dash model, which is learnt to generate residual
feedback conditioned on the observations at the current jump sampling point on the
trajectory of the Dash model, lifting the noise estimate to easily match the next-step
estimate of the Dash model without jump sampling. By chaining the outputs of
the Dash and Dot models run in a time-interleaved fashion, Morse exhibits the
merit of flexibly attaining desired image generation performance while improving
overall runtime efficiency. With our proposed weight sharing strategy between the
Dash and Dot models, Morse is efficient for training and inference. We validate the
efficacy of our method under a variety of experimental setups. Our method shows
an average speedup of 1.78× to 3.31× over a wide range of sampling step budgets
relative to baseline diffusion models. Furthermore, we show that our method can
be also generalized to improve the Latent Consistency Model (LCM-SDXL, which
is already accelerated with consistency distillation technique) tailored for few-step
text-to-image synthesis. The code will be made publicly available.

1 INTRODUCTION

Diffusion models (DMs), a class of likelihood-based generative models, have achieved remarkable
performance on a variety of generative modeling tasks such as image generation (Ho et al., 2022),
text-to-image generation (Zhang et al., 2023), video creation (Blattmann et al., 2023), text-to-3D
synthesis (Poole et al., 2023) and audio synthesis (Liu et al., 2022). The powerful generalization
ability of DMs comes from a dual-process diffusion framework: the forward process gradually
degenerates the data into random noise with a T -step noise schedule (typically, T = 1000 as default),
while the backward process learns a neural network to iteratively estimate and remove the noise added
to the data. However, to generate high quality samples, DMs usually require hundreds of sampling
steps (i.e., function evaluations of the trained model). The slow sampling efficiency incurs heavy
computational overhead at inference, especially to large-scale DMs such as DALL-E (Ramesh et al.,
2022), Imagen (Saharia et al., 2022) and Stable Diffusion (Rombach et al., 2022; Podell et al., 2024),
posing a great challenge for the deployment of DMs.

Recently, there have been lots of research efforts aiming to design fast samplers for DMs, which
can be grouped into two major categories. The first category focuses on evolving more advanced
formulations for the sampling process that enjoy faster convergence. Denoising diffusion implicit
models (DDIM) (Mohamed & Lakshminarayanan, 2016; Song et al., 2021a), stochastic differential
equations (SDE) (Song et al., 2021b) and ordinary differential equations (ODE) based solvers (Zhang
& Chen, 2023; Lu et al., 2022) are representative ones. It is worth noting that the ODE samplers allow
to generate high quality samples in tens of sampling steps. The second category relies on knowledge
distillation schemes, such as progressive distillation (Salimans & Ho, 2022), two-stage progressive
distillation (Meng et al., 2023) and consistency distillation (Song et al., 2023; Luo et al., 2023), by

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

50 LSDs20 LSDs10 LSDs 50 LSDs20 LSDs10 LSDs

Stable Diffusion with MorseStable Diffusion

A river with a red

brick bridge over it.

Closeup of a brown

bear sitting in a

grassy area.

3 LSDs2 LSDs1 LSD 3 LSDs2 LSDs1.33 LSDs

LCM-SDXL with MorseLCM-SDXL

Figure 1: Generated samples from Stable Diffusion (Rombach et al., 2022) and Stable Diffusion
XL fine-tuned with Latency Consistency Models (LCM-SDXL) (Luo et al., 2023) with and without
Morse for text-to-image generation. For simplicity, we use the Latency per Sampling step of the
baseline DM (LSD) as the time unit to represent the total latency of a diffusion process.

which the few-step samples generated by a student DM using the distilled sampler can match to the
many-step outputs of its corresponding teacher DM.

In this work, we attempt to improve the sampling efficiency of DMs in a more generalized perspective.
Specifically, we ask: given a pre-trained DM (with either U-Net or self-attention based backbone), no
matter what kind of existing samplers is used, is it possible to reformulate the iterative generation
(from noise to data) process towards better performance-efficiency tradeoffs under a wide range of
sampling step budgets (including hundreds-step, tens-step and few-step sampling)? To address this
problem, our method is inspired by a common property of prevailing DMs. We notice that they
typically support jump sampling (JS) in function evaluation, especially when using the fast samplers
discussed above. This observation inspires us to explore the use of JS for formulating our method.
Not surprisingly, with JS, prevailing DMs can generate samples in a faster speed, yet inevitably
leads to worse sample quality due to the information loss over unvisited steps between every two
adjacent JS points on the diffusion trajectory. The performance degeneration issue becomes more
serious as the JS step length increases. Therefore, the double-edged nature of JS prohibits its use for
performance lossless acceleration.

We overcome this barrier by presenting Morse, a simple and universal diffusion acceleration frame-
work consisting of two models called Dash and Dot which tactfully couple JS with a novel residual
feedback learning strategy, compensating for the information loss and attaining the desired perfor-
mance lossless acceleration. In the formulation of Morse: (1) the Dash model is just the pre-trained
diffusion model that needs to be accelerated, but operates in a JS regime, creating sufficient space
for sampling efficiency improvement; (2) the Dot model is significantly faster (e.g., N times faster
in latency) than the Dash model, which is learnt to generate residual feedback conditioned on the
observations (including input and output samples, step stamps and noise estimate) at the current JS
point on the trajectory of the Dash model, lifting the noise estimate to closely match the next-step
estimate of the Dash model without JS; (3) Morse chains the outputs of the Dash and Dot models
run in a time-interleaved fashion, allowing us to easily choose a proper JS step length to attain
performance-efficiency tradeoffs under a wide range of sampling step budgets. Intriguingly, as the
Dot model is significantly faster than the Dash model, it enables the Dot model to run several times
more sampling steps than the Dash model within the interval of two adjacent JS points while enjoying
the same speed. Benefiting from this appealing merit, our method can perform more sampling steps
under the same sampling step budget relative to the pre-trained target DMs, establishing a strong base
to achieve the desired performance loss acceleration. Besides the strong ability to accelerate DMs,
Morse is also efficient for training and inference, with our proposed weight sharing strategy between
the Dash and Dot models. In the strategy, we construct the Dot model by adding extra light-weight
blocks to the pre-trained DM. The Dot model is trained with the fixed pre-trained blocks using Lora
and the extra trainable blocks. On six public image generation benchmarks, our method achieves
promising results under lots of experimental setups. In Fig. 1, we present text-to-image generation
results using Stable Diffusion and LCM-SDXL with and without Morse under different latencies.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 METHOD

2.1 BACKGROUND AND MOTIVATION

Basic Concept. A diffusion model (DM) can generate high quality images. It consists of a forward
process for converting image to noise and a generation process (i.e., reverse process) for converting
noise to image, both of which are typically formulated as Markov chains with T time steps in total.
In the forward process, an image x0 ∈ Rh×w×c is first sampled from a data distribution D. At the
t-th time step, the sample xt is parametrically added with a random noise ϵ ∼ N (0, I) having the
same dimension, which produces xt+1 for the next step t+ 1. The distribution for xt conditioned on
x0 can be represented as:

p(xt|x0) = p(x0)

t∏
i=1

p(xi|xi−1) ,where p(x0) ∼ D, (1)

where p(xi|xi−1) corresponds to the parameterized function for adding noise. As t increases, xt gets
noisier, where xT conforms to the distributionN (0, I). With the forward process, a neural network θ
is trained to estimate the original image x0 (equivalent with estimating noise ϵ) from any time step t:

zt = θ(xt, t), (2)
where zt denotes the estimate generated by the trained network θ for approximating x0. Now, we can
use θ to reverse the forward process from noising to denoising for image generation. Specifically, in
the generation process, a noise ϵ ∼ N (0, I) is firstly sampled as xT . With the estimate zt from θ, we
can approximate the distribution of p(xt−1|xt) using Bayes’ rule and Eq. 1:

p(xt−1|xt) ≈ p(xt−1|xt,x0 = zt) =
p(xt|xt−1)p(xt−1|x0 = zt)

p(xt|x0 = zt)
. (3)

Therefore, we can iteratively convert a noise xT to an image x0 along the time step from T to 0 with
p(x0|xT) = p(xT)

∏T
i=1 p(xi−1|xi). So far, we can generate high quality images with T sampling

steps following Eq. 3. But the problem is that such a generation process is very time-consuming.
At each of T steps, the trained network θ needs to evaluate for one time. While the number of total
steps T is mostly very large (e.g., T = 1000 for DDPM (Ho et al., 2020)), which is essential for
the generation process to well approximate the reverse of the forward process (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021a).

Jump Sampling. For a better sampling efficiency, most prevailing DMs adopt the jump sampling
(JS) strategy, in which not all the time steps T, . . . , 0 but only a decreasing sub-sequence of them
are visited. We denote the sub-sequence as tn > · · · > t0(ti ∈ [0, T]), mostly sampled uniformly
from T to 0. Therefore, the number of visited steps n can be much smaller than the total number of
time steps T , leading to a faster speed for the generation process. With JS, each sampling step can be
represented as:

xti−1 = ϕ(xti , zti , ti, ti−1), (4)

where ϕ is the schedule function used to update the sample from xti to xti−1
, which is defined

according to different samplers (e.g., DDPM (Ho et al., 2020), DDIM (Song et al., 2021a), SDE (Song
et al., 2021b), DPM-Solver (Lu et al., 2022), CM (Song et al., 2023)). Intuitively, for a generation
process, the neighboring steps tend to have similar sample xt and close step stamp t as inputs for
θ, leading to similar estimate zt. So that with the estimate zti , the sample can jump over multiple
steps toward the same estimate from ti to ti−1, without doing much harm to the sample quality. As
more steps are jumped over, the step length between two adjacent JS points becomes longer and the
performance degeneration issue becomes more serious. Therefore, the double-edged nature of JS
prohibits its use for performance lossless acceleration, while it also leaves room for us to further
improve it. If we can efficiently reduce the information loss caused by JS while maintaining its high
sampling efficiency, then we can achieve a better performance-efficiency tradeoff. This is the key
motivation of our work.

2.2 MORSE

As we discussed above, our key motivation is to efficiently reduce the information loss caused by JS
while maintaining the high sampling efficiency. To achieve this goal, we present Morse, a simple

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝜂= N ×

Latency per Step

𝜃

𝜂 Δ𝒛𝑡𝑖

𝒙𝑡𝑖
 𝒙𝑡𝑠

𝑡𝑖 𝑡𝑠

𝒛𝑡𝑠

𝜃 𝒛𝑡𝑖

𝒙𝑡𝑖

𝑡𝑖

Network

(a) Diffusion

(b) Diffusion

(c) Diffusion with Morse (N=4)

Latency

High

Low

Low

Quality

High

Low

High

Reverse Process

Dash

Dot

×2 ×4

×3

×5

3 LSDs

3 LSDs

5 LSDs

5 Steps

3 Steps

6 Steps

End

End

1000 800 600 400 200 0

1000 800 600 400 200 0

1000 800 600 400 200 0

Timestep

End

Figure 2: Illustration of diffusion with Morse. Morse consists of two models named Dash and Dot,
which interact with each other during the generation process. Dash is the pre-trained model of any
type to be accelerated, which operates in a jump sampling regime. Dot is the model newly introduced
by us to accelerate Dash, which is N times faster than Dash in latency. We provide examples to show
how our Morse works. For simplicity, we use the Latency per Step of the baseline DM (LSD) as
the time unit to represent the total latency of a diffusion process. (i.e., the latency per step of the
Dot model is mapped to that of the baseline Dash model) (a) Standard generation process, which
performs 5 steps under 5 LSDs; (b) Standard generation process, which performs 3 steps under 3
LSDs; (c) Generation process with Morse, which performs 6 steps under 3 LSDs. Under the same
latency, a generation process with Morse can perform more steps and achieve better sample quality.

and universal diffusion acceleration framework, as illustrated in Fig. 2. With Morse, the generation
process is reformulated from iteration with a single model to interaction between two models, which
are called Dash and Dot.

Formulation of Morse. The Dash model is just the pre-trained DM, but operates in a JS regime,
creating sufficient space for sampling efficiency improvement. The Dot model is newly introduced
by us for accelerating the Dash model, which is N times faster than the Dash model. During the
generation process, each sampling step is either with noise estimate from the Dash model or the Dot
model, while the two models play different roles. As we described in Sec. 2.1, the Dash model can
estimate noise independently. The Dot model is learnt to generate residual feedback conditioned on
the observations (including input and output samples, step stamps and noise estimate) at the current
sampling point on the trajectory of the Dash model, lifting the noise estimate to closely match the
next-step estimate of the Dash model without JS. Morse chains the outputs of the Dash and Dot
models run in a time-interleaved fashion. For a generation process with Morse, we reformulate how
to estimate noise as:

zti =

{
θ(xti , ti) ti ∈ S

zts + η(xts ,xti , zts , ts, ti) ti /∈ S
, (5)

where θ denotes the Dash model; η denotes the Dot model; ts denotes the current sampling point
on the trajectory of the Dash model when the Dot model produces noise estimation at the step
ti; S = {tsd , . . . , ts1} denotes the set of sampling steps with the noise estimates from the Dash
model, which is a sub-sequence of tn, . . . , t0. The above formulation of Morse is simple and easy
to implement, and has the great capability to accelerate diffusion models universally as tested with
various experimental settings.

Weight sharing between Dash and Dot. To reduce the training and computational costs of the
Dot model, we introduce a weight sharing strategy between Dash and Dot. As shown in Fig. 3, we
construct the Dot model by adding m trainable lightweight down-sampling blocks and up-sampling
blocks on the top and under the bottom of the pre-trained Dash model respectively. The extra blocks
have the significantly reduced number of channels and layers compared with the pre-trained blocks.
For each of the pre-trained blocks, the resolution of its input is reduced by 4m times. Therefore, the
Dot model can be significantly faster than the Dash model. When training the Dot model, we fix the
shared pre-trained layers and adopt lightweight Low-Rank Adaptation (LoRA) (Hu et al., 2022) for
quickly adapting to the new training objective and resolutions. With this simple and low-cost design,
our Dot model can be derived from the pre-trained DM very efficiently, since it reserves nearly all the
knowledge learned by the Dash model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Down-sampling Block Middle BlockUp-sampling Block

Extra Down-sampling Block Extra Up-sampling Block

Output
The Dash Model

Weight Sharing

Input

ℎ×𝑤
ℎ

2
×𝑤
2

ℎ

4
×𝑤
4

ℎ

4
×𝑤
4

ℎ

2
×𝑤
2

ℎ

8
×𝑤
8

ℎ×𝑤

The Dot Model
ℎ×𝑤 ℎ×𝑤

ℎ

2
×𝑤
2

ℎ

4
×𝑤
4

ℎ

8
×𝑤
8

ℎ

8
×𝑤
8

ℎ

4
×𝑤
4

ℎ

16
×𝑤

16

OutputInput

+ LoRA

ℎ

2
×𝑤
2

Fixed Fixed

Figure 3: Illustration of weight sharing between Dash and Dot. The Dot model is constructed by
adding m (m = 1 for the illustrated example) trainable lightweight down-sampling and up-sampling
blocks on the top and under the bottom of the pre-trained Dash model respectively. h×w denotes the
resolution of input feature maps. When training the Dot model, we fix the shared pre-trained layers
and add lightweight Low-Rank Adaptation (LoRA) to help the Dot model for quickly adapting.

2.3 A DEEP UNDERSTANDING OF MORSE

To have a deep understanding of how Morse can improve the sampling efficiency of DMs, we give
detailed explanations in two perspectives.

How can Morse accelerate different diffusion models? With JS, DMs can generate samples in a
faster speed, yet inevitably lead to worse sample quality due to the information loss over unvisited
steps between two adjacent JS points on the diffusion trajectory. To compensate for the information
loss, we insert extra multiple sampling points with Dot between every two adjacent JS points, which
efficiently reduces the JS step length. Since Dot is N times faster than Dash, the inserted sampling
steps can be completed by Dot with only 1/N time budget compared with Dash. In other words,
Morse can perform more sampling steps under the same sampling step budget relative to the pre-
trained DMs. We assume a standard generation process with n sampling steps. Under the same
latency (for n sampling steps of baseline DMs), there could be n−k (0 ≤ k < n) sampling steps with
Dash and Nk sampling steps with Dot in our Morse, which introduces (N −1)k extra sampling steps.
With a specific sampling step budget, Morse can flexibly change the JS step length by controlling k.
Under ideal conditions where Dot and Dash perform exactly the same for noise estimation, this leads
to a speedup of (n− k +Nk)/n, which is the upper bound for our Morse.

How can Dot behave as Dash on noise estimation? To answer the question, we reiterate our design
of the Dot model: (1) Dot cooperates with Dash by learning to generate residual feedback utilizing
the trajectory information; (2) Dot inherits most of trained weights from Dash. When training the
Dot model, we fix the shared pre-trained layers and add LoRA to help the Dot model for quickly
adapting. Benefiting from the first design, Dot does not need to estimate noise independently but
generates residual feedback conditioned on the observations at the current sampling point on the
trajectory of Dash. With the trajectory information including input and output samples, step stamps
and noise estimate as inputs, Dot gets the information about how the sample is updated between the
two sampling steps, which largely helps the Dot model on adjusting the noise estimate of Dash. In
the second design, we adopt a weight sharing mechanism between Dash and Dot. It allows Dot to
inherit most of the knowledge learned by Dash, which guarantees the consistency between Dash and
Dot in the residual learning process. Additionally, the weight sharing mechanism also improves the
parameter efficiency and training efficiency of Morse. By adding extra lightweight trainable blocks to
a pre-trained DM, the Dot model can be trained very efficiently with LoRA. Thanks to the adaptive
residual feedback strategy with trajectory information and weight sharing mechanism, Dot is able
to easily lift the noise estimate at the current JS point to closely match the next-step estimate of the
Dash model. Since the JS strategy is adopted by most popular DMs, our Morse can be widely used
for accelerating various DMs with different samplers, benchmarks, and network architectures under
diverse sampling step budgets, as we show in what follows.

Difference with the distillation-based methods. From the perspective of learning the knowledge
from a pre-trained model, Morse is somehow similar with the distillation-based methods for diffusion.
While they are different both in formulation and focus: (1) With Morse, the generation process is
reformulated as interaction between the Dash and Dot models, rather than iteration with a student

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

DM; (2) Morse adopts an adaptive residual feedback strategy with trajectory information; (3) The
aim of Morse is to efficiently reduce the information loss caused by jump sampling for attaining
the desired performance lossless acceleration. In the distillation-based methods, a student DM is
trained to match to the outputs of its corresponding teacher DM in a sampling process using much
fewer steps, but always with performance degeneration issue; (4) Morse is complementary to the
distillation-based methods, which can be used to further accelerate a DM trained with knowledge
distillation, as we show in the experiments.

3 EXPERIMENTS

3.1 METRIC TO EVALUATE SPEEDUP

Speedup. Before showing the experimental results, we first describe how we evaluate the speedup of
Morse. For a pre-trained DM, we assume two generation processes with and without Morse. The
total latency of the process without Morse is n and the total latency of the process with Morse is
l(n ≥ l). The two processes get the same evaluation metric. Then, the speedup of Morse under the
latency of l can be calculated as n/l×.

For a diffusion model (DM), we first measure its sample quality with and without Morse under
different latencies, mainly using the mostly adopted metric Fréchet inception distance (FID, lower is
better) (Heusel et al., 2017). The sampling steps are selected following the official settings. Then, we
use linear interpolation to fit the curves between latency and evaluation metrics for approximating
the evaluation metric under any available latency. Note that it’s too time-consuming to evaluate the
metrics with all the latencies. To be intuitive, we calculate an average speedup of Morse over the
selected latencies. We fit a curve between a set of latencies and speedups to approximate speedups
across all the latencies. All the speeds for different models are tested using an NVIDIA GeForce
RTX 3090. Recall that Dot is N times faster than Dash. The speeds of the models may vary under
different GPUs, leading to the change of N and speedup. While we find that a Dash model and its
Dot model mostly have little change in N with different GPUs, where our Morse demonstrates a
good acceleration ability consistently. Details are provided in the Appendix.

LSD. For simplicity and generalization, we use Latency per Step of the baseline DM (LSD) rather
than time (e.g., second) as the time unit to represent the total latency of a diffusion process, namely
the time cost of the Dash model for one sampling step (i.e., the latency per step of the Dot model is
mapped to that of the baseline Dash model). For a diffusion process without Morse under n sampling
steps, its latency (namely the end-to-end time for generation images) can be represented as n LSDs.

3.2 ACCELERATE IMAGE GENERATION UNIVERSALLY

Experimental Setup. For each DM evaluated in experiments, we collect its official pre-trained model
as the Dash model, of which the weights are fixed. With the weight sharing strategy, all the Dot
models are trained following the official training settings, while typically with reduced batch size
and training iterations. We typically set the number of extra down-sampling blocks and up-sampling
blocks m to 2, leading to N in the range of 5 to 10. All the experiments are performed on the
servers having 8 NVIDIA GeForce RTX 3090 GPUs. More experimental details are described in the
Appendix.

Different Samplers. In the experiments, we evaluate our Morse with the mainstream samplers,
including DDPM (Ho et al., 2020), DDIM (Song et al., 2021a), DPM-Solver (Lu et al., 2022) for
discrete samplers and SDE (Song et al., 2021b), DPM-Solver on SDE for continuous samplers. We
conduct the experiments with CIFAR-10 (Krizhevsky, 2009) benchmark, which is adopted by all the
above samplers for experiments. As shown in Fig. 4, our Morse can accelerate DMs consistently
with all the samplers under different LSDs ranging from 3 to 100, achieving average speedups
ranging from 2.04× to 2.94×. The results also show that our Morse can work with both discrete-time
and continuous-time methods. Morse can even significantly accelerate the state-of-the-art sampler
DPM-Solver, which can generate high quality images with very few steps by also utilizing the
trajectory information from previous steps. Note that we calculate the speedups of Morse as N/A for
DPM-Solver on both DDPM and SDE with 100 LSDs, which are not used for calculating the average
speedups. The reason is that there is no room to accelerate, since the FIDs constantly keep the same

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Results of Morse with different samplers on CIFAR-10 benchmark. A speedup of n under
the latency of l means that the DM with Morse under l and the DM without Morse under nL achieve
the same FID.

Figure 5: Results of Morse with DDIM sampler on different benchmarks.

(even worse) value with latencies larger than 100 LSDs for the baseline DMs. The experiment results
with different samplers under other benchmarks are provided in the Appendix.

Different Benchmarks. In the experiments, we further evaluate our Morse with different popu-
lar image generation benchmarks, including CIFAR-10 (32×32) (Krizhevsky, 2009), ImageNet
(64×64) (Russakovsky et al., 2015), CelebA (64×64) (Liu et al., 2015), CelebA-HQ (256×256)
and LSUN-Church (256×256) (Yu et al., 2015). Since we have evaluated Morse with different
samplers, we keep the samplers as the most widely used DDIM in the following experiments unless
otherwise stated, to exclude the impact of differences in samplers. The results are shown in Fig. 5.
Our Morse can be generalized well to all the benchmarks, which have different image resolutions
(from 256×256 for LSUN-Church and CelebA-HQ to 32×32 for CIFAR-10), different dataset sizes
(from 1.2 million for ImageNet to 30 thousand for CelebA-HQ) and different semantic information.
For all the benchmarks under most LSDs, our Morse gets speedups around 2×. On the CelebA, it
can even achieve speedups more than 4× under some LSDs.

Different Conditional Generation Strategies. After showing the effectiveness of Morse under
unconditional generation, we next evaluate our Morse under conditional generation with different
strategies, including class-conditional and classifier guided image generation (Ho & Salimans, 2021)
on ImageNet benchmark at resolution 64×64. For the classifier guidance, we consider the classifier
as a part of Dash and train the Dot to approximate the estimate guided by a classifier. As shown in
Fig. 6, Morse can well generalize to the conditional generation with different strategies.

Different Network Architectures. In the above experiments, there are 8 different network archi-
tectures collected from 6 works with model sizes ranging from 35.75M to 421.53M for the Dash

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Results of Morse with different conditional generation strategies on ImageNet benchmark.
Table 1: FIDs of Stable Diffusion with and without
Morse on MS-COCO. We calculate FIDs under differ-
ent classifier-free guidance scales and select the best
FID among all the scales and FID under default 7.5 for
comparison.

Method FID Latency (LSD)
10 15 20 50

Stable Diffusion scale of 7.5 11.75 11.92 12.35 13.53
best scale 10.65 9.47 8.70 8.22

+ Morse scale of 7.5 9.29 10.07 10.93 13.22
best scale 8.60 8.55 8.29 8.15

Figure 7: Stable Diffusion with and without
Morse under different latencies and scales.

models (Rombach et al., 2022; Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021a;b;
Dhariwal & Nichol, 2021). It can be seen that our Morse achieves good generalization ability under
all the architectures with different capacities and model sizes.

3.3 ACCELERATE TEXT-TO-IMAGE GENERATION

Next, we evaluate our Morse under the highly popular text-to-image generation task with the latent-
space Stable Diffusion model (Rombach et al., 2022).

Experimental Setup. We select the Stable Diffusion v1.4 as our Dash model, which is pre-trained
with around 2 billion text-images pairs from LAION-5B dataset (Schuhmann et al., 2022). In our
experiments, the Dot model is trained with only about 2M text-image pairs at resolution 512×512
sampled from the LAION-5B dataset. We use DDIM as the sampler. Following the popular evaluation
protocol, we adopt the FID (lower is better) and CLIP score (Radford et al., 2021) (higher is better) as
the evaluation metrics and use the 30000 generated samples with the prompts from the MS-COCO (Lin
et al., 2014) validation set for evaluation. The CLIP scores are calculated using ViT-g/14. All the
experiments are performed on a server having 8 NVIDIA Tesla V100 GPUs. More experimental
details are described in the Appendix.

Results Comparison. Following the default settings, we first evaluate the FIDs of Stable Diffusion
with and without Morse, using the classifier-free guidance scale of 7.5. While we find that increasing
the number of steps does not always lead to consistently better FID scores for standard Stable
Diffusion, as shown in Table 1. Therefore, we find another two schemes to evaluate speedups. In the
first scheme, we evaluate the FID with different scales and select the best FID score for comparison.
From the results shown in Fig. 7, we can find that the best FID consistently gets better when the
latency increases. Under this scheme, we can calculate an average speedup of 2.29×. In the other
evaluation scheme, we fit the curves between FID and CLIP scores under different scales using the
linear interpolation following Stable Diffusion (Rombach et al., 2022). The results are shown in
Fig. 8. When the scale is larger than 4, we can observe a tradeoff between the two metrics. It can
be clearly seen that the curve with our Morse is below the curve without Morse. For example, the
curve with Morse under 10 LSDs is below the curve without Morse under 20 LSDs in most scales,
indicating an average speedup of approximately 2×. Some generated samples for comparison are
provided in Fig. 1 and Appendix. The results further demonstrate the generalization ability of Morse.
On the popular text-to-image generation task with a large DM (859.52M), our Morse still shows a
significant acceleration ability. As shown in Table 2, while the Dash model is trained with heavy
computational resources and large datasets, our Dot can be trained very efficiently with less than
0.1% text-image pairs and 0.1% training cost compared with it. With the trajectory information, the
Dot model can be easily close to the Dash model on noise estimation. The results also show that our
Morse works well with classifier-free guidance and the latent-space diffusion models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 8: Results of Morse with Stable Diffusion on MS-COCO. (a) and (b) are curves between FIDs
and CLIP scores for Stable Diffusion with and without Morse on different LSDs under guidance
scales of 2, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, which correspond to the points in the curves from left to
right. We paint the background using the curve of standard Stable Diffusion for better illustration; (c)
Curves between FIDs and LSDs using the best FIDs among different scales.

Table 2: Training details of Stable Diffusion and the corresponding Dot model in Morse. The training
memory are tested with the batch size of 8 per GPU.

Model Params Training Samples Training Cost (A100 hours) GPU Memory (MB)
Stable Diffusion 859.52M 2,000 million 150,000 23,485
Dot model 97.84M (+11.4%) 2 million (+0.1%) 190 (+0.1%) 18,841 (-19.8%)

3.4 ABLATION STUDY

In the experiments, we conduct ablative experiments to further study our Morse.

LCM-SDXL with Morse. In the experiments, we validate the effectiveness of Morse when combined
with the popular distillation-based methods. Among the methods, we select the Latency Consistency
Models (LCM) (Luo et al., 2023) as the baseline. When fine-tuning with LCM, a Stable Diffusion
XL model with 1024×1024 resolution can be used for high quality text-to-image generation with
very few steps, which is called LCM-SDXL. We evaluate LCM-SDXL with Morse on MS-COCO
benchmark as described in Sec 3.3. Experimental details are provided in the Appendix. Same with
Stable Diffusion, Stable Diffusion XL also adopts the classifier-free guidance, while LCM fixes the
scale to 7.5 during the distillation. Under the fixed scale of 7.5, for standard LCM-SDXL, we notice
that its FID score does not consistently get better as the number of steps increases, while the CLIP
score does. Therefore, we select the CLIP score as the metric for evaluating LCM-SDXL with Morse.
The results are shown in Table 3. Since the Dot model is 3 times faster than the Dash model, we can
evaluate the CLIP scores for LCM-SDXL with Morse under LSDs of 1.33 and 1.67. Over a sampling
step from 1 to 4, we can calculate an average speedup of 1.43× on CLIP score for our Morse. We
also provide some generated samples for comparison in the Appendix.

Effect of Trajectory Information. Recall that our core insight is that the trajectory information
can help the Dot model to perform as well as the Dash model without JS on noise estimation. In
Morse, we use the sample xts , the step stamp ts and the noise estimate zts at the current sampling
point on the trajectory of Dash as the extra inputs for Dot. In the experiments, we evaluate Morse
with different combinations of them with DDIM sampler on CIFAR-10 benchmark under 10 LSDs.
From the results shown in Table 4, we can see that each of the inputs is helpful for Dot on residual
estimation. Without the trajectory information, the introduction of the Dot model can not accelerate
DMs anymore, because of its inferior estimation. These ablative results prove that the trajectory
information plays a key role in our design, which also validate our key insight to some extent.

Comparison under the same number of steps. For evaluating the speedups of Morse under different
time budgets, we mostly compare the DMs with and without Morse under the selected latencies in
the previous experiments. In Fig. 9, we provide the results of DMs under the selected number of
steps, establishing a set of different time-interleaved configurations of Dot and Dash under a given
LSD budget. It can be seen that the curves of a DM with Morse are always below the curve without
Morse, indicating the consistent acceleration ability of Morse under different steps and proportion
between the total steps and the steps with noise estimation from Dot.

More ablations and visualizations are provided in the Appendix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: CLIP scores of LCM-SDXL with and without Morse on MS-COCO.
Method LCM-SDXL LCM-SDXL with Morse
LSD 1 2 3 4 1.33 1.67 2 3
CLIP score 25.39 29.40 30.34 30.80 28.70 29.84 30.30 30.83

Table 4: Ablation of Morse with
different trajectory information.

Method xts zts ts FID
DDIM - - - 13.67

+ Morse

13.56
✓ 8.11

✓ 8.06
✓ ✓ 7.60

✓ 7.50
✓ ✓ 6.83
✓ ✓ 7.27
✓ ✓ ✓ 6.60

Figure 9: Results of Morse with DDIM sampler under different
steps. For a diffusion process with Morse, we set 50%, 60%,
70%, 80% and 90% of the sampling steps for using the Dot
model and the other steps using the Dash model.

4 RELATED WORK

Besides the fast samplers discussed in the Introduction section, there are other emerging efforts to
speed up the inference of DMs. Some recent works use quantization (Li et al., 2023b; Chen et al.,
2023b), pruning (Li et al., 2022; Wang et al., 2024), reuse of parameters and feature maps (Agarwal
et al., 2024; Wimbauer et al., 2023; Ma et al., 2024), and GPU-specialized optimization (Chen et al.,
2023c; Li et al., 2024) to reduce runtime model latency. Another line of research (Li et al., 2023c; Xu
et al., 2023; Li et al., 2023a) seeks to design lightweight network architectures for DMs, enabling to
deploy them on mobile devices. In design, our method is orthogonal to these methods, and thus it
should be able to combine with them for improved performance.

The idea of using dual-model designs to strike a better accuracy-efficiency tradeoff is popular in both
computer vision and natural language processing. SlowFast network (Feichtenhofer et al., 2019), a
powerful and efficient architecture for video action recognition, uses a slow pathway operating at a
low frame rate with low resolution to encode spatial semantics, and a parallel fast pathway operating
at a higher frame rate with higher resolution to encode motion cues. Speculative decoding (Stern
et al., 2018), a fast decoding mechanism for accelerating the inference of autoregressive language
models, predicts candidate tokens with a small approximation model, and verifies the acceptability of
these candidate tokens by a larger and powerful target model with a single forward pass, significantly
reducing the computation for accepted tokens. Many variants (Li et al., 2020; Leviathan et al., 2023;
Chen et al., 2023a; Zhang et al., 2024) of them have been proposed. Although our method is also a
dual-model design, it focuses on accelerating diffusion models with a simple and universal framework,
and its key insight is to reformulate the iterative generation (from noise to data) process via taking
advantage of fast jump sampling and adaptive residual feedback strategies. Clearly, our method
differs from them in focus, motivation and formulation.

5 DISCUSSION AND CONCLUSION

We present a simple and universal framework called Morse to accelerate diffusion models. Morse
reformulates the iterative generation process by involving two models called Dash and Dot that
interact with each other, which exhibits the merit of flexibly attaining high-fidelity image generation
while improving overall sampling efficiency. Experimental results show that Morse can universally
accelerate diffusion models under various settings. While Morse shows the universal acceleration
ability, it introduces an extra lightweight Dot model, which needs additional training and computation
memory. In addition, Morse can only accelerate a diffusion model in which case increasing the
number of steps can lead to a better sample quality. As an acceleration method for diffusion models,
Morse has broader impacts similar to most generative AI models. For example, it may be misused for
help creating realistic fake news and videos to spread false information.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shubham Agarwal, Subrata Mitra, Sarthak Chakraborty, Srikrishna Karanam, Koyel Mukherjee, and
Shiv Kumar Saini. Approximate caching for efficiently serving text-to-image diffusion models. In
NSDI, 2024.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
CVPR, 2023.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning. In ICLR, 2023b.

Yu-Hui Chen, Raman Sarokin, Juhyun Lee, Jiuqiang Tang, Chuo-Ling Chang, Andrei Kulik, and
Matthias Grundmann. Speed is all you need: On-device acceleration of large diffusion models via
gpu-aware optimizations. In CVPR Workshops, 2023c.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In NeurIPS,
2021.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In ICCV, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS Workshop, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. JMLR, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report, 2009.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In ICML, 2023.

Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song Han, and Jun-Yan Zhu. Efficient spatially
sparse inference for conditional gans and diffusion models. In NeurIPS, 2022.

Muyang Li, Tianle Cai, Jiaxin Cao, Qinsheng Zhang, Han Cai, Junjie Bai, Yangqing Jia, Ming-Yu Liu,
Kai Li, and Song Han. Distrifusion: Distributed parallel inference for high-resolution diffusion
models. arXiv preprint arXiv:2402.19481, 2024.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models.
arXiv preprint arXiv:2312.09608, 2023a.

Xianhang Li, Yali Wang, Zhipeng Zhou, and Yu Qiao. Smallbignet: Integrating core and contextual
views for video classification. In CVPR, 2020.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In ICCV, 2023b.

Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys, Yun Fu, Yanzhi Wang, Sergey Tulyakov,
and Jian Ren. Snapfusion: Text-to-image diffusion model on mobile devices within two seconds.
In NeurIPS, 2023c.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffsinger: Singing voice synthesis
via shallow diffusion mechanism. In AAAI, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
ICCV, 2015.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. In NeurIPS, 2022.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
In CVPR, 2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In CVPR, 2023.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv
preprint arXiv:1610.03483, 2016.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, 2021.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. In ICLR, 2024.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. In ICLR, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In ICML, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Fei-Fei Li. Imagenet
large scale visual recognition challenge. IJCV, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In NeurIPS, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
ICLR, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. In NeurIPS, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. In NeurIPS, 2018.

Hongjie Wang, Difan Liu, Yan Kang, Yijun Li, Zhe Lin, Niraj K Jha, and Yuchen Liu. Attention-
driven training-free efficiency enhancement of diffusion models. arXiv preprint arXiv:2405.05252,
2024.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models
through block caching. arXiv preprint arXiv:2312.03209, 2023.

Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans. arXiv preprint arXiv:2311.09257, 2023.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. In ACL, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In ICCV, 2023.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In ICLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 BENCHMARKS AND EVALUATION DETAILS

Image Generation. In the experiments described in Sec. 3.2, we consider 5 mainstream image
generation benchmarks with various resolutions for evaluating the generalization ability of our
Morse, including CIFAR-10 (32×32, 50 thousand images) (Krizhevsky, 2009), CelebA (64×64,
0.2 million images) (Liu et al., 2015), ImageNet (64×64, 1.2 million images) (Russakovsky et al.,
2015), CelebA-HQ (256×256, 30 thousand images) (Liu et al., 2015), LSUN-Church (256×256,
0.1 million images) (Yu et al., 2015). Following the popular evaluation protocol, for each DM, we
generate 50000 samples and calculate the FID score between the generated images and the images of
the corresponding benchmark. For a fair comparison, we adopt the settings including data processing
pipeline and hyperparameters following the corresponding DMs.

Text-to-Image Generation. In the experiments for Stable Diffusion v1.4 and LCM-SDXL, we use 2
million text-image pairs sampled from the LAION-5B (Schuhmann et al., 2022) dataset. Following
the popular evaluation protocol, we evaluate the text-to-image diffusion models under zero-shot
text-to-image generation on the MS-COCO 2017 validation set (Lin et al., 2014) (256×256). All the
generated images are down-sampled to 256×256 for evaluation. For each DM, we generate 30000
samples with the prompts from the validation set. The CLIP scores are calculated using ViT-g/14.

A.2 IMPLEMENTATION DETAILS FOR STABLE DIFFUSION

Implementation details. For text-to-image generation, we evaluate our Morse with Stable Diffusion
v1.4 (Rombach et al., 2022). In the experiments, we use the Dot model with the extra parameters
of 97.84M to accelerate the Dash model with the size of 859.52M. The latencies of the Dash
model and the Dot model are 0.709 second and 0.082 second respectively (N = 8.6), which is
tested using a single NVIDIA GeForce RTX 3090 under a batch size of 20. With the official
settings, Stable Diffusion v1.4 is pre-trained with around 2 billion text-image pairs at resolution
256×256 and fine-tuned with around 600M text-image pairs at resolution 512×512 from LAION-5B
dataset (Schuhmann et al., 2022). We add two trainable down-sampling blocks and up-sampling
blocks, with the number of channels of 96 and 160, on the top and under the bottom of the pre-trained
Stable Diffusion to construct the Dot model respectively. We set the rank of LoRA to 64. In our
experiments, the Dot model is trained with only about 2M text-image pairs at resolution 512×512
sampled from the LAION-5B dataset for 100,000 iterations. We use DDIM as the sampler.

For conditional image generation, Stable Diffusion v1.4 adopts the classifier-free guidance, which
has a parameter called guidance scale to control the influence of the text prompts on the generation
process. To ensure that our Morse can also work well with different guidance scales besides the
different number of steps, we also randomly sample the guidance scales between 2 and 10 during
the training procedure. The Dot models are trained on a server with 8 NVIDIA Tesla V100 GPUs.
Considering the risk for misuse of the generative models, we use the safety checker module which is
adopted by Stable Diffusion project for the released models.

Latency of each block. It may be not intuitive that we can construct a Dot model with faster speed by
adding extra blocks to a DM. Here, we provide the latency of each block for the Stable Diffusion with
and without extra blocks in Fig. 10. The state-of-the-art DMs mostly adopt the U-Net architecture
with self-attention layers. With the extra blocks on the top and under the bottom of the pre-trained
Stable Diffusion, the resolution of the input for each pre-trained block is reduced by 16 times, which
significantly reduces the latencies of the pre-trained blocks. Additionally, the extra blocks have the
same architecture with the pre-trained blocks while removing the self-attention layers. Since the
computational complexity of a self-attention layer grows quadratically with the number of tokens,
the pre-trained blocks with high-resolution feature maps have relatively slow inference speeds. By
removing the self-attention layers and reducing the number of channels, the latencies of the extra
blocks with the high-resolution feature maps are still relatively low. Therefore, the Dot model can be
significantly faster than the Dash model.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Down-sampling Block Middle BlockUp-sampling Block

Extra Down-sampling Block Extra Up-sampling Block

Output

The Dash Model

Input

0.123

0.056

0.044 0.095

0.126

0.009

0.209

0.006 0.018

The Dot Model
OutputInput

0.005

0.005

0.005

0.002

0.010

0.011

0.011

0.001 0.003

0.005

0.003 0.008

0.011

Figure 10: Latency (second) of each block for Stable Diffusion with and without adding extra
down-sampling and up-sampling blocks. The speeds are tested with the batch size of 20 on a single
NVIDIA RTX 3090 GPU.

A.3 IMPLEMENTATION DETAILS FOR LCM-SDXL

In the main experiments, we also evaluate our Morse on the Latent Consistency Models (Luo et al.,
2023) (LCM-SDXL with 1024×1024 resolution, which is already accelerated with consistency
distillation technique). LCM-SDXL can be used for high quality text-to-image generation with very
few steps, which is trained with heavy computational resource and large dataset. We add a trainable
down-sampling block and up-sampling block on the top and under the bottom of the pre-trained
LCM-SDXL respectively. For each of the original pre-trained blocks, the resolution of its input is
reduced by 4 times. The latencies of the Dash model and the Dot model are 0.646 second and 0.211
second respectively (N = 3.1), which is tested using single NVIDIA Tesla V100 under a batch
size of 5. We fix the shared pre-trained layers except some mismatched layers and add lightweight
Low-Rank Adaptation (LoRA) (Hu et al., 2022) to help the Dot model for better adapting. Compared
to the LCM-SDXL with the model size of 2567.55M, the Dot model only has 229.19M trainable
parameters, which can be efficiently injected to the Dash model. In our experiments, the Dot model
is trained with about 2M text-image pairs at resolution 1024×1024 from the LAION-5B dataset for
100,000 iterations. The Dot model is trained on the servers with 8 NVIDIA Tesla V100 GPUs.

A.4 IMPLEMENTATION DETAILS FOR IMAGE GENERATION

In this section, we provide the implementation details for all the DMs adopted in our experiments for
image generation.

Table 5: Latency (second) per sampling step of the Dash models and the Dot models under different
GPUs. N denotes that the Dot model is N times faster than the Dash model. h × w denotes the
resolution of input feature maps.

Model Source Benchmark RTX 3090 RTX 4090 Tesla V100
Dash Dot N Dash Dot N Dash Dot N

DDPM CIFAR-10 (32×32) 0.072 0.012 6.0 0.035 0.006 5.8 0.082 0.015 5.5
CelebA-HQ (256×256) 0.539 0.112 4.8 0.346 0.073 4.7 0.680 0.135 5.0

DDIM CelebA (64×64) 0.244 0.042 5.8 0.143 0.021 6.8 0.292 0.054 5.4
Improved DDPM ImageNet (64×64) 0.367 0.065 5.6 0.226 0.034 6.6 0.458 0.092 5.0
SDE CIFAR-10 (32×32) 0.120 0.020 6.0 0.113 0.018 6.3 0.139 0.025 5.6

LDM LSUN-Church (256×256) 0.288 0.060 4.8 0.185 0.022 8.4 0.360 0.057 6.3
MS-COCO (512×512) 0.709 0.082 8.6 0.344 0.042 8.2 0.771 0.088 8.8

ADM ImageNet (64×64) 0.956 0.149 6.5 0.760 0.085 8.9 1.105 0.186 5.9
ADM-G 1.547 0.149 10.5 0.956 0.085 11.3 1.889 0.186 10.2

Training and Sampling. In the main experiments, we adopt multiple DMs to evaluate the effective-
ness of our Morse, including the models from DDPM (Ho et al., 2020), DDIM (Song et al., 2021a),
Improved DDPM (Nichol & Dhariwal, 2021), SDE (Song et al., 2021b), LDM (Rombach et al., 2022)
and ADM (Dhariwal & Nichol, 2021). For a DM, we collect its official pre-trained model as the Dash
model. To construct the corresponding Dot models, we add two lightweight down-sampling blocks
and up-sampling blocks on the top and under the bottom of each pre-trained Dash model respectively.
With the weight sharing strategy, all the Dot models are trained following the official training settings.
As shown in Table 5, we provide the detailed information, including the source projects, the speeds

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

of the Dash models and Dot models and N . Recall that the Dot model is N times faster than the
Dash model. All the speeds for different models are tested using a single NVIDIA GeForce RTX
3090. When testing the speeds, we set the batch size to 100 for most benchmarks except 20 for
CelebA-HQ dataset. During the training procedures, a Dot model is trained to estimate the difference
between the outputs from the Dash model at two randomly sampled steps. Here, we give an example
of the training procedure and sampling procedure for DDIM sampler, as shown in Algorithm 1 and
Algorithm 2. The procedures can be easily extended to other samplers with simple modification. The
Dot models are trained on the servers with 8 NVIDIA Tesla V100 GPUs or 8 NVIDIA GeForce RTX
4090 GPUs.

N under different GPUs. Recall that Dot is N times faster than Dash. For a Dash model and its
trained Dot model, the speedup of Morse gets larger when N gets larger. While the speeds of the
models may vary under different GPUs, leading to the change of N and speedup. In our design,
we construct a Dot model by adding several extra blocks on the top and under the bottom of the
pre-trained Dash model. Therefore, a Dot model has the architecture which is very similar with its
corresponding Dash model. As shown Table 5, we can find that a pair of Dash and Dot mostly has
little change in N with different GPUs. The results indicate that our Morse performs well under
different GPUs.

Algorithm 1: Training of Dot with
DDIM

Require :Trained Dash model θ(·, ·)
Require :Dot model η(·, ·, ·, ·, ·) to be

trained
Require :Schedule function ϕ(·, ·, ·, ·)
Require :Dataset D
Require :Learning rate γ

1 repeat
2 sample x ∼ D
3 sample ϵ ∼ N (0, I)
4 sample ts, to ∼ U [0, T] (ts > to)
5 xts = αtsx+ σtsϵ
6 zts = θ(xts , ts)
7 xto = ϕ(xts , zts , ts, to)
8 zto = θ(xto , to)
9 ẑto = zts + η(xts ,xto , zts , ts, to)

10 η ← η − γ∇η∥zto − ẑto∥22
11 until convergence

Algorithm 2: DDIM Sampling with Morse
Require :Trained network Dash θ(·, ·)
Require :Trained network Dot η(·, ·, ·, ·, ·)
Require :Schedule function ϕ(·, ·, ·, ·)
Require :Sequence of time points

tn > tn−1 > · · · > t0
Require :Number of dash steps d

1 sample xtn ∼ N (0, I)
2 uniformly sample sd, . . . , s0 from tn to t0
3 for i← n to 1 do
4 if ti ∈ {sd, . . . , s1} then
5 zti = θ(xti , ti)
6 ts = ti
7 else
8 zti = zs + η(xts ,xti , zts , ts, ti)
9 end

10 xti−1 = ϕ(xti , zti , ti, ti−1)
11 end

Return :xt0

A.5 MORE EXPERIMENTS FOR STUDYING MORSE

Morse with Different Samplers. In the experiments described in Sec. 3.2, we evaluate our Morse on
CIFAR-10 (32×32) benchmark with different samplers. Here, we perform experiments to further
validate the effectiveness of Morse on other datasets with different samplers. As shown in Fig. 11,
our Morse achieves good generalization ability on CelebA-HQ (256×256) dataset with different
samplers.

Where Trajectory Information Comes from? Recall that Morse redefine how to estimate noise
during the generation process as:

zti =

{
θ(xti , ti) ti ∈ S

zts + η(xti ,xts , ti, ts, zts) ti /∈ S
. (6)

In the design, a Dot model generates residual feedback conditioned on the observations at the current
JS point on the trajectory of the Dash model. For another reasonable design, the observations can
also come from the trajectory of the two models, which can be represented as:

zti =

{
θ(xti , ti) ti ∈ S

zti−1
+ η(xti ,xti−1

, ti, ti−1, zti−1
) ti /∈ S

. (7)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 11: Results of Morse with different samplers on CelebA-HQ (256×256) benchmark.

Figure 12: Results of Dot with trajectory information from the Dash model and the both two models.

In the experiments, we compare the two designs which utilize the different trajectory information
on CIFAR-10 dataset with DDIM sampler. The results are shown in Fig. 12. It can be seen that
our design (using trajectory information from the Dash model) performs better, which achieves an
average speedup of 2.26× against to 2.00×. In which case the number of steps is extremely small
(e.g., 3), using trajectory information from ti−1 is better than that from ts. This is probably because
the distance between ts and ti becomes relatively large when the number of steps is very small, which
makes the trajectory information less helpful for the Dot model. We can also find that the Dot model
also works well with the trajectory information from itself, though it is trained with the trajectory
information from the Dash model during the training procedure.

Figure 13: Speedups of Morse with DDIM sampler on CIFAR-10 (32×32) under different LSDs and
exchanged steps ratios. The exchanged steps ratio denotes the ratio of the latency of steps with Dot to
the total latency in a generation process.

Effect of Exchanged Steps Ratio. Recall that under a specific latency of n LSDs, there could be
n − k (0 ≤ k < n) sampling steps with Dash and Nk sampling steps with Dot for Morse. Morse
can flexibly change the JS step length by controlling k. Here, we define the ratio of exchanged steps
as k/n. In the experiments, we explore the effect of different ratios of the exchanged steps. We
conduct the experiments on CIFAR-10 dataset with DDIM sampler. The results are shown in Fig. 13.
Under most LSDs, Morse can achieve a speedup around 2× with most ratios. Under the extreme
condition when we exchange most of the sampling steps with Dash for the sampling steps with Dot
(e.g., more than 70%), the speedups sharply decrease below 1.0×. In our opinion, the reason is that
the trajectory information becomes less helpful for the Dot models on residual estimation when the
distance between the two sampling steps is very large, since there are much fewer sampling steps
with Dash.

Different Designs for the extra down-sampling and up-sampling blocks of Dot. Recall that
we construct the Dot model for Stable Diffusion by adding 2 trainable lightweight down-sampling

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: FIDs of Stable Diffusion with different variants of Dot. We calculate FIDs under different
classifier-free guidance scales and select the best FID among all the scales.

Method Trainable Sampling Blocks LoRA 10 LSDs 15 LSDs 20 LSDs 50 LSDs
Stable Diffusion - - 10.65 9.47 8.70 8.22

+ Morse

370.79 397.82 392.64 389.12
✓ 9.23 8.94 8.60 8.36

✓ 9.79 9.21 8.89 8.51
✓ ✓ 8.60 8.55 8.29 8.15

blocks and up-sampling blocks to the Dash model. When training the Dot model, we fix the shared
pre-trained layers and adopt lightweight LoRA. In the experiments, we study the construction of a Dot
model with different designs for down-sampling and up-sampling. We evaluate several variant designs
for the Dot model including: (1) Down-sampling and up-sampling with proposed trainable blocks or
bilinear sampling; (2) Training the Dot model with or without LoRA. The shared pre-trained layers
are fixed. From the results shown in the Table 6, we can see that both the designs can significantly
improve the performance of Morse. Without fine-tuning, the original DM can not adapt well to a
lower resolution directly. While adding the trainable sampling blocks and adopting LoRA for training
the Dot model can enhance learnable and soft resolution transformation and help the pre-trained
blocks with adapting to the new resolutions, respectively.

Table 7: Different architectures of the Dot model for Stable Diffusion.
Method Training Iterations Params Average Speedup
Independent Dot model 0.4 million 324.93M 2.07×
Dot model with weight sharing strategy 0.1 million 97.84M 2.29×

Different architectures of the Dot model. In the experiments, we evaluate the performance of
Morse with the independent Dot model without sharing the pre-trained blocks with Dash model. We
conduct the experiments on MS-COCO dataset with Stable Diffusion. In the variant design, the Dot
model has similar architecture with the Dash model while with the reduced number of channels and
blocks. The results are shown in Table 7. Even without fine-tuning with the pre-trained weights, our
Morse can still accelerate the Stable Diffusion. While it needs more training iterations and trainable
parameters to achieve similar performance with our proposed design. The results demonstrate the
effectiveness and efficiency of our proposed weight sharing strategy for training a Dot model. While
it also shows that we can flexibly construct a Dot model with different architectures.

A.6 MORE GENERATED SAMPLES

We provide some generated samples from the diffusion models with and without Morse under
different LSDs for better comparison, including image generation for CelebA-HQ (256×256) and
LSUN-Church (256×256), text-to-image generation on MS-COCO with Stable Diffusion v1.4 and
LCM-SDXL.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) DDIM

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

(b) DDIM with Morse

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

Figure 14: Generated samples at resolution 256×256 for CelebA-HQ dataset using DDIM sampler
with and without Morse.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) DDIM

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

(b) DDIM with Morse

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

Figure 15: Generated samples at resolution 256×256 for LSUN-Church dataset using DDIM sampler
with and without Morse.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Artistic photograph of architecture and frost-laden trees at dawn

A green and yellow train riding down the train tracks.

a brown teddy bear is sitting on a green bed

a dog laying on a pillow next to an open luggage bag

A white van covered in spray paint next to buildings.

50 LSDs20 LSDs10 LSDs 50 LSDs20 LSDs10 LSDs

Young girl combing the hair behind her head.

(b) Stable Diffusion with Morse(a) Stable Diffusion

A boat that is floating in a body of water.

Figure 16: Generated samples at resolution 512×512 with prompts from MS-COCO validation
set from Stable Diffusion v1.4 using DDIM sampler with and without Morse. The classifier-free
guidance scale is set to 7.5 following the official settings.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A man riding a board over the top of a wave.

A white cake topped with berries and a plate of fruit and cheeses.

Birds perch on a bunch of twigs in the winter.

a dog is holding a yellow disc in its mouth

3 LSDs2 LSDs1 LSD 3 LSDs2 LSDs1.33 LSDs

A young man wearing a white shirt and tie.

(b) LCM-SDXL with Morse(a) LCM-SDXL

Closeup of a brown bear sitting in a grassy area.

A man holding a turkey that he murdered.

Figure 17: Generated samples at resolution 1024×1024 with prompts from MS-COCO validation set
from LCM-SDXL with and without Morse.

22

	Introduction
	Method
	Background and Motivation
	Morse
	A Deep Understanding of Morse

	Experiments
	Metric to Evaluate Speedup
	Accelerate Image Generation Universally
	Accelerate Text-to-Image Generation
	Ablation Study

	Related Work
	Discussion and Conclusion
	Appendix
	Benchmarks and Evaluation Details
	Implementation Details for Stable Diffusion
	Implementation Details for LCM-SDXL
	Implementation Details for Image Generation
	More Experiments for Studying Morse
	More Generated Samples

