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ABSTRACT

In this paper, we present Morse, a simple and universal framework for accelerating
diffusion models. The key insight of Morse is to reformulate the iterative generation
(from noise to data) process via taking advantage of fast jump sampling and
adaptive residual feedback strategies. Specifically, Morse involves two models
called Dash and Dot that interact with each other. The Dash model is just the
pre-trained diffusion model of any type, but operates in a jump sampling regime,
creating sufficient space for sampling efficiency improvement. The Dot model
is significantly faster than the Dash model, which is learnt to generate residual
feedback conditioned on the observations at the current jump sampling point on the
trajectory of the Dash model, lifting the noise estimate to easily match the next-step
estimate of the Dash model without jump sampling. By chaining the outputs of
the Dash and Dot models run in a time-interleaved fashion, Morse exhibits the
merit of flexibly attaining desired image generation performance while improving
overall runtime efficiency. With our proposed weight sharing strategy between the
Dash and Dot models, Morse is efficient for training and inference. We validate the
efficacy of our method under a variety of experimental setups. Our method shows
an average speedup of 1.78× to 3.31× over a wide range of sampling step budgets
relative to baseline diffusion models. Furthermore, we show that our method can
be also generalized to improve the Latent Consistency Model (LCM-SDXL, which
is already accelerated with consistency distillation technique) tailored for few-step
text-to-image synthesis. The code will be made publicly available.

1 INTRODUCTION

Diffusion models (DMs), a class of likelihood-based generative models, have achieved remarkable
performance on a variety of generative modeling tasks such as image generation (Ho et al., 2022),
text-to-image generation (Zhang et al., 2023), video creation (Blattmann et al., 2023), text-to-3D
synthesis (Poole et al., 2023) and audio synthesis (Liu et al., 2022). The powerful generalization
ability of DMs comes from a dual-process diffusion framework: the forward process gradually
degenerates the data into random noise with a T -step noise schedule (typically, T = 1000 as default),
while the backward process learns a neural network to iteratively estimate and remove the noise added
to the data. However, to generate high quality samples, DMs usually require hundreds of sampling
steps (i.e., function evaluations of the trained model). The slow sampling efficiency incurs heavy
computational overhead at inference, especially to large-scale DMs such as DALL-E (Ramesh et al.,
2022), Imagen (Saharia et al., 2022) and Stable Diffusion (Rombach et al., 2022; Podell et al., 2024),
posing a great challenge for the deployment of DMs.

Recently, there have been lots of research efforts aiming to design fast samplers for DMs, which
can be grouped into two major categories. The first category focuses on evolving more advanced
formulations for the sampling process that enjoy faster convergence. Denoising diffusion implicit
models (DDIM) (Mohamed & Lakshminarayanan, 2016; Song et al., 2021a), stochastic differential
equations (SDE) (Song et al., 2021b) and ordinary differential equations (ODE) based solvers (Zhang
& Chen, 2023; Lu et al., 2022) are representative ones. It is worth noting that the ODE samplers allow
to generate high quality samples in tens of sampling steps. The second category relies on knowledge
distillation schemes, such as progressive distillation (Salimans & Ho, 2022), two-stage progressive
distillation (Meng et al., 2023) and consistency distillation (Song et al., 2023; Luo et al., 2023), by
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Figure 1: Generated samples from Stable Diffusion (Rombach et al., 2022) and Stable Diffusion
XL fine-tuned with Latency Consistency Models (LCM-SDXL) (Luo et al., 2023) with and without
Morse for text-to-image generation. For simplicity, we use the Latency per Sampling step of the
baseline DM (LSD) as the time unit to represent the total latency of a diffusion process.

which the few-step samples generated by a student DM using the distilled sampler can match to the
many-step outputs of its corresponding teacher DM.

In this work, we attempt to improve the sampling efficiency of DMs in a more generalized perspective.
Specifically, we ask: given a pre-trained DM (with either U-Net or self-attention based backbone), no
matter what kind of existing samplers is used, is it possible to reformulate the iterative generation
(from noise to data) process towards better performance-efficiency tradeoffs under a wide range of
sampling step budgets (including hundreds-step, tens-step and few-step sampling)? To address this
problem, our method is inspired by a common property of prevailing DMs. We notice that they
typically support jump sampling (JS) in function evaluation, especially when using the fast samplers
discussed above. This observation inspires us to explore the use of JS for formulating our method.
Not surprisingly, with JS, prevailing DMs can generate samples in a faster speed, yet inevitably
leads to worse sample quality due to the information loss over unvisited steps between every two
adjacent JS points on the diffusion trajectory. The performance degeneration issue becomes more
serious as the JS step length increases. Therefore, the double-edged nature of JS prohibits its use for
performance lossless acceleration.

We overcome this barrier by presenting Morse, a simple and universal diffusion acceleration frame-
work consisting of two models called Dash and Dot which tactfully couple JS with a novel residual
feedback learning strategy, compensating for the information loss and attaining the desired perfor-
mance lossless acceleration. In the formulation of Morse: (1) the Dash model is just the pre-trained
diffusion model that needs to be accelerated, but operates in a JS regime, creating sufficient space
for sampling efficiency improvement; (2) the Dot model is significantly faster (e.g., N times faster
in latency) than the Dash model, which is learnt to generate residual feedback conditioned on the
observations (including input and output samples, step stamps and noise estimate) at the current JS
point on the trajectory of the Dash model, lifting the noise estimate to closely match the next-step
estimate of the Dash model without JS; (3) Morse chains the outputs of the Dash and Dot models
run in a time-interleaved fashion, allowing us to easily choose a proper JS step length to attain
performance-efficiency tradeoffs under a wide range of sampling step budgets. Intriguingly, as the
Dot model is significantly faster than the Dash model, it enables the Dot model to run several times
more sampling steps than the Dash model within the interval of two adjacent JS points while enjoying
the same speed. Benefiting from this appealing merit, our method can perform more sampling steps
under the same sampling step budget relative to the pre-trained target DMs, establishing a strong base
to achieve the desired performance loss acceleration. Besides the strong ability to accelerate DMs,
Morse is also efficient for training and inference, with our proposed weight sharing strategy between
the Dash and Dot models. In the strategy, we construct the Dot model by adding extra light-weight
blocks to the pre-trained DM. The Dot model is trained with the fixed pre-trained blocks using Lora
and the extra trainable blocks. On six public image generation benchmarks, our method achieves
promising results under lots of experimental setups. In Fig. 1, we present text-to-image generation
results using Stable Diffusion and LCM-SDXL with and without Morse under different latencies.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 METHOD

2.1 BACKGROUND AND MOTIVATION

Basic Concept. A diffusion model (DM) can generate high quality images. It consists of a forward
process for converting image to noise and a generation process (i.e., reverse process) for converting
noise to image, both of which are typically formulated as Markov chains with T time steps in total.
In the forward process, an image x0 ∈ Rh×w×c is first sampled from a data distribution D. At the
t-th time step, the sample xt is parametrically added with a random noise ϵ ∼ N (0, I) having the
same dimension, which produces xt+1 for the next step t+ 1. The distribution for xt conditioned on
x0 can be represented as:

p(xt|x0) = p(x0)

t∏
i=1

p(xi|xi−1) ,where p(x0) ∼ D, (1)

where p(xi|xi−1) corresponds to the parameterized function for adding noise. As t increases, xt gets
noisier, where xT conforms to the distributionN (0, I). With the forward process, a neural network θ
is trained to estimate the original image x0 (equivalent with estimating noise ϵ) from any time step t:

zt = θ(xt, t), (2)
where zt denotes the estimate generated by the trained network θ for approximating x0. Now, we can
use θ to reverse the forward process from noising to denoising for image generation. Specifically, in
the generation process, a noise ϵ ∼ N (0, I) is firstly sampled as xT . With the estimate zt from θ, we
can approximate the distribution of p(xt−1|xt) using Bayes’ rule and Eq. 1:

p(xt−1|xt) ≈ p(xt−1|xt,x0 = zt) =
p(xt|xt−1)p(xt−1|x0 = zt)

p(xt|x0 = zt)
. (3)

Therefore, we can iteratively convert a noise xT to an image x0 along the time step from T to 0 with
p(x0|xT ) = p(xT )

∏T
i=1 p(xi−1|xi). So far, we can generate high quality images with T sampling

steps following Eq. 3. But the problem is that such a generation process is very time-consuming.
At each of T steps, the trained network θ needs to evaluate for one time. While the number of total
steps T is mostly very large (e.g., T = 1000 for DDPM (Ho et al., 2020)), which is essential for
the generation process to well approximate the reverse of the forward process (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021a).

Jump Sampling. For a better sampling efficiency, most prevailing DMs adopt the jump sampling
(JS) strategy, in which not all the time steps T, . . . , 0 but only a decreasing sub-sequence of them
are visited. We denote the sub-sequence as tn > · · · > t0(ti ∈ [0, T ]), mostly sampled uniformly
from T to 0. Therefore, the number of visited steps n can be much smaller than the total number of
time steps T , leading to a faster speed for the generation process. With JS, each sampling step can be
represented as:

xti−1 = ϕ(xti , zti , ti, ti−1), (4)

where ϕ is the schedule function used to update the sample from xti to xti−1
, which is defined

according to different samplers (e.g., DDPM (Ho et al., 2020), DDIM (Song et al., 2021a), SDE (Song
et al., 2021b), DPM-Solver (Lu et al., 2022), CM (Song et al., 2023)). Intuitively, for a generation
process, the neighboring steps tend to have similar sample xt and close step stamp t as inputs for
θ, leading to similar estimate zt. So that with the estimate zti , the sample can jump over multiple
steps toward the same estimate from ti to ti−1, without doing much harm to the sample quality. As
more steps are jumped over, the step length between two adjacent JS points becomes longer and the
performance degeneration issue becomes more serious. Therefore, the double-edged nature of JS
prohibits its use for performance lossless acceleration, while it also leaves room for us to further
improve it. If we can efficiently reduce the information loss caused by JS while maintaining its high
sampling efficiency, then we can achieve a better performance-efficiency tradeoff. This is the key
motivation of our work.

2.2 MORSE

As we discussed above, our key motivation is to efficiently reduce the information loss caused by JS
while maintaining the high sampling efficiency. To achieve this goal, we present Morse, a simple
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Figure 2: Illustration of diffusion with Morse. Morse consists of two models named Dash and Dot,
which interact with each other during the generation process. Dash is the pre-trained model of any
type to be accelerated, which operates in a jump sampling regime. Dot is the model newly introduced
by us to accelerate Dash, which is N times faster than Dash in latency. We provide examples to show
how our Morse works. For simplicity, we use the Latency per Step of the baseline DM (LSD) as
the time unit to represent the total latency of a diffusion process. (i.e., the latency per step of the
Dot model is mapped to that of the baseline Dash model) (a) Standard generation process, which
performs 5 steps under 5 LSDs; (b) Standard generation process, which performs 3 steps under 3
LSDs; (c) Generation process with Morse, which performs 6 steps under 3 LSDs. Under the same
latency, a generation process with Morse can perform more steps and achieve better sample quality.

and universal diffusion acceleration framework, as illustrated in Fig. 2. With Morse, the generation
process is reformulated from iteration with a single model to interaction between two models, which
are called Dash and Dot.

Formulation of Morse. The Dash model is just the pre-trained DM, but operates in a JS regime,
creating sufficient space for sampling efficiency improvement. The Dot model is newly introduced
by us for accelerating the Dash model, which is N times faster than the Dash model. During the
generation process, each sampling step is either with noise estimate from the Dash model or the Dot
model, while the two models play different roles. As we described in Sec. 2.1, the Dash model can
estimate noise independently. The Dot model is learnt to generate residual feedback conditioned on
the observations (including input and output samples, step stamps and noise estimate) at the current
sampling point on the trajectory of the Dash model, lifting the noise estimate to closely match the
next-step estimate of the Dash model without JS. Morse chains the outputs of the Dash and Dot
models run in a time-interleaved fashion. For a generation process with Morse, we reformulate how
to estimate noise as:

zti =

{
θ(xti , ti) ti ∈ S

zts + η(xts ,xti , zts , ts, ti) ti /∈ S
, (5)

where θ denotes the Dash model; η denotes the Dot model; ts denotes the current sampling point
on the trajectory of the Dash model when the Dot model produces noise estimation at the step
ti; S = {tsd , . . . , ts1} denotes the set of sampling steps with the noise estimates from the Dash
model, which is a sub-sequence of tn, . . . , t0. The above formulation of Morse is simple and easy
to implement, and has the great capability to accelerate diffusion models universally as tested with
various experimental settings.

Weight sharing between Dash and Dot. To reduce the training and computational costs of the
Dot model, we introduce a weight sharing strategy between Dash and Dot. As shown in Fig. 3, we
construct the Dot model by adding m trainable lightweight down-sampling blocks and up-sampling
blocks on the top and under the bottom of the pre-trained Dash model respectively. The extra blocks
have the significantly reduced number of channels and layers compared with the pre-trained blocks.
For each of the pre-trained blocks, the resolution of its input is reduced by 4m times. Therefore, the
Dot model can be significantly faster than the Dash model. When training the Dot model, we fix the
shared pre-trained layers and adopt lightweight Low-Rank Adaptation (LoRA) (Hu et al., 2022) for
quickly adapting to the new training objective and resolutions. With this simple and low-cost design,
our Dot model can be derived from the pre-trained DM very efficiently, since it reserves nearly all the
knowledge learned by the Dash model.
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Figure 3: Illustration of weight sharing between Dash and Dot. The Dot model is constructed by
adding m (m = 1 for the illustrated example) trainable lightweight down-sampling and up-sampling
blocks on the top and under the bottom of the pre-trained Dash model respectively. h×w denotes the
resolution of input feature maps. When training the Dot model, we fix the shared pre-trained layers
and add lightweight Low-Rank Adaptation (LoRA) to help the Dot model for quickly adapting.

2.3 A DEEP UNDERSTANDING OF MORSE

To have a deep understanding of how Morse can improve the sampling efficiency of DMs, we give
detailed explanations in two perspectives.

How can Morse accelerate different diffusion models? With JS, DMs can generate samples in a
faster speed, yet inevitably lead to worse sample quality due to the information loss over unvisited
steps between two adjacent JS points on the diffusion trajectory. To compensate for the information
loss, we insert extra multiple sampling points with Dot between every two adjacent JS points, which
efficiently reduces the JS step length. Since Dot is N times faster than Dash, the inserted sampling
steps can be completed by Dot with only 1/N time budget compared with Dash. In other words,
Morse can perform more sampling steps under the same sampling step budget relative to the pre-
trained DMs. We assume a standard generation process with n sampling steps. Under the same
latency (for n sampling steps of baseline DMs), there could be n−k (0 ≤ k < n) sampling steps with
Dash and Nk sampling steps with Dot in our Morse, which introduces (N −1)k extra sampling steps.
With a specific sampling step budget, Morse can flexibly change the JS step length by controlling k.
Under ideal conditions where Dot and Dash perform exactly the same for noise estimation, this leads
to a speedup of (n− k +Nk)/n, which is the upper bound for our Morse.

How can Dot behave as Dash on noise estimation? To answer the question, we reiterate our design
of the Dot model: (1) Dot cooperates with Dash by learning to generate residual feedback utilizing
the trajectory information; (2) Dot inherits most of trained weights from Dash. When training the
Dot model, we fix the shared pre-trained layers and add LoRA to help the Dot model for quickly
adapting. Benefiting from the first design, Dot does not need to estimate noise independently but
generates residual feedback conditioned on the observations at the current sampling point on the
trajectory of Dash. With the trajectory information including input and output samples, step stamps
and noise estimate as inputs, Dot gets the information about how the sample is updated between the
two sampling steps, which largely helps the Dot model on adjusting the noise estimate of Dash. In
the second design, we adopt a weight sharing mechanism between Dash and Dot. It allows Dot to
inherit most of the knowledge learned by Dash, which guarantees the consistency between Dash and
Dot in the residual learning process. Additionally, the weight sharing mechanism also improves the
parameter efficiency and training efficiency of Morse. By adding extra lightweight trainable blocks to
a pre-trained DM, the Dot model can be trained very efficiently with LoRA. Thanks to the adaptive
residual feedback strategy with trajectory information and weight sharing mechanism, Dot is able
to easily lift the noise estimate at the current JS point to closely match the next-step estimate of the
Dash model. Since the JS strategy is adopted by most popular DMs, our Morse can be widely used
for accelerating various DMs with different samplers, benchmarks, and network architectures under
diverse sampling step budgets, as we show in what follows.

Difference with the distillation-based methods. From the perspective of learning the knowledge
from a pre-trained model, Morse is somehow similar with the distillation-based methods for diffusion.
While they are different both in formulation and focus: (1) With Morse, the generation process is
reformulated as interaction between the Dash and Dot models, rather than iteration with a student
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DM; (2) Morse adopts an adaptive residual feedback strategy with trajectory information; (3) The
aim of Morse is to efficiently reduce the information loss caused by jump sampling for attaining
the desired performance lossless acceleration. In the distillation-based methods, a student DM is
trained to match to the outputs of its corresponding teacher DM in a sampling process using much
fewer steps, but always with performance degeneration issue; (4) Morse is complementary to the
distillation-based methods, which can be used to further accelerate a DM trained with knowledge
distillation, as we show in the experiments.

3 EXPERIMENTS

3.1 METRIC TO EVALUATE SPEEDUP

Speedup. Before showing the experimental results, we first describe how we evaluate the speedup of
Morse. For a pre-trained DM, we assume two generation processes with and without Morse. The
total latency of the process without Morse is n and the total latency of the process with Morse is
l(n ≥ l). The two processes get the same evaluation metric. Then, the speedup of Morse under the
latency of l can be calculated as n/l×.

For a diffusion model (DM), we first measure its sample quality with and without Morse under
different latencies, mainly using the mostly adopted metric Fréchet inception distance (FID, lower is
better) (Heusel et al., 2017). The sampling steps are selected following the official settings. Then, we
use linear interpolation to fit the curves between latency and evaluation metrics for approximating
the evaluation metric under any available latency. Note that it’s too time-consuming to evaluate the
metrics with all the latencies. To be intuitive, we calculate an average speedup of Morse over the
selected latencies. We fit a curve between a set of latencies and speedups to approximate speedups
across all the latencies. All the speeds for different models are tested using an NVIDIA GeForce
RTX 3090. Recall that Dot is N times faster than Dash. The speeds of the models may vary under
different GPUs, leading to the change of N and speedup. While we find that a Dash model and its
Dot model mostly have little change in N with different GPUs, where our Morse demonstrates a
good acceleration ability consistently. Details are provided in the Appendix.

LSD. For simplicity and generalization, we use Latency per Step of the baseline DM (LSD) rather
than time (e.g., second) as the time unit to represent the total latency of a diffusion process, namely
the time cost of the Dash model for one sampling step (i.e., the latency per step of the Dot model is
mapped to that of the baseline Dash model). For a diffusion process without Morse under n sampling
steps, its latency (namely the end-to-end time for generation images) can be represented as n LSDs.

3.2 ACCELERATE IMAGE GENERATION UNIVERSALLY

Experimental Setup. For each DM evaluated in experiments, we collect its official pre-trained model
as the Dash model, of which the weights are fixed. With the weight sharing strategy, all the Dot
models are trained following the official training settings, while typically with reduced batch size
and training iterations. We typically set the number of extra down-sampling blocks and up-sampling
blocks m to 2, leading to N in the range of 5 to 10. All the experiments are performed on the
servers having 8 NVIDIA GeForce RTX 3090 GPUs. More experimental details are described in the
Appendix.

Different Samplers. In the experiments, we evaluate our Morse with the mainstream samplers,
including DDPM (Ho et al., 2020), DDIM (Song et al., 2021a), DPM-Solver (Lu et al., 2022) for
discrete samplers and SDE (Song et al., 2021b), DPM-Solver on SDE for continuous samplers. We
conduct the experiments with CIFAR-10 (Krizhevsky, 2009) benchmark, which is adopted by all the
above samplers for experiments. As shown in Fig. 4, our Morse can accelerate DMs consistently
with all the samplers under different LSDs ranging from 3 to 100, achieving average speedups
ranging from 2.04× to 2.94×. The results also show that our Morse can work with both discrete-time
and continuous-time methods. Morse can even significantly accelerate the state-of-the-art sampler
DPM-Solver, which can generate high quality images with very few steps by also utilizing the
trajectory information from previous steps. Note that we calculate the speedups of Morse as N/A for
DPM-Solver on both DDPM and SDE with 100 LSDs, which are not used for calculating the average
speedups. The reason is that there is no room to accelerate, since the FIDs constantly keep the same
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Figure 4: Results of Morse with different samplers on CIFAR-10 benchmark. A speedup of n under
the latency of l means that the DM with Morse under l and the DM without Morse under nL achieve
the same FID.

Figure 5: Results of Morse with DDIM sampler on different benchmarks.

(even worse) value with latencies larger than 100 LSDs for the baseline DMs. The experiment results
with different samplers under other benchmarks are provided in the Appendix.

Different Benchmarks. In the experiments, we further evaluate our Morse with different popu-
lar image generation benchmarks, including CIFAR-10 (32×32) (Krizhevsky, 2009), ImageNet
(64×64) (Russakovsky et al., 2015), CelebA (64×64) (Liu et al., 2015), CelebA-HQ (256×256)
and LSUN-Church (256×256) (Yu et al., 2015). Since we have evaluated Morse with different
samplers, we keep the samplers as the most widely used DDIM in the following experiments unless
otherwise stated, to exclude the impact of differences in samplers. The results are shown in Fig. 5.
Our Morse can be generalized well to all the benchmarks, which have different image resolutions
(from 256×256 for LSUN-Church and CelebA-HQ to 32×32 for CIFAR-10), different dataset sizes
(from 1.2 million for ImageNet to 30 thousand for CelebA-HQ) and different semantic information.
For all the benchmarks under most LSDs, our Morse gets speedups around 2×. On the CelebA, it
can even achieve speedups more than 4× under some LSDs.

Different Conditional Generation Strategies. After showing the effectiveness of Morse under
unconditional generation, we next evaluate our Morse under conditional generation with different
strategies, including class-conditional and classifier guided image generation (Ho & Salimans, 2021)
on ImageNet benchmark at resolution 64×64. For the classifier guidance, we consider the classifier
as a part of Dash and train the Dot to approximate the estimate guided by a classifier. As shown in
Fig. 6, Morse can well generalize to the conditional generation with different strategies.

Different Network Architectures. In the above experiments, there are 8 different network archi-
tectures collected from 6 works with model sizes ranging from 35.75M to 421.53M for the Dash
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Figure 6: Results of Morse with different conditional generation strategies on ImageNet benchmark.
Table 1: FIDs of Stable Diffusion with and without
Morse on MS-COCO. We calculate FIDs under differ-
ent classifier-free guidance scales and select the best
FID among all the scales and FID under default 7.5 for
comparison.

Method FID Latency (LSD)
10 15 20 50

Stable Diffusion scale of 7.5 11.75 11.92 12.35 13.53
best scale 10.65 9.47 8.70 8.22

+ Morse scale of 7.5 9.29 10.07 10.93 13.22
best scale 8.60 8.55 8.29 8.15

Figure 7: Stable Diffusion with and without
Morse under different latencies and scales.

models (Rombach et al., 2022; Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021a;b;
Dhariwal & Nichol, 2021). It can be seen that our Morse achieves good generalization ability under
all the architectures with different capacities and model sizes.

3.3 ACCELERATE TEXT-TO-IMAGE GENERATION

Next, we evaluate our Morse under the highly popular text-to-image generation task with the latent-
space Stable Diffusion model (Rombach et al., 2022).

Experimental Setup. We select the Stable Diffusion v1.4 as our Dash model, which is pre-trained
with around 2 billion text-images pairs from LAION-5B dataset (Schuhmann et al., 2022). In our
experiments, the Dot model is trained with only about 2M text-image pairs at resolution 512×512
sampled from the LAION-5B dataset. We use DDIM as the sampler. Following the popular evaluation
protocol, we adopt the FID (lower is better) and CLIP score (Radford et al., 2021) (higher is better) as
the evaluation metrics and use the 30000 generated samples with the prompts from the MS-COCO (Lin
et al., 2014) validation set for evaluation. The CLIP scores are calculated using ViT-g/14. All the
experiments are performed on a server having 8 NVIDIA Tesla V100 GPUs. More experimental
details are described in the Appendix.

Results Comparison. Following the default settings, we first evaluate the FIDs of Stable Diffusion
with and without Morse, using the classifier-free guidance scale of 7.5. While we find that increasing
the number of steps does not always lead to consistently better FID scores for standard Stable
Diffusion, as shown in Table 1. Therefore, we find another two schemes to evaluate speedups. In the
first scheme, we evaluate the FID with different scales and select the best FID score for comparison.
From the results shown in Fig. 7, we can find that the best FID consistently gets better when the
latency increases. Under this scheme, we can calculate an average speedup of 2.29×. In the other
evaluation scheme, we fit the curves between FID and CLIP scores under different scales using the
linear interpolation following Stable Diffusion (Rombach et al., 2022). The results are shown in
Fig. 8. When the scale is larger than 4, we can observe a tradeoff between the two metrics. It can
be clearly seen that the curve with our Morse is below the curve without Morse. For example, the
curve with Morse under 10 LSDs is below the curve without Morse under 20 LSDs in most scales,
indicating an average speedup of approximately 2×. Some generated samples for comparison are
provided in Fig. 1 and Appendix. The results further demonstrate the generalization ability of Morse.
On the popular text-to-image generation task with a large DM (859.52M), our Morse still shows a
significant acceleration ability. As shown in Table 2, while the Dash model is trained with heavy
computational resources and large datasets, our Dot can be trained very efficiently with less than
0.1% text-image pairs and 0.1% training cost compared with it. With the trajectory information, the
Dot model can be easily close to the Dash model on noise estimation. The results also show that our
Morse works well with classifier-free guidance and the latent-space diffusion models.
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(a) (b) (c)

Figure 8: Results of Morse with Stable Diffusion on MS-COCO. (a) and (b) are curves between FIDs
and CLIP scores for Stable Diffusion with and without Morse on different LSDs under guidance
scales of 2, 3, 4, 5, 6, 7, 7.5, 8, 9, 10, which correspond to the points in the curves from left to
right. We paint the background using the curve of standard Stable Diffusion for better illustration; (c)
Curves between FIDs and LSDs using the best FIDs among different scales.

Table 2: Training details of Stable Diffusion and the corresponding Dot model in Morse. The training
memory are tested with the batch size of 8 per GPU.

Model Params Training Samples Training Cost (A100 hours) GPU Memory (MB)
Stable Diffusion 859.52M 2,000 million 150,000 23,485
Dot model 97.84M (+11.4%) 2 million (+0.1%) 190 (+0.1%) 18,841 (-19.8%)

3.4 ABLATION STUDY

In the experiments, we conduct ablative experiments to further study our Morse.

LCM-SDXL with Morse. In the experiments, we validate the effectiveness of Morse when combined
with the popular distillation-based methods. Among the methods, we select the Latency Consistency
Models (LCM) (Luo et al., 2023) as the baseline. When fine-tuning with LCM, a Stable Diffusion
XL model with 1024×1024 resolution can be used for high quality text-to-image generation with
very few steps, which is called LCM-SDXL. We evaluate LCM-SDXL with Morse on MS-COCO
benchmark as described in Sec 3.3. Experimental details are provided in the Appendix. Same with
Stable Diffusion, Stable Diffusion XL also adopts the classifier-free guidance, while LCM fixes the
scale to 7.5 during the distillation. Under the fixed scale of 7.5, for standard LCM-SDXL, we notice
that its FID score does not consistently get better as the number of steps increases, while the CLIP
score does. Therefore, we select the CLIP score as the metric for evaluating LCM-SDXL with Morse.
The results are shown in Table 3. Since the Dot model is 3 times faster than the Dash model, we can
evaluate the CLIP scores for LCM-SDXL with Morse under LSDs of 1.33 and 1.67. Over a sampling
step from 1 to 4, we can calculate an average speedup of 1.43× on CLIP score for our Morse. We
also provide some generated samples for comparison in the Appendix.

Effect of Trajectory Information. Recall that our core insight is that the trajectory information
can help the Dot model to perform as well as the Dash model without JS on noise estimation. In
Morse, we use the sample xts , the step stamp ts and the noise estimate zts at the current sampling
point on the trajectory of Dash as the extra inputs for Dot. In the experiments, we evaluate Morse
with different combinations of them with DDIM sampler on CIFAR-10 benchmark under 10 LSDs.
From the results shown in Table 4, we can see that each of the inputs is helpful for Dot on residual
estimation. Without the trajectory information, the introduction of the Dot model can not accelerate
DMs anymore, because of its inferior estimation. These ablative results prove that the trajectory
information plays a key role in our design, which also validate our key insight to some extent.

Comparison under the same number of steps. For evaluating the speedups of Morse under different
time budgets, we mostly compare the DMs with and without Morse under the selected latencies in
the previous experiments. In Fig. 9, we provide the results of DMs under the selected number of
steps, establishing a set of different time-interleaved configurations of Dot and Dash under a given
LSD budget. It can be seen that the curves of a DM with Morse are always below the curve without
Morse, indicating the consistent acceleration ability of Morse under different steps and proportion
between the total steps and the steps with noise estimation from Dot.

More ablations and visualizations are provided in the Appendix.
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Table 3: CLIP scores of LCM-SDXL with and without Morse on MS-COCO.
Method LCM-SDXL LCM-SDXL with Morse
LSD 1 2 3 4 1.33 1.67 2 3
CLIP score 25.39 29.40 30.34 30.80 28.70 29.84 30.30 30.83

Table 4: Ablation of Morse with
different trajectory information.

Method xts zts ts FID
DDIM - - - 13.67

+ Morse

13.56
✓ 8.11

✓ 8.06
✓ ✓ 7.60

✓ 7.50
✓ ✓ 6.83
✓ ✓ 7.27
✓ ✓ ✓ 6.60

Figure 9: Results of Morse with DDIM sampler under different
steps. For a diffusion process with Morse, we set 50%, 60%,
70%, 80% and 90% of the sampling steps for using the Dot
model and the other steps using the Dash model.

4 RELATED WORK

Besides the fast samplers discussed in the Introduction section, there are other emerging efforts to
speed up the inference of DMs. Some recent works use quantization (Li et al., 2023b; Chen et al.,
2023b), pruning (Li et al., 2022; Wang et al., 2024), reuse of parameters and feature maps (Agarwal
et al., 2024; Wimbauer et al., 2023; Ma et al., 2024), and GPU-specialized optimization (Chen et al.,
2023c; Li et al., 2024) to reduce runtime model latency. Another line of research (Li et al., 2023c; Xu
et al., 2023; Li et al., 2023a) seeks to design lightweight network architectures for DMs, enabling to
deploy them on mobile devices. In design, our method is orthogonal to these methods, and thus it
should be able to combine with them for improved performance.

The idea of using dual-model designs to strike a better accuracy-efficiency tradeoff is popular in both
computer vision and natural language processing. SlowFast network (Feichtenhofer et al., 2019), a
powerful and efficient architecture for video action recognition, uses a slow pathway operating at a
low frame rate with low resolution to encode spatial semantics, and a parallel fast pathway operating
at a higher frame rate with higher resolution to encode motion cues. Speculative decoding (Stern
et al., 2018), a fast decoding mechanism for accelerating the inference of autoregressive language
models, predicts candidate tokens with a small approximation model, and verifies the acceptability of
these candidate tokens by a larger and powerful target model with a single forward pass, significantly
reducing the computation for accepted tokens. Many variants (Li et al., 2020; Leviathan et al., 2023;
Chen et al., 2023a; Zhang et al., 2024) of them have been proposed. Although our method is also a
dual-model design, it focuses on accelerating diffusion models with a simple and universal framework,
and its key insight is to reformulate the iterative generation (from noise to data) process via taking
advantage of fast jump sampling and adaptive residual feedback strategies. Clearly, our method
differs from them in focus, motivation and formulation.

5 DISCUSSION AND CONCLUSION

We present a simple and universal framework called Morse to accelerate diffusion models. Morse
reformulates the iterative generation process by involving two models called Dash and Dot that
interact with each other, which exhibits the merit of flexibly attaining high-fidelity image generation
while improving overall sampling efficiency. Experimental results show that Morse can universally
accelerate diffusion models under various settings. While Morse shows the universal acceleration
ability, it introduces an extra lightweight Dot model, which needs additional training and computation
memory. In addition, Morse can only accelerate a diffusion model in which case increasing the
number of steps can lead to a better sample quality. As an acceleration method for diffusion models,
Morse has broader impacts similar to most generative AI models. For example, it may be misused for
help creating realistic fake news and videos to spread false information.
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A APPENDIX

A.1 BENCHMARKS AND EVALUATION DETAILS

Image Generation. In the experiments described in Sec. 3.2, we consider 5 mainstream image
generation benchmarks with various resolutions for evaluating the generalization ability of our
Morse, including CIFAR-10 (32×32, 50 thousand images) (Krizhevsky, 2009), CelebA (64×64,
0.2 million images) (Liu et al., 2015), ImageNet (64×64, 1.2 million images) (Russakovsky et al.,
2015), CelebA-HQ (256×256, 30 thousand images) (Liu et al., 2015), LSUN-Church (256×256,
0.1 million images) (Yu et al., 2015). Following the popular evaluation protocol, for each DM, we
generate 50000 samples and calculate the FID score between the generated images and the images of
the corresponding benchmark. For a fair comparison, we adopt the settings including data processing
pipeline and hyperparameters following the corresponding DMs.

Text-to-Image Generation. In the experiments for Stable Diffusion v1.4 and LCM-SDXL, we use 2
million text-image pairs sampled from the LAION-5B (Schuhmann et al., 2022) dataset. Following
the popular evaluation protocol, we evaluate the text-to-image diffusion models under zero-shot
text-to-image generation on the MS-COCO 2017 validation set (Lin et al., 2014) (256×256). All the
generated images are down-sampled to 256×256 for evaluation. For each DM, we generate 30000
samples with the prompts from the validation set. The CLIP scores are calculated using ViT-g/14.

A.2 IMPLEMENTATION DETAILS FOR STABLE DIFFUSION

Implementation details. For text-to-image generation, we evaluate our Morse with Stable Diffusion
v1.4 (Rombach et al., 2022). In the experiments, we use the Dot model with the extra parameters
of 97.84M to accelerate the Dash model with the size of 859.52M. The latencies of the Dash
model and the Dot model are 0.709 second and 0.082 second respectively (N = 8.6), which is
tested using a single NVIDIA GeForce RTX 3090 under a batch size of 20. With the official
settings, Stable Diffusion v1.4 is pre-trained with around 2 billion text-image pairs at resolution
256×256 and fine-tuned with around 600M text-image pairs at resolution 512×512 from LAION-5B
dataset (Schuhmann et al., 2022). We add two trainable down-sampling blocks and up-sampling
blocks, with the number of channels of 96 and 160, on the top and under the bottom of the pre-trained
Stable Diffusion to construct the Dot model respectively. We set the rank of LoRA to 64. In our
experiments, the Dot model is trained with only about 2M text-image pairs at resolution 512×512
sampled from the LAION-5B dataset for 100,000 iterations. We use DDIM as the sampler.

For conditional image generation, Stable Diffusion v1.4 adopts the classifier-free guidance, which
has a parameter called guidance scale to control the influence of the text prompts on the generation
process. To ensure that our Morse can also work well with different guidance scales besides the
different number of steps, we also randomly sample the guidance scales between 2 and 10 during
the training procedure. The Dot models are trained on a server with 8 NVIDIA Tesla V100 GPUs.
Considering the risk for misuse of the generative models, we use the safety checker module which is
adopted by Stable Diffusion project for the released models.

Latency of each block. It may be not intuitive that we can construct a Dot model with faster speed by
adding extra blocks to a DM. Here, we provide the latency of each block for the Stable Diffusion with
and without extra blocks in Fig. 10. The state-of-the-art DMs mostly adopt the U-Net architecture
with self-attention layers. With the extra blocks on the top and under the bottom of the pre-trained
Stable Diffusion, the resolution of the input for each pre-trained block is reduced by 16 times, which
significantly reduces the latencies of the pre-trained blocks. Additionally, the extra blocks have the
same architecture with the pre-trained blocks while removing the self-attention layers. Since the
computational complexity of a self-attention layer grows quadratically with the number of tokens,
the pre-trained blocks with high-resolution feature maps have relatively slow inference speeds. By
removing the self-attention layers and reducing the number of channels, the latencies of the extra
blocks with the high-resolution feature maps are still relatively low. Therefore, the Dot model can be
significantly faster than the Dash model.
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Figure 10: Latency (second) of each block for Stable Diffusion with and without adding extra
down-sampling and up-sampling blocks. The speeds are tested with the batch size of 20 on a single
NVIDIA RTX 3090 GPU.

A.3 IMPLEMENTATION DETAILS FOR LCM-SDXL

In the main experiments, we also evaluate our Morse on the Latent Consistency Models (Luo et al.,
2023) (LCM-SDXL with 1024×1024 resolution, which is already accelerated with consistency
distillation technique). LCM-SDXL can be used for high quality text-to-image generation with very
few steps, which is trained with heavy computational resource and large dataset. We add a trainable
down-sampling block and up-sampling block on the top and under the bottom of the pre-trained
LCM-SDXL respectively. For each of the original pre-trained blocks, the resolution of its input is
reduced by 4 times. The latencies of the Dash model and the Dot model are 0.646 second and 0.211
second respectively (N = 3.1), which is tested using single NVIDIA Tesla V100 under a batch
size of 5. We fix the shared pre-trained layers except some mismatched layers and add lightweight
Low-Rank Adaptation (LoRA) (Hu et al., 2022) to help the Dot model for better adapting. Compared
to the LCM-SDXL with the model size of 2567.55M, the Dot model only has 229.19M trainable
parameters, which can be efficiently injected to the Dash model. In our experiments, the Dot model
is trained with about 2M text-image pairs at resolution 1024×1024 from the LAION-5B dataset for
100,000 iterations. The Dot model is trained on the servers with 8 NVIDIA Tesla V100 GPUs.

A.4 IMPLEMENTATION DETAILS FOR IMAGE GENERATION

In this section, we provide the implementation details for all the DMs adopted in our experiments for
image generation.

Table 5: Latency (second) per sampling step of the Dash models and the Dot models under different
GPUs. N denotes that the Dot model is N times faster than the Dash model. h × w denotes the
resolution of input feature maps.

Model Source Benchmark RTX 3090 RTX 4090 Tesla V100
Dash Dot N Dash Dot N Dash Dot N

DDPM CIFAR-10 (32×32) 0.072 0.012 6.0 0.035 0.006 5.8 0.082 0.015 5.5
CelebA-HQ (256×256) 0.539 0.112 4.8 0.346 0.073 4.7 0.680 0.135 5.0

DDIM CelebA (64×64) 0.244 0.042 5.8 0.143 0.021 6.8 0.292 0.054 5.4
Improved DDPM ImageNet (64×64) 0.367 0.065 5.6 0.226 0.034 6.6 0.458 0.092 5.0
SDE CIFAR-10 (32×32) 0.120 0.020 6.0 0.113 0.018 6.3 0.139 0.025 5.6

LDM LSUN-Church (256×256) 0.288 0.060 4.8 0.185 0.022 8.4 0.360 0.057 6.3
MS-COCO (512×512) 0.709 0.082 8.6 0.344 0.042 8.2 0.771 0.088 8.8

ADM ImageNet (64×64) 0.956 0.149 6.5 0.760 0.085 8.9 1.105 0.186 5.9
ADM-G 1.547 0.149 10.5 0.956 0.085 11.3 1.889 0.186 10.2

Training and Sampling. In the main experiments, we adopt multiple DMs to evaluate the effective-
ness of our Morse, including the models from DDPM (Ho et al., 2020), DDIM (Song et al., 2021a),
Improved DDPM (Nichol & Dhariwal, 2021), SDE (Song et al., 2021b), LDM (Rombach et al., 2022)
and ADM (Dhariwal & Nichol, 2021). For a DM, we collect its official pre-trained model as the Dash
model. To construct the corresponding Dot models, we add two lightweight down-sampling blocks
and up-sampling blocks on the top and under the bottom of each pre-trained Dash model respectively.
With the weight sharing strategy, all the Dot models are trained following the official training settings.
As shown in Table 5, we provide the detailed information, including the source projects, the speeds
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of the Dash models and Dot models and N . Recall that the Dot model is N times faster than the
Dash model. All the speeds for different models are tested using a single NVIDIA GeForce RTX
3090. When testing the speeds, we set the batch size to 100 for most benchmarks except 20 for
CelebA-HQ dataset. During the training procedures, a Dot model is trained to estimate the difference
between the outputs from the Dash model at two randomly sampled steps. Here, we give an example
of the training procedure and sampling procedure for DDIM sampler, as shown in Algorithm 1 and
Algorithm 2. The procedures can be easily extended to other samplers with simple modification. The
Dot models are trained on the servers with 8 NVIDIA Tesla V100 GPUs or 8 NVIDIA GeForce RTX
4090 GPUs.

N under different GPUs. Recall that Dot is N times faster than Dash. For a Dash model and its
trained Dot model, the speedup of Morse gets larger when N gets larger. While the speeds of the
models may vary under different GPUs, leading to the change of N and speedup. In our design,
we construct a Dot model by adding several extra blocks on the top and under the bottom of the
pre-trained Dash model. Therefore, a Dot model has the architecture which is very similar with its
corresponding Dash model. As shown Table 5, we can find that a pair of Dash and Dot mostly has
little change in N with different GPUs. The results indicate that our Morse performs well under
different GPUs.

Algorithm 1: Training of Dot with
DDIM

Require :Trained Dash model θ(·, ·)
Require :Dot model η(·, ·, ·, ·, ·) to be

trained
Require :Schedule function ϕ(·, ·, ·, ·)
Require :Dataset D
Require :Learning rate γ

1 repeat
2 sample x ∼ D
3 sample ϵ ∼ N (0, I)
4 sample ts, to ∼ U [0, T ] (ts > to)
5 xts = αtsx+ σtsϵ
6 zts = θ(xts , ts)
7 xto = ϕ(xts , zts , ts, to)
8 zto = θ(xto , to)
9 ẑto = zts + η(xts ,xto , zts , ts, to)

10 η ← η − γ∇η∥zto − ẑto∥22
11 until convergence

Algorithm 2: DDIM Sampling with Morse
Require :Trained network Dash θ(·, ·)
Require :Trained network Dot η(·, ·, ·, ·, ·)
Require :Schedule function ϕ(·, ·, ·, ·)
Require :Sequence of time points

tn > tn−1 > · · · > t0
Require :Number of dash steps d

1 sample xtn ∼ N (0, I)
2 uniformly sample sd, . . . , s0 from tn to t0
3 for i← n to 1 do
4 if ti ∈ {sd, . . . , s1} then
5 zti = θ(xti , ti)
6 ts = ti
7 else
8 zti = zs + η(xts ,xti , zts , ts, ti)
9 end

10 xti−1 = ϕ(xti , zti , ti, ti−1)
11 end

Return :xt0

A.5 MORE EXPERIMENTS FOR STUDYING MORSE

Morse with Different Samplers. In the experiments described in Sec. 3.2, we evaluate our Morse on
CIFAR-10 (32×32) benchmark with different samplers. Here, we perform experiments to further
validate the effectiveness of Morse on other datasets with different samplers. As shown in Fig. 11,
our Morse achieves good generalization ability on CelebA-HQ (256×256) dataset with different
samplers.

Where Trajectory Information Comes from? Recall that Morse redefine how to estimate noise
during the generation process as:

zti =

{
θ(xti , ti) ti ∈ S

zts + η(xti ,xts , ti, ts, zts) ti /∈ S
. (6)

In the design, a Dot model generates residual feedback conditioned on the observations at the current
JS point on the trajectory of the Dash model. For another reasonable design, the observations can
also come from the trajectory of the two models, which can be represented as:

zti =

{
θ(xti , ti) ti ∈ S

zti−1
+ η(xti ,xti−1

, ti, ti−1, zti−1
) ti /∈ S

. (7)
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Figure 11: Results of Morse with different samplers on CelebA-HQ (256×256) benchmark.

Figure 12: Results of Dot with trajectory information from the Dash model and the both two models.

In the experiments, we compare the two designs which utilize the different trajectory information
on CIFAR-10 dataset with DDIM sampler. The results are shown in Fig. 12. It can be seen that
our design (using trajectory information from the Dash model) performs better, which achieves an
average speedup of 2.26× against to 2.00×. In which case the number of steps is extremely small
(e.g., 3), using trajectory information from ti−1 is better than that from ts. This is probably because
the distance between ts and ti becomes relatively large when the number of steps is very small, which
makes the trajectory information less helpful for the Dot model. We can also find that the Dot model
also works well with the trajectory information from itself, though it is trained with the trajectory
information from the Dash model during the training procedure.

Figure 13: Speedups of Morse with DDIM sampler on CIFAR-10 (32×32) under different LSDs and
exchanged steps ratios. The exchanged steps ratio denotes the ratio of the latency of steps with Dot to
the total latency in a generation process.

Effect of Exchanged Steps Ratio. Recall that under a specific latency of n LSDs, there could be
n − k (0 ≤ k < n) sampling steps with Dash and Nk sampling steps with Dot for Morse. Morse
can flexibly change the JS step length by controlling k. Here, we define the ratio of exchanged steps
as k/n. In the experiments, we explore the effect of different ratios of the exchanged steps. We
conduct the experiments on CIFAR-10 dataset with DDIM sampler. The results are shown in Fig. 13.
Under most LSDs, Morse can achieve a speedup around 2× with most ratios. Under the extreme
condition when we exchange most of the sampling steps with Dash for the sampling steps with Dot
(e.g., more than 70%), the speedups sharply decrease below 1.0×. In our opinion, the reason is that
the trajectory information becomes less helpful for the Dot models on residual estimation when the
distance between the two sampling steps is very large, since there are much fewer sampling steps
with Dash.

Different Designs for the extra down-sampling and up-sampling blocks of Dot. Recall that
we construct the Dot model for Stable Diffusion by adding 2 trainable lightweight down-sampling
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Table 6: FIDs of Stable Diffusion with different variants of Dot. We calculate FIDs under different
classifier-free guidance scales and select the best FID among all the scales.

Method Trainable Sampling Blocks LoRA 10 LSDs 15 LSDs 20 LSDs 50 LSDs
Stable Diffusion - - 10.65 9.47 8.70 8.22

+ Morse

370.79 397.82 392.64 389.12
✓ 9.23 8.94 8.60 8.36

✓ 9.79 9.21 8.89 8.51
✓ ✓ 8.60 8.55 8.29 8.15

blocks and up-sampling blocks to the Dash model. When training the Dot model, we fix the shared
pre-trained layers and adopt lightweight LoRA. In the experiments, we study the construction of a Dot
model with different designs for down-sampling and up-sampling. We evaluate several variant designs
for the Dot model including: (1) Down-sampling and up-sampling with proposed trainable blocks or
bilinear sampling; (2) Training the Dot model with or without LoRA. The shared pre-trained layers
are fixed. From the results shown in the Table 6, we can see that both the designs can significantly
improve the performance of Morse. Without fine-tuning, the original DM can not adapt well to a
lower resolution directly. While adding the trainable sampling blocks and adopting LoRA for training
the Dot model can enhance learnable and soft resolution transformation and help the pre-trained
blocks with adapting to the new resolutions, respectively.

Table 7: Different architectures of the Dot model for Stable Diffusion.
Method Training Iterations Params Average Speedup
Independent Dot model 0.4 million 324.93M 2.07×
Dot model with weight sharing strategy 0.1 million 97.84M 2.29×

Different architectures of the Dot model. In the experiments, we evaluate the performance of
Morse with the independent Dot model without sharing the pre-trained blocks with Dash model. We
conduct the experiments on MS-COCO dataset with Stable Diffusion. In the variant design, the Dot
model has similar architecture with the Dash model while with the reduced number of channels and
blocks. The results are shown in Table 7. Even without fine-tuning with the pre-trained weights, our
Morse can still accelerate the Stable Diffusion. While it needs more training iterations and trainable
parameters to achieve similar performance with our proposed design. The results demonstrate the
effectiveness and efficiency of our proposed weight sharing strategy for training a Dot model. While
it also shows that we can flexibly construct a Dot model with different architectures.

A.6 MORE GENERATED SAMPLES

We provide some generated samples from the diffusion models with and without Morse under
different LSDs for better comparison, including image generation for CelebA-HQ (256×256) and
LSUN-Church (256×256), text-to-image generation on MS-COCO with Stable Diffusion v1.4 and
LCM-SDXL.
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(a) DDIM

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

(b) DDIM with Morse

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

Figure 14: Generated samples at resolution 256×256 for CelebA-HQ dataset using DDIM sampler
with and without Morse.
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(a) DDIM

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

(b) DDIM with Morse

3 LSDs 50 LSDs20 LSDs10 LSDs5 LSDs

Figure 15: Generated samples at resolution 256×256 for LSUN-Church dataset using DDIM sampler
with and without Morse.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Artistic photograph of architecture and frost-laden trees at dawn

A green and yellow train riding down the train tracks.

a brown teddy bear is sitting on a green bed

a dog laying on a pillow next to an open luggage bag

A white van covered in spray paint next to buildings.

50 LSDs20 LSDs10 LSDs 50 LSDs20 LSDs10 LSDs

Young girl combing the hair behind her head.

(b) Stable Diffusion with Morse(a) Stable Diffusion

A boat that is floating in a body of water.

Figure 16: Generated samples at resolution 512×512 with prompts from MS-COCO validation
set from Stable Diffusion v1.4 using DDIM sampler with and without Morse. The classifier-free
guidance scale is set to 7.5 following the official settings.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A man riding a board over the top of a wave.

A white cake topped with berries and a plate of fruit and cheeses.

Birds perch on a bunch of twigs in the winter.

a dog is holding a yellow disc in its mouth

3 LSDs2 LSDs1 LSD 3 LSDs2 LSDs1.33 LSDs

A young man wearing a white shirt and tie.

(b) LCM-SDXL with Morse(a) LCM-SDXL

Closeup of a brown bear sitting in a grassy area.

A man holding a turkey that he murdered.

Figure 17: Generated samples at resolution 1024×1024 with prompts from MS-COCO validation set
from LCM-SDXL with and without Morse.
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