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A Technical Proofs

A.1 Some details of Lemma 2.1]

Since matrix K is positive definite, we can transform o in @ using 8 = Ka, therefore ¢ = K-16.
We can then rewrite the minimization problem (4)) with respect to 6:
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Once 95_ o is obtained, we can compute a[ . 0[ 7l . The optimality condition of problem

(21) with respect to 6 is
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which yields the optimality condition (2.2)) after applying dgfj = K‘lél[_j] .

A.2  Proof of Theorem 2.2]
We first prove inequality () for j = 0, namely, the bound for y; K/&;. When j = 0, problem (d)) re-

duces to problem (2), whose sub-gradient optimality condition (aka, Karush—Kuhn—Tucker condition)
with respect to each K/« gives

1
0 € —yOL(K,éy) + 2Nby, Vi, (22)
n

where OL is the subgradient of the hinge loss. For any «, define g(a) = 37 | [1— viKia], .

The convexity of g implies "
g(éu-1) > g(éu) Zyzvz —ay-1), (23)
for any v; € OL(y;K/}é&;). Expression indicates v; = —2\ny;&;; € OL(y;K)éy). By using
v; = —2Xny; G, in expression (23) we see
g(au_1) > g(ay) — 2N K (G — ). (24)

Likewise we have
g(éy) > g(y—_1) —2N_165_ 1 K(éy — éy_1). (25)

By summing up inequalities (24) and (23)), we have
/\l—ld;_lK(dl — dl—l) + )\ld;K(dl_l — dl) >0,

which is equivalent to
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Thus inequality (Z6) serves as a bound for &; when &;_1 is known. Let § = &; — &;_1. For
each 7, inequality (26) gives
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where the last inequality is due to Cauchy-Schwartz inequality. Similarly we can show that
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By observing B/(2nX;) > 0 in the definition of a;,; and al ,» inequalities and (28) give
inequality (@) for j = 0, i.e.,
a;, < yiKja <af.

Forj =1,2,...,n, we define gl//(a) = L "7 | (1 :&l[j]K;a)Jr. By using the similar approach of
getting inequality (24)), we have

g[j](dl> > g[j] (&E*ﬂ) — NG [*j] K (& — &l[ﬂ'])7

g@ ™) > g(ay) — 2naK (ag T &)

By adding the two inequalities above together, we see
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Let& = dl[fj I &;. Due to the Lipschitz continuity of the hinge loss and Cauchy-Schwartz inequality,
we further have
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where the second to last inequality is from Cauchy-Schwartz inequality and the last inequality is due
to inequality (27). We can similarly show y; K;dE_J ] > a;, for each ¢ # j and thus complete the
proof of inequality (6).

Fori = j, a[ 31 = 0. Fori # 7, by the definition of £ and R we have ;K| A7 < 1 whenie £
and y; K& [ ] > 1 when i € R, thus the proof is completed due to expression (3).

A.3 Proof of Lemma[3.1]

The proof of Lemma [3.1] is similar to the proof of Theorem [2.2] For each j = 0,1,...,n, the
sub-gradient optimality condition of problem (T3] with respect to 6([)_[] ) and each K;ag_j ] gives

OGZy 8L< <[] ﬁ[ 7]_|_K/A[ 7]))7 .
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4 (30)
for any v;; € 6‘L(ylj] (60 + K’dl[ J])). From expressions (29), we let v;; = 72)\1713]2[]]&5]] and

then D7, yl[] ]v” = 0 for each j. Subsequently inequality (30) implies

3B v e = 3,5, a7 — 2vey TR (e - 7).
Similarly we have
3B 67 2 55 (3o M6 - 2na K6 - aqd).
By adding the above two inequalities, we have
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Likewise we can show yiK;dE_j } > ¢;, and we thus prove inequality (T3).



A.4 Proof of Lemma[3.2]

Proof of (1). Denote by |S| cardinality of a set S. The definition of S (b) and n (b) gives

PPy = Y wi| +npd)+1

1€8S1(b)

—Hi: b+l <l yi= 1+ [{i: b+l <1,y =1}
—l—\{i:b-i—c >1Lb+c,; <1, y=1}+1
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—i:—b+cf, <l yi=—1}+{i: b+, <1,y =1} +1,

which is non-increasing in b. We also find ¢~ (b) non-increasing because

e = 3w -nm-1

1€S1(b)
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Proof of (2). Forany j =0,1,...,n, from inequality (T3) and the definition of S; (b) and Sa(b),
we have OL(y; (b + K& [ ]])) -1 1fz € S1(b), and OL(y,; (b + Kgdg_]])) =0ifi € S»(b). Also
by the definition of each yl[ ], we see
. . ) =l e
ozl L kel = d U ifieSib),

Hence
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When i € (S1(b) USa(b))C, OL(H (b + K&l 1)) € [-1,0], so
> oL (e +Kal ) € [Fny )0 ),
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which says

> g +(b);n—(b)]
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is a necessary condition for b = ([)_lj], otherwise, 0 ¢ > | yL oL ( []](b + K& [ ])> and the
sub-gradient optimality condition is violated.
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From the definition of 7;"*, we see

> i€ [-ng(®) — Ln_(b) +1] a0
1€81(b)
is a necessary condition for b = B([);j  for any j. This says that the violation of condition (3T)) implies
that b # B[[);j] forany j =0,1,...,n.
Therefore, if 7 (b) = (3;cs, () ¥i) + n+(b) +1 < 0, then for any b’ > b, * (V') < 0, that is,
Dies o Yi < —n (b') — 1. This says b > B([);j] for any j by condition (3T).

Proof of 3). If ¢y~ (b) = (X ;cs, () ¥i) — n—(b) — 1 > 0, then for any b’ < b, ¢~ (b) > 0, that is,
Yies vy Yi > n—(b") + 1. Condition (3I) shows that b < B([);ﬂ forany j =0,1,...,n.

A.5 Proof of Lemma[3.3]

The bi-section algorithm is detailed in Algorithm [2]in Section B} We first show 1+ (B*) < 0 and
1~ (B~) > 0. By the definition of BT, we have B* + ¢;;, > 1 for all ¢ such that y; = 1, and

—BT +¢f; < 1forall i such that y; = —1. Thus we have n (BT) =0, [{i : BF + ¢, <1, y; =
1}| = 0, and then ¢ (B*) = —|{i: —B* + cj’l <1, y; = —1}| + 1 < 0. Likewise, the definition
of B~ gives [{i : B~ + c;.‘:l <l,yi=1}—-1>0and |{i: =B~ +¢;; <1, y; = —1}| = 0, and
thus the definition of ¢~ implies ¢~ (B~) > 0.

In Algorithm 2] a* is initialized to be B* and ¢/ (a*) < 0 always holds when a* is updated by
some b™ such that ) (b*) < 0. As ﬂoﬁl is set to be ™ when the algorithm converges, 1/)+(68:l) <0,

which shows 5, > B([)le V for any j by (2) of Lemma

Likewise, ¢~ is initialized to be B~ and 1)~ (¢~ ) > 0 always holds when ¢~ is updated by some b~
such that ¢/ (b~) > 0. As 3, is set to be ¢~ when the algorithm converges, 1)~ (3, ;) > 0, which

shows ﬂ(; L < B([);j I for any j by (3) of Lemma

A.6 Proof of Lemma[3.4]

We first show inequality (T8) for j = 0, which is equivalent to
Gy SyiKjan <)
Denote by g(fo, ) = £ 3" | (1 — yi(Bo + Kja))+. The sub-gradient optimality condition of
problem (12) with respect to 3y ; and Key; gives
1 N R A .
0e EyiaL(yi(ﬂo,l + Kjay)) + 2Ny, Vi,
n R (32)
0> yiOL(yi(Bos + Kidn)).
i=1

The convexity of g implies
R . 1 A . 1
9(Boji—1,6u-1) > g(Boy, tu) + - ;ywi(ﬁo,z—1 — o) + -~ Z;yiUiK;(dl—l —a), (33)

for any v; € (’)L(yi(Bo’l +K/a&;)). By expressions (32) and (33), setting v; = —2\;ny;&; 1, we have

9(Bo—1,6u-1) = g(Bog, 6u) — 26K (Gu—1 — éy).
We then use the same approach of getting inequality (27) in the proof of Theorem[2.2]to give

A A A1 — A
yiKiay < %%K;dl—l + %VB\/m, Vi,
! !

(34)
A1+ A N1 — A
K&y > %yiK;dl_l - %ll\/B\/dg_lel_l, Vi.



Thus inequality (T8) is proved for j = 0.

We then define g1l (g, ) = L 37 (1— yl (50 +K!a)), for each j. By using the same approach
of getting inequality (24), we have

97 (Bo.. &) = g (B g7 — 2na T K (60— ag 7T,
985, &™) = g(Bo, &) — 2K (& — au).
By adding the two inequalities above together, we obtain
( y]ﬁ()l —y]K/ = J])+_ (1_yj30}l_yjK;‘dl)+‘-
, (35
Letd = dg_] - &;. Due to the Lipschitz continuity of the hinge loss and inequality (T7), we see

‘(1 — y]B([);J] _ yjK_/jél[ij])_i_ — (1 — ijO,l — yjK;‘&l>+

(OA‘%J] - dz)/K(dP] - &l) < m

= ‘(ijf[J_lj] + yjK;‘dE_j]) - (%‘Bo,z + yjK’jdlﬂ

<I85," = Boal + K| o
Sﬂo,z —Bos + ’K;ﬂ‘

<851 Bou+ [(K K3 K0

<Bos— Boa + VBVY'KY,

where the last inequality is from Cauchy-Schwartz inequality. Let ¢; = ﬁg‘ ,— By ;- By inequalities (33)

and (36), we see,
(1 + VBVI'KD),
which gives ¥ € WV where

/ \/B
VvV < .
{0 Ko 16n 2)\2 + 2TL)\[ 477)\1

VK9 <

It follows that

ClB B
max ly: K9 <max‘<K K2 K? >‘ <maX\/>\/ Kv < Ton 2)\2 5y +4n/\l.
(37

For any j # i, from inequalities (34) and (37) we see
yKia 7 = yKi(a +9) < yiKj + max [y, K| < &,

yiKéq 7 = yiK (G + 9) > yKlon — max [yKid| > 7).

A.7 Proof of Theorem
The sub-gradient optimality condition of problem (T3] with respect to 3y ; and Key; gives
0c y Aor (P (A5 + Kiaf ™)) +2xa 7, vi (38)

For any j = 0,1,...,n, we see dg;i] = 0if ¢ = j. Thus we focus on i # j, where y; = gjz[j] by

its definition. If i € £, then inequality (20) implies 7 ],6’ 4 ¢/, < 1, then by expression (38),
OL(y [J](ﬂ[ Jl T K& A[ J])) _1and oz[ il _ y[j]/(QnAl).

If i € R, then inequality (20) implies " ]BO ; 1y ¢, > 1, then expression (38) gives OL(jY (ﬁo .
K/al 1)) = 0and ol = 0.



B Pseudocode

In Algorithm 3] we summarize the consolidated CV algorithm for solving the general SVM problems
with the bias term introduced in Section 3.

Algorithm 3 Consolidated cross-validation for general SVM problems

Imput: Ay > Xy > ... > A, K)y.
1: Obtain

A R
(Bo1, 1) = argmin — Z (1- B0 —uiKja), + Mad'Ka.
Bo€R,acR™ TV
2: forl=2,3,...,L do
3 Obtain iy and ¢, from equatlons (T4) for each i.
4:  Call Algorithm 2} with ¢;; and ¢, to obtain 607 ;and By ;.
5:  Obtain ¢;; and ¢, from LemmaHfor each i.
6:  Obtain ¢;; and et ;, from equation (T9) for each s.
7. Call Algor1thmlw1th ¢; and ¢ et ;; to obtain 50 , and 50 L
8

. Construct the sets £ and R according to Theorem LetS = (E~ U 7@)0.
9:  Construct the matrices I' and X.
10: forj=0,1,...,ndo

11: ifj > 0and &;; =0 then
12: Obtain (4, [ 7] AE_J]) = (Bor, ).
13: else _
14: Constmct the vector yll.
15: Obtain 6 7 and 77[ 7 by solving
: Ly (8L Loy
= 1— 328" + 1 —K/H —y'ry+ \9'S
BocRmens [HZ;( (Bo ™ +Tim + 5+ LT Tt A n
16: Obtain oll[fj } from expression (7) with £ and R.
17: end if
18:  end for
19: end for

Output: Boz, Qy, BA([)l_j}, and dg_j], foreachj=1,2,...,nandl =1,2,...,L.

C Scaling Consolidated CV to Large-Scale Data Analysis

Although the kernel SVM is one of the most powerful nonlinear learning algorithms with diverse
applications, one of its computational challenges is that storage and computation of the kernel matrix
can be very expensive. To further improve scalability, we can incorporate kernel approximation into
the existing consolidated CV algorithm. Specifically, random features (Rahimi and Recht, 2007)
or Nystrom subsampling (Rudi et al., 2015) can be applied in the exact leave-one-out formula of
the SVM to find a low-cost approximation of the kernel matrix. Integrating these approximation
techniques into our methods can further improve the numerical performance of ccvsvm.

C.1 Consolidated CV with Nystrom approaches

In this section, we describe how to incorporate Nystrém approaches into ccvsvm. Let f(x) be the
prediction function fitted on the training data. Let f[=7] (x) be the prediction function fitted on the
training data with the jth sample removed in the LOOCYV procedure. For sake of presentation, we
define f1-%(x) = f(x) to unify the notation of the training and the tuning of the SVM.

We have that f=7](x) = Dt dg;j]K(xi, x), where dg_j] = (~[1—lj}, e L ]) corresponds to

the solution of (3). According to Lemma we know that alternatively f 71(x) can be obtained
by flTl(x) = 3, O‘E_l 1K (x;,x), where aE = @71 a7y s obtained by solving a

n,



surrogate problem (@) with the full dataset. This is due to the result of Lemman 1| that al -

@, al 06l el )y

We can perform Nystrom approximation of f (7] (x) to further improve the numerical performance.
Specifically, we have {x1,...,X,} as n observations of the training set. Let {X1,...,%X,,} be a
subset of m randomly selected observations (m < n) from the training set. Define an n X m matrix
K. with (K, )i; = K(x3,%;) and let Koy, be an m x m matrix with (K, ) 1 = K(xj7 Xk)

fori € {1,...,n} and j,k € {1,...,m}. We can apply Nystrom approximation fl-7(x) ~

Dy 6[ 7] K(xi7 x) where ,@Eij] = (BLIJ - 7BT[nj]) is the solution of the minimization problem:
] o . I ~[4] ’ Igemm
B, © = argmin | — Z 1 -3 (Knm)iB) +NBK™3|, (39)
BerR™ | M +

where (K, ); is the ith row of K,,,,,. Compared with (@) which involves the full kernel matrix
K, (39) involves smaller matrix K, and K,,,,. With the introduction of v = (Kmm)l/ 23 and
z; = (Kpm) (K )1/ 2 where K is the Moore—Penrose inverse of matrix K,,,,,,, problem

mm mm
can be further convert into a ridge penalized linear problem with the hinge loss:

L . 1 n
'yl[ i argmin l Z (1 — Z[J] ) + N|vI3 (40)

n
~ER™ pat

As a remark, the above Nystrom approach is achieved in a consolidated way for the complete data

solution f and all LOOCYV solutions f [_j], because the kernel matrix is the same due to the exact
leave-one-out formula.

C.2 Consolidated CV with random features

Alternatively, one can use random features (Rahimi and Recht, [2007) to approximate the kernel
matrix. Suppose that we consider shift-invariant kernels that satisfy K (x,y) = K(x —y). In this
work we use the radial kernel K(x,y) = exp(—c||x — y||3). The kernel can be approximated
by K(x,y) = (p(x), ¢(y)), where an explicit randomized feature mapping ¢ : IRP — IR™ is
obtained by sampling from a distribution defined by the inverse Fourier transformation. Specifically,
©(x) = cos(w'x + b) where w is drawn from N(0, 20) and b is drawn uniformly from [0, 27]. In
order to to achieve computational efficiency, the number of random features m is chosen to be larger
than the original sample dimension p but much smaller than the sample size n. We can use random
features to approximate the leave-one-out prediction function f=7)(x) ~ (%—] ] ) ¢(x). Here the

coefficient 'Ayg_j I'can be obtained by solving the following approximate version of problem

e ) 1 n
A ﬂzargmmlz(l i) |+ Ml

n
~ER™ =

; (41)

where z; = ¢(x;)’ is the random features for the ith sample. We can see that (40) from the Nystrém
approach and from the random-feature approach essentially share the same form, except that
z;’s in the two problems represent different variables.

C.3 Consolidated algorithm for solving problem (#0) and (41)

In the previous sections, we have shown that both Nystrom approximation and random features
transform the original kernel SVM into linear SVM problems, i.e., (@0) and @I). We now give a
consolidated algorithm to solve the problem for all j = 0,1,2,... n.

With a given small 7, we first give the smoothed SVM loss,

0 u>147,
Ly(u)=1¢ (u (1—|—7'))2/(4T) l-T<u<l+m,
1-— u<l-—r.



For each 7 = 0,1,2,...,n, we develop a proximal gradient descent algorithm which updates
ry(_j:t"l‘l) by

,7(—j,t+1) — ,Y(—M) _ nTP_l(Z/s + 2/\17(_j’t)),
fort =0,1,2,... until convergence, where

P =77+ 2n\7l,

and s is an n-vector whose ith entry is gjl[j ]L’T (gjz[j Iz 'y(_j’t)) /n. We keep decreasing 7 and repeat
the above procedure until all the solutions satisfy the KKT conditions of problem (#0).

In this algorithm, note the matrix inversion does not depend on j, so the computational cost is shared
by all LOOCYV computations.

D R Packages, Simulations, and Benchmark Data Sets

R packages:

1. ccvsvm:
https://myweb.uiowa.edu/boxwang/index.html#software

2. magicsvm:
https://myweb.uiowa.edu/boxwang/index.html#software

3. kernlab:
https://cran.r-project.org/web/packages/kernlab/index.html

4. LIBSVM:
https://cran.r-project.org/web/packages/el1071/index.html

Simulation code: https://anonymous.4open.science/r/2022-0764/
Data:

e arrhythmia:
http://archive.ics.uci.edu/ml//datasets/Arrhythmia

* australian:
http://archive.ics.uci.edu/ml/datasets/statlog+(australian+tcredit+
approval)

* chess:
https://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.
+King-Pawn)

* heart:
https://archive.ics.uci.edu/ml/datasets/statlog+(heart)

* leuk:
https://rdrr.io/cran/MASS/man/leuk.html

* malaria:
https://www.nature.com/articles/npre.2011.5929.1.pdf?origin=ppub

e musk:
https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)

* sonar:
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,
+Mines+vs.+Rocks)

¢ valley:
http://archive.ics.uci.edu/ml/datasets/hill-valley
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