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ABSTRACT

Diffusion models have demonstrated remarkable capabilities in image synthe-
sis and related generative tasks. Nevertheless, their practicality for low-latency
real-world applications is constrained by substantial computational costs and la-
tency issues. Quantization is a dominant way to compress and accelerate dif-
fusion models, where post-training quantization (PTQ) and quantization-aware
training (QAT) are two main approaches, each bearing its own properties. While
PTQ exhibits efficiency in terms of both time and data usage, it may lead to di-
minished performance in low bit-width settings. On the other hand, QAT can
help alleviate performance degradation but comes with substantial demands on
computational and data resources. To capitalize on the advantages while avoid-
ing their respective drawbacks, we introduce a data-free, quantization-aware and
parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed
EfficientDM, to achieve QAT-level performance with PTQ-like efficiency. Specifi-
cally, we propose a quantization-aware variant of the low-rank adapter (QALoRA)
that can be merged with model weights and jointly quantized to low bit-width. The
fine-tuning process distills the denoising capabilities of the full-precision model
into its quantized counterpart, eliminating the requirement for training data. To
further enhance performance, we introduce scale-aware LoRA optimization to
address ineffective learning of QALoRA due to variations in weight quantiza-
tion scales across different layers. We also employ temporal learned step-size
quantization to handle notable variations in activation distributions across denois-
ing steps. Extensive experimental results demonstrate that our method signifi-
cantly outperforms previous PTQ-based diffusion models while maintaining sim-
ilar time and data efficiency. Specifically, there is only a marginal 0.05 sFID
increase when quantizing both weights and activations of LDM-4 to 4-bit on
ImageNet 256 × 256. Compared to QAT-based methods, our EfficientDM also
boasts a 16.2× faster quantization speed with comparable generation quality,
rendering it a compelling choice for practical applications. Code is available at
https://github.com/ThisisBillhe/EfficientDM.

1 INTRODUCTION

Diffusion models (DM) (Ho et al., 2022b; Dhariwal & Nichol, 2021; Rombach et al., 2022a; Ho
et al., 2022a) have demonstrated remarkable capabilities in image generation and related tasks.
Nonetheless, the iterative denoising process and the substantial computational overhead of the de-
noising model limit the efficiency of DM-based image generation. To expedite the image generation
process, numerous methods (Bao et al., 2022; Song et al., 2021; Liu et al., 2022; Lu et al., 2022) have
been explored to reduce the number of denoising iterations, effectively reducing the previously re-
quired thousands of iterations to mere dozens. However, the significant volume of parameters within
the denoising model still demands a substantial computational burden for each denoising step, re-
sulting in considerable latency, hindering the practical application of DM in real-world settings with
latency and computational resource constraints.
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Model quantization, which compresses weights and activations from 32-bit floating-point values
into lower-bit fixed-point formats, alleviating both memory and computational burdens. This ef-
fect can be increasingly pronounced as the bit-width decreases. For instance, leveraging Nvidia’s
CUTLASS (Kerr et al., 2017) implementation, an 8-bit model’s inference speed can be 2.03× faster
than that of a full-precision (FP) model, and the acceleration ratio reaches 3.34× for a 4-bit model.
Therefore, it possesses substantial potential for significantly compressing and accelerating diffu-
sion models, making them highly suitable for deployment on resource-constrained devices such as
mobile phones.

Nevertheless, the challenges associated with low-bit quantization for diffusion models have not re-
ceived adequate attention. Typically, model quantization can be executed through two predominant
approaches: post-training quantization (PTQ) and training-aware quantization (QAT). PTQ cali-
brates the quantization parameters with a small calibration dataset, which is time- and data-efficient.
However, they introduce substantial quantization errors at low bit-width. As illustrated in Figure 1 ,
when quantizing both weights and activations to 4-bit with the PTQ method (He et al., 2023a), diffu-
sion models fail to maintain their denoising capabilities. In contrast, QAT methods (Krishnamoorthi,
2018; Esser et al., 2019) can recover performance losses at lower bit-width by fine-tuning the whole
model. However, this approach requires significantly more time and computing resources compared
to PTQ method (He et al., 2023a), as evidenced by a 2.6× increase in GPU memory consumption
(31.4GB vs. 11.7GB) and a 18.9× longer execution time (54.5 GPU hours vs. 2.88 GPU hours)
when fine-tuning LDM-4 (Rombach et al., 2022a) on ImageNet 256 × 256. Moreover, in some
cases, it may be challenging or even impossible to obtain the original training dataset due to privacy
or copyright concerns.
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Figure 1: An overview of the
efficiency-vs-quality tradeoff across
various quantization approachs. Data
is collected on LDM-8 (Rombach
et al., 2022a) with 4-bit weights and
activations on LSUN-Churches. The
GPU memory consumption is visual-
ized by circle size.

In this paper, we introduce a data-free and parameter-
efficient fine-tuning framework for low-bit diffusion mod-
els, denoted as EfficientDM, which demonstrates the ca-
pability to achieve QAT-level performance while uphold-
ing PTQ-level efficiency during fine-tuning in terms of
data and time. The foundation of our approach lies in a
quantization-aware form of the low-rank adapter, as de-
picted in Figure 2b. This variant enables the joint quanti-
zation of LoRA weights with model weights, thereby ob-
viating additional storage and calculations. Compared to
previous QAT method (So et al., 2023), our fine-tuning
process is executed in a data-free manner, accomplished
by minimizing the mean squared error (MSE) between
the estimated noise of full-precision denoising model and
its quantized counterpart, as illustrated in Figure 2c, thus
eliminating the need for the original training dataset. Due
to quantization, the relationship between full-precision
LoRA weights and quantized updated model weights be-
comes step-like with step size, i.e., the quantization scale
parameter. Effective updates are mostly observed in lay-
ers with small scales, while other layers with larger scales
do not benefit. To address this, we introduce scale-aware
LoRA optimization that adaptively adjusts the gradient
scales of LoRA weights in different layers to ensure an ef-
fective optimization. Furthermore, we extend the learned
step size quantization (LSQ) method (Esser et al., 2019) into the denoising temporal domain for
activations, effectively mitigating quantization errors due to varying activation distributions across
time steps.

In summary, our contributions are as follows:
• We introduce EfficientDM, an efficient fine-tuning framework for low-bit diffusion models which

can achieve QAT performance with the efficiency of PTQ. The framework is rooted in the
quantization-aware form of low-rank adapters (QALoRA) and distills the denoising capabilities
of full-precision models into their quantized counterparts.

• We propose scale-aware LoRA optimization to alleviate the ineffective learning of QALoRA re-
sulting from substantial variations in weight quantization scales across different layers. We also
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Figure 2: An overview of the proposed EfficientDM fine-tuning framework. Here, sw and sx repre-
sent the learnable quantization scales for weights and activations, respectively. Compared to QLoRA
layer, both updated weights and activations in our QALoRA are quantized to enable efficient bit-
wise operations during inference. Fine-tuning is performed by minimizing the mean squared error
between the estimated noises of FP and quantized models.

introduce TALSQ, an extension of activation learned step size quantization within the temporal
domain to tackle the variation in activation distributions across denoising steps.

• Extensive experiments on CIFAR-10, LSUN and ImageNet demonstrate that our EfficientDM
reaches a new state-of-the-art performance for low-bit quantization of diffusion models.

2 RELATED WORK
Model quantization. Quantization is a widely employed technique for compressing and accelerat-
ing neural networks. Depending on whether fine-tuning of the model is necessitated, this method
can be categorized into two approaches: post-training quantization (PTQ) (Nagel et al., 2020; Li
et al., 2021; Wei et al., 2022; Lin et al., 2022) and quantization-aware training (QAT) (Esser et al.,
2019; Gong et al., 2019; Nagel et al., 2022; Louizos et al., 2019; Jacob et al., 2018; Zhuang et al.,
2018; He et al., 2023b). PTQ does not involve fine-tuning the model’s weights and only requires a
small dataset to calibrate the quantization parameters. This approach is fast and data-efficient but
may result in suboptimal performance especially when employing low bit-widths. Recent advance-
ments in reconstruction-based PTQ methods (Li et al., 2021; Wei et al., 2022) utilize second-order
error analysis and gradient descent algorithms to optimize quantization parameters. Such methods
demonstrate robust performance, which can perform well even at 4-bit on image classification tasks.
On the other hand, QAT entails fine-tuning the model weights to achieve low-bit quantization while
minimizing performance degradation. Nevertheless, the substantial data prerequisites and high com-
putational overhead render QAT much slower than PTQ. For instance, when applied to ResNet-18
model for the ImageNet classification task, it is reported to be 240× slower than the PTQ method (Li
et al., 2021). This hindrance poses challenges to its widespread adoption, particularly for models
with massive parameters.

Given the demand to compress diffusion models and accelerate their sampling, quantization is con-
sidered an effective approach. Currently, most quantization work on diffusion models has focused
on PTQ (Shang et al., 2023; Li et al., 2023; He et al., 2023a). Since diffusion models can gener-
ate samples from random Gaussian noise, these methods are conducted in a data-free manner, with
the calibration sets collected from the denoising process. For example, PTQ4DM (Shang et al.,
2023) and Q-Diffusion (Li et al., 2023) apply reconstruction-based PTQ methods to diffusion mod-
els. PTQD (He et al., 2023a) further decomposes quantization noise and fuses it with diffusion
noise. Nevertheless, these methods experience significant performance degradation at 4-bit or lower
bit-widths. Recent work TDQ (So et al., 2023) fine-tunes diffusion models in a QAT manner and
employs additional MLP modules to estimate quantization scales for each step. However, it requires
the original dataset and training the entire quantized model with these extra MLP modules, incurring
significant costs. In contrast, our approach introduces only a few trainable quantization scales per
layer and can attain QAT-level performance with PTQ-level efficiency.

Parameter-efficient fine-tuning. Parameter-Efficient Fine-Tuning (PEFT) has emerged as a potent
alternative to full fine-tuning, which tunes a small subset of parameters while keeping the vast ma-
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jority frozen, to ease storage burden of large pretrained models. Noteworthy approaches within this
realm include Prefix Tuning (Li & Liang, 2021; Liu et al., 2021), Prompt Tuning (Lester et al., 2021;
Wang et al., 2022), and Low-rank adapters (LoRA) (Hu et al., 2022; Zhang et al., 2022), which have
found extensive utility within large language models (LLMs).

Among these PEFT methods, LoRA (Hu et al., 2022) keeps the pre-trained weights fixed and learns
a set of low-rank decomposition matrices as updates to the weights. This method substantially
reduces the number of trainable parameters, and does not impose additional computational overhead
due to re-parameterization. QLoRA (Dettmers et al., 2023) combines this technique with quantized
LLMs, further curtailing memory requirements while mitigating performance degradation brought
by quantization. However, its full-precision LoRA weights cannot be integrated with quantized
model weights, leading to extra storage and computational costs for deployment. In contrast, we
propose to merge LoRA weights with full-precision model weights and jointly quantize them to the
target bit-width, enabling their seamless integration without incurring any additional overhead for
deployment. Additionally, we identify and address the issue of ineffective learning of LoRA weights
stemming from the variations in weight quantization scales, further enhancing the performance of
low-bit diffusion models.

3 BACKGROUND

3.1 DIFFUSION MODELS

Diffusion models (Song et al., 2021; Ho et al., 2020) are a class of generative models that iteratively
introduce noise to real data x0 through a forward process and generate high-quality samples via a re-
verse denoising process. Generally, the forward process is a Markov chain, which can be formulated
as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt governs the magnitude of the introduced noise. The reverse process adheres to a similar
form, where diffusion models approximate the distribution of q(xt−1|xt) via variational inference
by learning a Gaussian distribution:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)
where µθ and Σθ are two neural networks. When these neural networks are subjected to quan-
tization, the resulting estimated statistics of the Gaussian distribution can be inaccurate, thereby
compromising the efficacy of the denoising process and the overall quality of the generated sam-
ples. Our study is focused on introducing an efficient and powerful fine-tuning framework to narrow
or even eliminate the performance gap between low-bit diffusion models and their full-precision
counterparts.

3.2 MODEL QUANTIZATION

Model quantization represents model parameters and activations with low-precision integer values
to reduce memory footprint and accelerate the inference. Given a floating-point vector x, it can be
uniformly quantized as follows:

x̂ = QU (x, s) = clip(⌊x
s
⌉, l, u) · s. (3)

Here, ⌊·⌉ is the round operation, s is the trainable quantization scale, and l and u are the lower and
upper bound of quantization thresholds, which are determined by the target bit-width. To overcome
the non-differentiability of the round operation during QAT, straight-through estimator (STE) is
widely adopted to estimate the gradient:

∂L
∂x

≈ ∂L
∂x̂

· 1l≤ x
s ≤u, (4)

where 1A represents an indicator function that takes on the value 1 if the element is in the set A, and
the value 0 vice versa.
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4 EFFICIENT QUANTIZATION-AWARE FINE-TUNING OF DIFFUSION MODELS

In this section, we propose an efficient fine-tuning framework for diffusion models with both weights
and activations quantized, possessing the efficiency of PTQ and the accuracy of QAT. The proposed
framework, dubbed EfficientDM, is depicted in Figure 2. It consists of a quantization-aware low-
rank adapter and a noise distillation strategy, delivering parameter-efficient and data-free fine-tuning.
Moreover, it is also equipped with scale-aware LoRA optimization and a temporal-aware quantizer
for improved performance. We elaborate each design as follows.

Quantization-aware low-rank adapter. Low-rank adapter (LoRA) fine-tuning constrains the up-
date of the model parameters to possess a low intrinsic rank, denoted as r. Given a pretrained linear
module Y = XW0, where X ∈ Rb×cin and W0 ∈ Rcin×cout , with b representing the batch size,
cin and cout representing the number of input and output channels, respectively, LoRA fixes the
original weights W0 and introduces updates as follows:

Y = XW0 +XBA, (5)
where B ∈ Rcin×r and A ∈ Rr×cout are the learnable two low-rank matrices with r ≪
min(cin, cout).

Nevertheless, this approach incurs limitations when both weights and activations are quantized,
denoted by Ŵ0 and X̂, respectively. In this case, the inner product between Ŵ0 and X̂ can be
efficiently implemented with bit-wise operations, whereas the operations involving BA and X̂ are
computationally expensive during inference as BA is full-precision and has the same size as W0.

To address this, we propose Quantization-aware Low-rank Adapter (QALoRA), where the LoRA
weights are first merged with FP model weights and then jointly quantized to the target bit-width, as
depicted in Figure 2b. Formally, the QALoRA is defined as follows:

Y = QU (X, sx)QU (W0 +BA, sw) = X̂Ŵ, (6)

where sw denotes the channel-wise quantization scale for weights and sx is the layer-wise quanti-
zation scale for activations. After the fine-tuning process, only quantized updated model weights
Ŵ need to be saved. Notably, our approach can be readily integrated with QLoRA (Dettmers et al.,
2023) by substituting W0 with Ŵ0 to further reduce memory footprint.

Data-free fine-tuning for diffusion models. Diffusion models require access to large and diverse
datasets for effective training. Obtaining such datasets can be challenging due to their sheer size,
privacy concerns, or copyright restrictions. To alleviate the dependency on the original dataset, we
propose a data-free fine-tuning approach that distills the denoising capabilities of a full-precision
model into its quantized counterpart. Specifically, we input the same noise xt to both FP and quan-
tized denoising models at denoising step t and minimize the mean squared error (MSE) between
their denoising results:

Lt = ∥µθ(xt, t)− µ̂θ(xt, t)∥2 , (7)
where µθ(xt, t) and µ̂θ(xt, t) denote the denoising results of the FP and quantized models for the
denoising step t, respectively. The input data xt is obtained by denoising random Gaussian noise
xT ∼ N (0, 1) with FP model iteratively for T − t steps, as illustrated in Figure 2c.

To facilitate the training of QALoRA, we further address the following technical challenges:

Variation of weight quantization scales across layers. As demonstrated in Eq. (6), due to the
quantization process, the relationship between full-precision LoRA weights BA and quantized up-
dated weights Ŵ follows a step function, where the step size is exactly equal to the quantization
scale sw, and W0 serves as a fixed offset. This relationship is visually presented in Figure 3a. Con-
sequently, while the full-precision LoRA weights are continuously optimized during the fine-tuning
process, they need to be large enough to update the quantized model weights, otherwise they will be
diminished by the round operation within the quantization process, as referred to Eq. (3) and (6).
As shown in Figure 3b and “Scale-agnostic training” in Figure 3c, fine-tuning the LoRA weights
with limited iterations only yields effective updates for a few layers with relatively small scales. For
other layers, their quantization scales are too substantial for LoRA weights to take effect due to the
round operation. Alternative approaches, such as directly amplifying the learning rate, may impede
the convergence process.
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Figure 3: The motivation and effect of scale-aware LoRA optimization. Data is collected from
the 4-bit LDM-4 model. (a): Due to step-like relationship between BA and Ŵ, BA needs to be
large enough to update model weights. Data is collected from the first channel in the 12th layer.
(b): Significant disparity in weight quantization scales across layers. (c): Mean absolute value
of quantized weight updates (Ŵ-Ŵ0) for each layer. Most of them are zero under scale-agnostic
training, indicating full-precision LoRA weights are too small to update quantized model weights.
The proposed scale-aware LoRA optimization facilitates a more equitable distribution of quantized
weight updates across layers.

To facilitate the optimization of LoRA weights, we consider the ratio of

R =
∇BAL
sw

(8)

should be roughly consistent in each layer, where sw represents the averaged weight quantization
scale across channels. This can be achieved by simply multiplying the gradient of LoRA weights
by this average weight quantization scale during the back-propagation phase. As shown in Fig-
ure 3c, optimizing LoRA in the scale-aware approach enables effective training across the majority
of layers.

Variation of activation distribution across steps. Previous research on diffusion models (Shang
et al., 2023; Li et al., 2023; So et al., 2023) has identified a pronounced variability in activation distri-
butions at different time steps, which is also presented in Appendix C. This variability poses substan-
tial challenges to the quantization of diffusion models. Notably, existing methods proposed to ad-
dress this issue aim to either find a set of quantization parameters applicable to all time steps (Shang
et al., 2023) or employ additional MLP module to estimate quantization parameters for each indi-
vidual time step and layer (So et al., 2023), which can be either suboptimal or cumbersome.

Inspired by LSQ (Esser et al., 2019), a technique where quantization scales are optimized along-
side other trainable parameters through the gradient descent algorithm, we allocate temporal-aware
quantization scales for activations and optimize them individually for each step, which we refer to
as Temporal Activation LSQ (TALSQ):

Sx =
{
s0x, s

1
x, . . . , s

T−1
x

}
, (9)

where T is the number of denoising steps for the fine-tuning. It is noteworthy that recent advance-
ments in efficient samplers have significantly reduced the number of sampling steps. Therefore,
TALSQ introduces only a few trainable parameters for a single layer, which is negligible even com-
pared to LoRA weights (which generally have thousands of parameters per layer). After fine-tuning,
we interpolate the learned temporal quantization scales to deal with the gap of sampling steps be-
tween fine-tuning and inference.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Models and metrics. To verify the effectiveness of the proposed method, we evaluate it with two
widely adopted network structures: DDIM (Song et al., 2021) and LDM (Rombach et al., 2022b).
For experiments with DDIM, we evaluate it on CIFAR-10 dataset (Krizhevsky & Hinton, 2009).
Experiments with LDM are conducted on two standard benchmarks: ImageNet (Deng et al., 2009)
and LSUN (Yu et al., 2015). The performance of diffusion models is evaluated with Inception Score
(IS), Fréchet Inception Distance (FID) (Heusel et al., 2017). For experiments on ImageNet datasets,
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we also report sFID (Salimans et al., 2016) and Precision for reference. Results are obtained by
sampling 50, 000 images and evaluating them with ADM’s TensorFlow evaluation suite (Dhariwal
& Nichol, 2021). The rank of the adapter is set to 32 in our experiments. For the proposed Ef-
ficientDM framework, we fine-tune LoRA weights and quantization parameters for 16K iterations
with a batchsize of 4 on LDM models and 64 on DDIM models, respectively. The number of de-
noising steps for the fine-tuning is set to 100. We employ Adam (Kingma & Ba, 2014) optimizers
with a learning rate of 5e−4.

Quantization settings. The notion ‘WxAy’ is employed to represent the bit-widths of weights ‘W’
and activations ‘A’. We use channel-wise quantization for weights and layer-wise quantization for
activations, as is a common practice. The input embedding and output layers in the model employ a
fixed W8A8 quantization, whereas other convolutional and fully-connected layers are quantized to
the target bit-width with a QALoRA module.

5.2 MAIN RESULTS

5.2.1 EVALUATION OF UNCONDITIONAL GENERATION

We begin our evaluation by performing unconditional generation on CIFAR-10 dataset and compare
our results against well-established quantization methods, including both PTQ-based (Shang et al.,
2023; Li et al., 2023) and QAT-based (Esser et al., 2019; So et al., 2023) contenders. The results are
presented in Table 1. Recent PTQ-based method (Li et al., 2023) performs well under W8A8 pre-
cision but exhibits performance degradation under W4A8 precision. Recent QAT-based method (So
et al., 2023) surpasses all PTQ-based approaches under W4A8 precision but necessitates access to
the original training dataset and incurs a substantial 17.8× increase in training time. In contrast, our
proposed EfficientDM demonstrates superior performance even compared to previous QAT methods
under both W8A8 and W4A8 precisions, while incurring significantly lower time costs. Notably,
under W4A8 precision, we achieve an FID of 3.80, outperforming QAT-based method TDQ (So
et al., 2023) by 0.33.

Additional experimental results on LSUN dataset can be found in Appendix A.

Table 1: Performance comparisons of quantized diffusion models on CIFAR-10 32 × 32. Results
are obtained by DDIM sampler with 100 steps.

Method Bit-width
(W/A) Training data GPU Time

(hours)
Model Size

(MB) IS↑ FID↓
FP 32/32 50K - 136.4 9.12 4.14

PTQ4DM 8/8 0 0.95 34.26 9.31 14.18
Q-Diffusion 8/8 0 0.95 34.26 9.48 3.75

LSQ 8/8 50K 13.89 34.26 9.62 3.87
TDQ 8/8 50K 16.99 34.30 9.58 3.77
Ours 8/8 0 0.97 34.30 9.38 3.75

PTQ4DM 4/8 0 0.95 17.22 9.31 10.12
Q-Diffusion 4/8 0 0.95 17.22 9.12 4.93

LSQ 4/8 50K 13.89 17.22 9.38 4.53
TDQ 4/8 50K 16.99 17.26 9.59 4.13
Ours 4/8 0 0.97 17.26 9.41 3.80

5.2.2 EVALUATION OF CONDITIONAL GENERATION ON IMAGENET 256× 256

We also evaluate the performance of our method over LDM-4 on large-scale ImageNet 256 × 256
dataset for class-conditional image generation, as presented in Table 2. Experiments are conducted
with three distinct samplers, including DDIM (Song et al., 2021), PLMS (Liu et al., 2022) and DPM-
Solver (Lu et al., 2022). Importantly, we offer a comprehensive evaluation based on four metrics (IS,
FID, sFID, and Precision), which should be collectively considered to ensure a robust assessment
of image quality. In W8A8 quantization, recent PTQ-based methods (Li et al., 2023; He et al.,
2023a) exhibit performance levels with negligible degradation. However, when the bit-width drops
to W4A8, performance degradation becomes evident for them. For instance, when employing the
DDIM sampler, Q-Diffusion experiences a decline of 27.8 in IS and a decrease of 2.6% in precision.
The introduction of EfficientDM yields a significant recovery in performance, with a merely 2.4 IS
decrease compared with FP method. As the bit-width decreased, the performance enhancements
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of EfficientDM became more pronounced. In the case of W4A4 quantization, none of the diffusion
models quantized with PTQ-based methods is able to denoise images, regardless of the sampler used.
In contrast, models quantized by our approach manage to maintain an exceptionally low FID of 6.17
and a sFID of 7.75 for the DDIM sampler, respectively. Leveraging the capabilities of EfficientDM,
we push the quantization of diffusion model weights to 2-bit for the first time, resulting in a marginal
increase of less than 1 in the sFID metric when using the DDIM sampler. Moreover, we present the
real-time speed up of EfficientDM over LDM-4 in Appendix B.

Table 2: Performance comparisons of fully-quantized LDM-4 models on ImageNet 256×256. ‘N/A’
denotes failed image generation.

Model-Sampler Method Bit-width
(W/A) IS↑ FID↓ sFID↓ Precision↑

(%)

LDM-4 — DDIM (20 steps)

FP 32/32 364.73 11.28 7.70 93.66
Q-Diffusion 8/8 350.93 10.60 9.29 92.46

PTQD 8/8 359.78 10.05 9.01 93.00
Ours 8/8 362.34 11.38 8.04 93.77

Q-Diffusion 4/8 336.80 9.29 9.29 91.06
PTQD 4/8 344.72 8.74 7.98 91.69
Ours 4/8 353.83 9.93 7.34 93.10

Q-Diffusion 4/4 N/A N/A N/A N/A
PTQD 4/4 N/A N/A N/A N/A
Ours 4/4 250.90 6.17 7.75 86.02

Q-Diffusion 2/8 49.08 43.36 17.15 43.18
PTQD 2/8 53.36 39.37 15.14 45.89
Ours 2/8 175.03 7.60 8.12 78.90

LDM-4 — PLMS (20 steps)

FP 32/32 379.19 11.71 6.08 94.22
Q-Diffusion 8/8 373.49 11.25 5.75 93.84

PTQD 8/8 374.50 11.05 5.45 94.00
Ours 8/8 376.06 11.78 6.21 94.27

Q-Diffusion 4/8 358.13 9.67 5.74 92.71
PTQD 4/8 357.66 9.24 5.42 92.46
Ours 4/8 367.22 10.26 5.11 93.44

Q-Diffusion 4/4 N/A N/A N/A N/A
PTQD 4/4 N/A N/A N/A N/A
Ours 4/4 185.18 10.95 11.65 75.61

Q-Diffusion 2/8 56.73 34.71 12.00 49.10
PTQD 2/8 58.08 31.87 10.32 50.73
Ours 2/8 182.63 6.51 6.99 79.43

LDM-4 — DPM-Solver (20 steps)

FP 32/32 373.12 11.44 6.85 93.67
Q-Diffusion 8/8 365.64 10.78 6.15 92.89

PTQD 8/8 368.04 10.55 6.19 92.99
Ours 8/8 370.22 11.21 6.83 93.50

Q-Diffusion 4/8 351.00 9.36 6.36 91.50
PTQD 4/8 354.94 8.88 6.73 92.03
Ours 4/8 359.16 9.82 6.92 92.67

Q-Diffusion 4/4 N/A N/A N/A N/A
PTQD 4/4 N/A N/A N/A N/A
Ours 4/4 223.40 7.54 9.47 80.06

Q-Diffusion 2/8 50.12 39.08 13.75 44.67
PTQD 2/8 51.51 38.32 12.90 46.48
Ours 2/8 165.76 8.55 9.71 76.76

5.3 ABLATION STUDY

To assess the efficacy of each proposed component, we conduct a comprehensive ablation study on
the ImageNet 256× 256 dataset, employing the LDM-4 model with a DDIM sampler, as presented
in Table 3. We initiate the evaluation with a baseline PTQD (He et al., 2023a), which is rooted
in the reconstruction-based PTQ method (Li et al., 2021). However, it failed to denoise images
when operating under a W4A4 bit-width, yielding an exceedingly high FID score of 259.73. This
result underscores the inadequacy of the PTQ method in this particular low bit-width. In sharp
contrast, our proposed efficient fine-tuning method QALoRA showcases significant performance
improvement with a FID of 11.42, without imposing additional time costs. By incorporating scale-
aware LoRA optimization, we achieve an FID reduction of 1.87 and a sFID reduction of 10.95,
demonstrating that the LoRA weights are effectively trained to update the quantized weights. By
further introducing TALSQ that learns quantization parameters for each denoising step, our method
achieves a remarkable sFID of 7.75, putting it in contention with even full-precision models.

Moreover, we conduct a comparative efficiency analysis of PTQ, QAT and our approach across
data, GPU memory, and time consumption, as demonstrated in Table 4. The PTQ method (He et al.,

8



Published as a conference paper at ICLR 2024

Table 3: The effect of different components proposed in the paper. The experiment is conducted
over LDM-4 model on ImageNet 256× 256.

Method Bit-width
(W/A)

Time Costs
(GPU hours) IS↑ FID↓ sFID↓ Precision↑

(%)
FP 32/32 - 364.73 11.28 7.71 93.66

PTQD 4/4 2.88 2.16 259.73 329.01 0.00
QALoRA 4/4 2.60 156.15 11.42 24.18 78.36

+scale-aware LoRA optimization 4/4 2.60 172.96 9.55 13.23 81.87
+TALSQ 4/4 3.05 250.90 6.17 7.75 86.02

2023a) emerges as the most efficient in terms of data, time and memory consumption. However, it
cannot maintain denoising capabilities at W4A4 precision. On the other hand, QAT method (Park
et al., 2022), despite achieving lower FID, necessitates the original training data and incurs a 2.2×
increase in memory resources (16950 MB vs. 7538 MB), and a 16.8× increase in time consumption
(18.5 GPU hours vs. 1.1 GPU hours) during the quantization of the LDM-8 model on the LSUN-
Churches dataset. Comparatively, our proposed approach offers a compelling alternative. It operates
without the need for training data and incurs less memory and time consumption compared to the
QAT method. Specifically, when quantizing DDIM models on CIFAR-10 dataset, our method attains
a FID that is comparable to that of the QAT method (10.48 vs. 7.30), while enjoying similar time
efficiency to the PTQ method (0.97 GPU hours vs. 0.95 GPU hours), rendering it a practical choice
for real-world applications. Additional ablation experiments can be found in Appendix D.

Table 4: Efficiency comparisons of various quantization methods across training data, GPU memory
and time. ‘OOM’ denotes out-of-memory on RTX3090 GPU. We employ DDIM models for CIFAR-
10 dataset and LDM models for other datasets. Both weights and activations of models are quantized
to 4-bit.

Method Dataset Training data GPU Memory
(MB)

GPU Time
(hours) FID

PTQ (He et al., 2023a)
CIFAR-10 0 4334 0.95 181.05

LSUN-Churches 0 7538 1.10 321.90
ImageNet 256× 256 0 11942 2.88 259.73

QAT (Esser et al., 2019)
CIFAR-10 50K 9974 13.89 7.30

LSUN-Churches 126K 16950 18.50 9.08
ImageNet 256× 256 1.2M OOM - -

Ours
CIFAR-10 0 9554 0.97 10.48

LSUN-Churches 0 10980 1.14 14.34
ImageNet 256× 256 0 19842 3.05 6.17

6 CONCLUSION

In this paper, we have proposed EfficientDM, an efficient data-free fine-tuning framework for low-
bit diffusion models. To commence, we have introduced a quantization-aware variant of low-rank
adapters, which can be jointly quantized with model weights, enabling both efficient fine-tuning and
low-bit inference. To mitigate the reliance on original datasets, we have employed a distilling frame-
work that transfers the noise estimation capabilities of a full-precision model to its quantized coun-
terpart. To address ineffective learning arising from variations in weight quantization parameters
across layers, we have introduced scale-aware LoRA optimization, which adaptively adjusts the gra-
dient scales of LoRA weights in different layers. Moreover, we have introduced TALSQ to address
the activation distribution variations across steps. Our extensive experiments have demonstrated the
superiority of EfficientDM over previous post-training quantized diffusion models. Notably, even
when quantizing both weights and activations of LDM-4 to 4-bit on ImageNet 256 × 256, where
previous methods failed to denoise, EfficientDM exhibited only a marginal 0.05 increase in sFID.
Moreover, our method has demonstrated superior efficiency compared to QAT-based approaches
with minor performance gap, making it a practical choice for real-world applications.

Limitations and future work. While EfficientDM can attain QAT-level performance using PTQ-
level data and time efficiency, it employs a gradient descent algorithm for optimizing QALoRA
parameters. Compared to PTQ-based methods, this places higher demands on GPU memory, partic-
ularly with diffusion models featuring massive parameters. To address this, memory-efficient opti-
mization methods can be integrated. Moreover, efficient diffusion models for tasks such as video or
3D generation are still under explored.

9



Published as a conference paper at ICLR 2024

Acknowledgement This work was supported by National Key Research and Development Program
of China (2022YFC3602601).

REFERENCES

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. In ICLR, 2022.
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Appendix

A EVALUATION OF UNCONDITIONAL GENERATION ON LSUN

A.1 EVALUATION WITH 100 DENOISING STEPS

In this section, we expand our evaluation of unconditional image generation using LDM mod-
els (Rombach et al., 2022a) on high-resolution LSUN-Bedrooms and LSUN-Churches datasets,
as illustrated in Table A. The full-precision LDM models are 7.6× larger in size compared to
DDIM (Song et al., 2021) models. Therefore most methods focus on PTQ. Under W8A8 quan-
tization, our approach surpasses all previous methods, including the QAT-based LSQ (Esser et al.,
2019), demonstrating superior performance in terms of FID. Under W6A6 quantization, existing
PTQ-based methods all exhibit significant performance degradation. For instance, on the LSUN-
Bedrooms dataset, the state-of-the-art PTQ-based method ADP-DM (Wang et al., 2023) experiences
a substantial FID increase of 6.45, whereas our method reduces FID increase to a mere 0.19. Un-
der W4A4 quantization, while all other PTQ-based methods fail to generate meaningful images,
our approach still achieves a FID of 10.60 on LSUN-Bedrooms, surpassing the performance of
PTQ4DM (Shang et al., 2023) at W6A6 bit-width. Although LSQ, a QAT-based method, attains a
lower FID at W4A4 and W6A6 bit-widths, it demands the original training dataset and consumes
considerably more time and computing resources. In contrast, our approach achieves a FID that is
only 0.07 higher than LSQ at W6A6 bit-width, striking a better balance between performance and
efficiency.

Table A: Performance comparisons of unconditional image generation on LSUN datasets. ‘N/A’
denotes failed image generation.

LSUN-Bedrooms
LDM-4 (steps = 100)

LSUN-Churches
LDM-8 (steps = 100)

Method Bitwidth
(W/A)

Model Size
(MB) IS↑ FID↓ Method Bitwidth

(W/A)
Model Size

(MB) IS↑ FID↓
FP 32/32 1045.4 2.29 3.43 FP 32/32 1125.2 2.70 4.08

PTQ4DM 8/8 261.67 2.21 4.75 PTQ4DM 8/8 281.85 2.52 5.54
Q-Diffusion 8/8 261.67 2.19 4.67 Q-Diffusion 8/8 281.85 2.53 4.87
ADP-DM 8/8 261.67 2.35 3.88 ADP-DM 8/8 281.85 2.69 4.02

LSQ 8/8 261.67 2.18 3.23 LSQ 8/8 281.85 2.68 4.06
Ours 8/8 261.69 2.27 2.98 Ours 8/8 281.89 2.71 4.01

PTQ4DM 6/6 196.33 2.08 11.10 PTQ4DM 6/6 211.53 2.46 11.05
Q-Diffusion 6/6 196.33 2.11 10.10 Q-Diffusion 6/6 211.53 2.47 10.90
ADP-DM 6/6 196.33 2.27 9.88 ADP-DM 6/6 211.53 2.67 6.90

LSQ 6/6 196.33 2.16 3.55 LSQ 6/6 211.53 2.66 5.04
Ours 6/6 196.36 2.28 3.62 Ours 6/6 211.57 2.82 6.29

PTQ4DM 4/4 130.99 N/A N/A PTQ4DM 4/4 141.20 N/A N/A
Q-Diffusion 4/4 130.99 N/A N/A Q-Diffusion 4/4 141.20 N/A N/A
ADP-DM 4/4 130.99 N/A N/A ADP-DM 4/4 141.20 N/A N/A

LSQ 4/4 130.99 2.11 6.17 LSQ 4/4 141.20 2.63 9.08
Ours 4/4 131.02 2.27 10.60 Ours 4/4 141.24 2.81 14.34

A.2 EVALUATION WITH 20 DENOISING STEPS

In this section, we perform experiments on LSUN-Bedrooms with 20 steps to validate the effec-
tiveness of interpolated quantization scales, as shown in Table B. Notably, our approach introduces
only a slight FID increase of 0.01 and 0.64 for W8A8 and W6A6 bit-widths, respectively, which
demonstrates the effectiveness the interpolated quantization scales in the fewer-step regime.

B DEPLOYMENT EFFICIENCY

In this section, we evaluated the latency of matrix multiplication and convolution operations in both
quantized and full-precision diffusion models, utilizing an RTX3090 GPU and the CUTLASS (Kerr
et al., 2017) implementation, as demonstrated in Table C. When both weights and activations are
quantized to 8-bit, we observe a 3.74× reduction in model size and a 2.03× reduction in latency
compared to their full-precision counterparts. Furthermore, with weights and activations quantized
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Table B: Performance of unconditional image generation on LSUN-Bedrooms with 20 steps. ‘N/A’
denotes failed image generation.

Method Bitwidth
(W/A)

Model Size
(MB) IS↑ FID↓

FP 32/32 1045.4 2.21 9.74
Q-Diffusion 8/8 261.67 2.13 10.10

Ours 8/8 261.69 2.20 9.75
Q-Diffusion 6/6 196.33 3.78 149.39

Ours 6/6 196.36 2.27 10.39
Q-Diffusion 4/4 130.99 N/A N/A

Ours 4/4 131.02 2.24 16.35

to 4-bit, we observe a reduction in model size by 6.58× and an increased speedup of 3.34×. In
the case of W2A8 quantization, the model size is further reduced by 10.57×. However, there is
currently no hardware support for W2A8 precision on Nvidia’s GPUs. Therefore, the calculations
are still conducted under W8A8 precision.

Table C: Comparisons of time cost across various bitwidth configurations on ImageNet 256× 256.

Model Bitwidth
(W/A)

Model Size
(MB) IS↑ FID↓ sFID↓ Precision↑

(%)
Time
(ms)

LDM-4 — DDIM (20 steps)

32/32 1603.68 364.73 11.28 7.70 93.66 436.8
8/8 427.65 362.34 11.38 8.04 93.77 214.4
4/4 243.61 250.90 6.17 7.75 86.02 130.4
2/8 151.60 175.03 7.60 8.12 78.90 214.4

C VARIATION OF ACTIVATION DISTRIBUTIONS ACROSS STEPS

In this section, we present the value ranges of activations across various time steps in the LDM-4
model pretrained on ImageNet 256 × 256 dataset, as illustrated in Figure A. Previous PTQ meth-
ods for diffusion models employ a single set of quantization parameters for activations across all
time steps. However, this approach can result in significant quantization errors when dealing with
steps with distinct activation distributions (such as step 0 in Figure A), thereby leading to subop-
timal denoising performance. In contrast, our proposed TALSQ addresses this issue by assigning
different quantization parameters to individual time steps, a scheme that can be optimized during
the fine-tuning process. We further visualize the learned quantization scales and the variance of the
activations in Figures B and C. Layers exhibiting significant shifts in activation distribution show
considerable variation in the learned scales across different steps (see Figure Ba), and vice versa in
the remaining subfigures.
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Figure A: Ranges of model output across various steps. Results are obtained by LDM-4 model on
ImageNet 256× 256 dataset.
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Figure B: The variance of activations and the learned quantization scales of intermediate layers
across different steps. Caption denotes the layer name. Data is collected by W4A4 LDM-4 model
on ImageNet 256× 256.
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Figure C: The variance of activations and the learned quantization scales of intermediate layers
across different steps. Caption denotes the layer name. Data is collected by W4A4 LDM-4 model
on LSUN-Bedrooms.

D ADDITIONAL ABLATION STUDY

D.1 ABLATION STUDY OF TALSQ

In this section, we compare the performance of TALSQ with dynamic quantization and time-step-
wise post-training quantization. The experiments are conducted over ImageNet 256 × 256 with
W4A4 LDM-4 models. As shown in Table D, the naive Min-Max dynamic quantization fails to
denoise images, even with QALoRA weights fine-tuned. Time-step-wise quantization, obtained
through post-training techniques with calibration sets, outperform non-time-step-wise quantization
by incorporating temporal information. Utilizing TALSQ further improves performance, resulting
in a reduction of 1.64 in FID and 2.03 in sFID, showcasing the superiority of the learned temporal
quantization scales.

D.2 SELECTION OF RANK r

In this section, we conduct ablation experiments to explore the impact of the rank parameter (r)
in LoRA on its performance, as outlined in Table E. When the rank is set below 32, the model
experiences a substantial decrease in performance following the fine-tuning process. However, when
the rank is set at 32, 2.39% of model parameters are trainable, resulting in a 4.61 decrease in FID.
Increasing the rank further to 64 leads to a 2.27% increase in trainable parameters, with only a
marginal 0.09 reduction in FID. Consequently, we set r = 32 as the default value for all experiments.
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Table D: Performance comparisons of various time-step-wise quantization scheme on ImageNet
256× 256.

Method Bit-width
(W/A) IS↑ FID↓ sFID↓ Precision↑

baseline
(QALoRA+scale-aware LoRA optimization) 4/4 172.96 9.55 13.23 81.87

baseline + dynamic quantization 4/4 N/A N/A N/A N/A
baseline + PTQ time-step-wise quantization 4/4 224.02 7.81 9.78 82.42

baseline + TALSQ 4/4 250.90 6.17 7.75 86.02

Table E: Performance comparisons under different rank of LoRA. Data is collected over 6-bit LDM-
8 model on LSUN-Churches.

r=0 r=8 r=16 r=32 r=64
FID↓ 10.90 10.53 8.06 6.29 6.20

Trainable Parameters (%) 0 0.61 1.20 2.39 4.66

E GRADIENT ANALYSIS OF QALORA

In this section, we further analyze the gradient of QALoRA, elucidating the reasons behind its
ineffective learning. Referring to Eq. (6) and considering the impact of STE (Bengio et al., 2013),
the gradient of BA can be expressed as:

∂Y

∂(BA)
=

∂Y

∂Ŵ

∂Ŵ

∂(BA)
= X̂⊤. (A)

The key insight is that the gradient magnitudes of LoRA weights remain unaffected by the quanti-
zation scale, which is exactly the step size of the quantization step-like function. Consequently, in
layers with larger quantization scales, the minor updates to LoRA weights will be diminished by the
round operation.

F ADDITIONAL VISUALIZATION RESULTS

(a) Q-Diffusion (b) Ours

Figure D: Samples generated by W4A4 LDM model on ImageNet 256× 256.
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(a) Q-Diffusion (b) Ours

Figure E: Randomly generated samples by W4A8 LDM model on ImageNet 256× 256.

(a) Q-Diffusion (b) Ours

Figure F: Randomly generated samples by W8A8 LDM model on ImageNet 256× 256.

(a) Q-Diffusion (b) Ours

Figure G: Randomly generated samples by W4A4 LDM model on LSUN-Bedrooms.
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(a) Q-Diffusion (b) Ours

Figure H: Randomly generated samples by W6A6 LDM model on LSUN-Bedrooms.

(a) Q-Diffusion (b) Ours

Figure I: Randomly generated samples by W8A8 LDM model on LSUN-Bedrooms.
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(a) ImageNet 256× 256 samples (b) LSUN-Bedrooms samples

Figure J: Samples generated by full-precision LDM models.

(a) FP (b) Ours (W2A32)

Figure K: Randomly generated samples by FP and W2A32 Stable Diffusion model with prompt “A
cozy cabin nestled in a snowy forest with smoke rising from the chimney”.

(a) FP (b) Ours (W2A32)

Figure L: Randomly generated samples by FP and W2A32 Stable Diffusion model with prompt “a
painting of a virus monster playing guitar”.
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(a) FP (b) Ours (W2A32)

Figure M: Randomly generated samples by FP and W2A32 Stable Diffusion model with prompt “a
magical fairy tale castle on a hilltop surrounded by a mystical forest”.

EfficientDM Finetuning

Figure N: Visualization of samples generated by PTQD (the leftmost column) and EfficientDM dur-
ing fine-tuning process. Results are obtained by 4-bit LDM model on LSUN-Bedrooms dataset.
PTQD fails to denoise images when both weights and activations are quantized to 4-bit, while Effi-
cientDM recovers its strong capability to generate high-quality images through the proposed efficient
fine-tuning framework.
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