
Appendix Outline

• Section A: Proofs for the Exponential-Min trick, the variance inequality for the estimators,
the correctness of the trace probability, and the correctness of the conditional sampling;

• Section B: Pseudo-code for logP(T ;λ) and the conditional reparameterization of E | T ;

• Section C: Discussion of the algorithm implementations;

• Section D: Additional results and experimental details;

• Section E: Pseudo-code for the algorithms;

A Proofs

In this section, we provide the proofs for the lemmas and the theorem formulated in the main part.

A.1 The Exponential-Min Trick

Lemma 2. (the Exponential-Min trick) If Ei ∼ Exp (λi), i ∈ {1, . . . , d} are independent, then for
X := argminiEi

1. the outcome probability is PX(X = x;λ) ∝ λx;

2. random variables E′i := Ei −EX , i ∈ {1, . . . , d} are mutually independent given X with
E′i | X ∼ Exp(λi) when i 6= X and E′i = 0 otherwise.9

Proof. Starting with the joint density of X realization x and E realization e

d∏
j=1

(
λje
−λjej · I(ex ≤ ej)

)
, (8)

we make the substitution e′j := ej − ex for j ∈ {1, . . . , d} and rewrite the density

d∏
j=1

(
λje
−λj(e

′
j+ex) · I(0 ≤ e′j)

)
= λxe

−
∑d

j=1 λjex

d∏
j=1

(
λje
−λje

′
j I(0 ≤ e′j)

)
= (9)

λx∑d
j=1 λj

×

 d∑
j=1

λj

 e−(
∑d

j=1 λj)ex ×
d∏
j=1

(
λje
−λje

′
j I(0 ≤ e′j)

)
. (10)

The latter is the joint density of

• a categorical latent variable X with P(X = x) ∝ λx;

• an independent exponential random variable EX with rate parameter
∑d
j=1 λj ;

• and a sequence of random variables E′j := Ej − EX , j 6= x with mutually independent
exponential distributions Exp (λj) conditioned on X = x.

A.2 Properties of the Score Function Estimators

This subsection contains the analysis of mean and variance of the defined score function estimators
with respect to variables E, T and X . We follow the derivations in [43, Appendix, Sec. B] and start
with lemma about the conditional marginalization. We assume applicability of the log-derivative trick
every time it is used.

9As a convention, we assume that 0 d
= Exp (∞).

14

Lemma 3. Consider a random variable Y with distribution from parametric family PY (·;λ) and
a function Z = Z(Y). Then, Z-REINFORCE estimator is the marginalization of Y -REINFORCE
estimator with respect to the distribution Y | Z:

EY |Z [L(Z)∇λ logPY (Y ;λ) | Z] = L(Z)∇λ logPZ(Z;λ). (11)

Proof. Since L(Z) is a function of Z, it can be moved outside of the conditional expectation:

EY |Z [L(Z)∇λ logPY (Y ;λ) | Z] = L(Z)EY |Z [∇λ logPY (Y ;λ) | Z] . (12)

The only thing that remains is to show that the Y -score marginalized over Y | Z equals Z-score:

EY |Z [∇λ logPY (Y ;λ) | Z] = ∇λ logPZ(Z;λ). (13)

We start by rewriting the log-probability of Y as the difference between the joint and the conditional
log-probabilities:

EY |Z [∇λ logPY (Y ;λ) | Z] = EY |Z
[
∇λ logPY,Z(Y,Z;λ)−∇λ logPZ|Y (Z | Y ;λ) | Z

]
.
(14)

Next, we observe that the conditional log-probability logPZ|Y (Z | Y ;λ) is concentrated in Z =
Z(Y) and equals log I (Z = Z(Y)), which is zero for all Y ∼ PY |Z(· | Z;λ). Thus, the second
summand cancels out:

EY |Z [∇λ logPY (Y ;λ) | Z] = EY |Z [∇λ logPY,Z(Y, Z;λ) | Z] . (15)

Then we rewrite the joint score as the sum of marginal Z-score and the conditional score of Y
given Z:

EY |Z [∇λ logPY,Z(Y,Z;λ) | Z] = EY |Z
[
∇λ logPZ(Z;λ) +∇λ logPY |Z(Y | Z;λ)

]
. (16)

Finally, the expectation of the score with respect to the corresponding distribution is zero:10

EY |Z
[
∇λ logPY |Z(Y | Z;λ) | Z

]
= ∇λEY |Z [1 | Z] = 0. (17)

At the same time, Z-score is already the function of Z and can be moved outside of expectation:

EY |Z [∇λ logPY,Z(Y, Z;λ) | Z] = EY |Z [∇λ logPZ(Z;λ) | Z] + 0 = ∇λ logPZ(Z;λ). (18)

Combining all previous steps, we arrive at:

EY |Z [L(Z)∇λ logPY (Y ;λ) | Z] = L(Z)∇λ logPZ(Z;λ). (19)

The fact above also generalizes to the case of REINFORCE with baselines:
Corollary 1. Let Y and Z be random variables defined as in Lemma 3 and C be a random variable,
independent of Y . Then, Z-REINFORCE with baseline C is the marginalization of Y -REINFORCE
with baseline C with respect to the distribution Y | Z,C:

EY |Z,C [(L(Z)− C)∇λ logPY (Y ;λ) | Z,C] = (L(Z)− C)∇λ logPZ(Z;λ). (20)

Proof. Start by observing that the loss part (L(Z)− C) is a function of Z and C; it can be moved
outside of the conditional expectation:

EY |Z,C [(L(Z)− C)∇λ logPY (Y ;λ) | Z,C] = (L(Z)− C)EY |Z,C [∇λ logPY (Y ;λ) | Z,C] .
(21)

10Here we apply the log-derivative trick to log PY |Z(Y | Z;λ). While the trick may not apply to an arbitrary
distribution, it is easy to show that the trick is correct for the conditional distributions we consider in our work.

15

Next, since Y and C are independent and Z is a deterministic function of Y , the whole random vector
(Y, Z) is independent from C. Given this, one can remove the conditioning on C:

(L(Z)− C)EY |Z,C [∇λ logPY (Y ;λ) | Z,C] = (L(Z)− C)EY |Z [∇λ logPY (Y ;λ) | Z] . (22)

Finally, Lemma 3 states that the remaining conditional expectation is just the Z-score:
(L(Z)− C)EY |Z [∇λ logPY (Y ;λ) | Z] = (L(Z)− C)∇λ logPZ(Z;λ). (23)

To draw the connection between the above statements and the estimators, defined in Section 3,
we observe that the execution trace variable T is the deterministic function of algorithm’s input,
exponential random vector E, and the execution trace is defined in such a way, that the discrete
random variable X can be recovered from it, i.e. X is a deterministic function of T , which is true for
the algorithms we take into consideration (see Theorem 1). Given this, we formulate the following
lemma:
Lemma 4. Let E, T and X be random variables defined as in section 3, i.e. E is the exponential
random vector with (multidimensional) parameter λ, T = T (E) is the function of E (execution
trace) and X = X(T) is the function of T (structured variable). For each of the variables define the
corresponding REINFORCE estimator with baseline random variable C, independent of E:

gE = (L(X)− C)∇λ logPE(E;λ), (24)
gT = (L(X)− C)∇λ logPT (T ;λ), (25)
gX = (L(X)− C)∇λ logPX(X;λ). (26)

Then, all the defined gradients are unbiased estimates of the true gradient:
EE,C [gE] = ET,C [gT] = EX,C [gX] = ∇λEXL(X). (27)

With the following inequality between their variances:
varX,C [gX] ≤ varT,C [gT] ≤ varE,C [gE]. (28)

Proof. We first observe that using change of variables theorem for Lebesgue integral (particularly,
law of the unconscious statistician) one can rewrite the true gradient using expectation with respect to
E and then apply the log-derivative trick:

∇λEXL(X) = ∇λEEL(X) = EEL(X)∇λ logPE(E;λ). (29)

Since the baseline C is independent from E, subtracting it from the loss does not change the
expectation:

EE,CC · ∇λ logPE(E;λ) = ECC · EE∇λ logPE(E;λ) = ECC · ∇λEE1 = 0. (30)
Thus, gradient estimator with respect to E is unbiased:
EE,C [gE] = EE,C (L(X)− C)∇λ logPE(E;λ) = EEL(X)∇λ logPE(E;λ) = ∇λEXL(X).

(31)
Next, we use the fact that T is the function of E and X is the function of T . Corollary 1 then states
that the estimates gT and gX can be obtained by applying two sequential conditional marginalizations:

gT = EE|T,C [gE | T,C] , gX = ET |X,C [gT | X,C] . (32)
Since the conditional expectation preserves the expectation, the above two gradients are also unbiased:

ET,C [gT] = EX,C [gX] = ∇λEXL(X) (33)
Finally, conditional expectation reduces variance. For the trace random variable:

varE,C [gE] = ET,C varE|T,C [gE | T,C] + varT,C [EE|T,C [gE | T,C]] =

= ET,C varE|T,C [gE | T,C] + varT,C [gT]

Observing that the conditional variance varE|T,C [gE | T,C] is non-negative, we get:

varE,C [gE] ≥ varT,C [gT]. (34)
Applying the same reasoning for gX , we obtain:

varT,C [gT] ≥ varX,C [gX]. (35)

16

A.3 Distributions of T and E | T

Below we prove the main claim of this work. To simplify the argument, we will introduce an
additional notation to denote the variables on various recursion depths. We will assume that the first
level of recursion has index j = 1. We will denote the input variables as E1,K1, R1 and as E,K,R
interchangeeably.

Similarly, we will add the depth index to the partition, the trace variables and the updated exponential
variables

P j1 , . . . , P
j
mj

:= fsplit(K
j , Rj) (36)

T ji := arg min
k∈P j

i

Ejk (37)

Ej+1
k :=

{
Ejk − E

j

T j
i(k,j)

, if k ∈ Kj

Ejk, otherwise,
(38)

where the function i(k, j) returns the index of the partition set containing key k on depth j. To update
the index of the auxiliary variables K and R we use the fmap(·) subroutine:

Kj+1, Rj+1 := fmap(Kj , Rj , {T ji }
mj

i=1). (39)

Finally, we will use λjk to denote the updated parameter λ1k := λk after transformations at the depth
j − 1. It is equal to the λk, if k was not argminimum at all recursion depths from 1 to j − 1 or is
equal to +∞ otherwise. Given the above notation we formulate
Theorem 1. Let E be a set of exponential random variables Ek ∼ Exp (λk) indexed by k ∈ K, let
T be the trace and X be the output of Algorithm 2 respectively. If the subroutine fstop is defined in
such a way that fstop (∅, R) = 1 for all possible auxiliary variables R, then:

1. The output X is determined by the trace T and the auxiliary variables K,R:
X(E, T,K,R) = X(T,K,R);11

2. The trace T is a sequence of categorical latent variables T ji . Each T ji is defined at the
recursion level j and is either deterministic or has (conditional) outcome probabilities
proportional to λk for k ∈ P ji ;

3. The elements of the conditional distribution E | T are distributed as a sum of exponential
random variables

Ek | T ∼
N(k)∑
j=1

Exp

 ∑
k′∈P j

i(k,j)

λjk′

+ Exp
(
λ
N(k)+1
k

)
, (40)

where N(k) is the deepest recursion level j such that the index k is contained in the index
set Kj .

Proof. First, we note that the recursion depth of Algorithm 2 is limited. Indeed, when we make a
recursive call, the second argument of Fstruct is the index set K ′, which, by construction, is a strict
subset of the finite index set K from the previous call of the function. It means that either fstop(K,R)
is true at some point, or there exists a stage where we call Fstruct with K = ∅. By the assumption, the
stop condition is true for the empty set fstop(∅, R) = 1, which means that we always reach the last
level of recursion. Next, we will prove the first claim of the theorem by induction on the recursion
depth.

We start by considering an input E1,K1, R1 for which the algorithm has recursion depth N = 1.
For a single recursion layer Algorithm 2 checks the stop condition and halts. The stop condition is
a function of K1 and R1, therefore the output does not depend on E. When an input leads to an
arbitrary recursion depth N , the algorithm returns fcombine(X

2,K1, R1, T 1). We will argue that all
of the arguments of the function depend on E1 only through T , therefore the algorithm output can be
represented as a function of T rather than E1.

11In the paper we omit the dependence on K and R since these are typically fixed.

17

By the induction hypothesis, the intermediate structure X2 = Fstruct(E
2,K2, R2) is determined

by T>1, K2 and R2. To obtain K2, R2 = fmap(K1, R1, T 1) we do not take E1 as an input, therefore
X2 is determied by T 1. The arguments K1 and R1 of fcombine also do not depend on E1. The last
argument T 1 depends on E1, but for a given T 1 the variability in E1 does not change the output of
fcombine. Therefore, X1 is determined by the trace T and the auxiliary inputs K1 and R1.

To prove the second and the third claim, we repeat the derivation of Lemma 2 for the joint density ofE
and T . We denote the realizations of T and E with lower-case letters. Here, variables of the form ejk
are defined analogously to Ejk, but for the corresponding realizations. Recall that T = {T ji }i,j is the
concatenation of trace variables T j1 , . . . , T

j
mj

for all recursion depths j = 1, . . . , k. We regroup the
joint density using the partition P 1

1 , . . . P
1
m1

of K = tP 1
i and splitting the indicator, corresponding

to the conditional distribution T | E, into two indicators, corresponding to the first level of recursion
and to the remaining ones respectively:

I(t = T (e))
∏
k∈K

Exp (ek | λk) = I(t = T (e))
∏
k∈K

λke
−λkek (41)

= I(t>1 = T>1(e)) · I(t1 = T 1(e)) ·
∏
k∈K

λke
−λkek = (42)

= I(t>1 = T>1(e)) ·
m1∏
i=1

∏
k∈P 1

i

λke
−λkekI(et1i ≤ ek). (43)

Then we apply Lemma 2 for each i = 1, . . . ,m1 and rewrite the internal product
∏
k∈P 1

i
as

λt1i∑
k∈P 1

i
λk
·

∑
k∈P 1

i

λk

 e
−
(∑

k∈Pi
λk

)
e
t1
i ·
∏
k∈P 1

i

(
λ2ke
−λ2

ke
2
kI(0 ≤ e2k)

)
, (44)

where e2k is the realization of the random variable E2
k := Ek − ET 1

i
and λ2k := λk for k 6= t1i and

λ2
t1i

:= +∞.

To improve readability, we rewrite the same product as

λt1i∑
k∈P 1

i
λk
· Exp

et1i ∣∣∣ ∑
k∈P 1

i

λk

 · ∏
k∈P 1

i

Exp
(
e2k | λ2k

)
(45)

and substitute it into the overall joint density:

I(t>1 = T>1(e)) ·
m1∏
i=1

λt1i∑
k∈P 1

i
λk
· Exp

et1i ∣∣∣ ∑
k∈P 1

i

λk

 · ∏
k∈P 1

i

Exp
(
e2k | λ2k

)
. (46)

Since the execution trace variables at depths > 1 are determined by the transformed values
e2 = {e2k | k ∈ K}, the indicator can be rewritten as I(t>1 = T>1(e2)). At the same time,∏m1

i=1

∏
k∈P 1

i
Exp

(
e2k | λ2k

)
can be rewritten as just

∏
k∈K

Exp
(
e2k | λ2k

)
, since P 1

1 , . . . P
1
m1

is the

partition of K. Given this, we rewrite the overall joint density one more time as

m1∏
i=1

 λt1i∑
k∈P 1

i
λk
· Exp

et1i ∣∣∣ ∑
k∈P 1

i

λk

 · I(t>1 = T>1(e2)) ·
∏
k∈K

Exp
(
e2k | λ2k

)
, (47)

where the last two terms have the same form as the joint density, written in the beginning, but for the
execution trace variables T>1 and transformed exponential variables E2.

We use this observation and apply the same transformations to the density

I(t>1 = T>1(e2)) ·
∏
k∈K

Exp
(
e2k | λ2k

)
(48)

18

based on the partition P j1 , . . . , P
j
mj

of Kj ⊂ K for the next recursion steps. We apply the transfor-
mations until we reach the bottom of the recursion. By design, the algorithm excludes some of the
indices from considerationKj+1 (Kj ⊆ K. According to our notation, the variables excluded from
the index set on a certain depth j stay unchanged along with parameters, i.e. Ejk = Ej’

k , λjk = λj’
k for

j’ ≥ j. Such notation allows to preserve the product across all keys
∏
k∈K Exp(ejk | λ

j
k) throughout

the recursion.

After performing all transformations at recursion depths j from 2 to N we arrive at the following
representation of the joint density:

N∏
j=1

mj∏
i=1

 λj
tji∑

k∈P j
i
λjk
· Exp

ej
tji

∣∣∣ ∑
k∈P j

i

λjk

 · ∏
k∈K

Exp
(
eN+1
k | λN+1

k

)
. (49)

For each k we observe one more time that ejk and λjk do not change after j = N(k) + 1, since k is
excluded from all the corresponding Kj . Given this, we rewrite the latter product as∏

k∈K

Exp
(
e
N(k)+1
k | λN(k)+1

k

)
. (50)

Finally, we recursively apply the definition of ejk to represent it as a function of the initial variable
e1k = ek and the set of minima ej

′

tj
′

i(k,j′)

, obtained at recursion depths j′ from 1 to j − 1. For each

depth j:

ej+1
k = ejk − e

j

tj
i(k,j)

= ej−1k − ej
tj
i(k,j)

− ej−1
tj−1
i(k,j−1)

= . . . = ek −
j∑

j′=1

ej
′

tj
′

i(k,j′)

. (51)

Applying the same observation for j = N(k), we obtain:

e
N(k)+1
k = ek −

N(k)∑
j=1

ej
tj
i(k,j)

, (52)

which leads to the final representation of the joint density:

 N∏
j=1

mj∏
i=1

λj
tji∑

k∈P j
i
λjk

︸ ︷︷ ︸

PT (t;λ)

·

 N∏
j=1

mj∏
i=1

Exp

ej
tji

∣∣∣ ∑
k∈P j

i

λjk

︸ ︷︷ ︸

PET |T (et|t;λ)

·
∏
k∈K

Exp

ek − N(k)∑
j=1

ej
tj
i(k,j)

∣∣∣∣∣λN(k)+1
k

︸ ︷︷ ︸

PE|T,ET
(e|t,et;λ)

.

(53)

This representation defines the following generation process:

• First, the trace variables (argminima) are generated from PT (t;λ), the marginal probability
of T , represented as the product of conditional probabilities of T ji ;

• Second, the corresponding minima for all partition indices i at all recursion depths j are
sampled from PET |T (et | t;λ);

• Finally, the set of exponential random variables E is obtained by sampling from
PE|T,ET

(e | t, et;λ). All the realizations ek here come from the exponential distribution

with parameter λN(k)+1
k , shifted at the value

N(k)∑
j=1

ej
tj
i(k,j)

.

Note that we have started from the joint distribution on E, T and come to the joint distribution
on T,ET , E. We obtained larger set of variables, however, as initially, only |K| of them are non-
degenerate. This comes from the definition of λjk and the observation that at each step of taking

19

minimum we either find a constant zero, which does not change the number of non-constant variables,
or find a non-degenerate value, introduce a new (non-degenerate) exponential variable, corresponding
to the minimum, and replace the corresponding λjk with +∞. The latter corresponds to setting one of
the variables to be constant, thus, the overall number of non-degenerate distributions does not change
when we perform the above transformations with density.

The first item above proves the claim about the distribution of trace variables. The second tells that

each minimum realization ej
tj
i(k,j)

comes from the distribution Exp

 ∑
k′∈P j

i(k,j)

λjk′

. Combined with

the third one, it proves that the conditional distribution of each Ek is the sum of the corresponding
exponential distributions, claimed in the thorem:

Ek | T ∼
N(k)∑
j=1

Exp

 ∑
k′∈P j

i(k,j)

λjk′

+ Exp
(
λ
N(k)+1
k

)
. (54)

Based on the above derivation, we propose a procedure to compute the log-probability of the trace
and to draw the conditional sample.

To compute the log-probability, we compute the log-probabilites of the top trace level {t1i }i as in
Eq. 44. Then we repeat the exp-min trick as in the above derivation and repeat the procedure. Assume
the induction hypothesis that the procedure computes the log-prob of the rest of the trace. Then, by
induction, we obtain the log-prob of the whole trace as a sum of the log-prob of the top trace {t1i }i
and the rest of the trace {t>1}j .
Similarly, assume we have a procedure to draw e′k, k ∈ K ′. At the bottom of the recursion e′k are
just exponential random variables. For the induction step, we draw Ek for k /∈ K \K ′ and definee
ek := e′k + eti , k ∈ Pi. In the next section, we provide the pseudo-code for the two procedures.

Algorithm 4 Fstruct(E,K,R) - returns structured variable X based on utilities E and auxiliary
variables K and R
Input: E,K,R
Output: X

if fstop(K,R) then
return

end if
P1, . . . , Pm ⇐ fsplit(K,R) {tmi=1Pi = K}
for i = 1 to m do
Ti ⇐ arg mink∈Pi

Ek
for k ∈ Pi do
E′k ⇐ Ek − ETi

end for
end for
K ′, R′ ⇐ fmap(K,R, {Ti}mi=1) {K ′ (K}
E′ ⇐ {E′k | k ∈ K ′}
X ′ ⇐ Fstruct(E

′,K ′, R′) {Recursive call}
return fcombine(X

′,K,R, {Ti}mi=1)

20

Algorithm 5 Flog-prob(t, λ,K,R) - returns logPT (t;λ) for trace t, rates λ, K and R as in Alg. 2

Input: t, λ,K,R
Output: logPT (t;λ)

if fstop(K,R) then
return

end if
P1, . . . , Pm ⇐ fsplit(K,R)
for i = 1 to m do

logPT (t1i ;λ)⇐ log λt1i − log
(∑

k∈Pi
λk
)

{Index j in T ji denotes the recursion level}
for k ∈ Pi \ {t1i } do
λ′k ⇐ λk

end for
λ′
t1i
⇐ +∞ {Because E′(t1i) = 0}

end for
K ′, R′ ⇐ fmap(K,R, {t1i }mi=1)
λ′ ⇐ {λ′k | k ∈ K ′}
logPT (t>1 | T 1 = t1;λ)⇐ Flog-prob(t>1, λ′,K ′, R′) {Compute log-prob of t>1 := {tji}j>1}
return

∑m
i=1 logPT (t1i ;λ) + logPT (t>1 | T 1 = t1;λ)

Algorithm 6 Fcond(t, λ,K,R) - returns a utility sample from E | T = t, λ with rates λ conditioned
on the execution trace t = {tji}ij
Input: t, λ,K,R
Output: e

if fstop(K,R) then
return

end if
P1, . . . , Pm ⇐ fsplit(K,R)
for i = 1 to m do
et1i ∼ Exp (

∑
k∈Pi

λk) {Sample the min}
for k ∈ Pi \ {t1i } do
λ′k ⇐ λk

end for
λ′
t1i
⇐ +∞ {Because e′

t1i
= 0}

end for
K ′, R′ ⇐ fmap(K,R, {t1i }mi=1)
λ′ ⇐ {λk | k ∈ K ′}
e′ ⇐ Fcond(t>1, λ′,K ′, R′) {Recursion, returns random variables indexed with K ′}
for k ∈ K \K ′ do
e′k ∼ Exp (λ′k) {Sample the rest of the utilities}

end for
for i = 1 to m do

for k ∈ Pi \ {t1i } do
ek ⇐ e′k + et1i {Reverse the Exponential-Min trick}

end for
end for
return e

B General Algorithms for Log-Probability and Conditional Sampling

We provide pseudo-code for computing logP(T ;λ) in Algorithm 3 and sampling E | T in Algo-
rithm 6. Both algorithms modify Algorithm 2 and use the same subroutines fstop, fsplit, fmap, and
fcombine. Algorithms 3, 6 follow the structure as Algorithm 2 and have at most linear overhead in time
and memory for processing variables such as λ′ and logP(T ji | λ).

21

The indexed set of exponential random variables E and the indexed set of the random variable
parameters λ have the same indices of indices K, which allows to call subroutines in the same way
as in Algorithm 2.

Both algorithms take the trace variable t = {tji}j,i as input. Note that index j enumerate recursion
levels. Both algorithms process the trace of the top recursion level t11, . . . , t

1
m and make a recursive

call to process the subsequent trace t>1 := {tji}i,j>1.

C Implementation Details

In the paper, we chose the exponential random variables and the recursive form of Algorithm 2
to simplify the notation. In practice, we parameterized the rate of the exponential distributions as
λ = exp(−θ), where θ was either a parameter or an output of a neural network. The parameter θ is
essentially the location parameter of the Gumbel distribution and, unlike λ, can take any value in R.

Additionally, the recursive form of Algorithm 2 does not facilitate parallel batch computation. In
particular, the recursion depth and the decrease in size of E may be different for different objects in
the batch. Therefore, Algorithms 3,6 may require further optimization.

For the top-k algorithm, we implemented the parallel batch version. To keep the input size the same,
we masked the omitted random variables with +∞. We modeled the recursion using an auxiliary
tensor dimension.

For the Kruskal’s algorithm, we implemented the parallel batch version and used the +∞ masks to
preserve the set size. We rewrote the recursion as a Python for loop.

To avoid the computation overhead for the Chu-Liu-Edmonds algorithm, we implemented the
algorithms in C++ and processed the batch items one-by-one.

For the binary trees Algorithm 2 was implemented in C++ and processed the batch items one-by-one,
while Algorithms 3, 6 utilize efficient parallel implementation.

Also, during optimization using RELAX gradient estimator we observed the following behaviour:
sometimesE | T = t generates samples which do not lead to t applying Algorithm 2. Such behaviour
occurs due to the usage of float precision and does not show using double precision. While it may be
considered as a drawback, its worth noting that it occurs very rare (less than 0.1 % of all conditional
samples produced during optimization) and does not affect overall optimization procedure.

D Experimental Details

Setting up the experiments with Top-K, Spanning Tree and Arborescence we followed details about
data generation, models and training procedures, described by [34], to make a valid comparison of
the proposed score function methods with Stochastic Softmax Tricks (SSTs). In each experiment
we fixed the number of function evaluations N per iteration instead of batch size to make a more
accurate comparison in terms of computational resources. With N fixed, RELAX and SST were
trained with batch size equal to N , while E-REINFORCE+ and T-REINFORCE+ were trained with
batch size N/K and K samples of the latent structure for each object.

To get rid of the influence of any factors other than efficacy of the gradient estimator we fixed
the same random model initialization. Then, for each gradient estimator we chose best model
hyperparameter’s set with respect to validation task metric (MSE, ELBO, accuracy). Given best
model hyperparameter’s set we report mean and standard deviations of the metrics across different
random model initializations.

D.1 Top-K and Beer Advocate

D.1.1 Data

As a base, we used the BeerAdvocate [30] dataset, which consists of beer reviews and ratings for
different aspects: Aroma, Taste, Palate and Appearance. In particular, we took its decorrelated subset
along with the pretrained embeddings from [27]. Every review was cut to 350 embeddings, aspect
ratings were normalized to [0, 1].

22

Table 4: Results of k-subset selection on Appearance aspect data. MSE (×10−2) and subset precision
(%) is shown for best models selected on validation averaged across different random seeds.

MODEL ESTIMATOR
k = 5 k = 10 k = 15

MEAN ± STD PREC. MEAN ± STD PREC. MEAN ± STD PREC.

SIMPLE

SST (Our Impl.) 3.44± 0.13 43.3± 4.5 3.09± 0.12 45.7± 3.6 2.67± 0.12 42.1± 1.1

E-REINFORCE+ 3.74± 0.11 38.8± 2.9 3.46± 0.12 33.2± 3.6 3.24± 0.15 31.2± 3.4
T-REINFORCE+ 3.57± 0.11 48.9± 2.5 3.02± 0.11 47± 4.1 2.69± 0.06 41.6± 2.2
RELAX 3.36± 0.1 44.2± 3.2 3.01± 0.08 42.4± 2.7 2.85± 0.09 40.7± 1.8

COMPLEX

SST (Our Impl.) 2.96± 1.1 73.2± 5.3 2.61± 0.09 71.9± 3.3 2.57± 0.08 65.6± 2.9

E-REINFORCE+ 3.25± 0.11 72.9± 6.1 2.9± 0.19 63.1± 1 2.63± 0.13 63.3± 0.5
T-REINFORCE+ 2.65± 0.05 82.9± 1.3 2.48± 0.05 74.5± 3.7 2.41± 0.03 68.3± 2
RELAX 2.67± 0.06 81.3± 1.5 2.54± 0.03 74.8± 1.3 2.51± 0.03 67.1± 2.1

Table 5: Results of k-subset selection on Taste aspect data. MSE (×10−2) and subset precision (%)
is shown for best models selected on validation averaged across different random seeds.

MODEL ESTIMATOR
k = 5 k = 10 k = 15

MEAN ± STD PREC. MEAN ± STD PREC. MEAN ± STD PREC.

SIMPLE

SST (Our Impl.) 3.19± 0.16 26.7± 2.5 2.93± 0.12 28± 0.9 2.89± 0.04 28.7± 1.3

E-REINFORCE+ 3.6± 0.4 23.6± 2.6 3.51± 0.36 21.4± 2.2 3.12± 0.16 24.6± 3.2
T-REINFORCE+ 3.24± 0.2 28.5± 2.4 3.07± 0.05 28.5± 1.4 2.9± 0.04 29.2± 3.2
RELAX 3.26± 0.08 24± 3.4 3.13± 0.09 25.8± 2.1 2.95± 0.09 24.4± 2.6

COMPLEX

SST (Our Impl.) 2.7± 0.21 36.2± 3.1 2.66± 0.19 36± 5.1 2.2± 0.02 43.2± 1

E-REINFORCE+ 3.43± 0.52 33.2± 4.8 3.15± 0.33 33± 4.3 2.81± 0.16 39.1± 3
T-REINFORCE+ 2.62± 0.2 40.2± 2.4 2.45± 0.04 40.6± 2.6 2.43± 0.04 40.3± 2.3
RELAX 2.78± 0.07 34.7± 2.5 2.99± 0.2 32.1± 3.6 2.64± 0.04 33.9± 3.8

Table 6: Results of k-subset selection on Palate aspect data. MSE (×10−2) and subset precision (%)
is shown for best models selected on validation averaged across different random seeds.

MODEL ESTIMATOR
k = 5 k = 10 k = 15

MEAN ± STD PREC. MEAN ± STD PREC. MEAN ± STD PREC.

SIMPLE

SST (Our Impl.) 3.63± 0.17 28.1± 2.7 3.37± 0.08 25± 1.2 3.14± 0.09 22.1± 1.3

E-REINFORCE+ 4.15± 0.22 21.3± 6.3 3.79± 0.23 19.6± 3.1 3.71± 0.22 15.8± 2.1
T-REINFORCE+ 3.81± 0.2 26.7± 3.8 3.33± 0.09 26.9± 1.1 3.14± 0.07 21.6± 1.2
RELAX 3.79± 0.18 26.8± 3.4 3.45± 0.11 23.6± 1.6 3.32± 0.1 22.3± 1.2

COMPLEX

SST (Our Impl.) 2.98± 0.09 53.6± 1 2.79± 0.01 45± 1.2 2.75± 0.03 37.2± 1.3

E-REINFORCE+ 3.48± 0.22 47.3± 5.3 3.22± 0.2 39.7± 3 2.96± 0.06 36.8± 3.2
T-REINFORCE+ 2.92± 0.03 56.3± 0.8 2.87± 0.03 47.5± 1.9 2.82± 0.06 40.4± 1.8
RELAX 3.05± 0.03 52.6± 1.9 3.03± 0.09 42.6± 3.6 2.86± 0.05 36.6± 1.2

D.1.2 Model

We used the Simple and Complex models defined by [34] for parameterizing the mask. The Simple
model architecture consisted of Dropout (with p = 0.1) and a one-layered convolution with one
kernel. In the Complex model architecture, two more convolutional layers with 100 filters and kernels
of size 3 were added.

D.1.3 Training

We trained all models for 10 epochs with N = 100. We used the same hyperparameters ranges as in
[34], where it was possible. Hyperparameters for our training procedure were learning rate, final decay
factor, weight decay. They were sampled from {1, 3, 5, 10, 30, 50, 100}×10−4, {1, 10, 100, 1000}×
10−4, {0, 1, 10, 100} × 10−6 respectively. We also considered regularizer type for SST as hyper-
parameter ({Euclid., Cat. Ent., Bin. Ent., E.F. Ent.}). For E-REINFORCE+ and T -REINFORCE+

23

number of latent samples for every example in a batch was considered as hyperparameter with range
{1, 2, 4}. We tuned hyperapameters over considered ranges with uniform search with 25 trials. Best
model were chosen with respect to best validation MSE.

Results for Appearance aspect can be found in Table 4, for Taste aspect in Table 5, for Palate aspect
in Table 6. Mean and standard deviations reported in the tables are computed across 16 different
random model initializations. In conclusion, we can state that the proposed method is comparable
with SST on BeerAdvocate dataset.

D.2 Spanning Tree and Graph Layout

Table 7: Graph Layout experiment results for T=20 iterations. Metrics are obtained by choosing
models with best validation ELBO and averaging results across different random seeds on the test set.

T = 20

ESTIMATOR ELBO EDGE PREC. EDGE REC.
MEAN ± STD MAX MEAN ± STD MAX MEAN ± STD MAX

SST (Our Impl.) −2039.42± 1079.56 −1483.31 83± 30 98 93± 9 98

T-REINFORCE+ −1976.16± 980.12 −1458.81 83± 30 98 94± 8 98
RELAX −3129.51± 1464.88 −1594.85 60± 37 98 90± 8 98

D.2.1 Data

For each dataset entry we obtained the corresponding ground truth spanning tree by sampling a
fully-connected graph on 10 nodes and applying Kruskal algorithm. Graph weights were sampled in-
dependently from Gumbel(0, 1) distribution. Initial vertex locations in R2 were distributed according
to N(0, I). Given the spanning tree and initial vertex locations, we applied the force-directed algo-
rithm [8] for T = 10 or T = 20 iterations to obtain system dynamics. We dropped starting positions
and represented each dataset entry as the obtained sequence of T = 10 or T = 20 observations. We
generated 50000 examples for the training set and 10000 examples for the validation and test sets.

D.2.2 Model

Following [34] we used the NRI model with encoder and decoder architectures analogous to the MLP
encoder and MLP decoder defined by [17].

Encoder. Given the observation of dynamics, GNN encoder passed messages over the fully connected
graph. Denoting its final edge representation by θ, we obtained parameters of the distribution over
undirected graphs as 1

2 (θij + θji) for an edge i ↔ j. Hard samples of spanning trees were then
obtained by applying the Kruskal algorithm on the perturbed symmetrized matrix of parameters
λij = exp

(
− 1

2 (θij + θji)
)
.

Decoder. GNN decoder took observations from previous timesteps and the adjacency matrix X of
the obtained spanning tree as its input. It passed messages over the latent tree aiming at predicting
future locations of the vertices. We used two separate networks to send messages over two different
connection types (Xij = 0 and Xij = 1). Since parameterization of the model was ambiguous in
terms of choosing the correct graph between X and 1 − X , we measured structure metrics with
respect to both representations and reported them for the graph with higher edge precision.

In experiments with RELAX we needed to define a critic. It was a simple neural network defined as
an MLP which took observations concatenated with the perturbed weights and output a scalar. It had
one hidden layer and ReLU activations.

Objective. During training we maximized ELBO (lower bound on the observations’ log-probability)
with gaussian log-likelihood and KL divergence measured in the continuous space of exponential
noise. It resulted in an objective which was also a lower bound on ELBO with KL divergence
measured with respect to the discrete distributions.

24

D.2.3 Training

We fixed the number of function evaluations per iteration at N = 128. All models were trained for
50000 iterations. We used constant learning rates and Adam optimizer with default hyperparameters.
For all estimators we tuned separate learning rates for encoder, decoder and RELAX critic by uniform
sampling from the range [1, 100]× 10−5 in log scale. Additionally, for T -REINFORCE+ we tuned
K in {2, 4, 8, 16} and for RELAX we tuned size of the critic hidden layer in {256, 512, 1024, 2056}.
We did not train E-REINFORCE+ since [34, Appendix, Sec. C.1] report its bad performance
(REINFORCE (Multi-sample) according to their namings). We used Gumbel Spanning Tree SST
because it showed the best performance on the corresponding task in [34, Section 8.1]. We tuned
hyperapameters over considered ranges with uniform search with 20 trials. Best model were chosen
with respect to best validation ELBO.

Mean and standard deviations reported in the tables are computed across 10 different random model
initializations. Table 7 reports results for T=20 iterations. Despite the fact that the dataset for
this experiment is highly synthetic we can note that model initialization plays big role in the final
performance of the gradient estimator. Overall, we can see that T -REINFORCE+ performs slightly
better in terms of ELBO which is expected since score function based methods give unbiased gradients
of ELBO, while relaxation-based SST optimizes relaxed objective.

D.3 Arborescence and Unsupervised Parsing

D.3.1 Data

We took the ListOps [32] dataset, containing arithmetical prefix expressions, e.g.
min[3 med[3 5 4] 2], as a base, and modified its sampling procedure. We considered
only the examples of length in [10, 50] that do not include the summod operator and have bounded
depth d. Depth was measured with respect to the ground truth parse tree, defined as a directed graph
with edges going from functions to their arguments. We generated equal number of examples for
each d in {1, . . . , 5}. Train dataset contained 100000 samples, validation and test sets contained
20000 samples.

D.3.2 Model

Model mainly consisted of two parts which we call encoder and classifier.

Encoder was the pair of identical left-to-right LSTMs with one layer, hidden size 60 and dropout
probability 0.1. Both LSTMs used the same embedding lookup table. Matrices that they produced
by encoding the whole sequence were multiplied to get parameters of the distribution over latent
graphs. Equivalently, parameter for the weight of the edge i→ j was computed as θij = 〈vi, wj〉,
where vi and wj are hidden vectors of the corresponding LSTMs at timesteps i and j. Given
λ = exp (−θ) ∈ Rn×n, we sampled matrix weights from the corresponding factorized exponential
distribution. Hard samples of latent arborescences, rooted at the first token, were obtained by applying
Chu-Liu Edmonds algorithm to the weighted graph.

Classifier mainly consisted of the graph neural network which had the initial sequence embedding as
an input and ran 5 message sending iterations over the sampled arborescence’s adjacency matrix. It
had its own embedding layer different from used in the encoder. GNN’s architecture was based on
the MLP decoder model by [17]. It had a two-layered MLP and did not include the last MLP after
message passing steps. Output of the GNN was the final embedding of the first token which was
passed to the last MLP with one hidden layer. All MLPs included ReLU activations and dropout with
probability 0.1.

In experiments with RELAX we needed to define a critic. It contained LSTM used for encoding of
the initial sequence. It was left-to-right, had a single layer with hidden size 60 and dropout probability
0.1. It had its own embedding lookup table. LSTM’s output corresponding to the last token of
the input sequence was concatenated with a sample of the graph adjacency matrix and fed into the
output MLP with one hidden layer of size 60 and ReLU activations. Before being passed to the MLP,
weights of the adjacency matrix were centered and normalized.

25

D.3.3 Training

We fixed the number of function evaluations per iteration at N = 100 and trained models for 50000
iterations. We used AdamW optimizer, separate for each part of the model: encoder, classifier and
critic in case of RELAX. They all had constant, but not equal in general case, learning rates, and
default hyperparameters. We used Gumbel arborescence SST because it showed the best performance
on the corresponding task in [34, Section 8.2]. We tuned learning rates and weight decays in range
[1, 100]× 10−5 in log scale and the number of latent samples in {2, 4, 5} for E-REINFORCE+ and
T -REINFORCE+. We tuned hyperapameters over considered ranges with uniform search with 20
trials. Best model were chosen with respect to best validation accuracy.

Table 3 with results indicates more stable performance of score function based gradient estimators
with respect to different random model initializations.

D.4 Binary Tree and Non-monotonic Generation

D.4.1 Data

In this experiment, we constructed 5 datasets of balanced parentheses, varying the number of their
types in {10, 20, . . . , 50}. For each number of parentheses’ types we constructed a dataset by
generating independent sequences with the following procedure:

1. Sample length l of the sequence from the uniform distribution on {2, 4, . . . , 20}.
2. Uniformly choose current type of parentheses.

3. Choose one of the configurations "(sub)" or "() sub" with equal probabilities, where
"(" and ")" denote the pair corresponding to the current parentheses type.

4. Make a recursive call to generate substring sub with length l − 2.

5. Return the obtained sequence.

Each train dataset contained 20000 samples, validation and test sets contained 2500 samples. In case
of semi-supervised experiments, datasets were modified to contain 10% of supervision.

D.4.2 Model

Language model consisted of the decoder with non-monotonic architecture, defined in [44], and of
the encoder (in case of semi-supervised training). In this experiment all models shared the same
hidden and embedding dimensions equal to 300.

Decoder. We fixed decoder’s architecture to be a single-layer left-to-right LSTM. While training,
we processed a tree-ordered input by first adding leaf nodes, labeled with EOS token, to all places
with a child missing, and transforming the modified tree into a sequence by applying the level-order
traversal. The obtained sequence was then used for training in the teacher-forcing mode. While
generating, we sampled raw sequences (treated as level-order traversals), transformed them into
binary trees and output the in-order traversal of the obtained tree.

Encoder. For semi-supervised training we defined the encoder as a single-layer bidirectional LSTM.
Given an input sequence of length l, it output a vector of exponential parameters λ = (λ1, . . . , λl).
Hard samples of latent trees were obtained by applying Algorithm 9 on the perturbed λ.

Critic. Critic, used for estimating encoder’s gradients with RELAX, was defined as a single-layer
bidirectional LSTM. It took a sequence, concatenated with perturbed output of the encoder along the
embedding dimension, as its input, and output a single value.

D.4.3 Smart order

We defined smart order for binary trees in the way, visualized in Figure 3. Opening parentheses do
not have left children, while their right children are fixed to be the corresponding closing parentheses.
Construction starts from the first token; each time we generate a pair of parentheses and have a
substring between them, we make a recursion step, generating the corresponding subtree at the
left from the current closing parenthesis. If there is a substring at the right of the generated pair,
corresponding subtree is attached as the closing parenthesis’ right child.

26

][{ }()][{ }

(

)

{

}

[

]

[

]

{

}

Figure 3: Visualization of smart order for binary trees

From decoder’s perspective (level-order generation) this order corresponds to an altering process of
generation, where blocks of opening parentheses are followed by the corresponding closing ones.
Intuitively, this type of process should simplify producing balanced parentheses sequences, since we
do not mix opening and closing parentheses at each stage.

D.4.4 Training

Models with fixed order (left-to-right and smart) were trained by minimization of cross-entropy
using teacher-forcing. Semi-supervised models were trained in a manner of variational autoencoders.
Unsupervised part of the training objective was defined by ELBO, lower bound on the marginal
likelihood of training sequences, while supervised part consisted of joint likelihood (of sequence and
fixed order), defined as negative cross-entropy between the decoder’s output and train sequences, and
the encoder’s likelihood of the smart order.

All models were trained for 50 epochs. We chose the best model by measuring perplexity of the
validation set. It was calculated explicitly for fixed-order models and approximated by IWAE bound
[1] for semi-supervised ones. We observed that distribution of the encoder became degenerate
during optimization, while decoder did not follow this behaviour. It made IWAE estimation with
variational distribution highly underestimated. Instead of variational distribution, we used the
empirical distribution on orders, obtained by sampling 10000 trees from decoder. Number of latent
samples for IWAE estimation was fixed at K = 1000.

Results from Table 2 suggest that generative metrics of the model can be improved by training on the
non-trivial order of generation even using semi-supervised approach with relatively small amount of
supervision.

D.5 Permutations by argsort and Non-monotonic Generation

5 10 15 20 25 30
Number of Parentheses Types

0.90

0.95

Percentage of New and Correct

ss
l2r
smart

5 10 15 20 25 30
Number of Parentheses Types

0.02

0.03

0.04
Percentage of Old

Figure 4: Generative statistics of insertion-based non-monotonic language model with different
orders. Semi-supervised order is defined by Plackett-Luce distribution supervised with smart order.

To explore the applicability of the stochastic invariants to other models for non-monotonic text
generation we consider the same task as in the previous experiment but examine another generative
model as well as the latent variable which defines orderings.

27

D.5.1 Data

We used the same data generative process as in the previous experiment (Appendix D.4.1).

D.5.2 Model

Model utilizes encoder-decoder architecture. For the decoder we took Transformer-InDIGO model
from [13]. It generates sequences by insertions using relative position representations. [28] discovered
the one-to-one correspondence between relative positions and permutations, therefore we used them
interchangeably in the model. Encoder is simple 1 layer bidirectional LSTM network which outputs
parameters of the Plackett-Luce distribution given sequence of tokens. We used RELAX gradient
estimator to train encoder parameters. Critic was also 1 layer bidirectional LSTM network which
outputs scalar given concatenation of sequence of tokens and exponential noise.

D.5.3 Training

We trained the model with different orders: left-to-right, smart and semi-supervised with 10%
supervision with smart orders for 100 epochs. Smart order was defined by sequential generation
of opening parenthesis and the corresponding closing parenthesis. Intuitively, it should be easier
to generate balanced parentheses sequences using this order since model does not need stack to
remember number of opened parentheses. Semi-supervised model was trained in the manner of
semi-supervised variational autoencoders with teacher forcing for reconstruction term.

For each order we chose the best model with respect to the decoder perplexity (for semi-supervised we
estimated marginal likelihood using IWAE estimator [1] with variational distribution as the proposal).
During training we observed that different orders achieve the same perplexity which is expected
since the data is too simple to model with any order. From the Figure 4 we can observe the same
behaviour as with binary trees. While different orders achieve the same perplexity on the test set,
using non-nomonotonic orders improves generation quality.

D.6 Additional Tables

Table 8: Standard deviation (std) of the gradient estimators on Graph Layout experiment for T=10
iterations. Results are obtained by choosing models with best validation ELBO and averaging std
estimates across train set. Standard deviation is estimated with 10 samples for each batch.

MEAN GRADIENT STD

ESTIMATOR BEGINNING 25K 50K

SST (Our Impl.) 0.1674 0.0343 0.0379
T-REINFORCE+ 1.6320 1.4409 0.9924
RELAX 3.0592 1.0292 0.8874

Table 9: Time per one gradient update (ms) for different gradient estimators and structured variables.

TIME PER ITER (MS)

STRUCTURE SST T-REINFORCE+ RELAX

Spanning Tree 123 137 180
Arborescence 175 249 535

28

Table 10: Results of k-subset selection on Aroma aspect train data. MSE (×10−2) is shown for best
models selected on validation averaged across different random seeds.

MODEL ESTIMATOR
k = 5 k = 10 k = 15

MEAN ± STD MEAN ± STD MEAN ± STD

SIMPLE

SST (Our Impl.) 3.22± 0.17 2.96± 0.14 2.54± 0.13

E-REINFORCE+ 3.45± 0.19 3.38± 0.23 2.85± 0.21
T-REINFORCE+ 3.38± 0.13 2.93± 0.19 2.43± 0.12
RELAX 3.36± 0.12 3.13± 0.18 2.78± 0.17

COMPLEX

SST (Our Impl.) 2.69± 0.14 2.24± 0.18 2.18± 0.11

E-REINFORCE+ 2.85± 0.22 2.56± 0.25 2.44± 0.19
T-REINFORCE+ 2.5± 0.16 2.19± 0.15 2.09± 0.1
RELAX 2.53± 0.15 2.21± 0.17 2.19± 0.14

Table 11: Graph Layout experiment results for T=10 iterations. Metrics are obtained by choosing
models with best validation ELBO and averaging results across different random seeds on the train
set.

T = 10

ESTIMATOR ELBO EDGE PREC. EDGE REC.
MEAN ± STD MAX MEAN ± STD MAX MEAN ± STD MAX

SST (Our Impl.) −1846.93± 1124.23 −1357.03 88± 22 96 94± 4 96

T-REINFORCE+ −1584.11± 572.16 −1193.11 70± 31 91 86± 8 91
RELAX −2086.93± 573.72 −1207.83 43± 31 90 81± 6 90

Table 12: Unsupervised Parsing on ListOps. We report the average train-performance of the model
with the best validation accuracy across different random initializations.

ESTIMATOR ACCURACY PRECISION RECALL
MEAN ± STD MAX MEAN ± STD MAX MEAN ± STD MAX

SST (Our Impl.) 79.31± 8.17 94.73 57.15± 19.92 82.51 30.58± 19.03 73.28

E-REINFORCE+ 60.64± 2.51 65.21 41.12± 6.68 45.95 40.99± 6.75 45.68
T-REINFORCE+ 88.69± 3.02 93.06 78.6± 7.37 80.68 61.78± 14.52 80.68
RELAX 79.92± 9.35 88.64 54.84± 17.51 75.27 53.73± 17.18 75.27

E Pseudo-Code

This section containes pseudo-code for the algorithms with stochastic invariants discussed in the
paper.

E.1 Pseudo-Code for arg top k

We refer the reader to Algorithm 1 in the main paper.

E.2 Pseudo-Code for argsort

Algorithm 7 presents a recursive algorithm for sorting. The algorithm implements the insertion
sorting. Although insertion sorting may not be the most efficient sorting algorithm, it has a stochastic
invariant. Indeed, the algorithm recursively finds the minimum element and then excludes the element
from the consideration. As opposed to arg top k, the algorithm does not omit the order of X ′. As a
result, for the algorithm, the trace T coincides with the output X .

29

Algorithm 7 Fsort(E,K) - sorts the set K based on the corresponding E values

Input: E,K
Output: X

if E = ∅ then
return

end if
T ⇐ arg minj∈K Ej {Find the smallest element}
for j ∈ K do
E′j ⇐ Ej − ET

end for
K ′ ⇐ K \ {T} {Exclude arg min index T}
E′ ⇐ {E′k | k ∈ K ′}
X ′ ⇐ Fsort(E

′,K ′) {Sort the subset K ′}
return (T,X ′1, . . . , X

′
size(X′)) {Concatenate T and the subset sorting X ′}

E.3 Pseudo-Code for the Bespoke Matching Variable

0.5 0.3 1.2

0.7 0.4 0.1

0.8 0.8 0.2

0.4 0.2 1.1

0.6 0.3 0.0

0.7 0.7 0.1

0.2 0.0 1.1

0.6 0.3 0.0

0.5 0.5 0.1

Figure 5: The generative process for perfect matchings. On the top row, the algorithm recursively
finds the minimum element and excludes the corresponding row and column. On the bottom row, the
algorithm iteratively combines the subset matching X ′ and the minimum element T .

Algorithm 8 Fmatch(E,K) - returns a matching between the columns and the rows of a square matrix
E with the elements indexed with K.
Input: E,K
Output: X

if E = ∅ then
return

end if
T ⇐ arg min(u,v)∈K E(u,v) {Find the smallest element, T is an integer tuple}
for (u, v) ∈ K do
E′(u,v) ⇐ E(u,v) − ET

end for
{Cross out the row and the column containing the minimum}
K ′ ⇐ {(u, v) ∈ K | u 6= T [0] ∨ v 6= T [1]}
E′ ⇐ {E′(u,v) | (u, v) ∈ K ′}
X ′ ⇐ Fmatch(E′,K ′) {Find a matching for the sub-matrix}
return {T} ∪X ′ {Add an edge (tuple) to the matching}

We present an algorithm with the stochastic invariant that returns a matching between the rows and
the columns of a square matrix. Although such a variable is in one-to-one correspondence with
permutations, the distribution has more parameters than the Plackett-Luce distribution. We speculate
that the distribution may be more suitable for representing finite one-to-one mappings with a latent

30

variable. Figure 5 illustrates the idea behind the algorithm. In particular, the algorithm iteratively
finds the minimum element and excludes the row and the column containing the element from the
matrix. Then the algorithm uses recursion to construct a matching for the submatrix.

Notably, we were unable to represent the Hungarian algorithm for the minimum matching to the
problem. Algorithm 8 returns the same output when the column-wise minimum elements form a
matching in the matrix. In general, the output matching may not be the minimum matching.

E.4 Pseudo-Code for the Bespoke Binary Tree Variable

0.6 0.4 0.5 0.7 0.1 0.4 0.3

0.3 0.20.5 0.3 0.4 0.6

0.10.1 0.30.2

0.2

A B C D E F G
E

F

G

A

B

C

D

Figure 6: The generative process for binary trees. On the left, we assign weights to tokens and set
the minimum weight token to be the root. Then we recursively construct trees for the tokens on the
left-hand side and the right-hand side of the root. On the right, we present the resulting tree.

Algorithm 9 Ftree(E,K,R) - constructs a binary tree based on weight E with the node set K. The
auxiliary variable R is a partition of nodes initialized as a single set K.

Input: E,K,R
Output: X

if E = ∅ then
return

end if
P1, . . . , Pm ⇐ R
for i = 1 to m do
Ti ⇐ arg minj∈Pi

Ej
for j ∈ Pi do
E′j ⇐ Ej − ETi

end for
end for
{R′ splits the partition sets Pi into the left-hand side and the right-hand side nodes relative to Ti}
{for example, when T = 5 we split P = {3, 4, 5, 6, 7, 8} into {3, 4} and {6, 7, 8}}
R′ ⇐ {Pi[0, Ti) | i = 1, . . . ,m} ∪ {Pi(Ti,−1] | i = 1, . . . ,m}
K ′ ⇐ K \ {T1, . . . , Tm}
E′ ⇐ {E′k | k ∈ K ′}
X ′ ⇐ Ftree(E

′,K ′, R′) {Recursive call returns a sequence of 2m subtrees}
return

(
(Ti, X

′[2i], X ′[2i+ i]), i = 1, . . . ,m
)

{Join the 2m trees into m with roots T1, . . . , Tm}

For our experiments with the non-monotonic generation, we propose a distribution over binary trees.
Given a sequence of tokens, we assign an exponential random variable to each token. Then we
construct a tree with the following procedure illustrated in Figure 6. First, we set the token with the
minimum weight to be the root of the tree. The tokens on the left-hand side from the root will be
the left descendants of the root, the tokens on the right-hand side will be the right descendants of
the root. Then we repeat the procedure for the left-hand descendants and the right-hand descendants
independently. We summarise the above in Algorithm 9.

Intuitively, the algorithm should include two recursive calls: one for the left-hand side subtree and
the other for the right-hand side subtree. According to the general framework (see Algorithm 2), our
pseudo-code is limited to a single recursive call. In particular, at each recursion depth k Algorithm 9

31

processes all subtrees with a root at the given depth k. As a result, at depth k the partition includes
m = 2k subsets, some of which may be empty. Alternatively, Algorithm 2 can be extended to
multiple recursive calls.

E.5 Kruskal’s Algorithm

Kruskal’s algorithm [24, 5] for the minimum spanning tree gives another illustration of the framework.
In this case, the edge weights are the exponential random variables. The input variable E is indexed
by the edges in a graph, i.e. E(u,v) is the weight of the edge (u, v).

Algorithm 10 contains the pseudo-code for the Kruskal’s algorithm. The auxiliary variable R is a
set of disjoint sets of nodes. It represents the connected components of the current subtree. The
algorithm build the tree edge-by-edge. It starts with an empty set of edges and all sets in R of size
one. Then the algorithm finds the lightest edge connecting between the connected components of R
and joins the two connected components. The algorithm repeats this greedy strategy until R contains
a single connected component.

From the recursion viewpoint, the algorithm constructs a tree with the nodes being the elements of R.
First, the algorithm adds the lightest edge T = (u, v) to the tree. Then it joins the sets Ru and Rv
containing u and v, we denote the result as R′. Next, the algorithm uses the recursion to construct a
tree where the nodes are the elements of R′. The size of R decreases with each step, therefore the
recursion will stop. The resulting tree is a tree for the connected components R′ along with the edge
T .

Notably, Prim’s algorithm is a similar greedy algorithm for finding the minimum spanning tree.
However, the algorithm considers different subsets of edges; as a result, we could not represent Prim’s
algorithm as an instance of Algorithm 2.

Algorithm 10 FKruskal(E,K,R) - finds the minimum spanning tree given edges K with the corre-
sponding weights E; Call with R := {{v} | v ∈ V } set as node singletons

Input: E,K,R
Output: X

if |R| = 1 then
return

end if
T ⇐ arg mink∈K Ek {Find the smallest edge}
for k ∈ K do
E′k ⇐ Ek − ET

end for
{For T = (u, v) find Ru, Rv ∈ R s.t. u ∈ Ru, v ∈ Rv}
Ru, Rv ⇐ find_connected_components(R, T) {Merge the connected components Ru and Rv}
R′ ⇐ (R \ {Ru, Rv}) ∪ ({Ru ∪Rv}) {Remove edges connecting Ru and Rv}
K ′ ⇐ K \ {(u′, v′) ∈ K | u′, v′ ∈ Ru ∪Rv}
E′ ⇐ {E′k | k ∈ K ′}
X ′ ⇐ FKruskal(E

′,K ′, R′) {Edges in X ′ form a spanning tree for nodes in R′}
{X ∪ {T = (u, v)} is a spanning tree for nodes in R}

return X ′ ∪ {T}

E.6 Chu-Liu-Edmonds Algorithm

We adopt Chu-Liu-Edmonds algorithm from [18] in Algorithm 11. Similarly to Kruskal’s algorithm,
the perturbed input E represents the weights of the graph edges, its indices are the edges of the input
directed graph.

As opposed to the previous examples, the algorithm considers multiple subsets of indices P1, . . . , Pm
at each recursion level. In particular, for each node except r the algorithm finds the incoming edge
with minimal weight. If {Ti}i 6=r is an arborescence, fcombine returns it.

Otherwise, {Ti}i6=r contains a cycle and fmap constructs a new graph with the cycle nodes contracted
to a single node. Similarly to Kruskal’s algorithm, we use the variable R to store sets of nodes.

32

In this case, R represent the contracted node as a set of the original nodes. To construct X , the
subroutine fcombine expands the contracted loop in X ′ and adds all edges in C but one.

Algorithm 11 FCLE(E,K,R, r) - finds the minimum arborescence X of a directed graph with edges
K of weight E and root node r. Auxiliary variable R is a partition of nodes indicating merged nodes,
initialized with node singletons R := {{v} | v ∈ V }.
Input: E,K,R, r
Output: X

if |R| = 1 then
return

end if
P1, . . . , Pm ⇐ fsplit(K,R, r) {Split K into sets of edges ending at Rv ∈ R, r /∈ Rv;}
for i = 1 to m do
Ti ⇐ arg mink∈Pi

Ek
for k ∈ Pi do
E′k ⇐ Ek − ETi

end for
end for
C ⇐ find_loop(R, {Ti}mi=1) {Find a loop C assuming nodes R and edges {Ti}mi=1}
if C = ∅ then

return {Ti}mi=1
end if
R′ ⇐ (R \ {Ci | Ci ∈ C}) ∪ (∪|C|i=1Ci) {Contract the loop nodes into a single node}
K ′ ⇐ K \ {(u, v) ∈ K | u ∈ Ci, v ∈ Cj}
E′ ⇐ {E′k | k ∈ K ′}
X ′ ⇐ FCLE(E′,K ′, R′, r) {Find arborescence for the contracted graph}
X ⇐ X ′ ∪ {Ti | Ti in cycle, preserves arborescence} {Add to X ′ all loop edges but one}
return X

33

