
Roadmap. In Section A we provide the deferred proofs from Section 3. In Section B we provide the
deferred proofs from Section 4. In Section C we show how to extend our main lower bound to apply
to learning in Wasserstein distance. In Section D we fill in the details alluded to in the introduction
for how supervised learning lower bounds can imply unsupervised learning lower bounds.

A Deferred Proofs From Section 3

We begin by reviewing standard concepts pertaining to establishing statistical query lower bounds for
unsupervised learning problems, as developed in [FGR+17].
Definition 4 (Distributional search problems). Let D be a set of probability distributions, let F be a
set of solutions, and let Z : D → 2F be a map that takes any D ∈ D to a subset of F corresponding
to the valid solutions for D. We say that Z specifies a distributional search problem over D and F:
given oracle access to an unknown D ∈ D, the goal of the learner is to output a valid solution from
Z(D).

Definition 5 (Statistical query oracles). Given a distribution D over Rd and parameters τ, t > 0,
a STAT(τ) oracle takes in any query of the form f : Rd → [−1, 1] and outputs a value from the
interval [Ex∼D[f(x)] − τ,Ex∼D[f(x)] + τ ], while a VSTAT(t) oracle takes in any query of the
form f : Rd → [0, 1] and outputs a value from the interval [Ex∼D[f(x)]− τ,Ex∼D[f(x)] + τ ] for
τ = max(1/t,

√
Vx∼D[f(x)]/t).

Definition 6 (Pairwise correlation). Given distributions p, q over a domain Ω which are absolutely
continuous with respect to a distribution r over Ω, we let χ2

r(p, q) denote the pairwise correlation,
that is

χ2
r(p, q) ≜

∫
Ω

p(x)q(x)/r(x) dx− 1.

Note that when p = q, this is simply the chi-squared divergence between p and r.

We say that a set of m distributions D = {D1, . . . , Dm} is (γ, β)-correlated relative to a distribution
µ over Rd if

|χµ(Di, Dj)| ≤
{
γ if i ̸= j

β if i = j
.

Definition 7 (Statistical dimension). Let β, γ > 0, let Z be a distributional search problem over
distributions D and solutions F , and let N be the largest integer for which there exists a distribution
µ and a finite subset Dµ ⊆ D such that for any f ∈ F , Df ≜ Dµ\Z−1(f) is (γ, β)-correlated
relative to µ and |Df | ≥ N . We say that the statistical dimension with pairwise correlations (γ, β)
of Z is N and denote it by SD(Z, γ, β).

Lemma A.1 (Corollary 3.12 from [FGR+17]). Let Z be a distributional search problem over
distributions D and solutions F . For γ, β, if N = SD(Z, γ, β), then any statistical query algorithm
for Z requires at least Nγ/(β − γ) queries to STAT(

√
2γ) or VSTAT(1/(6γ)).

We will use the following two lemmas from [DKS17] and [DK20]. Recall from the main body that
PD
v denotes the distribution over Rd with density

PD
v (x) = D(⟨v, x⟩) · γ(d−1)(x− ⟨v, x⟩v),

that is the distribution which is given by D in the direction v and is given by N (0, Id − vv⊤)
orthogonal to v.
Lemma A.2 (Lemma 3.5 from [DK20]). There is an absolute constant c > 0 such that the following
holds. Let m ∈ N and ν > 0. If a distribution D over R is such that 1) χ2(D,N (0, 1)) is finite,
and 2) |Ex∼D[xk]− Eg∼N (0,1)[g

k]| ≤ ν for all k = 1, . . . ,m, then for all v, v′ ∈ Sd−1 for which
|⟨v, v′⟩| < c,

|χ2
N (0,Idd)(P

D
v , PD

v′ )| ≤ |⟨v, v′⟩|m+1χ2(D,N (0, 1)) + ν2.

Fact A.3 (Lemma 3.7 from [DKS17]). For any constant 0 < C < 1/2, there exists a set S of 2d
C

unit vectors in Sd−1 such that any pair of distinct u, v ∈ S satisfies |⟨u, v⟩| < dC−1/2.

We can now prove the generic statistical query lower bound of Lemma 3.3:
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Proof of Lemma 3.3. Let S be the set of 2d
C

unit vectors from Fact A.3. In the notation of Defini-
tion 7, take µ = N (0, Id) and let Dµ ≜ {PD

v }v∈S . By Lemma A.2, for any distinct v, v′ ∈ S we
have

χµ(P
D
v , PD

v′ ) ≤ |⟨v, v′⟩|m+1χ2(D,N (0, 1)) +O(τ2) ≤ Ω(d)−(m+1)(1/2−C)χ2(D,N (0, 1)).

On the other hand, if v = v′ ∈ S, then χµ(P
D
v , PD

v ) = χ2(D,N (0, 1))+O(τ2) ≤ 2χ2(D,N (0, 1)).
So for

γ ≜ Ω(d)−(m+1)(1/2−C)χ2(D,N (0, 1)) and β ≜ 2χ2(D,N (0, 1)),

Dµ is (γ, β)-correlated with respect to µ.

Consider the distributional search problem Z mapping any distribution PD
v to the set of probability

distributions which are ϵ-close in total variation distance to PD
v . Because dTV(Pv, Pv′) > 2ϵ for

distinct v, v′ ∈ S, for any distribution f over Rd we have that |Z−1(f)| ≤ 1. We conclude that
SD(Z, γ, β) ≥ 2Ω(dC). By Lemma A.1, we conclude that any SQ algorithm for Z requires at
least 2Ω(dC)d−(m+1)(1/2−C) calls to either STAT(τ) or VSTAT(1/τ2). Note that because we are
assuming that d ≥ mΩ(1/C), we have 2Ω(dC/2) ≥ dm+1, so the total number of required queries is at
least 2Ω(dC/2) ≥ dm+1 as claimed.

B Deferred Proofs From Section 4

B.1 Proof of Fact 4.3

Proof. We have for all z ∈ R that Tw,h,ϵ
c (z) is equal to

h

ϵ
(ReLU(z − c+ ϵ+ w)− ReLU(z − c+ w)− ReLU(z − c− w) + ReLU(z − c− ϵ− w)) .

B.2 Proof of Lemma 4.4

To prove Lemma 4.4, we will need the following modification of the construction in Lemma 4.1.
Lemma B.1. For any odd m ∈ N, there exist weights λ1, . . . , λm−1 ≥ 0 and points h1, . . . , hm−1 ∈
R for which

1. (Sum of weights bounded away from 1)
∑m−1

i=1 λi = 1−Θ(1/
√
m).

2. (Moments match) |
∑m−1

i=1 λih
k
i − Eg[g

k]| < ν for all k = 1, . . . , 2m− 1.

3. (Points symmetric about origin) h1 ≤ · · · ≤ hm−1 and hi = −hm−i for all 1 ≤ i < m.

4. (Weights symmetric) λ1 ≤ · · · ≤ λ(m−1)/2 and λi = λm−i.

5. (Points bounded and separated) Ω(1/
√
m) ≤ |hi| ≤ O(

√
m) for all 1 ≤ i < m, and {hi} are

Ω(1/
√
m)-separated.

6. (Weights not too small) mini λi ≥ e−cm for an absolute constant c > 0.

Proof. Because m is odd, we can take the weights and points to be given by Lemma 4.1 and remove
the (m+1)/2-th weight and point– recall that the (m+1)/2-th point is 0 and thus does not contribute
to
∑

i λih
k
i . The fact that

∑m−1
i=1 λi = 1−Θ(1/

√
m) then follows from the fact that the (m+1)/2-th

weight from Lemma 4.1 is of order Θ(1/
√
m) by Part 6 of Lemma 4.1. The remaining parts of the

lemma follow by the corresponding parts of Lemma 4.1.

Proof of Lemma 4.4. Let λ1, . . . , λm−1, h1, . . . , hm−1 be as in Lemma B.1. As
∑

i λi = 1 −
Θ(1/

√
m), we claim there exist intervals I1, . . . , Im−1 such that for any i < j, all points in Ii are

strictly smaller than all points in Ij , such that γ(Ii) = λi for all i, and such that the right endpoint of
any Ii is at least m−3/2 smaller than the left endpoint of Ii+1.
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We can construct these intervals in an inductive fashion. First, let γ ≜ 1 −
∑

i λi = Θ(1/
√
m).

Let I1 = [a1, b1] for a1 < b1 < 0 such that γ(I1) = λ1 and γ((−∞, a1]) = γ/m. Given
I1, . . . , Ii for 1 ≤ i < (m − 1)/2, if Ii = [ai, bi] is the right endpoint of Ii, then let ai+1 > bi
be such that γ([bi, ai+1) = γ/m, and define Ii+1 = [ai+1, bi+1] for bi+1 > ai+1 satisfying
γ([ai+1, bi+1]) = λi+1. By construction,

γ((−∞, b(m−1)/2]) =

(m−1)/2∑
i=1

γ(Ii) +
m− 1

2
· γ

m
=

1− γ

2
+

m− 1

2m
· γ
2
=

1

2
− γ

2m
,

so by Gaussian anticoncentration and the fact that γ = Θ(1/
√
m), we conclude that b(m−1)/2 ≤

−Ω(m−3/2). In the same way, we also conclude that because γ([bi, ai+1]) = γ
m , we must have

bi − ai+1 ≤ −Ω(m−3/2). Finally, for i = (m − 1)/2 + 1, . . . ,m − 1, we can define Ii to be the
reflection of Im−i about the origin. Note that by our bounds on bi − ai+1 for 1 ≤ i ≤ (m − 1)/2
and on b(m−1)/2, all of the intervals are Ω(m−3/2)-separated from each other as claimed. And by
design, γ(Ii) = λi for all 1 ≤ i ≤ m− 1.

While the lemma is stated in terms of ϵ > 0, let us first consider the following construction where
ϵ = 0. We can take the centers c1, . . . , cm−1 in the lemma to be the centers of I1, . . . , Im−1,
and w1, . . . , wm−1 to be half of the widths of I1, . . . , Im−1, in which case f ≜

∑m−1
i=1 Twi,hi,0

ci
immediately satisfies Parts 1 and 3 of the lemma. Then the pushforward of N (0, 1) under this choice
of f is the distribution which with probability γ equals zero (when z ∼ N (0, 1) lies outside of
I1, . . . , Im−1) and otherwise takes the value hi with probability λi. Parts 2, 4, and 5 then follow
from Lemma B.1. Finally, note that a1 defined above is at most O(logm) in magnitude because
γ((−∞, a1]) = γ/m by Part 6 of Lemma B.1. This establishes Part 6 of the lemma.

Finally, note that by taking ϵ infinitesimally small (relative to ν) but positive, the function f defined
in the lemma satisfies all of the parts of the lemma.

B.3 Proofs from Section 4.2.1

First, we give an explicit expression for Mw,h,ϵ
c,k ≜ Eg[T

w,h,ϵ
c (g)k]:

Lemma B.2. For c, w, h, ϵ > 0 satisfying c− ϵ− w ≥ 0, we have

Mw,h,ϵ
c,k = hkγ([c− w, c+ w])+

(k−1)!!

(
h

ϵ

)k k∑
i=0 even

(
k

i

)[
(−c+ϵ+w)k−iγ([c−ϵ−w, c−w])+(c+ϵ+w)k−iγ([c+w, c+ϵ+w])

]

−
(
h

ϵ

)k k∑
i=0

(
k

i

)[
(−c+ ϵ+ w)k−i (pi(c− w)γ(c− w)− pi(c− ϵ− w)γ(c− ϵ− w))

+ (−1)i(c+ ϵ+ w)k−i (pi(c+ ϵ+ w)γ(c+ ϵ+ w)− pi(c+ w)γ(c+ w))

]
for all even k.

To show this we use the form of the moments of a truncated Gaussian. Given m, i ∈ N, let
m⇓i ≜ m(m− 2) · · · (m− 2i+ 2). Also let m⇓0 = 1. Then:

Lemma B.3. For any k ∈ N, define the polynomial

pk(x) ≜
⌊(k−1)/2⌋∑

i=0

(k − 1)⇓ixk−1−2i.

For any a ≤ b,

E
g
[gk · 1[a ≤ g ≤ b]] =

{
(k − 1)!! · γ([a, b])− (pk(b)γ(b)− pk(a)γ(a)) if k even
−(pk(b)γ(b)− pk(a)γ(b)) if k odd
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Corollary B.4. For any c, d ∈ R and k ∈ N even,

E
g
[(cg + d)k · 1[a ≤ g ≤ b]] =

k∑
i=0 even

(
k

i

)
cidk−i(k − 1)!!γ([a, b])

−
k∑

i=0

(
k

i

)
cidk−i(pi(b)γ(b)− pi(a)γ(a)).

Proof of Lemma B.2. By Corollary B.4, the contribution from the interval g ∈ [c− ϵ− w, c− w] to

Eg

[(
Tw,h,ϵ
c (z)

)k]
is given by

k∑
i=0 even

(
k

i

)(
h

ϵ

)i(
h

ϵ
(−c+ ϵ+ w)

)k−i

(k − 1)!!γ([c− ϵ− w, c− w])−

k∑
i=0

(
k

i

)(
h

ϵ

)i(
h

ϵ
(−c+ ϵ+ w)

)k−i

(pi(c− w)γ(c− w)− pi(c− ϵ− w)γ(c− ϵ− w)) .

Similarly, the contribution from the interval g ∈ [c+ w, c+ ϵ+ w] is given by

k∑
i=0 even

(
k

i

)(
−h

ϵ

)i(
h

ϵ
(c+ ϵ+ w)

)k−i

(k − 1)!!γ([c+ w, c+ ϵ+ w])−

k∑
i=0

(
k

i

)(
−h

ϵ

)i(
h

ϵ
(c+ ϵ+ w)

)k−i

(pi(c+ ϵ+ w)γ(c+ ϵ+ w)− pi(c+ w)γ(c+ w)) .

Finally, the contribution from the interval g ∈ [c− w, c+ w] is given by hk · γ([c− w, c+ w]).

Lemma 4.5 now follows immediately from LemmaB.2. Furthermore, it is clear from Lemma B.2 that
Mw,h,ϵ

c,k is continuously differentiable with respect to ϵ when ϵ > 0.

Proof of Lemma 4.6. Note that 0 ≤ Mw,h,ϵ
c,k ≤ hkγ([c− ϵ− w, c+ ϵ+ w]), so the first part of the

lemma follows by upper bounding |Mw,h′,ϵ′

c,k −Mw,h,ϵ
c,k | by

|h′k − hk|γ([c− ϵ′ − w, c+ ϵ′ + w]) + hkγ([c− ϵ′ − w, c− ϵ− w] ∪ [c+ ϵ+ w, c+ ϵ′ + w])

≤ |h′k − hk|+ hk(ϵ′ − ϵ) = hk
(
|(h′/h)k − 1|+ ϵ′ − ϵ

)
,

where in the last step we used that γ([a, a+ η]) ≤ η/2 for any a ∈ R, η ≥ 0. The second part of the
lemma then follows by taking h = h′ and ϵ′ → ϵ.

B.4 Proof of Lemma 4.7

Proof. For convenience, in this proof we refer to Z(h(0), ϵ(0)) as Z. Note that Zi,ℓ = γ([ci−wi, ci+
wi]) · hi(0)

2ℓ + ξi,ℓ for some ξi,ℓ which can be made arbitrarily small by taking ϵ(0) to be arbitrarily
small. We can thus write Z = ΛH + Ξ for Λ = diag(λ1h1(0)

2, . . . , λ(m−1)/2h(m−1)/2(0)
2),

H ∈ R(m−1)/2×(m−1)/2 given by Hi,ℓ = hi(0)
2ℓ−2, and Ξ a matrix consisting of arbitrarily small

positive entries. So σmin(Z) ≥ (mini λihi(0)
2) · σmin(H) − ξ ≥ (e−cm/m) · σmin(H) − ξ for

arbitrarily small ξ > 0, where in the last step we used Parts 4 and 5 of Lemma 4.4.

Finally, note that H is a Vandermonde matrix with nodes h1(0)
2, . . . , h(m−1)/2(0)

2. As {hi(0)} are
Ω(1/

√
m)-separated and lie within [Ω(1/

√
m), O(

√
m)], {hi(0)

2} are Ω(1/m)-separated. So by
Fact 2.1, σmin(H) ≥ m−O(m), concluding the proof.
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B.5 Proof of Lemma 4.8

Proof. For convenience, in this proof we refer to Z(h, ϵ) and Z(h(0), ϵ(0)) by Z ′ and Z respectively.
By Lemma 4.6, each entry of Z ′ differs from the corresponding entry of Z by at most

(max
i

hm−1
i ) ·

(∣∣∣(1 +m−C′m/(min
i

hi))
m−1 − 1

∣∣∣+m−C′m − ϵ(0)
)
.

As maxi hi ≤ O(
√
m) and mini hi ≥ Ω(1/

√
m) by Part 4 of Lemma 4.4, and ϵ(0) can is an

arbitrarily small positive quantity, the above is at most m−C′′m for some absolute constant C ′′ > 0

which is increasing in C ′. So ∥Z−Z ′∥op ≤ ∥Z−Z ′∥F ≤ (m−1)/2 ·m−C′′m ≪ m−Cm provided
we take C ′ sufficiently large.

B.6 Proof of Lemma 4.9

Proof of Lemma 4.9. By our expression for Mw,h,ϵ
c,k in Lemma B.2 and the definition of b(ϵ) in (3),

b(ϵ(0)+t) is clearly continuous in t whenever t ≥ 0 (because ϵ(0) > 0). Similarly, A(h)Z(h, ϵ(0)+
t)B is clearly continuous with respect to h and t whenever t ≥ 0 and hi ̸= 0 for all i. By Lemma 4.8,
if t ≤ m−C′m and ∥h − h(0)∥∞ ≤ m−C′m (which additionally implies that hi ̸= 0 for all i, by
Part 4 of Lemma 4.4), then A(h)Z(h, ϵ(0) + t)B is invertible. We conclude that for such t,h, w is
continuous.

B.7 Proof of Lemma 4.12

Proof. For any 1 ≤ k < m,

E
x∼D′

[xk] = E
z∼

√
1−σ2·D,g∼N (0,1)

[(z+ σg)k] = E
g,g′∼N (0,1)

[(
√

1− σ2g′ + σg)k] = E
g∼N (0,1)

[gk],

where in the second step we used that
√
1− σ2 · D matches the moments of N (0, 1 − σ2) up to

degree m, and in the last step we used that
√
1− σ2g′+σg is distributed as a draw from N (0, 1).

B.8 Proof of Lemma 4.13

Proof. Let Ã ≜ A ⋆N (0, 1). By definition, Ã(x) =
∫∞
−∞ A(s)γσ2(x− s) ds. So

1 + χ2(Ã,N (0, 1)) =

∫ ∞

−∞

1

γ(x)

(∫ ∞

−∞

∫ ∞

−∞
A(s)A(t)γσ2(x− s)γσ2(x− t) dsdt

)
dx. (7)

Note that for any s, t ∈ R,
γσ2(x− s)γσ2(x− t)

γ(x)
=

1

σ2
√
2π

exp

(
−(x− s)2 − (x− t)2

2σ2
+ x2/2

)
=

1

σ2
√
2π

exp

(
−2− σ2

2σ2

(
x− s+ t

2− σ2

)2

+
2st− (s2 + t2)(1− σ2)

2σ2(2− σ2)

)
,

so ∫ ∞

−∞

γσ2(x− s)γσ2(x− t)

γ(x)
dx =

e
2st−(s2+t2)(1−σ2)

2σ2(2−σ2)

σ
√
2− σ2

.

Eq. (7) thus becomes

1 + χ2(Ã,N (0, 1)) =

∫ ∞

−∞

∫ ∞

−∞
A(s)A(t) · e

2st−(s2+t2)(1−σ2)

2σ2(2−σ2)

σ
√
2− σ2

dsdt (8)

As A is supported on [−R,R],

e
2st−(s2+t2)(1−σ2)

2σ2(2−σ2)

σ
√
2− σ2

≤ eO(R2/(1−σ2)) ≤ eO(R2).

Substituting this into (8), we find that

1 + χ2(Ã,N (0, 1)) ≤ eO(k)

σ
√
2− σ2

∫ ∫
A(s)A(t) dsdt =

eO(R2)

σ
√
2− σ2

≤ eO(R2)/σ.
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B.9 Proof of Lemma 4.14

We will use the following elementary fact about total variation distance:

Fact B.5. Given two distributions p, q over a domain Ω, dTV(p, q) = 1−
∫
Ω
min(p(x), q(x)) dx.

Proof of Lemma 4.14. By Fact B.5, it suffices to upper bound
∫
Rd min(Pv(z), Pv′(z)) dz. Let H

denote the plane spanned by v, v′. As the component in H of a sample from either Pv or Pv′ is
independent from the component in H⊥, and the latter is distributed as N (0,ΠH⊥), it suffices to
bound

∫
H
min(Pv(z), Pv′(z)) dz. Let x, y be orthogonal coordinates for H with v in the direction

of the x-axis, and let x′, y′ be orthogonal coordinates for H with v′ in the direction of the x′-axis.
Let θ be the angle between v, v′. Then∫

H

min(Pv(z), Pv′(z)) dz =

∫ ∞

−∞

∫ ∞

−∞
min(D′(x)γ(y), D′(x′)γ(y′)) dxdy

=

∫ ∞

−∞

∫ ∞

−∞
min(D′(x)γ(y), D′(x′)γ(y′)) csc θ dxdx′. (9)

For 1 ≤ i ≤ m − 1, let Di denote the distribution of
√
1− σ2 · Twi,hi(T ),T

xi (g) for g ∼ N (0, 1)
conditioned on g ∈ [xi − wi − T, xi + wi + T ]. Also let Dm denote the distribution which is a
point mass at zero. Let D′

i ≜ Di ⋆N (0, 1). Note that there is a distribution p over [m] for which
D′ = Ei∼p[D

′
i]. Then we can upper bound (9) by

max
i,j∈[m]

∫ ∞

−∞

∫ ∞

−∞
min(D′(x)iγ(y), D

′
j(x

′)γ(y′)) csc θ dxdx′ (10)

Note that for 1 ≤ i ≤ m − 1, Px∼D′
i
[|x − xi| > a] ≤ σ + ξi for a ≜ 2σ

√
log(1/σ) and

ξi ≜
γ([xi−wi−T,xi−wi]∪[xi+wi,xi+wi+T ])

γ([xi−wi−T,xi+wi+T ]) . And for i = m, Px∼D′
m
[|x− xi| > a] ≤ σ for xm ≜ 0.

So we get an upper bound on (10) of

σ + max
i∈[m−1]

ξi + max
i,j∈[m]

∫ xi+a

xi−a

∫ xj+a

xj−a

min(D′
i(x)γ(y), D

′
j(x

′)γ(y′)) csc θ dxdx′

As D′
i is a convolution of Di with N (0, σ2), D′

i(x) ≤ 1
σ
√
2π

for all x ∈ R. And γ(y) ≤ 1/
√
2π, so

the above display is at most

σ + max
i∈[m−1]

ξi + a2 csc θ/(2πσ) = σ + max
i∈[m−1]

ξi + σ csc θ log(1/σ)/π.

Note that if |⟨v, v′⟩| ≤ 1/2, then csc θ/π ≤ 2/(
√
3π) ≤ 1. Finally, to bound ξi, first note that for any

i ∈ [m−1], γ([xi−wi−T, xi+wi+T ]) = λi, and recall that λi ≥ e−cm for some absolute constant
c > 0. On the other hand, γ([xi − wi − T, xi − wi]) ≤ T/

√
2π = m−(C′+C′′)m/

√
2π by Gaussian

anti-concentration and our choice of T = m−(C′+C′′)m in the proof of Lemma 4.11. So by taking
the constants C ′, C ′′ to be larger than c, we conclude that ξi ≤ m−Ω(m) for all i ∈ [m− 1].

C Hardness for Estimation in Wasserstein

We now show an analogous version of Theorem 3.1 under the Wasserstein-1 metric rather than
total variation distance. We begin by observing that the ODE-based evolution does not move the
pushforward at time zero, i.e. the distribution constructed in Lemma 4.4, too far away in Wasserstein
distance over a time horizon of T :

Lemma C.1. Let f0, fT : R → R denote the functions from Lemmas 4.4 and 4.11 respectively.
Define D0 ≜ f0(N (0, 1)) and DT ≜ fT (N (0, 1)). Then W1(D,D′) ≤ m−Ω(m).

Proof. Recall that w1, . . . , wm−1 denote the widths of the bumps in f0, fT , x1, . . . , xm−1 denote
the centers, and the heights and ϵ parameters for the bumps in f0, fT are given by {hi(0)}i, ϵ(0)
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and {hi(T )}i, ϵ(0) + T respectively, for T = m−(C′+C′′)m and ϵ(0) an arbitrarily small positive
quantity. Also recall from the proof of Lemma 4.11 that |hi(0)− hi(T )| ≤ m−C′m for all i.

Now consider any g ∈ R. If g ∈ [xi − wi, xi + wi] for some i, then |f0(g) − fT (g)| = |hi(0) −
hi(T )| ≤ m−C′m. Furthermore,

P
g∼N (0,1)

[g ∈ [xi−ϵi(0)−T −wi, xi−wi]∪ [xi+wi, xi+ϵi(0)+T +wi] for some i] ≤ O(mT )

Finally, for all g that do not lie in any of the aforementioned intervals, i.e. that do not lie in the
support of any bump from f0 or fT , note that f0(g) = fT (g) = 0 by construction. We conclude that
for any 1-Lipschitz function h : R → R,∣∣∣∣ E

z∼D
[h(z)]− E

z∼D′
[h(z)]

∣∣∣∣ = ∣∣∣∣Eg [h(f0(g))− h(fT (g))]

∣∣∣∣
≤ E

g
[|f0(g)− fT (g)|] ≤ m−C′m +O(mT ) ≤ m−Ω(m)

as claimed.

We can now show the analogue of Lemma 4.14 for Wasserstein distance:

Lemma C.2. Let D = f(N (0, 1)) be from Lemma 4.11, and define D′ ≜
√
1− σ2 ·D ⋆N (0, σ2)

for σ ≪ 1/
√
m. Then for any v, v′ ∈ Sd−1 satisfying |⟨v, v′⟩| ≤ 1/2, W1(P

D′

v , PD′

v′ ) ≥ Ω(1/
√
m).

Proof. Let f0 be the function from Lemma 4.4, and let A denote f0(N (0, 1)). We begin by lower
bounding W1(P

A
v , PA

v′ ), which we will do by showing that with Ω(1) probability, a sample x from
PA
v′′ will be distance Ω(1/

√
m) from the support of PA

v . As the distance from a point x to the affine
hyperplane Λh ≜ {z : ⟨z, v⟩ = h} is |⟨v, x⟩ − h|, if x is of the form h′v′ + v⊥ for some h′ ∈ R,
then x is at distance ∣∣h′⟨v′, v⟩+ ⟨v⊥, v⟩ − h

∣∣
from the hyperplane. Note that PA

v is supported on the hyperplanes Λh1
, . . . ,Λhm−1

for
h1, . . . , hm−1 from Lemma 4.4. And for x ∼ PA

v′ , h′ takes on the value hi with probability λi

(where {λi} are also from Lemma 4.4), while v⊥ is an independent draw from N (0, Id − v′v′
⊥
).

We conclude that h′⟨v′, v⟩ + ⟨v⊥, v⟩ is distributed as N (h′⟨v′, v⟩, 1 − ⟨v′, v⟩2). Therefore, the
event that x is at distance Ω(1/

√
m) from the support of PA

v is equivalent to the event that a
sample from N (h′⟨v′, v⟩, 1 − ⟨v′, v⟩2) is Ω(1/

√
m)-far from every h1, . . . , hm−1. But note that

because h1, . . . , hm−1 are Ω(1/
√
m)-separated, there is an absolute constant c > 0 such that

the union of the balls of radius c/
√
m around h1, . . . , hm−1 cover at most a constant fraction

of the interval [h′⟨v′, v⟩ − 1, h′⟨v′, v⟩ + 1]. Because 1 − ⟨v′, v⟩2 ≥ 3/4, a constant fraction
of the mass of N (h′⟨v′, v⟩, 1 − ⟨v′, v⟩2) is located in this interval, concluding the proof that
W1(P

A
v , PA

v′ ) ≥ Ω(1/
√
m).

By Lemma C.1 and the fact that scaling by
√
1− σ2 and convolving by N (0, σ2) incurs O(σ) =

o(1/
√
m) in Wasserstein, we conclude that W1(P

D′

v , PA
v ) = W1(D

′, A) = o(1/
√
m) and similarly

for W1(P
D′

v′ , PA
v′ ). So by triangle inequality for Wasserstein, W1(P

D′

v , PD′

v′ = Ω(1/
√
m) as claimed.

We conclude that in Theorem 3.2, the distribution D also satisfies the Wasserstein analogue of Part 3,
i.e. W1(P

D
v , PD

v′ ) ≥ Ω(1/
√
m) for any v, v′ ∈ Sd−1 satisfying |⟨v, v′⟩| ≥ 1/2. We can now prove

an analogue of Theorem 3.1 for Wasserstein:
Theorem C.3. Let d ∈ N be sufficiently large. Any SQ algorithm which, given SQ access to an
arbitrary one-hidden-layer ReLU network pushforward of N (0, Idd) of size O(log d/ log log d)

with poly(d)-bounded weights, outputs a distribution which is O(
√

log log d/ log d)-close in
dTV(·) must make at least dΩ(log d/ log log d) queries to either STAT(τ) or VSTAT(1/τ2) for
τ = d−Ω(log d/ log log d).

Proof. By Theorem 3.2 applied with sufficiently large odd m and sufficiently small σ, together with
the above consequence of Lemma C.2, there exists a distribution D = f∗(N (0, Id2)) over R for
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f∗ : R2 → R of size O(m) with mO(m)-bounded weights satisfying the hypotheses of Lemma 3.3 for
ϵ = O(1/

√
m), and χ2(D,N (0, 1)) ≤ exp(O(m)) (note that while Lemma 3.3 is stated for dTV(·),

it is also true with dTV(·) replaced with Wasserstein-1). As long as m ≤ dO(C), we conclude that an
SQ algorithm for learning any distribution from {PD

v }v∈Sd−1 to Wasserstein-1 distance O(1/
√
m)

must make at least dm+1 queries to STAT(τ) or VSTAT(1/τ2) for τ ≜ O(d)−(m+1)(1/4−C/2) ·
exp(O(m)). By taking m = Θ(log d/ log log d), we ensure that mO(m) ≤ poly(d). We’re done by
taking C in Lemma 3.3 to be C = 1/4.

D Hardness From Supervised Learning

In this section we make rigorous the claim from the introduction that lower bounds for PAC learning
neural networks from Gaussian labeled examples imply lower bounds for learning neural network
pushforwards. Formally, consider the following distinguishing problem:
Definition 8 (Distinguishing labeled examples from Gaussian). For d ∈ N, let Cd be some class of
functions from Rd to R. The learner is given poly(d) many samples (x1, y1), . . . , (xN , yN ) where
x1, . . . , xN are independent draws from N (0, Idd) such that one of the following is true: 1) there
is some h ∈ C for which yi = h(xi) for all i ∈ [N ], or 2) every yi is an independent sample
from N (0, 1). We say that an algorithm distinguishes between these two situations with constant
advantage if the probability it outputs YES (resp. NO) under the former (resp. latter) is at least 2/3,
where the probability is with respect to the randomness of the samples and internal randomness of
the algorithm.

Here we make the simple observation that an oracle for distinguishing any given family of non-
Gaussian pushforwards from N (0, Id) (an easier task than actually learning pushforwards) immedi-
ately implies an algorithm for the distinguishing task in Definition 8.
Lemma D.1. For d ∈ N, let Cd be any function class from Rd → R for which the indexing
functions f [j], given by f [j](x) = xj for some j ∈ [d], are elements of C. Suppose that for any
d1, d2 = poly(d), there is a poly(d)-time algorithm A for the following task. Let d1, d2 = poly(d),
and let S be a known set of functions f : Rd1 → Rd2 whose output coordinates are all elements of
Cd1

and such that for any f ∈ S, dTV(f(N (0, Idd1
)),N (0, Idd2

)) ≥ 1/2. Then A can distinguish
with constant advantage whether it is given poly(d) samples from f(N (0, Idd1

)) for some f ∈ S
versus samples from N (0, Idd2

).

Under this hypothesis, there is a poly(d)-time algorithm that solves the distinguishing problem of
Definition 8 to constant advantage.

Proof. Note that in situation 1) of Definition 8, the joint distribution over (x, y) is given by the
pushforward f(N (0, Id)) where f : Rd+1 → Rd+1 is as follows: the first d output coordinates are
given by the d indexing functions f [1], . . . , f [d], and the last output coordinate is given by h. By
taking S in the hypothesis to consist of such f , we can thus apply the algorithm A to distinguish
between the two situations in Definition 8 to constant advantage.

Note that the contrapositive of the above lemma implies that any lower bound for the task in
Definition 8 immediately implies a lower bound for learning pushforwards. While the aforementioned
lower bounds of [CGKM22, DV21], which apply when Cd is the family of neural networks with at
least two hidden layers and polynomially bounded size and weights, do not show hardness for the task
in Definition 8, note that hardness for this task immediately implies hardness for PAC learning Cd from
Gaussian examples. Indeed, given an algorithm A that, given (x1, h(x1)), . . . , (xN , h(xN )), outputs
a predictor ĥ for which Eg[(h(g) − ĥ(g))2] is small, one can easily solve the task in Definition 8
by running A and estimating the square loss of the predictor from some fresh samples. In situation
2) of Definition 8, because the labels are random, no predictor can achieve low square loss. So the
algorithm which outputs YES if and only if the empirical square loss on fresh samples is small will
distinguish between the two situations with constant advantage.

In other words, showing hardness of Definition 8 for Cd would be a stronger result than what is
already shown in [CGKM22, DV21]. Putting this and Lemma D.1 together, we conclude that even
this stronger hardness result would only imply hardness for learning pushforwards given by f whose
output coordinates are functions in Cd given by neural networks with at least two hidden layers and
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polynomially bounded size and weights. In contrast, in the present work, we show hardness for one
hidden layer, logarithmic size, and polynomially bounded weights.
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