
Published as a conference paper at ICLR 2025

LEANAGENT: LIFELONG LEARNING FOR FORMAL
THEOREM PROVING

Adarsh Kumarappan∗,1, Mo Tiwari∗,2, Peiyang Song1, Robert Joseph George1,
Chaowei Xiao3, Anima Anandkumar1
1California Institute of Technology, 2Stanford University, 3University of Wisconsin, Madison
{adarsh, psong, rgeorge, anima}@caltech.edu, motiwari@stanford.edu, cxiao34@wisc.edu

ABSTRACT

Large Language Models (LLMs) have been successful in mathematical reasoning
tasks such as formal theorem proving when integrated with interactive proof assis-
tants like Lean. Existing approaches involve training or fine-tuning an LLM on a
specific dataset to perform well on particular domains, such as undergraduate-level
mathematics. These methods struggle with generalizability to advanced mathe-
matics. A fundamental limitation is that these approaches operate on static do-
mains, failing to capture how mathematicians often work across multiple domains
and projects simultaneously or cyclically. We present LeanAgent, a novel lifelong
learning framework for formal theorem proving that continuously generalizes to
and improves on ever-expanding mathematical knowledge without forgetting pre-
viously learned knowledge. LeanAgent introduces several key innovations, in-
cluding a curriculum learning strategy that optimizes the learning trajectory in
terms of mathematical difficulty, a dynamic database for efficient management of
evolving mathematical knowledge, and progressive training to balance stability
and plasticity. LeanAgent successfully generates formal proofs for 155 theorems
across 23 diverse Lean repositories where formal proofs were previously miss-
ing, many from advanced mathematics. It performs significantly better than the
static LLM baseline, proving challenging theorems in domains like abstract alge-
bra and algebraic topology while showcasing a clear progression of learning from
basic concepts to advanced topics. In addition, we analyze LeanAgent’s superior
performance on key lifelong learning metrics. LeanAgent achieves exceptional
scores in stability and backward transfer, where learning new tasks improves per-
formance on previously learned tasks. This emphasizes LeanAgent’s continuous
generalizability and improvement, explaining its superior theorem-proving perfor-
mance.

1 INTRODUCTION

Mathematics can be expressed in informal and formal languages. Informal mathematics utilizes
natural language and intuitive reasoning, whereas formal mathematics employs symbolic logic to
construct machine-verifiable proofs (Kevin Buzzard, 2019). State-of-the-art large language models
(LLMs), such as o1 (OpenAI, 2024) and Claude (Claude Team, 2024), produce incorrect informal
proofs (Zhou et al., 2024). This highlights the importance of formal mathematics in ensuring proof
correctness and reliability. Interactive theorem provers (ITPs), such as Lean (De Moura et al., 2015),
have emerged as tools for formalizing and verifying mathematical proofs. However, constructing
formal proofs using ITPs is complex and time-consuming; it requires extremely detailed proof steps
and involves working with extensive mathematical libraries.

Recent research has explored using LLMs to generate proof steps or complete proofs. For example,
LeanDojo (Yang et al., 2023) introduced the first open-source framework to spur such research. Ex-
isting approaches typically involve training or fine-tuning LLMs on a specific dataset (Jiang et al.,
2022). However, data scarcity in formal theorem proving (Polu et al., 2022) hinders the general-
izability of these approaches (Liu et al., 2023). For example, ReProver, the retrieval-augmented

∗Equal contribution.

1



Published as a conference paper at ICLR 2025

LLM from the LeanDojo family, uses a retriever fine-tuned on Lean’s math library, mathlib4
(mathlib4 Community, 2024). Although mathlib4 contains over 100,000 formalized mathemat-
ical theorems and definitions, it covers primarily up to undergraduate mathematics. Consequently,
ReProver performs poorly on more challenging mathematics, such as Terence Tao’s formalization
of the Polynomial Freiman-Ruzsa (PFR) Conjecture (Tao et al., 2024).

Figure 1: LeanAgent overview. LeanAgent searches for Lean repositories and uses LeanDojo to
extract theorems and proofs. It uses curriculum learning, computing theorem complexity as eS

(S = proof steps) and calculating the 33rd and 67th complexity percentiles across all theorems to
sort repositories by easy theorem count. LeanAgent adds the curriculum to its dynamic database.
As a retrieval-based framework, LeanAgent generates a dataset (premise corpus and a collection
of theorems and proofs) for each repository in the curriculum and progressively trains its retriever.
Progressive training happens over one epoch to prevent forgetting old knowledge. Then, LeanAgent
uses the updated retriever in a search-based method to generate formal proofs for theorems where
formal proofs were previously missing, known as sorry theorems. It adds new proofs to the database.

The dynamic nature of mathematical research exacerbates this generalizability issue. Mathemati-
cians often formalize across multiple domains and projects simultaneously or cyclically. For exam-
ple, Terence Tao has worked on various projects in parallel, including formalizations of the PFR
Conjecture, symmetric mean of real numbers, classical Newton inequality, and asymptotic anal-
ysis (Tao; 2024a; Tao et al., 2024; Tao, 2024b). Patrick Massot has been formalizing Scholze’s
condensed mathematics and the Perfectoid Spaces project (Community, 2024a;b). These examples
highlight a critical gap in current theorem-proving AI approaches: the lack of a system that can
adapt and improve across multiple, diverse mathematical domains over time, given limited Lean
data availability.

Connection to Lifelong Learning. Crucially, how mathematicians formalize is relevant to lifelong
learning, i.e. learning multiple tasks without forgetting (Wang et al., 2024b). A significant challenge
is catastrophic forgetting: when adaptation to new distributions leads to a loss of understanding of
old ones (Jiang et al., 2024). The core challenge is balancing plasticity (the ability to learn and adapt)
with stability (the ability to retain existing knowledge) (Wang et al., 2024b). Increasing plasticity
to learn new tasks efficiently can lead to overwriting previously learned information. However, en-
hancing stability to preserve old knowledge may impair the model’s ability to acquire new skills (van
de Ven et al., 2024). Achieving the right balance is key to continuous generalizability in theorem
proving.

LeanAgent. We present LeanAgent, a novel lifelong learning framework for theorem proving. As
shown in Figure 1, LeanAgent’s workflow consists of (1) deriving complexity measures of theorems

2



Published as a conference paper at ICLR 2025

to compute a curriculum for learning, (2) progressive training to learn while balancing stability and
plasticity, and (3) searching for proofs of sorry theorems by leveraging a best-first tree search, all
while using a dynamic database to manage its evolving mathematical knowledge. LeanAgent works
with any LLM; we implement it with retrieval for improved generalizability (Yang et al., 2023).

We employ a simple progressive training method to avoid catastrophic forgetting. Progressive train-
ing allows LeanAgent to continuously adapt to new mathematical knowledge while preserving pre-
viously learned information. This process involves incrementally training the retriever on newly
generated datasets from each repository in the curriculum. Starting with a pre-trained retriever
(e.g., ReProver’s retriever based on ByT5 (Xue et al., 2022)), LeanAgent trains on each new dataset
for one additional epoch. Restricting progressive training to one epoch helps balance stability and
plasticity. Crucially, this training is repeated for each dataset generated from the database, gradu-
ally expanding LeanAgent’s knowledge base. This approach increases the space of possible proof
states (where a state consists of a theorem’s hypotheses and current proof progress) while adding
new premises to the premise embeddings. More sophisticated lifelong learning methods like Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017), which uses the Fisher Information Matrix to
constrain important weights for previous tasks, result in excessive plasticity. The uncontrolled plas-
ticity is due to the inability of these methods to adapt parameter importance as theorem complexity
increases. This forces rapid changes in parameters crucial for learning advanced concepts. Such
methods fail to adapt to the evolving complexity of mathematical theorems, making them unsuitable
for lifelong learning in theorem proving.

Extensive experiments across 23 diverse Lean repositories demonstrate LeanAgent’s advancements
in lifelong learning for theorem proving. LeanAgent successfully generates formal proofs for 155
theorems across these 23 repositories where formal proofs were previously missing, known as sorry
theorems, many from advanced mathematics. For example, it proves challenging sorry theorems
in abstract algebra and algebraic topology related to Coxeter systems and the Hairy Ball Theorem
(Coxeter, 2024; Hairy Ball Theorem, 2024). LeanAgent also proves 7 theorems using exploits found
within Lean’s type system. We find that LeanAgent demonstrates progressive learning in theorem
proving, initially proving basic sorry theorems and significantly advancing to more complex ones. It
significantly outperforms the static ReProver baseline in terms of proving new sorry theorems. We
have issued pull requests to the respective repositories with the newly proven sorry theorems. Some
of these proofs utilized unintended constructs within the repositories’ implementations, which are
currently being addressed through appropriate fixes.

In theorem proving, we find that stability, without losing too much plasticity, is crucial for con-
tinuous generalizability to new repositories. Backward transfer (BWT), where learning new tasks
improves performance on previously learned tasks, is essential in theorem proving (Wang et al.,
2024b). Mathematicians require a lifelong learning framework for theorem proving that is both
continuously generalizable and continuously improving. We conduct an extensive ablation study
using six lifelong metrics carefully proposed or selected from the literature. LeanAgent’s simple
components of curriculum learning and progressive training improve stability and BWT scores sub-
stantially, emphasizing its continuous generalizability and improvement and explaining its superior
sorry theorem proving performance.

2 PRELIMINARIES

Neural Theorem Proving. The current state-of-the-art of learning-based provers employs
Transformer-based (Vaswani et al., 2017) LLMs that process expressions as plain text strings (Azer-
bayev et al., 2024; Xin et al., 2024b; Shao et al., 2024). In addition, researchers have explored
complementary aspects like proof search algorithms (Lample et al.; Wang et al., 2023). Moreover,
other works break the theorem-proving process into smaller proving tasks (Song et al., 2024; Wang
et al., 2024a; Lin et al., 2024).

Premise Selection. A critical challenge in theorem proving is the effective selection of relevant
premises (Irving et al., 2016; Tworkowski et al.). However, many existing approaches treat premise
selection as an isolated problem (Wang & Deng, 2020; Piotrowski et al., 2023) or use selected
premises only as input to symbolic provers (Alama et al., 2014; Mikuła et al., 2024).

3



Published as a conference paper at ICLR 2025

Retrieval-Augmented LLMs. While retrieval-augmented language models have been extensively
studied in areas like code generation (Lu et al., 2022; Zhou et al., 2023), their application to formal
theorem proving is relatively new. However, relevant architectures have been researched in natural
language processing (NLP) (Lu et al., 2024; Borgeaud et al., 2022; Thakur et al., 2024).

Lifelong Learning. Lifelong learning addresses catastrophic forgetting in sequential task learning
(Chen et al., 2024). Approaches include regularization methods (Kirkpatrick et al., 2017), memory-
based techniques (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Shin et al., 2017), and knowl-
edge distillation (Li & Hoiem, 2017; Kim et al., 2023). Other strategies involve dynamic architec-
ture adjustment (Mendez & Eaton, 2021) and recent work on gradient manipulation and selective
re-initialization (Chen et al., 2024; Dohare et al., 2024). We justify not using these strategies in
Appendix A.6.

Curriculum Learning in Theorem Proving. Prior work created a synthetic inequality generator
to produce a curriculum of statements of increasing difficulty (Polu et al., 2022). For reinforcement
learning, an existing work used the length of proofs to help determine rewards (Zombori et al.,
2019).

3 METHODOLOGY

A useful lifelong learning strategy for theorem proving requires (a) a repository order strategy and
(b) a learning strategy. We solve (a) with curriculum learning to utilize the structure of Lean proofs
and (b) with progressive training to balance stability and plasticity. LeanAgent consists of four
main components: curriculum learning, dynamic database management, progressive training of the
retriever, and sorry theorem proving. Further methodology details are in Appendix A.1 and a dis-
cussion of why curriculum learning works in theorem proving is available in Appendix A.6.

3.1 CURRICULUM LEARNING

LeanAgent uses curriculum learning to learn on increasingly complex mathematical repositories.
This process optimizes LeanAgent’s learning trajectory, allowing it to build upon foundational
knowledge before tackling more advanced concepts.

First, we automatically search for and clone Lean repositories from GitHub. We use LeanDojo for
each repository to extract fine-grained information about their theorems, proofs, and dependencies.
Then, we calculate the complexity of each theorem using eS , where S represents the number of proof
steps. However, sorry theorems, which have no proofs, are assigned infinite complexity. We use an
exponential scaling to address the combinatorial explosion of possible proof paths as the length of
the proof increases. Further justification for considering this complexity metric is in Appendix A.6.

We compute the 33rd and 67th percentiles of complexity across all theorems in all repositories.
Using these percentiles, we categorize non-sorry theorems into three groups: easy (theorems with
complexity below the 33rd percentile), medium (theorems with complexity between the 33rd and
67th percentiles), and hard (theorems with complexity above the 67th percentile). We then sort
repositories by the number of easy theorems they contain. This sorting forms the basis of our
curriculum, with LeanAgent starting on repositories with the highest number of easy theorems.

3.2 DYNAMIC DATABASE MANAGEMENT

Then, we add the sorted repositories to LeanAgent’s custom dynamic database using the data Lean-
Agent extracted. This way, we can keep track of and interact with the knowledge that LeanAgent is
aware of and the proofs it has produced. We also include the complexity of each theorem computed
in the previous step into the dynamic database, allowing for efficient reuse of repositories in a future
curriculum. Details of the database’s contents and features can be found in Appendix A.1.

For each repository in the curriculum, LeanAgent uses the dynamic database to generate a dataset
by following the same procedure used to make LeanDojo Benchmark 4 (details in Appendix A.1).
This dataset includes a collection of theorems and their proofs. Each step of these proofs contains
detailed annotations, such as how the step changes the state of the proof. A state consists of a
theorem’s hypotheses and the current progress in proving the theorem. As such, this pairing of

4



Published as a conference paper at ICLR 2025

theorems and proofs demonstrates how to use specific tactics (functions) and premises in sequence
to prove a theorem. In addition, the dataset includes a premise corpus, serving as a library of facts
and definitions.

3.3 PROGRESSIVE TRAINING OF THE RETRIEVER

LeanAgent then progressively trains its retriever on the newly generated dataset. This strategy al-
lows LeanAgent to continuously adapt to new mathematical knowledge from the premises in new
datasets while preserving previously learned information, crucial for lifelong learning in theorem
proving. Progressive training achieves this by incrementally incorporating new knowledge from
each repository.

Although LeanAgent works with any LLM, we provide a specific implementation here. We start
with ReProver’s retriever, a fine-tuned version of the ByT5 encoder (Xue et al., 2022), leveraging
its general pre-trained knowledge from mathlib4. We train LeanAgent on the new dataset for an
additional epoch. This limited exposure helps prevent overfitting to the new data while allowing
LeanAgent to learn essential new information. LeanAgent’s retriever, and therefore the embeddings
it generates, are continuously updated during progressive training. Thus, at the end of the current
progressive training run, we precompute embeddings for all premises in the corpus generated by
LeanAgent’s current state to ensure that we properly evaluate LeanAgent’s validation performance.
To understand how LeanAgent balances stability and plasticity, we save the model iteration with the
highest validation recall for the top ten retrieved premises (R@10). This is a raw plasticity value: it
can be used to compute other metrics that describe LeanAgent’s ability to adapt to and handle new
types of mathematics in the latest repository (details in Sec. 4). Then, we compute the average test
R@10 over all previous datasets the model has progressively trained on, a raw stability value.

As mentioned previously, we repeat this procedure for each dataset we generate from the database,
hence the progressive nature of this training. Progressive training adds new premises to the premise
embeddings and increases the space of possible proof states. This allows LeanAgent to explore more
diverse paths to prove theorems, discovering new proofs that it couldn’t produce with its original
knowledge base.

3.4 sorry THEOREM PROVING

For each sorry theorem, LeanAgent generates a proof with a best-first tree search by generating
tactic candidates at each step, in line with prior work (Yang et al., 2023). Using the embeddings
from the entire corpus of premises we previously collected, LeanAgent retrieves relevant premises
from the premise corpus based on their similarity to the current proof state, represented as a context
embedding. Then, it filters the results using a corpus dependency graph to ensure that we only
consider premises accessible from the current file. We add these retrieved premises to the current
state and generate tactic candidates using beam search. Then, we run each tactic candidate through
Lean to obtain potential next states. Each successful tactic application adds a new edge to the proof
search tree. We choose the tactic with the maximum cumulative log probability of the tactics leading
to it. If the search reaches a dead-end, we backtrack and explore alternative paths. We repeat the
above steps until the search finds a proof, exhausts all possibilities, or reaches the time limit of 10
minutes.

If LeanAgent finds a proof, it adds it to the dynamic database. The newly added premises from
this proof will be included in a future premise corpus involving the current repository. Moreover,
LeanAgent can learn from the new proof during progressive training in the future, aiding further
improvements.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We devote this section to describing two types of experiments: (1) sorry Theorem Proving: We
compare sorry theorem proving performance between LeanAgent and ReProver. We also examine
the progression of LeanAgent’s proven sorry theorems during lifelong learning to the end of life-

5



Published as a conference paper at ICLR 2025

Table 1: Selected repository descriptions

Repository Description
PFR Polynomial Freiman-Ruzsa Conjecture
Hairy Ball Theorem Algebraic topology result
Coxeter Coxeter groups
Mathematics in Lean Source Lean files for the textbook
Formal Book Proofs from THE BOOK
MiniF2F Math olympiad-style problem solving
SciLean Scientific computing
Carleson Carleson’s Theorem
Lean4 PDL Propositional Dynamic Logic

Table 2: Accuracy in proving sorry theorems across repositories. Accuracy is calculated as (proven
theorems / total sorry theorems). “LA” denotes LeanAgent and “ReProver+” denotes the setting
where we update ReProver on all 23 repositories at once. “During” shows accuracy during lifelong
learning, “Add. After” shows additional accuracy after lifelong learning, and “Total” shows the
combined accuracy. “MIL” stands for Mathematics in Lean Source and “Hairy Ball” refers to the
Hairy Ball Theorem repository. Repositories with no sorry theorems or no proven ones are not
shown. The best accuracy for each repository is in bold. As noted previously, we progressively
train on MiniF2F after the initial curriculum to demonstrate the use case of formalizing in a new
repository after learning a curriculum. As such, we don’t evaluate LeanAgent after lifelong learning
on MiniF2F.

Repository #sorrys LA Accuracy (%) ReProver ReProver+
Total During Add. After Accuracy (%) Accuracy (%)

MIL 29 72.4 48.3 24.1 48.3 55.2
MiniF2F 406 24.4 24.4 - 20.9 20.9
Formal Book 29 10.3 6.9 3.4 6.9 10.3
SciLean 294 9.2 7.5 1.7 8.2 8.5
Hairy Ball 14 7.1 0.0 7.1 0.0 7.1
Coxeter 15 6.7 6.7 0.0 0.0 6.7
Carleson 24 4.2 4.2 0.0 4.2 4.2
Lean4 PDL 30 3.3 3.3 0.0 3.3 3.3
PFR 37 2.7 2.7 0.0 0.0 0.0

long learning. This shows LeanAgent’s continuous generalizability and improvement. (2) Lifelong
Learning Analysis: We conduct an ablation study with six lifelong learning metrics to explain Lean-
Agent’s superiority in sorry theorem proving. Moreover, these results explain LeanAgent’s superior
handling of the stability-plasticity tradeoff. Please see Appendix A.2 for experiment implementation
details. We release LeanAgent at https://github.com/lean-dojo/LeanAgent.

Repositories. We evaluate our approach on a diverse set of 23 Lean repositories to assess its gener-
alizability across different mathematical domains (Skřivan, 2024; Kontorovich, 2024; Avigad, 2024;
Tao et al., 2024; Renshaw, 2024; Fermat’s Last Theorem, 2024; DeepMind, 2024; Carneiro, 2024;
Wieser, 2024; Mizuno, 2024; Murphy, 2024; Formal Logic, 2024; Con-nf, 2024; Gadgil, 2024;
Yang, 2024; Zeta 3 Irrational, 2024; Firsching, Moritz, 2024; Monnerjahn, 2024; van Doorn, 2024;
Dillies, 2024; Hairy Ball Theorem, 2024; Coxeter, 2024; Gattinger, 2024). Details of key reposito-
ries are in Table 1. Further details of these repositories, including commits and how we chose the
initial curriculum and the sub-curriculum (described in Sec. 4.2), are in Appendix A.3.

4.2 sorry THEOREM PROVING

We compare the number of sorry theorems LeanAgent can prove, both during and after lifelong
learning, to the ReProver baseline. We use ReProver as the baseline because we use its retriever as
LeanAgent’s initial retriever in our experiments.

In addition, a use case of LeanAgent is proving in a new repository after learning a curriculum;
we progressively train on MiniF2F to demonstrate this. Note that we choose the Lean4 version

6



Published as a conference paper at ICLR 2025

Figure 2: Case studies of LeanAgent’s new proofs. LeanAgent shows an ability to work with these
repositories, often able to retrieve the necessary premises (highlighted). For example, LeanAgent
proves a sorry theorem from PFR, condRho of translate, by simply expanding definitions,
showing its proving ability on the PFR repository. In addition, LeanAgent could prove re float
from SciLean during lifelong learning, while ReProver could not. Moreover, its MiniF2F proofs
demonstrate its ability to generate relatively longer and more complex proofs for complex mathe-
matics. LeanAgent’s proof of invmap.of eq and wedderburn represents its theorem proving
capabilities with abstract algebra premises.

of the MiniF2F repository (Yang, 2024) and disregard its separation into validation and test splits
(reasoning in Appendix A.5). LeanAgent’s success rate on the Lean4 version of the MiniF2F test
set is also in Appendix A.5. Moreover, a mathematician could use LeanAgent for (1) an initial
curriculum A, and later (2) a sub-curriculum B. LeanAgent can then help the mathematician prove
in the repositories in curriculum A+B. To demonstrate this scenario, we continue LeanAgent on a
sub-curriculum B of 8 repositories.

Results are in Table 2, with case studies in Figure 2. Appendix A.5 provides a more thorough
discussion, including an ablation study, and contains the complete theorems and proofs relevant to
this section.

LeanAgent demonstrates continuous generalizability and improvement in theorem-proving capabil-
ities across multiple repositories. LeanAgent’s proofs are a superset of the sorry theorems proved by
ReProver in most cases. Moreover, to isolate the effect of curriculum learning, we compare LeanA-
gent against ReProver+, the ReProver model updated on all 23 repositories at once, and notice that
LeanAgent outperforms it on several repositories, emphasizing the importance of curriculum learn-
ing. Overall, LeanAgent progresses from basic concepts (arithmetic, simple algebra) to advanced
topics (abstract algebra, topology).

PFR. LeanAgent can prove a sorry theorem from this repository, while ReProver cannot. It also
generalizes to a different commit (not included in progressive training), uncovering 7 system ex-
ploits. LeanAgent proves two theorems with just the rfl tactic, one of which ReProver cannot, and
proves 5 sorry theorems with a 0 = 1 placeholder theorem statement.

SciLean. During lifelong learning, LeanAgent proves theorems related to fundamental algebraic
structures, linear and affine maps, and measure theory basics. By the end of lifelong learning, it
proves concepts in advanced function spaces, sophisticated bijections, and abstract algebraic struc-
tures.

Mathematics in Lean Source. During lifelong learning, LeanAgent proves theorems about basic
algebraic structures and fundamental arithmetic properties. By the end of lifelong learning, it proves
more complex theorems involving quantifier manipulation, set theory, and relations.

MiniF2F. ReProver demonstrates proficiency in basic arithmetic, elementary algebra, and simple
calculus. However, by the end of lifelong learning, LeanAgent handles theorems with advanced

7



Published as a conference paper at ICLR 2025

number theory, sophisticated algebra, complex calculus and analysis, abstract algebra, and complex
induction.

Sub-curriculum. In the Formal Book repository, LeanAgent progresses from proving basic real
analysis and number theory theorems to more advanced abstract algebra, exemplified by its proof
of Wedderburn’s Little Theorem. For the Coxeter repository, LeanAgent proves a complex lemma
about Coxeter systems, showcasing its increased understanding of group theory. In the Hairy Ball
Theorem repository, LeanAgent proves a key step of the theorem, demonstrating improved perfor-
mance in algebraic topology. Only LeanAgent can prove these theorems, demonstrating that it has
much more advanced theorem-proving capabilities than ReProver.

4.3 LIFELONG LEARNING ANALYSIS

To our knowledge, no other lifelong learning frameworks for theorem proving exist in the literature.
As such, we conduct an ablation study with six lifelong learning metrics to showcase LeanAgent’s
superior handling of the stability-plasticity tradeoff. These results help explain LeanAgent’s superi-
ority in sorry theorem proving performance. We compute these metrics for the original curriculum
of 14 repositories.

Specifically, the ablation study consists of seven additional setups constructed from a combination
of learning and dataset options. Options for learning setups are progressive training with or without
EWC. Dataset setups involve a dataset order and construction. Options for dataset orders involve
Single Repository or Merge All, where each dataset consists of all previous repositories and the new
one. Given the most popular repositories on GitHub by star count, options for dataset construc-
tion include popularity order or curriculum order. Appendix A.3 shows these orders and additional
repository details.

Metrics. We use six lifelong learning metrics: Windowed-Forgetting 5 (WF5), Forgetting Mea-
sure (FM), Catastrophic Forgetting Resilience (CFR), Expanded Backward Transfer (EBWT),
Windowed-Plasticity 5 (WP5), and Incremental Plasticity (IP). A description of these metrics is
in Table 3 (De Lange et al., 2023; Wang et al., 2024b; Dı́az-Rodrı́guez et al., 2018). Our reasoning
for considering these metrics is detailed in Appendix A.4.

Table 3: Description of lifelong learning metrics.

Metric Description Target Type
WF5 Measures forgetting over a 5-task window Lower Existing
FM Average performance drop on old tasks Lower Existing
CFR Ratio of min to max average test R@10 Higher Proposed
EBWT Average improvement on old tasks after learning new ones Higher Existing
WP5 Max average test R@10 increase over a 5-task window Higher Existing
IP Rate of validation R@10 change per task Higher Proposed

We describe why we introduce two new metrics to address specific aspects of lifelong learning in
theorem proving:

• Catastrophic Forgetting Resilience (CFR). This metric captures LeanAgent’s ability to maintain
performance on its weakest task relative to its best performance, crucial in the presence of diverse
mathematical domains.

• Incremental Plasticity (IP). IP provides a more granular view of plasticity than aggregate mea-
sures and is sensitive to the order of tasks, particularly relevant in lifelong learning for theorem
proving.

In addition, these metrics in the Merge All strategy measure cumulative knowledge refinement rather
than isolated task performance (details in Appendix A.4). Due to these interpretational differences,
we analyze Single Repository and Merge All setups separately. We consider an improvement of at
least 3% to be significant.

Single Repository Analysis. We first analyze the Single Repository results from Table 4. LeanA-
gent demonstrates superior stability across multiple metrics. The WF5 metric is 75.34% lower for

8



Published as a conference paper at ICLR 2025

Table 4: Comparison of lifelong learning metrics across setups. The best scores for each metric are
in bold.

Single Repository Merge All
Metric LeanAgent Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6 Setup 7
WF5 (↓) 0.18 7.60 7.17 0.73 15.83 2.23 13.34 5.82
FM (↓) 0.85 6.53 4.04 2.11 10.50 4.06 11.44 3.80
CFR (↑) 0.88 0.87 0.88 0.85 0.76 0.94 0.75 0.90
EBWT (↑) 1.21 0.51 1.04 0.76 -0.20 0.73 -1.34 -0.39
WP5 (↑) 2.47 0.89 1.47 3.42 0.00 0.09 0.00 0.11
IP (↑) 1.02 0.36 0.26 1.06 -1.50 -0.64 -1.71 -0.89

Legend
Single Repository: Merge All:
Setup 1: No EWC, Popularity Order Setup 4: No EWC, Popularity Order
Setup 2: EWC, Popularity Order Setup 5: No EWC, Curriculum Learning
Setup 3: EWC, Curriculum Learning Setup 6: EWC, Popularity Order

Setup 7: EWC, Curriculum Learning

LeanAgent than the next best setup, suggesting it maintains performance over a window more effec-
tively. Its FM score is 59.97% lower than Setup 3’s, showcasing its resilience against catastrophic
forgetting. Furthermore, LeanAgent, Setup 1, and Setup 2 demonstrate high and consistent resilience
against catastrophic forgetting, with CFR values above 0.87 and minimal (±0.01) differences. This
underscores LeanAgent’s ability to continuously generalize over time. In addition, LeanAgent has a
16.25% higher EBWT, indicating its ability to continuously improve over time.

In contrast, Setup 3 exhibits characteristics of higher plasticity. It shows a 38.26% higher WP5
over LeanAgent, indicating a greater ability to rapidly adapt to new tasks in a window. This is
complemented by its 3.98% higher IP over LeanAgent, suggesting a more pronounced improvement
on new tasks over time. However, these plasticity gains come at a significant cost: Setup 3 suffers
from more severe catastrophic forgetting, as evidenced by its significantly worse stability metrics
compared to LeanAgent. This excessive plasticity in Setup 3 stems from EWC’s inability to adapt
parameter importance as theorem complexity increases. EWC preserves parameters important for
simpler theorems, which may not be crucial for more complex ones. Consequently, these preserved
parameters resist change while other parameters change rapidly for complex theorems. This forces
the model to become more plastic overall, relying heavily on non-preserved parameters for new,
complex theorems.

LeanAgent’s favorable stability and EBWT scores make it the most suitable for lifelong learning in
the Single Repository setting.

Merge All Analysis. Next, we analyze the Merge All setups from Table 4. Setup 5’s WF5 metric is
61.68% lower than the next best setup (Setup 7), suggesting Setup 5 balances and retains knowledge
across an expanding dataset most effectively. Furthermore, Setup 5’s CFR score is 3.77% higher
than that of Setup 7, again demonstrating high and consistent resilience in the face of an expanding,
potentially more complex dataset. However, Setup 7 has a 6.44% lower FM score than Setup 5’s,
showcasing its ability to maintain performance on earlier data points. Moreover, Setup 5 is the only
setup with a positive EBWT, indicating that learning new tasks improves performance on the entire
historical dataset. The other setups have a negative EBWT, indicating performance degradation on
earlier tasks after learning new ones.

Only Setups 5 and 7 have a non-zero WP5, suggesting the ability to adapt to the growing complexity
of the combined dataset. The zero values for Setups 4 and 6 indicate that popularity order struggles
to show improvement when dealing with merged data. However, although Setup 5 has the highest IP
score with a 27.75% improvement over Setup 7, all 4 setups have negative IP values. This indicates a
decrease in validation R@10 over time, suggesting that the Merge All strategy struggles to maintain
performance.

Experiment 5’s favorable stability and EBWT scores suggest it is the best at balancing the retention
of earlier knowledge with the adaptation to new data in a combined dataset. However, its negative
IP value indicates a fundamental issue with its approach.

9



Published as a conference paper at ICLR 2025

Comparative Analysis and Insights. Although the metrics have different interpretations in the Sin-
gle Repository and Merge All settings, we can still draw some meaningful comparisons by focusing
on overall trends and relative performance. We must consider that the negative IP values in Merge
All setups indicate a significant issue. This drawback outweighs the potential benefits seen in other
metrics like WP5, as it indicates a fundamental inability to maintain and improve performance in
a continuously growing dataset. In contrast, LeanAgent demonstrates a positive IP, indicating its
ability to incorporate new knowledge. This, combined with its superior stability and EBWT metrics
relative to other Single Repository methods, suggests that LeanAgent is better suited than Setup 5
for continuous generalizability and improvement.

Consistency with sorry Theorem Proving Performance. This lifelong learning analysis is con-
sistent with LeanAgent’s sorry theorem proving performance. LeanAgent’s superior stability met-
rics (WF5, FM, and CFR) explain its ability to maintain performance across diverse mathematical
domains, as evidenced by its success in proving theorems from various repositories like SciLean,
Mathematics in Lean Source, and PFR. Its high EBWT score aligns with its progression from basic
concepts to advanced topics in theorem proving. While LeanAgent shows slightly lower plasticity
(WP5 and IP) compared to some setups, this trade-off results in better overall performance, as re-
flected in its ability to prove a superset of sorry theorems compared to ReProver in most cases. This
analysis demonstrates LeanAgent’s overall superiority in lifelong learning for theorem proving.

5 CONCLUSION

We have presented LeanAgent, a lifelong learning framework for theorem proving that achieves
continuous generalizability and improvement across diverse mathematical domains. Key compo-
nents include a curriculum learning strategy, progressive training approach, and custom dynamic
database infrastructure. LeanAgent successfully generates formal proofs for 155 theorems where
formal proofs were previously missing and uncovers 7 exploits across 23 Lean repositories, includ-
ing from challenging mathematics. This highlights its potential to assist in formalizing complex
proofs across multiple domains and identifying system exploits. For example, LeanAgent success-
fully proves challenging theorems in abstract algebra and algebraic topology. It outperforms the
ReProver baseline in proving new sorry theorems, progressively learning from basic to complex
mathematical concepts. Moreover, LeanAgent shows significant performance in forgetting measures
and backward transfer, explaining its continuous generalizability and continuous improvement.

Future work could explore integration with Lean Copilot, providing real-time assistance with a math-
ematician’s repositories. In addition, a limitation of LeanAgent is its inability to prove certain theo-
rems due to a lack of data on specific topics, such as odeSolve.arg x0.semiAdjoint rule
in SciLean about ODEs. To solve this problem, future work could use reinforcement learning for
synthetic data generation during curriculum construction. Moreover, future work could use LeanA-
gent with additional math LLMs and search strategies.

ACKNOWLEDGMENTS

Adarsh Kumarappan is supported by the Summer Undergraduate Research Fellowships (SURF) pro-
gram at Caltech. Anima Anandkumar is supported by the Bren named chair professorship, Schmidt
AI 2050 senior fellowship, and ONR (MURI grant N00014-18-12624). We thank Terence Tao for
detailed discussions and feedback that significantly improved this paper. We thank Zulip chat mem-
bers for engaging in clarifying conversations that were incorporated into the paper.

REFERENCES

Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise Selec-
tion for Mathematics by Corpus Analysis and Kernel Methods. Journal of Automated Reasoning,
52(2):191–213, February 2014. ISSN 0168-7433, 1573-0670. doi: 10.1007/s10817-013-9286-5.

Andrew Arana and Will Stafford. On the difficulty of discovering mathematical proofs. Synthese,
202(2):1–29, 2023. doi: 10.1007/s11229-023-04184-5.

Jeremy Avigad. Avigad/mathematics in lean source, August 2024.

10



Published as a conference paper at ICLR 2025

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An Open Language Model
For Mathematics, March 2024.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48,
Montreal Quebec Canada, June 2009. ACM. ISBN 978-1-60558-516-1. doi: 10.1145/1553374.
1553380.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren
Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol
Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Im-
proving language models by retrieving from trillions of tokens, February 2022.

Mario Carneiro. Digama0/lean4lean, September 2024.

Ernie Chang, Hui-Syuan Yeh, and Vera Demberg. Does the Order of Training Samples Matter? Im-
proving Neural Data-to-Text Generation with Curriculum Learning. In Paola Merlo, Jorg Tiede-
mann, and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 727–733, Online, April 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.61.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
Lifelong Learning with A-GEM, January 2019.

Jiefeng Chen, Timothy Nguyen, Dilan Gorur, and Arslan Chaudhry. Is forgetting less a good induc-
tive bias for forward transfer?, March 2023.

Yupeng Chen, Senmiao Wang, Zhihang Lin, Zeyu Qin, Yushun Zhang, Tian Ding, and Ruoyu Sun.
MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning. 2024. doi:
10.48550/ARXIV.2407.20999.

Volkan Cirik, Eduard Hovy, and Louis-Philippe Morency. Visualizing and Understanding Curricu-
lum Learning for Long Short-Term Memory Networks, November 2016.

Claude Team. Introducing claude 3.5 sonnet, June 2024. URL https://www.anthropic.
com/news/claude-3-5-sonnet.

Lean Community. Leanprover-community/lean-liquid. leanprover-community, September 2024a.

Lean Community. Leanprover-community/lean-perfectoid-spaces. leanprover-community, August
2024b.

Con-nf. Leanprover-community/con-nf: A formal consistency proof of Quine’s set theory New
Foundations. https://github.com/leanprover-community/con-nf/tree/main, 2024.

Coxeter. NUS-Math-Formalization/coxeter at 96af8aee7943ca8685ed1b00cc83a559ea389a97.
https://github.com/NUS-Math-Formalization/coxeter/tree/96af8aee7943ca8685ed1b00cc83a559ea389a97,
2024.

Matthias De Lange, Gido van de Ven, and Tinne Tuytelaars. Continual evaluation for lifelong
learning: Identifying the stability gap, March 2023.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob Von Raumer. The
Lean Theorem Prover (System Description). In Amy P. Felty and Aart Middeldorp (eds.), Au-
tomated Deduction - CADE-25, volume 9195, pp. 378–388, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-21400-9 978-3-319-21401-6. doi: 10.1007/978-3-319-21401-6 26.

Google DeepMind. Google-deepmind/debate. Google DeepMind, August 2024.

Natalia Dı́az-Rodrı́guez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t forget,
there is more than forgetting: New metrics for Continual Learning, October 2018.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet


Published as a conference paper at ICLR 2025

Yaël Dillies. YaelDillies/LeanAPAP, September 2024.

Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam Mah-
mood, and Richard S. Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, August 2024. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-024-07711-7.

Fermat’s Last Theorem. ImperialCollegeLondon/FLT. Imperial College London, September 2024.

Firsching, Moritz. Mo271/FormalBook: Formalizing ”Proofs from THE BOOK”, 2024.

Formalized Formal Logic. FormalizedFormalLogic/Foundation. FormalizedFormalLogic, Septem-
ber 2024.

Siddhartha Gadgil. Siddhartha-gadgil/Saturn: Experiments with SAT solvers with proofs in Lean 4.
https://github.com/siddhartha-gadgil/Saturn, 2024.

Malvin Gattinger. M4lvin/lean4-pdl, September 2024.

Hairy Ball Theorem. Corent1234/hairy-ball-theorem-lean at
a778826d19c8a7ddf1d26beeea628c45450612e6. https://github.com/corent1234/hairy-ball-
theorem-lean/tree/a778826d19c8a7ddf1d26beeea628c45450612e6, 2024.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Een, Francois Chollet, and Josef
Urban. DeepMath - Deep Sequence Models for Premise Selection. In Advances in Neural Infor-
mation Processing Systems, volume 29. Curran Associates, Inc., 2016.

Albert Q. Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygóźdź, Piotr
Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding Hammers to Integrate Language Models
and Automated Theorem Provers. 2022. doi: 10.48550/ARXIV.2205.10893.

Gangwei Jiang, Caigao Jiang, Zhaoyi Li, Siqiao Xue, Jun Zhou, Linqi Song, Defu Lian, and Ying
Wei. Interpretable Catastrophic Forgetting of Large Language Model Fine-tuning via Instruction
Vector. 2024. doi: 10.48550/ARXIV.2406.12227.

Kevin Buzzard. The Future of Mathematics? Professor Kevin Buzzard - 30 May 2019, June 2019.

Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer, Sadeep Jayasumana, Veeranjaneyulu Sad-
hanala, Wittawat Jitkrittum, Aditya Krishna Menon, Rob Fergus, and Sanjiv Kumar. EmbedDis-
till: A Geometric Knowledge Distillation for Information Retrieval. 2023. doi: 10.48550/ARXIV.
2301.12005.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, March
2017. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1611835114.

Alex Kontorovich. AlexKontorovich/PrimeNumberTheoremAnd, August 2024.

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel
Ebner, Aurélien Rodriguez, and Timothée Lacroix. HyperTree Proof Search for Neural Theorem
Proving.

Conglong Li, Zhewei Yao, Xiaoxia Wu, Minjia Zhang, Connor Holmes, Cheng Li, and Yuxiong He.
DeepSpeed Data Efficiency: Improving Deep Learning Model Quality and Training Efficiency
via Efficient Data Sampling and Routing. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(16):18490–18498, March 2024. ISSN 2374-3468, 2159-5399. doi: 10.1609/
aaai.v38i16.29810.

Zhizhong Li and Derek Hoiem. Learning without Forgetting, February 2017.

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-STaR: Learning to Interleave
Thinking and Proving, August 2024.

12



Published as a conference paper at ICLR 2025

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. FIMO: A Challenge For-
mal Dataset for Automated Theorem Proving, December 2023.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient Episodic Memory for Continual Learning.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. In International Conference
on Learning Representations, November 2017.

Minghai Lu, Benjamin Delaware, and Tianyi Zhang. Proof Automation with Large Language Mod-
els, September 2024.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. ReACC:
A Retrieval-Augmented Code Completion Framework. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6227–6240, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.431.

The mathlib4 Community. Leanprover-community/mathlib4. leanprover-community, September
2024.

Jorge A Mendez and Eric Eaton. Lifelong Learning of Compositional Structures. 2021.

Maciej Mikuła, Szymon Tworkowski, Szymon Antoniak, Bartosz Piotrowski, Albert Qiaochu Jiang,
Jin Peng Zhou, Christian Szegedy, Łukasz Kuciński, Piotr Miłoś, and Yuhuai Wu. Magnusham-
mer: A Transformer-Based Approach to Premise Selection, March 2024.

Yuma Mizuno. Yuma-mizuno/lean-math-workshop. https://github.com/yuma-mizuno/lean-math-
workshop, 2024.

Ludwig Monnerjahn. Louis-Le-Grand/Formalisation-of-constructable-numbers, September 2024.

Logan Murphy. Loganrjmurphy/LeanEuclid, September 2024.

OpenAI. OpenAI o1 System Card, September 2024.

Bartosz Piotrowski, Ramon Fernández Mir, and Edward Ayers. Machine-Learned Premise Selec-
tion for Lean. In Automated Reasoning with Analytic Tableaux and Related Methods: 32nd
International Conference, TABLEAUX 2023, Prague, Czech Republic, September 18–21, 2023,
Proceedings, pp. 175–186, Berlin, Heidelberg, September 2023. Springer-Verlag. ISBN 978-3-
031-43512-6. doi: 10.1007/978-3-031-43513-3 10.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and
I. Sutskever. Formal Mathematics Statement Curriculum Learning. ArXiv, February 2022.

David Renshaw. Dwrensha/compfiles: Catalog Of Math Problems Formalized In Lean.
https://github.com/dwrensha/compfiles, September 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual Learning with Deep Gener-
ative Replay, December 2017.

Tomáš Skřivan. Lecopivo/SciLean: Scientific computing in Lean 4.
https://github.com/lecopivo/SciLean/tree/master, September 2024.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots
for theorem proving in lean, 2024. URL https://arxiv.org/abs/2404.12534.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Baby Steps: How “Less is More” in
Unsupervised Dependency Parsing.

13

https://arxiv.org/abs/2404.12534


Published as a conference paper at ICLR 2025

Sandeep Subramanian, Sai Rajeswar, Francis Dutil, Chris Pal, and Aaron Courville. Adversar-
ial Generation of Natural Language. In Phil Blunsom, Antoine Bordes, Kyunghyun Cho, Shay
Cohen, Chris Dyer, Edward Grefenstette, Karl Moritz Hermann, Laura Rimell, Jason Weston,
and Scott Yih (eds.), Proceedings of the 2nd Workshop on Representation Learning for NLP,
pp. 241–251, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi:
10.18653/v1/W17-2629.

Terence Tao. Teorth/asymptotic.

Terence Tao. Teorth/newton, June 2024a.

Terence Tao. Teorth/symmetric project, July 2024b.

Terence Tao, Pietro Monticone, Lorenzo Luccioli, and Rémy Degenne. Teorth/pfr, August 2024.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An In-
Context Learning Agent for Formal Theorem-Proving, August 2024.

Szymon Tworkowski, Maciej Mikula, Tomasz Odrzygozdz, Konrad Czechowski, Szymon Antoniak,
Albert Q Jiang, Christian Szegedy, Lukasz Kucinski, Piotr Milos, and Yuhuai Wu. Formal Premise
Selection With Language Models.

Gido M. van de Ven, Nicholas Soures, and Dhireesha Kudithipudi. Continual Learning and Catas-
trophic Forgetting, March 2024.

Floris van Doorn. Fpvandoorn/carleson, September 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural In-
formation Processing Systems, volume 30. Curran Associates, Inc., 2017.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han
Shi, Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. DT-Solver: Automated Theorem
Proving with Dynamic-Tree Sampling Guided by Proof-level Value Function. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 12632–12646, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
706.

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jianqiao Lu, Zhicheng Yang,
Jing Tang, Jian Yin, Zhenguo Li, and Xiaodan Liang. Proving Theorems Recursively, May 2024a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A Comprehensive Survey of Continual
Learning: Theory, Method and Application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(8):5362–5383, August 2024b. ISSN 0162-8828, 2160-9292, 1939-3539. doi:
10.1109/TPAMI.2024.3367329.

Mingzhe Wang and Jia Deng. Learning to Prove Theorems by Learning to Generate Theorems.
ArXiv, February 2020.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theo-
remLlama: Transforming General-Purpose LLMs into Lean4 Experts, October 2024c.

Eric Wieser. Eric-wieser/lean-matrix-cookbook: The matrix cookbook, proved in the Lean theorem
prover. https://github.com/eric-wieser/lean-matrix-cookbook, 2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-
Scale Synthetic Data, May 2024a.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F. Wu,
Fuli Luo, and Chong Ruan. DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for
Reinforcement Learning and Monte-Carlo Tree Search, August 2024b.

14



Published as a conference paper at ICLR 2025

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. ByT5: Towards a Token-Free Future with Pre-trained Byte-to-Byte
Models. Transactions of the Association for Computational Linguistics, 10:291–306, 2022. doi:
10.1162/tacl a 00461.

Kaiyu Yang. Yangky11/miniF2F-lean4. https://github.com/yangky11/miniF2F-lean4/tree/main,
2024.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem Proving with Retrieval-Augmented
Language Models. 2023. doi: 10.48550/ARXIV.2306.15626.

Wojciech Zaremba and Ilya Sutskever. Learning to Execute, February 2015.

Zeta 3 Irrational. Ahhwuhu/zeta 3 irrational at 3d68ddd90434a398c9a72f30d50c57f15a0118c7.
https://github.com/ahhwuhu/zeta 3 irrational/tree/3d68ddd90434a398c9a72f30d50c57f15a0118c7,
2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection. URL http:
//arxiv.org/abs/2403.03507.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q. Weinberger, and Yuhuai Wu.
Don’t Trust: Verify – Grounding LLM Quantitative Reasoning with Autoformalization, March
2024.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo Wang, Zhengbao Jiang, and Graham Neubig.
DocPrompting: Generating Code by Retrieving the Docs, February 2023.

Zsolt Zombori, Adrian Csiszarik, Henryk Michalewski, Cezary Kaliszyk, and Josef Urban. Curricu-
lum Learning and Theorem Proving. 2019.

A APPENDIX

A.1 FURTHER METHODOLOGY DETAILS

Repository Scanning and Data Extraction. We use the GitHub API to query for Lean repositories
based on sorting parameters (e.g., by repository stars or most recently updated repositories). We
maintain a list of known repositories to avoid; the list can be updated to allow LeanAgent to re-
analyze the same repository on a new commit or Lean version.

We clone each identified repository locally using the Git version control system. To ensure compati-
bility with our theorem-proving pipeline, we check the Lean version required by each repository and
compare it with the supported versions of our system. If the required version is incompatible, we
skip the repository and move on to the next one. Otherwise, LeanAgent switches its Lean version
to match the repository’s version. This version checking is performed by parsing the repository’s
configuration files and extracting the specified Lean version.

Dynamic Database Management. This database contains many key features that are useful in our
setting. For example, it can add new repositories, update existing ones, and generate merged datasets
from multiple repositories with customizable splitting strategies. In addition, it can query specific
theorems or premises across repositories, track the progress of proof attempts (including the proof
status of sorry theorems), and analyze the structure and content of Lean proofs, including tactic
sequences and proof states.

The database keeps track of various details: Repository metadata; theorems categorized as already
proven, sorry theorems that are proven, or sorry theorems that are unproven; premise files with their
imports and individual premises; traced files for tracking which files have been processed; detailed
theorem information, including file path, start/end positions, and full statements; and traced tactics
with annotated versions, including the proof state before and after application.

15

http://arxiv.org/abs/2403.03507
http://arxiv.org/abs/2403.03507


Published as a conference paper at ICLR 2025

If we encounter duplicate theorems between repositories while merging repositories, we use the
theorem from the repository most recently added to the database. We deduplicate premise files and
traced files by choosing the first one encountered while merging the repositories. We also generate
metadata containing details of all the repositories used to generate the dataset and statistics regarding
the theorems, premise files, and traced files in the dataset, such as the total number of theorems.

We provide the user with many options to generate a dataset. To generate the set of theorems
and proofs, the default option is to simply use the theorems, proofs, premise files, and traced files
from the current curriculum repository in the database. Specifically, we use the random split from
LeanDojo to create training, validation, and testing sets. We refrain from using the novel split from
LeanDojo, as we would like LeanAgent to learn as much as possible from a repository to perform
well on its hardest theorems. The data in the splits include details about the proofs of theorems,
including the URL and commit of the source repository, the file path of the theorem, the full name
of the theorem, the theorem statement, the start and end positions in the source file, and a list of
traced tactics with annotations. The validation and test split each contain 2% of the total theorem
and proofs, following the methodology from LeanDojo. Moreover, the database uses a topological
sort over the traced files in the repository to generate the premise corpus. This corpus is a JSON
Lines file, where each line is a JSON object consisting of a path to a Lean source file, the file’s
imports, and the file’s premise statements and definitions.

Progressive Training of the Retriever. We describe some additional steps for progressive training.
To precompute the embeddings, we use a single forward pass with batch processing to serialize and
tokenize premises from the entire corpus. Then, we use the retriever’s encoder to process the batches
and generate embeddings.

sorry Theorem Proving. We start by processing the premise corpus to use it more efficiently during
premise retrieval. This involves initializing a directed dependency graph to represent each file path in
the corpus, adding files as nodes and imports as edges, and creating a transitive closure of this graph.
We also track all premises encountered during this process, building a comprehensive knowledge
base.

Crucially, we limit retrieval to a subset of all available premises to aid the effectiveness of the re-
sults. Specifically, we choose the top 25% of accessible and relevant premises, following ReProver’s
method.

Proof Integration and Pull Request Generation. We integrate the generated proofs into the origi-
nal Lean files and create pull requests to propose the changes to the repository owners. This aids the
development of these repositories and functions as more training data for future research.

To achieve this, in a temporary Git branch, we iterate over the Lean files and locate the sorry key-
words corresponding to the generated proofs. We then replace these sorry keywords with the actual
proof text, working from the bottom of each file upward to preserve the position of theorems. Af-
ter integrating the proofs, we commit our changes, push them, and create a pull request for the
repository on GitHub.

A.2 EXPERIMENT IMPLEMENTATION DETAILS

We use ReProver’s retriever trained on the random split from LeanDojo. We use four NVIDIA
A100 GPUs with 80GB of memory each for progressive training. LeanAgent uses a distributed
architecture leveraging PyTorch Lightning and Ray for parallel processing. We use bfloat16 mixed
precision and optimize with AdamW (Loshchilov & Hutter, 2017) with an effective batch size of 16
(achieved through a batch size of 4 with gradient accumulation over 4 steps). In the first 1,000 steps,
the learning rate warms up linearly from 0 to the maximum value of 10−3. Then it decays to 0 using
a cosine schedule. In addition, we apply gradient clipping with a value of 1.0. Just as ReProver does
during training, we sample 3 negative premises per example, including 1 in-file negative premise.
The maximum sequence length for the retriever is set to 1024 tokens. The maximum sequence
length for the generator is set to 512 tokens for input and 128 tokens for output.

The prover uses a best-first search strategy with no limit on the maximum number of expansions
of the search tree. It generates 64 tactic candidates and retrieves 100 premises for each proof state.
LeanAgent uses ReProver’s tactic generator for the experiments. We generate tactics with a beam
search of size 5. We used 4 CPU workers, 1 per GPU. Due to the wide variety of repositories and

16



Published as a conference paper at ICLR 2025

experimental setups that we tested, the time for each experiment widely varied. For example, the
experiments in Table 10 took from 4 to 9 days to complete.

Furthermore, we do not compare LeanAgent with any existing LLM-based prover besides ReProver
because LeanAgent is a framework, not a model. As mentioned previously, it can be used with any
LLM. As such, a comparison would be impractical for reasons including differences in data, pre-
training, and fine-tuning. We only compare with ReProver because we use ReProver’s retriever as
the starting one in LeanAgent, allowing for a more faithful comparison.

Moreover, we do not compare with Aesop because it is not an ML model. We aim to improve upon
ML research for theorem proving, such as ReProver. Moreover, Aesop is not a framework, but
ReProver was included as the starting point of the LeanAgent framework, which is why we compare
LeanAgent to ReProver. Rather than comparing against existing tools, we aim to understand how
lifelong learning can work in theorem proving.

Furthermore, although LeanAgent can work with other LLMs such as Llemma (Azerbayev et al.,
2024) and DeepSeek-Prover (Xin et al., 2024a), using these LLMs in our work would require ar-
chitectural modifications that go beyond the scope of our current work. For example, the 7B model
DeepSeek-Prover as well as the 7B and 34B Llemma models are not retrieval-based. As such, rather
than progressively training a retriever, we would progressively train the entire model. This may be
feasible with methods such as Gradient Low-Rank Projection (Zhao et al.), but this would lead to
fundamentally different usage than we currently demonstrate. Specifically, rather than using a best-
first tree search approach as we do with ReProver’s retriever and tactic generator, we may instead
need to generate the entire proof at once. This setup is quite dissimilar from our current evaluation,
and so these results may be too dissimilar from our current evaluation framework.

In addition, we would like to note that because LeanAgent does not claim to contribute a new
search algorithm, it can be used with other search strategies such as Hypertree Proof Search (Lample
et al.). However, the source code for Hypertree Proof Search was only recently released on GitHub,
explaining why we did not use it thus far.

Moreover, the objective function for Elastic Weight Consolidation (EWC) is given by:

L(θ) = LB(θ) +
λ

2

∑
i

Fi(θi − θA,i)
2

where LB(θ) is the loss for the current task B, i is the label for each parameter, θA,i are the pa-
rameters from the previous task A, Fi is the Fisher information matrix, and λ is a hyperparameter
that controls the strength of the EWC penalty. For the setups that use EWC, we performed a grid
search over λ values in {0.01, 0.1, 1, 10, 100}. For each value, we ran Setup 2 on separate testing
repositories. We found 0.1 to yield the best overall stability and plasticity scores.

A.3 REPOSITORY DETAILS

Table 5: Additional repository descriptions

Repository Description
Prime Number Theorem And Prime Number Theorem proof
Compfiles Catalog of Olympiad-style math problems
FLT Fermat’s Last Theorem proof
Debate Stochastic double-efficient debate protocol
Lean4Lean Implementation of Lean4 kernel in Lean4
Matrix Cookbook The Matrix Cookbook lemmas
Math Workshop Detailed Lean tutorial
LeanEuclid Euclidean Geometry
Foundation Formal logic results
Con-nf Consistency of Quine’s New Foundations
Saturn SAT solver-prover implementation
Zeta 3 Irrational Proof of ζ(3) irrationality
Formalization of Constructable Numbers Ancient construction problems
LeanAPAP Kelley-Meka bound on Roth numbers

17



Published as a conference paper at ICLR 2025

Table 6: Repository commits. Formalization of Const. Numbers denotes Formalization of Con-
structable Numbers.

Repository Commit
PFR fa398a5b853c7e94e3294c45e50c6aee013a2687
Hairy Ball Theorem a778826d19c8a7ddf1d26beeea628c45450612e6
Coxeter 96af8aee7943ca8685ed1b00cc83a559ea389a97
Mathematics in Lean Source 5297e0fb051367c48c0a084411853a576389ecf5
Formal Book 6fbe8c2985008c0bfb30050750a71b90388ad3a3
MiniF2F 9e445f5435407f014b88b44a98436d50dd7abd00
SciLean 22d53b2f4e3db2a172e71da6eb9c916e62655744
Carleson bec7808b907190882fa1fa54ce749af297c6cf37
Lean4 PDL c7f649fe3c4891cf1a01c120e82ebc5f6199856e
Prime Number Theorem And 29baddd685660b5fedd7bd67f9916ae24253d566
Compfiles f99bf6f2928d47dd1a445b414b3a723c2665f091
FLT b208a302cdcbfadce33d8165f0b054bfa17e2147
Debate 7fb39251b705797ee54e08c96177fabd29a5b5a3
Lean4Lean 05b1f4a68c5facea96a5ee51c6a56fef21276e0f
Matrix Cookbook f15a149d321ac99ff9b9c024b58e7882f564669f
Math Workshop 5acd4b933d47fd6c1032798a6046c1baf261445d
LeanEuclid f1912c3090eb82820575758efc31e40b9db86bb8
Foundation d5fe5d057a90a0703a745cdc318a1b6621490c21
Con-nf 00bdc85ba7d486a9e544a0806a1018dd06fa3856
Saturn 3811a9dd46cdfd5fa0c0c1896720c28d2ec4a42a
Zeta 3 Irrational 914712200e463cfc97fe37e929d518dd58806a38
Formalization of Const. Numbers 01ef1f22a04f2ba8081c5fb29413f515a0e52878
LeanAPAP 951c660a8d7ba8e39f906fdf657674a984effa8b

Table 7: Repository orders (initial curriculum). Note that Popularity Order is by star count on
August 20, 2024.

# Curriculum Order Popularity Order
1 Compfiles SciLean
2 Mathematics in Lean Source FLT
3 Prime Number Theorem And PFR
4 Math Workshop Prime Number Theorem And
5 FLT Compfiles
6 PFR Debate
7 SciLean Mathematics in Lean Source
8 Debate Lean4Lean
9 Matrix Cookbook Matrix Cookbook

10 Con-nf Math Workshop
11 Foundation LeanEuclid
12 Saturn Foundation
13 LeanEuclid Con-nf
14 Lean4Lean Saturn

Table 8: Curriculum order (sub-curriculum)

# Curriculum Order
1 Zeta 3 Irrational
2 Formal Book
3 Formalization of Constructable Numbers
4 Carleson
5 LeanAPAP
6 Hairy Ball Theorem
7 Coxeter
8 Lean4 PDL

18



Published as a conference paper at ICLR 2025

Table 9: Repository theorem and premise counts

Repository Total Theorems Total Premises
PFR 74306 109855
Hairy Ball Theorem 73026 131217
Coxeter 71273 127608
Mathematics in Lean Source 78886 117699
Formal Book 74654 112458
MiniF2F 71313 127202
SciLean 72244 129711
Carleson 73851 109334
Lean4 PDL 20599 46400
Prime Number Theorem And 79147 115751
Compfiles 121391 178108
FLT 75082 114830
Debate 68853 103684
Lean4Lean 2559 22689
Matrix Cookbook 67585 102294
Math Workshop 76942 115458
LeanEuclid 15423 40555
Foundation 25047 57964
Con-nf 29489 64177
Saturn 10982 34497
Zeta 3 Irrational 120174 176332
Formalization of Const. Numbers 74050 109645
LeanAPAP 71090 109477

Repository Statistics and Information. Additional repository descriptions are in Table 5. The
commits we used for experiments are in Table 6. Moreover, the repository orders are detailed in Ta-
ble 7 and Table 8. Furthermore, the total number of theorems and premises per repository (including
dependencies) are in Table 9.

Repository Selection Process. Many repositories have issues such as incompatibilities with Le-
anDojo, unsupported Lean versions, and build failures. As such, our process for choosing the 14
repositories in the first curriculum was simply using LeanAgent to extract information from the
most popular repositories on GitHub. We disregard incompatible and inapplicable ones, such as
those with no theorems. We performed this process on August 20, 2024. We performed a similar
process for the eight repositories in the second curriculum with two differences: (1) We checked that
the number of sorry theorems visible from GitHub was at least 10. This narrowed down the available
repositories significantly. (2) We included some more recently updated repositories to provide some
variety in the age of the repositories in our curriculum. We performed this process on September
14, 2024. However, many of the repositories that passed this test had fewer than 10 sorry theorems
when processed by LeanDojo; this is mainly due to the functionalities of LeanDojo.

A.4 LIFELONG LEARNING METRIC DETAILS

Prior work has noted that lifelong learning methods generally lack standard evaluation metrics
(De Lange et al., 2023; Dı́az-Rodrı́guez et al., 2018). As such, our selection primarily focused
on metrics that emphasized a change over time, aligning with our problem setup. In addition, we re-
moved metrics that were redundant. For example, prior work suggests that evaluating lifelong learn-
ing frameworks only after each task, rather than over time, leads to substantial forgetting (De Lange
et al., 2023). As such, we adopt WF and WP in our analysis of LeanAgent. We use a window size of
5 for WF and WP as this represents a relatively medium-term understanding, given that we have 14
repositories. This would provide a balanced interpretation of forgetting and plasticity. Furthermore,
we use the EBWT metric, in line with previous work, to evaluate LeanAgent throughout its lifetime
rather than simply at the end (Dı́az-Rodrı́guez et al., 2018). Moreover, we chose not to include the
Forward Transfer metric as prior work has shown that a lower FM leads to better forward transfer
(Chen et al., 2023). As such, we only check FM. We also chose not to include lifelong learning met-

19



Published as a conference paper at ICLR 2025

rics for overall performance, such as Time Weighted Cumulative Performance (TWCP), Area Under
the Learning Curve (AULC), and Average Accuracy (AA), as these would lead to redundancy in
our analysis. Specifically, the metrics we chose were all computed using validation R@10 and the
average test R@10, which are already measures of LeanAgent’s performance.

We provide some additional details on the metrics we used. Windowed-Forgetting 5 (WF5) quan-
tifies model stability by measuring the maximum performance decrease in average test R@10 over
a sliding window of 5 evaluations. Following prior work, we define WF for a given window size
and then average it over all evaluation tasks to provide a single measure of stability. Moreover,
Catastrophic Forgetting Resilience (CFR) is a key indicator of the stability-plasticity trade-off. Fur-
thermore, the Forgetting Measure (FM) measures the negative influence that learning a task has on
the test R@10 of all old tasks. It is the average forgetting of all old tasks, where forgetting of a
task is the difference between its highest and current performance. Furthermore, BWT measures
the positive influence of learning a new task on the test R@10 of old tasks. EBWT improves upon
this metric by considering the average of the BWT computed after each task. Windowed-Plasticity
5 (WP5) measures the ability to learn new information by quantifying the maximum average test
R@10 increase over a sliding window of 5 evaluations. Incremental Plasticity (IP) tracks changes
in validation R@10 for each task over time.

However, it is important to note that our lifelong learning metrics have different interpretations in the
Merge All dataset construction strategy, which differs from the traditional task-incremental setup. To
our knowledge, an interpretation of these metrics in this setting has not been thoroughly conducted.
As such, we propose that metrics should be interpreted with an understanding that they may reflect
an adaptation to gradual shifts in data distribution rather than abrupt task changes. Specifically, WF5
may reflect not just forgetting old tasks but also the ability to balance and retain knowledge across an
expanding dataset. WP5 could indicate how well the model adapts to the growing complexity of the
combined dataset rather than purely learning new, isolated tasks. FM, in this context, may represent
the ability to maintain performance on earlier data points as the dataset grows. EBWT might reflect
the capacity to leverage newly added data to improve performance on the entire historical dataset.
CFR becomes a measure of stability in the face of an expanding, potentially more complex dataset.
IP may represent how quickly the model adapts to the evolving nature of the combined dataset rather
than discrete new tasks. These metrics in the Merge All case measure the ability to accumulate and
refine knowledge over time rather than strictly measuring performance on isolated tasks.

It is worth analyzing the effect of EWC. Our results in Sec. 4.3 suggest that the effect of EWC is
not uniform across different task-ordering strategies. In curriculum-based ordering, EWC seems to
improve plasticity (WP5 and IP) at the cost of stability and continuous improvement (WF5, FM,
EBWT, and CFR). An exception is Setup 7, which improves WP5 and FM. This suggests that the
Merge All strategy creates a more nuanced balance between stability and plasticity. EWC generally
improves stability and plasticity metrics, except IP, in the popularity order for the Single Repository
strategy. This may be because this ordering is less optimized for learning, and EWC helps to mitigate
some of its shortcomings. However, when used with a more effective curriculum-based ordering,
EWC interferes with the carefully structured learning process, leading to mixed results. Moreover,
in the Merge All scenario, EWC offers benefits only for the curriculum learning setups, suggesting
that its effectiveness might be limited in more complex, merged datasets. This can be explained by
the fact that the Merge All strategy is a memory-based approach to lifelong learning. As such, using
both EWC and the Merge All strategy may lead to excessive stability. This analysis further explains
why LeanAgent’s setup is superior.

A.5 FURTHER sorry THEOREM PROVING DISCUSSION

We provide some additional discussion on the results in Table 2.

First, we note that comparing LeanAgent to ReProver+, the fine-tuning baseline, is not a direct
comparison. Specifically, we note how mathematicians often formalize across multiple domains
and projects simultaneously or cyclically. We use this as motivation for connecting mathematical
knowledge between domains. Moreover, a key use case is formalizing new repositories without
retraining on the entire dataset each time. When a mathematician creates some new repositories and
adds them to a curriculum, they can simply progressively train LeanAgent on the new repositories
while maintaining performance on previous ones, as shown in our experiments with both the initial

20



Published as a conference paper at ICLR 2025

Table 10: Accuracy comparison across setups. Accuracy is calculated as (proven theorems / total
sorry theorems). MIL denotes the Mathematics in Lean Source repository, LA denotes LeanAgent,
and SX denotes Setup X (e.g., S1 is Setup 1). The best accuracy for each repository is in bold.

Repository #sorrys Accuracy (%)
LA S1 S2 S3 S4 S5 S6 S7

MIL 29 72.4 55.2 41.4 55.2 55.2 48.3 58.6 48.3
SciLean 294 9.2 8.5 7.5 6.8 8.5 8.5 8.8 7.8
PFR 37 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

curriculum and sub-curriculum. This is much more practical than retraining on the entire dataset,
which would be expensive in terms of compute and time, especially as the number of repositories
grows.

Moreover, data scarcity is a major problem in theorem proving. As such, having enough high-
quality data for effective pre-training on all repositories may not be feasible. Training on all data, an
approach similar to existing work, could prevent the model from generalizing to new repositories.
However, LeanAgent does not have this restraint as it continuously generalizes to and improves on
ever-expanding mathematical knowledge without forgetting previously learned knowledge.

In addition, the results in Table 4 show that our lifelong learning setup leads to effective backward
transfer. This is a strong advantage that pre-training does not provide and is also a reason why
LeanAgent demonstrates progressive learning, starting with basic concepts and advancing to more
complex ones. Also, although not a direct comparison to the pre-training approach, the “Merge
All” strategy indicates decreased performance over time. This dataset strategy can be interpreted
as being closer to pre-training than the “Single Repository” strategy, suggesting lower than desired
pre-training performance when training on all data.

Second, we note that LeanAgent improves over the direct fine-tuning baseline on various reposito-
ries, including MiniF2F, Scilean, and PFR. We find that these repositories contain a range of math-
ematical concepts that require progressively more advanced reasoning capabilities. This highlights
the effectiveness of our lifelong learning approach in continuously generalizing to and improving on
expanding mathematical knowledge without catastrophic forgetting.

In addition to comparing LeanAgent and ReProver, we conduct an ablation study between LeanA-
gent and the seven variants discussed in Sec. 4.3 regarding the original curriculum. The detailed
sorry theorem proving comparison, which focuses on some of the repositories compared in Sec.
4.2, is in Table 10. Note that when using the Merge All strategy, only sorry theorems from the new
repository are proven during each iteration of lifelong learning. We devote the rest of this section to
the detailed comparison of sorry theorems that these setups can prove.

Mathematics in Lean Source. We notice a progression in LeanAgent’s proving ability in the Math-
ematics in Lean Source repository. During lifelong learning, LeanAgent demonstrates a grasp of
fundamental algebraic structures and basic mathematical operations:

a) Group and Ring Theory: LeanAgent proves theorems about basic algebraic structures. For in-
stance, MyGroup.mul right inv shows that multiplying an element by its inverse yields the
identity and MyRing.add right cancel demonstrates the cancellation property in ring addi-
tion.

21



Published as a conference paper at ICLR 2025

b) Elementary Number Theory: LeanAgent handles fundamental arithmetic properties, in-
cluding MyRing.zero mul, which proves that zero multiplied by any number is zero, and
MyRing.neg neg, which shows that the negative of a negative number is the original number.

c) Order Theory: LeanAgent grasps order theory, as evidenced by absorb1, which proves that the
infimum of x and the supremum of x and y is always equal to x, and absorb2, which demonstrates
that the supremum of x and the infimum of x and y is always equal to x.

d) Rudimentary Real Analysis: LeanAgent demonstrates an early capability to handle properties re-
lated to real numbers and absolute values, as shown by C03S05.MyAbs.abs add, which proves
the triangle inequality for real numbers.

22



Published as a conference paper at ICLR 2025

10/14 of these proven sorry theorems from Mathematics in Lean Source during the lifelong learning
process are from the exercise file for proving identities about algebraic structures. This indicates
that LeanAgent starts its grasp of mathematical concepts from the basics.

Crucially, by the end of the lifelong learning process, LeanAgent exhibits significant growth in its
mathematical reasoning abilities:

a) Quantifier Manipulation: LeanAgent exhibits more advanced logical reasoning by managing mul-
tiple quantifiers and implications, as evidenced by C03S01.my lemma3, which proves a com-
plex statement involving bounds and absolute values with multiple quantifiers and conditions, and
C03S05.MyAbs.abs lt, which establishes that the absolute value of x being less than y is equiv-
alent to −y < x ∧ x < y.

b) Set Theory and Relations: LeanAgent handles abstract set-theoretic concepts, as shown by
C03S01.Subset.trans, which proves that subset relations are transitive.

23



Published as a conference paper at ICLR 2025

Now, only 2/7 sorry theorems from Mathematics in Lean Source are from the exercise file for prov-
ing identities about algebraic structures. This suggests that lifelong learning allowed LeanAgent to
transition to gaining a stronger ability to work with premises for more complicated proofs.

We gain some insights from comparing the performance of LeanAgent over time on Mathematics in
Lean Source to other setups. For example, the fact that ReProver can handle harder theorems out of
the box, such as C03S01.my lemma3, but fewer theorems overall suggests that it has a broader
knowledge base initially but loses performance from a lack of adaptability. Furthermore, Setup 5
proves the same sorry theorems as LeanAgent does during lifelong learning. This suggests that pure
curriculum learning without EWC or the Merge All strategy emphasizes grasping easier concepts
earlier. This mimics the insights gained from the lifelong learning analysis. However, Setups 3 and
7 (curriculum with EWC and/or Merge All) demonstrate some knowledge plasticity, proving harder
theorems during lifelong learning, such as C03S01.Subset.trans in Setup 3. However, this
comes at the cost of proving basic theorems, showing catastrophic forgetting. For example, Setups 3
and 7 could not prove the trivial theorems MyGroup.mul right inv and MyRing.zero mul,
respectively, during lifelong learning, whereas LeanAgent could. This again aligns with the insights
from the lifelong learning scores from our previous analysis.

By the end of lifelong learning, the sorry theorems that LeanAgent prove from Mathematics in
Lean Source are a superset of those that the other setups prove. This shows that LeanAgent’s life-
long learning setup provides continuously improving capabilities to reason about more advanced
premises and proofs than other setups. For example, LeanAgent is the only system, except for Setup
6, which can prove theorem C03S05.MyAbs.abs lt. LeanAgent achieved this by using the
available premises, such as abs lt with a statement similar to C03S05.MyAbs.abs lt.

An interesting case study can be found in the dichotomy between the theorems
C03S05.MyAbs.neg le abs self and C03S05.MyAbs.le abs self. LeanAgent can
prove C03S05.MyAbs.neg le abs self by referencing C03S05.MyAbs.le abs self,
which is still unproven at that point:

At the end of lifelong learning, LeanAgent can prove C03S05.MyAbs.le abs self:

24



Published as a conference paper at ICLR 2025

It achieves this through its use of the le abs premise, which provides conditions for when an
element is less than or equal to the absolute value of another. This suggests that LeanAgent begins by
using existing knowledge where possible before trying to realizing why existing facts are reasonable.

SciLean. We examine the sorry theorems from SciLean that LeanAgent proved to gain some further
key insights about its performance. During the lifelong learning process, LeanAgent demonstrated
stronger understanding relative to ReProver in a wide range of mathematical concepts from SciLean.
These theorems primarily focus on:

a) Fundamental Algebraic Structures: LeanAgent proves basic algebraic operations and properties,
such as SciLean.scalar div one, which proves that dividing any number by one yields the
same number, SciLean.scalar min zero one, which demonstrates the minimum value be-
tween 0 and 1 is 0, and Function.invFun.id rule, which proves that the inverse of the
identity function is the identity function itself.

b) Linear and Affine Maps: LeanAgent handles basic properties of linear and affine maps effectively,
recognizing their structure in IsLinearMap.isLinearMap apply, which proves the linearity
of function applications, and IsAffineMap.IsAffineMap apply, which demonstrates the
affine property of function applications.

c) Measure Theory Basics: LeanAgent starts grasping measure theory concepts, exem-
plified by SciLean.ite pull measureOf, which handles conditional measure selec-
tion between two measures based on a proposition, SciLean.Measure.prod volume,

25



Published as a conference paper at ICLR 2025

which proves that the product of two volume measures is the volume measure itself, and
SciLean.ite pull ennreal toReal, which proves that conditionally pulling out an ex-
tended non-negative real and converting it to a real is equivalent to converting the individual com-
ponents first.

d) Floating-Point Operations: LeanAgent demonstrates an early grasp of floating-point representa-
tions and their correspondence to real numbers, shown by SciLean.re float, proving that a
floating-point number’s real-like part is itself.

The proofs during this phase are characteristically concise, often using basic tactics like simp, rfl,
or aesop that do not use premises. This suggests that LeanAgent recognizes these theorems are
straightforward enough to prove without the complex retrieval of premises.

Crucially, by the end of the lifelong learning process, LeanAgent exhibits significant growth in its
mathematical reasoning abilities on SciLean, just as it did with Mathematics in Lean Source:

a) Advanced Function Spaces: LeanAgent understands concepts in advanced function spaces, such
as SciLean.ContCDiffMapFD eta, which demonstrates the eta reduction property for contin-
uously differentiable maps over finite dimensions.

26



Published as a conference paper at ICLR 2025

b) Sophisticated Bijections: LeanAgent grows in its ability to
work with product spaces and bijections, proving theorems such as
Function.Bijective.Prod.mk.arg fstsnd.Bijective rule simple’,
which proves the bijectivity of a function that swaps elements in a product space and
Function.Bijective.Equiv.invFun.arg a0.Bijective rule, which proves
that the composition of a bijection and its inverse remains bijective. Crucially, these theorems might
seem simple, but they demonstrate LeanAgent’s capability to handle abstract algebraic thinking.

c) Abstract Algebraic Structures: LeanAgent proves further abstract algebraic properties, including
SciLean.CDifferentiable.id rule, which proves that the identity function is continu-
ously differentiable.

d) Data Structures in Mathematics: LeanAgent navigates proofs involving array types in a mathe-
matical context, proving theorems such as SciLean.ArrayType.ext, which proves that two
arrays are equal if their elements are equal at all indices.

27



Published as a conference paper at ICLR 2025

LeanAgent proved this theorem about a traditionally computer-science-oriented data structure from
a mathematical lens, which some other setups could not do.

The proofs at this stage are more sophisticated, involving multiple steps and combining various
mathematical concepts. This indicates a deeper ability to connect different areas of mathematics.

The progression from basic algebraic structures to advanced function spaces and data structures
(like array types) shows that LeanAgent is bridging the gap between pure mathematical concepts
and their applications in computational mathematics. Furthermore, the progression from basic inte-
gral manipulations to advanced function spaces indicates that LeanAgent is improving its premise
selection over time. It learns to identify and apply more sophisticated mathematical structures and
theorems as premises.

By the end of lifelong learning, the sorry theorems that LeanAgent proves from SciLean are almost
entirely a superset of those that the other setups prove. This corroborates our previous assertion from
our analysis of the sorry theorems from Mathematics in Lean Source that LeanAgent’s lifelong
learning setup provides it with continuously improving capabilities to reason about premises and
proofs that outperform other setups.

Crucially, LeanAgent could prove re float during lifelong learning while no other setup could.
This indicates that LeanAgent’s more measured and stable approach allowed it to grasp floating-
point representations and their relation to reals. At the same time, other setups prioritized this less
with their reduced stability. This may also suggest that continuous improvement allowed LeanAgent
to process new and unique concepts from new repositories.

We gain some interesting insights from comparing the performance of LeanAgent over time on
SciLean to other setups. For example, the fact that ReProver could not prove the trivial theorem
SciLean.ite pull ennreal toReal while LeanAgent could, even during lifelong learning,
suggests that this baseline cannot handle foundational concepts. LeanAgent has a better grasp of
these concepts from lifelong learning. This is due to the increased stability of LeanAgent and im-
provement from learning a new task, as shown in the lifelong learning metric analysis in Sec. 4.3.

Furthermore, an intriguing observation is that Setup 3 could prove
Function.Bijective.Prod.mk.arg fstsnd.Bijective rule simple’ during
lifelong learning. However, as mentioned above, LeanAgent could only prove this theorem at
the end of lifelong learning. This suggests that Setup 3 is more plastic during lifelong learning,
while LeanAgent remains more stable. This corroborates the analysis from the lifelong learning
metrics. However, this again comes at the cost of grasping basic theorems. For example, Setup 3
cannot prove the trivial measure theory theorem SciLean.Measure.prod volume, whereas
LeanAgent could during lifelong learning, again suggesting that it favors plasticity over stability.

An interesting case is that LeanAgent can prove SciLean.norm2 scalar during lifelong learn-
ing but not SciLean.norm2 scalar. Conversely, Setup 2 proved SciLean.norm2 scalar
but not SciLean.norm2 scalar.

28



Published as a conference paper at ICLR 2025

Setup 2 uses the sq premise from mathlib4, which states that the square of an element is the same
as multiplying that element by itself, while LeanAgent used the SciLean.scalar norm premise
from SciLean, which states that the 2-norm of a real scalar is equal to the absolute value of that scalar.
This suggests that LeanAgent prefers to use new premises if possible rather than simplistic pre-
trained ones. This also makes sense since Setup 2 uses popularity order, which generally provides
poor stability and plasticity.

PFR. Crucially, LeanAgent is the only setup to prove a sorry theorem from PFR. We can prove
condRho of translate, which states a form of a translation invariance property of randomness
measures.

LeanAgent suggests that the proof is straightforward after expanding definitions of condRho and
considering how rho, the randomness measure, behaves under translation (as captured by the
rho of translate lemma). The fact that LeanAgent could trivially identify such a short proof
using existing premises while the maintainers of the PFR repository did not suggests the power of
our approach. This suggests that by learning the foundations of the PFR lemmas using its improved
stability, LeanAgent was able to grasp some basic definitions.

However, LeanAgent and other setups could not prove any PFR theorems after lifelong learning.
This suggests that LeanAgent requires more training time or data to further strengthen its knowledge
in this new area of mathematics.

Alternate PFR Commit. We also analyze whether LeanAgent can general-
ize to a different commit of a repository in the curriculum. We choose commit
861715b9bf9482d2442760169cb2a3ff54091f75, because PFR/RhoFunctional.lean, the file
from which we proved condRho of translate in the newer commit, did not exist in the old
commit. This allowed the sorry theorems in the old commit to be more distinct. It proved two
theorems, including the theorem multiDist copy about the equality of distributions when
copying random variables across different measure spaces that ReProver could not. LeanAgent
achieved this with just the tactic rfl. However, these statements were about multiDist, another

29



Published as a conference paper at ICLR 2025

sorry theorem. Since any two instances of sorry are automatically equal by rfl, LeanAgent
exploits this technicality to prove the two theorems.

This commit also provides another interesting example. The PFR maintainers used 0 =
1 as a placeholder for some sorry theorems, five of which are multiTau min exists,
multiTau min sum le, sub multiDistance le, sub condMultiDistance le,
sub condMultiDistance le’. Interestingly, LeanAgent finds unintended constructs and
proves these theorems with this proof:

It combines the known fact that 0 ̸= 1 with the placeholder theorem multidist eq zero, which
states 0 = 1. As such, it proves False, allowing it to derive anything, including 0 = 1.

MiniF2F. This repository consists of a validation and test split. Prior work evaluated performance
as the number of sorry theorems proved and a Pass@k metric on the test split (Yang et al., 2023).
However, given that LeanAgent is a framework, not a model, quantitatively comparing it with exist-
ing methods using a Pass@k metric is misleading. In line with our existing setups, we do not treat
MiniF2F as a benchmark. Instead, we disregard its existing splits and compare LeanAgent’s proven
sorry theorems with those of ReProver.

LeanAgent can prove 99 theorems, while ReProver can only prove 85. As mentioned in Sec. 4.2,
we append MiniF2F to the initial curriculum to demonstrate the use case of formalizing a new
repository in parallel with the ones in the starting curriculum. As such, interesting observations
can be made by comparing ReProver (starting point) with LeanAgent (ending point). The types of
sorry theorems LeanAgent can prove demonstrate its increasing understanding relative to ReProver
in complex mathematical concepts due to lifelong learning.

30



Published as a conference paper at ICLR 2025

ReProver initially demonstrated proficiency in a range of foundational mathematical areas on
MiniF2F:

a) Basic Arithmetic and Number Theory: ReProver could handle simple arithmetic and modu-
lar arithmetic problems, such as mathd numbertheory 254, a theorem about modular arith-
metic and basic addition, mathd numbertheory 342, a theorem about basic divisibility, and
mathd algebra 304, a theorem about simple exponentiation. These proofs only rely on the
norm num tactic, which evaluates arithmetic expressions. This suggests a less sophisticated prov-
ing ability of mathematics at the start of lifelong learning.

b) Elementary Algebra: ReProver could solve basic algebraic equations and perform straightfor-
ward manipulations, such as mathd algebra 141, which proves a statement about quadratic
expressions, mathd algebra 329, which shows a grasp of systems of linear equations, and
mathd algebra 547, which proves basic algebraic manipulation with roots.

31



Published as a conference paper at ICLR 2025

c) Basic Calculus and Analysis: ReProver showed early capabilities in dealing with logarithms and
exponentials, including mathd algebra 484, a theorem involving dividing logarithmic expres-
sions.

Notably, the proofs at this stage were characteristically concise, often using basic tactics like
norm num, linarith, and field simp. This suggests that ReProver recognized these theo-
rems as straightforward enough to prove without complex retrieval of premises, similar to its behav-
ior with previous repositories.

However, by the end of the lifelong learning process, LeanAgent exhibited significant growth in its
mathematical reasoning abilities on MiniF2F:

a) Advanced Number Theory: LeanAgent showed a more advanced grasp of number theory, prov-
ing theorems like mathd numbertheory 293, a complex theorem about divisibility involving a
complex expression and mathd numbertheory 233, a theorem dealing with modular arithmetic
in ZMod(112).

32



Published as a conference paper at ICLR 2025

b) Sophisticated Algebra: LeanAgent showed a better grasp of more complex algebraic manipula-
tions. Theorems include mathd algebra 148, which involves function definitions and solving
for unknown coefficients, and amc12a 2016 p3, involving a special case of a function.

c) Advanced Calculus and Analysis: LeanAgent demonstrated improved capabilities in handling
more complex analytical problems, including mathd algebra 270, a theorem involving function
composition and rational expressions.

33



Published as a conference paper at ICLR 2025

d) Complex Induction: LeanAgent became adept at more advanced induction proofs. An example is
induction 12dvd4expnp1p20, a theorem about divisibility that requires an induction proof.

e) Complex Quantifiers and Inequalities: LeanAgent increased its ability to prove more complex
logical statements, such as amc12a 2002 p6, a theorem involving multiple existential quantifiers
and inequalities.

The proofs at this later stage are more sophisticated, usually involving multiple steps and com-
bining various mathematical concepts or indicating a better ability to connect different areas of
mathematics, mirroring the progression observed in Mathematics in Lean Source and SciLean. For
example, as shown above, LeanAgent provides a one-line proof to the relatively advanced theorem
mathd numbertheory 233. The proof means the hypothesis directly proves the goal. This sug-
gests that LeanAgent grasps modular arithmetic and recognizes when a given hypothesis is sufficient
to prove the goal without additional steps.

Furthermore, as shown above, LeanAgent uses four tactics to prove the
induction 12dvd4expnp1p20 theorem. This demonstrates its ability to handle more
complex number theory proofs and use advanced tactics. This again shows that LeanAgent can
recognize when it does not require complex premise retrieval.

34



Published as a conference paper at ICLR 2025

LeanAgent demonstrates a similar grasp of the theorem amc12a 2002 p6. Notably, it combines
the simple premises lt add of pos right, which describes how an element is less than that
element added with a positive one, and zero lt one, which states that 0 is less than 1, with more
advanced tactics like lift, cases, and exact with complex term construction. This demon-
strates its ability to reuse foundational concepts for more complex proofs of abstract mathematical
concepts, showing its stability.

Importantly, LeanAgent’s performance on MiniF2F showcases its ability to adapt and improve
across different mathematical domains. We see this in the progression from ReProver’s basic arith-
metic and algebra to LeanAgent’s more advanced number theory, calculus, and abstract algebra.
This aligns with the observations from Mathematics in Lean Source and SciLean, further support-
ing the effectiveness of LeanAgent’s lifelong learning approach in theorem proving across various
mathematical repositories.

Furthermore, early proofs from ReProver dealt with concrete numbers and simple equations. Later
proofs from LeanAgent involved more abstract concepts like equivalence relations and function
properties. LeanAgent gained the capability to handle more complex number theory problems
involving divisibility under constraints. Moreover, LeanAgent shifted from solving basic linear
and quadratic equations to analyzing functions and their compositions. Also, early proofs often
used norm num for straightforward computations. Later proofs employed more varied tactics and
premises, suggesting a more sophisticated approach to proof construction. This all crucially suggests
that while existing methods, like ReProver, may be more tailored to simpler computation problems,
LeanAgent is superior on complex and analytical problems. These are precisely the types of prob-
lems present in advanced mathematics. This also corroborates LeanAgent’s performance on the
repositories mentioned previously.

In addition, we evaluate LeanAgent on the Lean4 version of the MiniF2F test set using the same
experimental setup from prior experiments, taking care not to progressively train on Test.lean and
only proving sorry theorems from it. The results are as follows:

LeanAgent: Pass@1 of 38.1% (93 / 244 theorems)

ReProver (our run on Lean4): Pass@1 of 34.0% (83 / 244 theorems)

ReProver was only tested on the Lean3 test set in the LeanDojo paper, so we ran ReProver on
the Lean4 test set for a fairer comparison. TheoremLlama (Wang et al., 2024c) reports a 33.61%
cumulative accuracy on the Lean4 test set, but this makes a direct comparison with the Pass@1
rates of LeanAgent and ReProver infeasible. Moreover, DeepSeek-Prover-V1.5 (Xin et al., 2024b)
reports a state-of-the-art result of 63.5% on the Lean4 test set.

However, LeanAgent is a lifelong learning framework, not a model. The performance of LeanAgent
is dependent on the retriever used as the starting point - ReProver’s retriever in our case. As such,
the metrics for other methods besides ReProver cannot be directly compared with LeanAgent. Such
a comparison would be impractical for reasons including differences in data, pretraining, and fine-
tuning. Again, we only compare with ReProver because we use ReProver’s retriever as the starting
one in LeanAgent, allowing for a more faithful comparison. We use ReProver because past work
has shown that retrieval leads to improved generalizability.

Moreover, we design LeanAgent to continuously generalize to and improve on ever-expanding math-
ematical knowledge without forgetting previously learned knowledge. Our goal is not to beat the
MiniF2F benchmark; instead, we aim to perform well in proving sorry theorems across a range of
diverse repositories. The other approaches mentioned focus on different objectives and don’t address
the lifelong learning aspect that is central to our work.

Formal Book. We first examine the sorry theorems from Formal Book that LeanAgent proved
during lifelong learning. These theorems centered around:

a) Real Analysis and Inequalities: LeanAgent demonstrates a better understanding relative
to ReProver in real number properties and can handle basic inequality reasoning, proving
book.irrational.lem aux ii, which involves real analysis and inequalities.

35



Published as a conference paper at ICLR 2025

b) Number Theory: LeanAgent shows capabilities in fundamental number theory concepts, proving
book.quadratic reciprocity.quadratic reciprocity 2, a key result in quadratic
reciprocity.

Notably, the proof of the first theorem uses no premises, and the proof of the second uses a simple
statement of quadratic reciprocity. However, by the end of the lifelong learning process, LeanAgent
exhibits growth in its proving abilities in this repository:

a) Advanced Abstract Algebra: LeanAgent shows advancement in proving a key result in abstract
algebra, wedderburn (Wedderburn’s Little Theorem), which is a crucial result in abstract algebra,
stating that every finite division ring is a field.

LeanAgent’s proof of the wedderburn theorem represents the ability to handle algebraic struc-
tures. By using the Field.toIsField premise, LeanAgent shows that it has grasped how to use
the knowledge of what makes a ring a field. This requires an understanding of ring theory and field
properties.

Coxeter. LeanAgent could not prove sorry theorems from the Coxeter repository during lifelong
learning. However, by the end of lifelong learning, LeanAgent demonstrates a growing under-
standing of more complex algebraic structures, proving the lemma invmap.of eq about Coxeter
systems, again showing the ability to work with advanced concepts in group theory and abstract
algebra. This corroborates the handling of abstract algebra necessary to prove the wedderburn
theorem.

36



Published as a conference paper at ICLR 2025

LeanAgent’s proof of invmap.of eq involves unfolding definitions and applying specific proper-
ties of Coxeter systems. This demonstrates LeanAgent’s growing understanding relative to ReProver
in abstract algebra specific to the new repository it has learned from.

Hairy Ball Theorem. Moreover, LeanAgent could not prove sorry theorems from the Hairy Ball
Theorem repository during lifelong learning. However, at the end of lifelong learning, LeanAgent
again demonstrates a stronger understanding relative to ReProver in algebraic topology. It proves
HairyBallDiff, which states a key step in the Hairy Ball Theorem, demonstrating a grasp of
vector spaces, norms, and their connections to topological concepts.

Crucially, only LeanAgent could prove invmap.of eq, wedderburn, and HairyBallDiff,
demonstrating that it has developed much more advanced theorem-proving capabilities than other
setups. These proofs show that LeanAgent can work with highly abstract concepts and apply them
to specific mathematical objects.

A.6 CURRICULUM LEARNING ANALYSIS

In this section, we aim to answer the following questions: (1) Why does LeanAgent use eS (S =
number of proof steps) as its complexity metric? (2) Why does curriculum learning work in theo-
rem proving? (3) Why does LeanAgent use curriculum learning instead of other lifelong learning
methods?

Complexity Measure. There is no universal measure of proof complexity in Lean or other formal
systems. One approach, the length-based measure, involves examining the proof length (number of
steps or lines) and the size of the proof term in a formal system. While these can indicate verification
complexity, they may not fully capture the complexity of discovering a proof (Arana & Stafford,
2023). Moreover, within the NLP literature, many works have related input length to complexity
(Zaremba & Sutskever, 2015; Cirik et al., 2016; Spitkovsky et al.; Subramanian et al., 2017; Chang
et al., 2021). Starting with shorter sequences and gradually increasing length improves model quality
(Li et al., 2024).

These works demonstrate the gains from basing the complexity measure on input length. As such,
we consider the equivalent of length in theorem proving to be the number of proof steps. However,
we consider a linear scaling of length naive for theorem proving; it doesn’t consider the combina-
torial explosion of possible proof paths as the length of the proof increases. As such, we choose an

37



Published as a conference paper at ICLR 2025

exponential scaling. Notably, a key strength of this choice is it is easy to compute and requires no
additional hyperparameters to tune.

We now discuss some alternative complexity metrics and why we chose not to use them in Lean-
Agent. One option is eB , where B represents the number of different proof paths that could be
explored at each step. Formally, B is defined as the average number of child nodes for each non-leaf
node in the proof tree. This is sometimes called the branching factor. We refrain from using this com-
plexity metric as computing this becomes computationally expensive for complex proofs. Moreover,
another option is to consider the complexity of the theorem statement to determine complexity. For
example, this could be measured by the number of unique symbols, the depth of nested expressions,
or the number of quantifiers. However, developing a reliable metric for statement complexity that
works across various mathematical domains could be challenging. Moreover, LeanAgent focuses
on improving proof generation, so using a metric directly related to the proof process (number of
steps) aligns better with this goal than statement complexity. Dependency-based complexity, where
we order theorems based on their dependency structure within the mathematical library, wasn’t used
for multiple reasons. Namely, a theorem might depend on many simple results but still be relatively
easy to prove, or it might depend on a few results but be very challenging. Furthermore, a topic-
based curriculum would be unsuitable because LeanAgent aims to be a general-purpose framework.
A topic-based approach might bias it towards certain mathematical domains. Moreover, a topic-
based approach does not account for theorems spanning multiple mathematical concepts. Another
option is a form of premise-based complexity measure. However, analyzing premise occurrence
frequencies across repositories could be computationally expensive, especially for large repositories
like SciLean.

Curriculum Learning. Prior work suggests that curriculum learning guides the learner towards
better local minima in non-convex optimization problems (Bengio et al., 2009). Crucially, theorem
proving involves navigating a highly non-convex optimization landscape, especially for complex
mathematical statements. The space of possible proofs is vast and complex, with many potential
dead ends and suboptimal solutions to parts of a proof. This makes theorem proving an ideal can-
didate for benefitting from curriculum learning. Moreover, curriculum learning has been shown
to have an effect similar to unsupervised pre-training, acting as a form of regularization (Bengio
et al., 2009). For theorem proving, curriculum learning allows LeanAgent to build a foundational
knowledge base of mathematics before attempting more complex theorems, naturally leading to
continuous improvement. This avoids suboptimal proof strategies early in training. Furthermore,
this leads to more robust and generalizable proof techniques that work across a broader range of
theorems, explaining LeanAgent’s sorry theorem proving performance. Moreover, the ability to act
as a regularizer means curriculum learning prevents the model from overfitting to specific types of
proofs or mathematical domains. This allows for continuous generalizability, explaining LeanA-
gent’s superior lifelong learning metric scores.

Moreover, other works from the literature show that curriculum learning biases models towards
building constructive internal representations (Cirik et al., 2016). Specifically, it allows the model
to use the knowledge from earlier steps in later predictions. In theorem proving, this allows Lean-
Agent to learn basic proof skills, which then become building blocks for more complex proofs later
on. This corroborates our analysis of LeanAgent’s progression of proof complexity. Moreover, mul-
tiple past works agree that curriculum learning provides larger gains when training data is limited
(Zaremba & Sutskever, 2015; Cirik et al., 2016; Spitkovsky et al.). This is the case in formal theorem
proving, where the number of formalized theorems and proofs is limited. These past works also state
that curriculum learning leads to better generalization, supporting the observations of LeanAgent’s
superior lifelong learning metrics.

This context supports LeanAgent’s sorry theorem proving performance and superiority on lifelong
learning metrics.

Comparison with Other Lifelong Learning Methods. Many other lifelong learning methods ex-
ist, such as those mentioned in Sec. 2. However, we chose curriculum learning for the following
reasons. Regularization methods, like EWC, slow down learning on important parameters. How-
ever, the importance of parameters can change as the theorem complexity increases. This helps
explain the lower sorry theorem proving performance of EWC methods and their performance on
lifelong learning metrics. Moreover, memory-based techniques store examples from previous tasks
to prevent forgetting. However, this can greatly affect these methods’ balance of stability and plas-

38



Published as a conference paper at ICLR 2025

ticity. This can be seen in the lifelong learning metrics of Merge All setups, including the negative
IP values. Knowledge distillation requires a separate teacher model, but curriculum learning is more
efficient as it provides the path to knowledge accumulation in a single model. Since LeanAgent is a
framework, not a model, we refrain from using dynamic architecture adjustment to keep LeanAgent
general to many LLM architectures. Moreover, recent work selectively updates parameters with
the largest momentum magnitudes and uses selective reinitialization to maintain plasticity. How-
ever, these methods often focus on balancing performance across distinct tasks. In theorem proving,
where tasks form a spectrum of increasing complexity, curriculum learning provides a more struc-
tured approach to knowledge accumulation.

A.7 THEOREM PROVING PERFORMANCE SCORE (TPPS) ANALYSIS

In this work, we directly compared the number of proven theorems with ReProver. However, the
field of theorem proving, especially in a lifelong learning context, currently lacks standardized per-
formance metrics. To address this concern, this section discusses a possible alternative metric while
acknowledging its limitations.

Theorem proving difficulty is inherently non-linear in nature. For example, LeanAgent’s
significantly improved performance over the baseline across multiple repositories allows it
to prove progressively harder theorems. Furthermore, sorry theorems lack ground truth
proofs, so proving one is valuable. To address these nuances, one could propose the
Theorem Proving Performance Score (TPPS) to emphasize newly proven sorry theorems.
Specifically, it could be stated that LeanAgent TPPS = (# ReProver Theorems Proved) +
(# New Theorems Proved ∗ X) + 1, where X represents the importance of proving a new theo-
rem, and ReProver TPPS = (# ReProver Theorems Proved) + 1. Then, Improvement Factor =
(LeanAgent TPPS)/(ReProver TPPS).

The core idea behind TPPS is to assign a higher reward for newly proven theorems, aligning with
lifelong learning objectives. However, it is important to recognize its preliminary nature and po-
tential shortcomings. First, choosing the parameter X is challenging. One approach is to choose a
static value, such as X = 10, to standardize comparisons between LeanAgent and ReProver across
diverse repositories. However, this may lead to inflated or deflated metrics on such repositories.
Alternatively, X could be chosen adaptively based on the difficulty of a repository, but this may
similarly result in unrealistic metric scores. Overall, the TPPS metric focuses on quantity and faces
challenges in ensuring comparisons across diverse repositories.

Moreover, the TPPS metric can be susceptible to artifacts that artificially inflate performance. For
instance, several theorems in the PFR repository were proven on a technicality due to placeholder
statements of “0 = 1”, which could then be used to prove other “sorry” theorems through the
principle of ex falso quodlibet. Examples such as this are due to the weakness of the current state of
repositories rather than a fundamental shortcoming of our ML approach, underscoring the need for
more robust and well-tested benchmarks.

Furthermore, TPPS does not account for the difficulty of the theorems being proved. While we ini-
tially considered using proof length as a proxy for difficulty (e.g., eS where S is the number of proof
steps), we found this approach problematic during proving evaluation. LeanAgent sometimes gen-
erates shorter proofs for difficult theorems, making proof length an unreliable indicator of theorem
difficulty.

These issues expose broader challenges in evaluating theorem-proving systems. The field lacks
standardized benchmarks, necessitating carefully curated sets of theorems with varying difficulties
across different mathematical domains. Developing reliable metrics to assess theorem difficulty
beyond simple measures like proof length or statement complexity is crucial. Future benchmarks
should prevent the exploitation of technicalities. Moreover, metrics should consider the mathemat-
ical significance of proven theorems, not just their quantity. Finally, ensuring that performance
metrics are meaningful and comparable across different mathematical repositories is essential for
consistent evaluation.

In light of these considerations, we acknowledge that TPPS, while a step towards quantifying
theorem-proving performance in a lifelong learning setting, has many limitations. Future work
should focus on developing more sophisticated and robust evaluation frameworks that address these

39



Published as a conference paper at ICLR 2025

challenges. For example, we plan to investigate more sophisticated measures that reward not only
newly proved theorems but also difficult ones. By highlighting these issues, we hope to contribute to
the ongoing discussion on how best to evaluate and compare theorem-proving systems, particularly
in the context of lifelong learning. The development of standardized, reliable metrics will be crucial
for measuring progress and guiding future research in this field.

40


	Introduction
	Preliminaries
	Methodology
	Curriculum Learning
	Dynamic Database Management
	Progressive Training of the Retriever
	sorry Theorem Proving

	Experiments
	Experimental Setup
	sorry Theorem Proving
	Lifelong Learning Analysis

	Conclusion
	Appendix
	Further Methodology Details
	Experiment Implementation Details
	Repository Details
	Lifelong Learning Metric Details
	Further sorry Theorem Proving Discussion
	Curriculum Learning Analysis
	Theorem Proving Performance Score (TPPS) Analysis


