Supplementary Material

Contents
I TInfroducfion 1
2__Preliminaries 3
2.1 _Problem Formulation e 3
2.2 Pruning Targets and Settings, 3
2.3 Subnetwork Discovery in Pre-trained SSL)| 3
3 Method 4
....................................... 4
3.2 Obtaining and Adjusting the Initial Subnetwork| 4
3.3 PARP-Progressive (PARP-P)| 5
{4 Experiments and Analysis| 5
4.1 Comparing PARP, OMP, and IMP on LSR, H2L,and CSR|. 5
4.2 How Important 1s the Initial Subnetwork (Step 1) mPARP?| 7
4.3 Are Pruning Masks ‘Transferrable across Spoken Languages? 8
4.4 Discovering a Single Subnetwork for 10 Spoken Languages 8
4.5 Does PARP work on Pre-trained BERT/XI.Net? 8
4.6 Implications|. L 9
[5__Related Work 10
6 Conclusions 10
[7 NeurlIPS Paper Checklist 20
8 Model Detailsl 21
8.1 Model and Pruning Configurations| 21
8.2 Finetuning Hyper-Parameters|. 21
8.3 PARP Hyper-Parameters|. 21
8.4 Implementation| L. 21
[9 Experimental Setup for LSR, H2L, and CSR| 22
(10 How important is the IMP rewinding starting point? 22
(11 OMP Masks Overlap in H2L. and CSR| 23

18

[11.1 OMP Masks Overlapmm H2L|.
I11.2 OMP Masks Overlapimn CSR'.

{12 x1sr Cross-Lingual Mask Transfer|

3 Details of Task Transfer Resul Pre-frained BERT

u an runing Results|

[15 wav2vec2 + PARP with Random Seeds and LM Decoding|

i >vec? Cross-Task Mask Transf SUPERB

[17_Does Observation|1|generalize across Pre-Training Objectives?|

(18 Pruned Weights Localization Across Layers

(19 Experimental Limitations|

19

31

32

34

38

39

40

41

53

7 NeurIPS Paper Checklist

1. For all authors...

(a)

(b)
(©)

(d)

Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Through experiments results are in Section [#. For
example, our claim that PARP outperforms LTH is visible in Figure 3]

Did you describe the limitations of your work? [Yes] Refer to Section [6 and Ap-
pendix [19]

Did you discuss any potential negative societal impacts of your work? We mention
in Section[6]on the broader impact of this research work. Since this work is on pruning
existing speech SSL models for low-resource spoken languages, we do not see its
potential negative societal impacts. However, we welcome reviewers and AC to raise
such concerns, and we will include corresponding statements.

Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a)
(b)

Did you state the full set of assumptions of all theoretical results? [N/A]
Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a)

(b)

(©)

(d)

Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Due to its
simplicity, PARP only adds a few lines of code to. Data and pre-trained models are
all publicly available. These details are in the Appendix and in our project webpage:
https://people.csail.mit.edu/clai24/parp/.

Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We follow [6}29] for the model configurations and fine-tuning
hyper-parameters. These details are in Appendix [§]

Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? Due to the computational expense and scale of our
experiments, we were not able to extensively re-run. We do note that our re-created
baselines match the numbers reported in prior work [6} 29].

Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We briefly mention the compute
needed in the footnote in Page 2, and more details are in the Appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a)

(d)
()

(d)

(e)

If your work uses existing assets, did you cite the creators? [Yes] Our work (code and
pre-trained models) are based on [6, [29].

Did you mention the license of the assets? [N/A]

Did you include any new assets either in the supplemental material or as a URL? [N/A]

Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? No, we used published datasets and to the best of our knowledge,
none of them have consent-related issues.

Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? We used published datasets and, to the best of
our knowledge, all of them have been reviewed carefully by the authors/community.

5. If you used crowdsourcing or conducted research with human subjects...

(@)
(b)
(©

Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

20

https://people.csail.mit.edu/clai24/parp/

8 Model Details

Model and pruning configurations for wav2vec2-base, wav2vec2-large, and x1sr can be found
in Section Fintuning hyper-parameters are generally the same as in [6], and we detailed
them in Section PARP’s hyper-parameter is detailed in Section More details on system
implementations is in Section [8.4]

8.1 Model and Pruning Configurations

wav2vec 2.0 consists of three modules: a 7-layer CNN feature encoder for pre-processing raw
speech waveforms, a quantization layer for discretizating, and a BERT for learning contextualized
representations. Given that the feature encoder is fixed and the quantization layer is discarded during
finetuning, we focus on pruning the BERT module in wav2vec 2.0 and XLSR-53. We also do not
prune the positional embedding layer nor the layer normalization layers within BERT. This setup is
consistent with BERT-Ticket [[19]. wav2vec 2.0 BASE (wav2vec2-base) is based on BERT-BASE,
which has 12 transformer blocks, hidden dimension 768, 12 self-attention heads, and 95M parameters.
wav2vec 2.0 LARGE (denote as wav2vec2-large) is based on BERT-LARGE, which has 24
transformer blocks, hidden dimension 768, 16 self-attention heads, and 315M parameters. XLSR-53
(denoted as x1sr) shares the same architecture as wav2vec2-large. We took wav2vec2-base and
wav2vec2-large that were pre-trained on Librispeech 960h. wav2vec2-base, wav2vec2-large,
and x1sr are pre-trained with the contrastive predictive coding objective.

More on Pruning Configuration. There are 3 components in wav2vec2/x1sr that we did not prune
out: (1) CNN feature extractor, (2) layer norm running statistics, and (3) positional embedding/task-
specific linear layer. For (1), it is due to the CNN feature extractor being fixed during finetuning
by default, and the majority of the model parameters lie in the BERT module in wav2vec2/x1sr.
For (2)(3), we simply follow the setup described in BERT-Ticket [[19]. These 3 decisions is why in
left of Figure[4, PARP (black line) attains ~50% PER at 100% sparsity. In fact, while re-producing
BERT-Ticket [19], we were surprised that BERT’s layer norm statistics plus its final linear layer
achieve non trivial loss/accuracy (e.g. BERT’s MLM at 0% sparsity is ~60% accuracy while at 100%
sparsity is ~15% accuracy.).

8.2 Finetuning Hyper-Parameters

wav2vec? is finetuned for 20k steps on the 10h split, 15k steps on the 1h split, and 12k steps on
the 10min split. x1sr is finetuned for 12k steps for each spoken languages. In the default setup
in [6]], wav2vec2 except the final linear layer is freezed for 10k steps, however, we observe doing
so on the pruned models may lead to training instability. Therefore, we do not include this trick in
our fine-tuning setups. The learning rate ramps up linearly for first 10% of the steps, remains the
same for 40% of the steps, and decay exponentially for 50% of the steps. The waveform encoder
output is randomly masked according to [6]. For LSR, the validation set is the dev-other subset from
Librispeech.

8.3 PARP Hyper-Parameters

PARP introduces an additional pruning frequency hyper-parameter, n in Algorithm Table[I] As long
as n is a sensible small number (e.g. 5-50 out of 10k+ steps), the final pruned models should have
similar performance. We heuristically set n = 5 for pruning XLSR on all spoken language splits;
we set n = 50 for wav2vec2-base on 10min/1h, n = 5 for wav2vec2-base on 10h, n = 5 for
wav2vec2-large on 10min, n = 2 for wav2vec2-large on lh, and n = 1 for wav2vec2-large
on 10h.

8.4 Implementation

All experiments are based on the Fairseq repositor and Wav2letter++ decodin We took publicly
available pre-trained wav2vec2-base, wav2vec2-large, and xlmﬂ The pruning code is based on

"https://github.com/pytorch/fairseq

Shttps://github.com/flashlight/wav2letter

“Pre-trained models available at https://github.com/pytorch/fairseq/blob/master/examples/
wav2vec/README . md

21

https://github.com/pytorch/fairseq
https://github.com/flashlight/wav2letter
https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/README.md
https://github.com/pytorch/fairseq/blob/master/examples/wav2vec/README.md

PyTorch’s pruning module|™”| For each experiment, we fine-tune the model on either 2 or 4 GPUs in
parallel, and unlike the standard wav2vec 2.0 fine-tuning setup, we do not include a LM for validation
during fine-tuning. Given that not all of our GPUs support FP16, our fine-tuning setup is on FP32.
For fair comparison, we imposed a reasonable computational budget for all pruning methods used in
this study{''}

9 Experimental Setup for LSR, H2L, and CSR

For LSR, we finetune pre-trained wav2vec2-base and wav2vec2-large on the 10h/1h/10min splits
from Librispeech and Libri-light, as this is the de facto setup for studying speech representation learn-
ing [6]. For H2L, we replicate the setting described in [94] 29]], where pre-trained wav2vec2-base
is finetuned on 10 spoken languages (1 hour each) from CommonVoice: Spanish (es), French (fr),
Italian (it), Kyrgyz (ky), Dutch (nl), Russian (ru), Swedish (sv-SE), Turkish(tr), Tatar (tt), and Man-
darin (zh-TW). For CSR, we replicate the setting in [29], where pre-trained x1sr is finetuned on
the same 10 languages as in H2L.. Studying LSR can inform us the effect of amount of finetuning
supervision (10min~10h) and pre-trained model scales (base v.s. large) on pruning; on the other
hand, comparing CSR and H2L could yield insights on the effect of mono-lingual versus cross-lingual
pre-training on pruning.

Evaluation Criteria. Word Error Rate (WER) is reported for LSR; Phone Error Rate (PER) is
reported for H2L and CS Earlier work on pruning sequence to sequence tasks, such as ASR [12]]
or Machine Translation [123}41]], showed that pruned models do not match or outperform the full
model, albeit with “minimal degradation”. Moreover, to isolate the effects of different pruning
methods, we do not include any external LM nor any means of self-training [118] during training or
decoding. To provide an unbiased grounding and accurate reflection of the pruned models, we thus
report relative gains of our proposed method over OMP/IMP/MPI, in addition to their raw WER/PERs.

10 How important is the IMP rewinding starting point?

We also examined the effectiveness of IMP rewinding [40, 93] for pruning speech SSL, where instead
of re-starting each IMP pruning iteration all the way back from pre-trained SSL initializations, the
iteration starts at some points during the downstream ASR finetuning. For example, in figure[9] IMP
with 10% rewinding (dark red line) means that each pruning iteration starts at 10% into the ASR
downstream finetuning; We find that rewinding has minimal effect for pruning speech SSL, which
aligns with the results in NLP [19]. Curiously, we observe the effect diminishes when the pre-training
model size is scaled up from base to large.

wav2vec?2 base + 1h wav2vec? large + 1h

100 100 —e- OMP
90 —— IMP-97%
s IMP-90%
3 80 80 IMP-80%
s 70 IMP-70%
& 60 60 —— IMP-60%
2 50 IMP-50%
§ 0 40 —— IMP-40%
— IMP-30%
30 . 20 — IMP-20%
20 — IMP-10%

0 20 40 60 80 100 0 20 40 60 80 100
Sparsity (%) Sparsity (%)

Figure 9: IMP on wav2vec2-base and wav2vec2-large with different rewinding starting point
within the downstream ASR finetuning. Its effect diminishes when pruning wav2vec2-large.

Yhttps://pytorch.org/tutorials/intermediate/pruning_tutorial.html

Each finetuning run is capped at a total of 100 V100 hours. For example, OMP requires 2 finetunings, so we
will run it for at most a total of 50 hours on across 4 V100s.

2WER/PER (lower the better) is standard criteria for ASR. This is opposite to previous work on pruning CV
or NLP models, where accuracy or BLEU scores (higher the better) was reported.

22

https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

11 0OMP Masks Overlap in H2L and CSR

We provide the rest of Figure [2 at other sparsities to support Observation [T, For readability, we
re-state it again:

For any sparsity, any amount of finetuning supervision, any pre-training model scale, and
any downstream spoken languages, the non-zero ASR pruning masks obtained from task-
agnostic subnetwork discovery has high I10Us with those obtained from task-aware subnetwork
discovery.

In addition to I0OU, we also provide the overlap percentage between mask We divide this sec-
tion into OMP masks overlap over spoken language pairs on finetuned wav2vec2-base in H2L
(Section[TT.1) and overlaps on finetuned x1sr in CSR (Section [IT.2).

11.1 0OMP Masks Overlap in H2L

H2L OMP masks overlap procedure. Each set of experiments require 10x 10 rounds of xlsr
finetunings because there are 10 downstream spoken languages ASR. The experimental procedure is:

1. Finetune wav2vec2-base for a source spoken language ASR.

2. Prune the finetuned model and obtain an OMP mask for each spoken language ASR.
3. Calculate I0U/mask overlap over all pairs of spoken language masks at each sparsity.

Language OMP Mask IOU at 10% Sparsity in wav2vec 2.0 Language OMP Mask Overlap Percentage at 10% Sparsity in wav2vec 2.0

es 0798 0774 0767 0754 0748 0804 078 0761 es- 1 0977 0974 0974 0972 0971 0978 0975 0973 0971
0776 0774 0762 0755)il 079 0768 -ass f- 0977 1 0975 0975 0973 0972 098 0977 0974 0972

0737 0734 0779 076 0.743 it 0974 0975 1 0971 097 0969 0975 0973 0971 0968

0738 0738 078 0773 0759

8 ky- 0974 0975 0971 1 097 097 0975 0974 0973 0.969
0722 077 0749 o ni- 0972 0973 097 097 1 0968 0974 0971 0969 0967
0.758 0.746 ru 0971 0972 0969 097 0968 1 0973 0971 0969 0966

sv_SE 0.81. 077 0758 0.795

0749 0746 | 0.795 0.765 wrs
0733 0733 0774 0765 3

sv_SE- 0978 098 0975 0975 0974 0973 1 0977 0975 0972

tr- 0975 0977 0973 0974 0971 0971 0977 1 0973 097

tt 0973 0974 0971 0973 0969 0969 0975 0973 1 0968

Target Language OMP masks
Target Language OMP masks

zhTW 3 0 0717 0712 0756 0739 0723 zh Tw- 0971 0972 0968 0969 0967 0966 0972 097 0968 1
MPI - 0 X . 0785 0778 [UETEN 71 0795 0779 ses MPI- 0981 0983 0978 0978 0976 0975 0985 098 0977 0975
g o053 o053 0053 0.053

o svSE

e OMP masks

uo SVSE ot

it nl it nl
Source Languag Source Language OMP masks

Figure 10: OMP pruning masks I0Us and overlap percentages on finetuned wav2vec?2 at 10% sparsity.

Language OMP Mask IOU at 20% Sparsity in wav2vec 2.0 Language OMP Mask Overlap Percentage at 20% Sparsity in wav2vec 2.0,

es 1 0.902 0.89 0.886 0.88 0.876 0.905 0.893 0.883 0.874 es 1 0.979 0.977 0.976 0.974 0.974 0.98 0.977 0.975 0.973
fr- 0.902 1 0.891 0.89 0.884 0.88 0.911 0.898 0.887 0.878 095 fr- 0.979 1 0.977 0.977 0.975 0.974 0.981 0.979 0.976 0.974
it- 0.89 0.891 1 0.877 0871 0.869 0.893 0.883 0.874 0.865 it- 0.977 0.977 1 0.974 0.972 0972 0.977 0.975 0.973 0971
" - v
X X
g ky 0.886 0.89 0.877 1 0.871 0.871 0.893 0.889 0.882 0.866 g ky 0.976 0.977 0.974 1 0.972 0.972 0.977 0.977 0.975 0.971
£ €
o nl- 0.88 0.884 0.871 0.871 1 0.863 0.888 0.877 0.869 0.86 =] o nl- 0.974 0.975 0.972 0.972 1 0.97 0.976 0974 0.972 0.97
= =
(o] (o)
o ru- 0.876 0.88 0.869 0.871 0.863 1 0.882 0.876 0.868 0.857 o ru- 0.974 0.974 0.972 0.972 0.97 1 0.975 0.973 0.972 0.969
g S
3 sv_SE- 0.905 0911 0.893 0.893 0.888 0.882 1 0.901 0.89 0.881 3 sv_SE- 0.98 0.981 0.977 0.977 0.976 0.975 1 0.979 0.977 0.975
o o -
g 2
& ylosss osss o0ees osee 0877 OB76l osor 1 | oess foB72 & o977 os1e os75 o977 0974 0973 os7e 1 | os7e 097
%z B
9 tt- 0.883 0.887 0.874 0.882 0.869 0.868 0.89 0.885 1 0.864 E‘ tt- 0.975 0.976 0.973 0.975 0.972 0.972 0.977 0.976 1 0.971
e &

zhTw- 0874 0878 0865 0866 0.86 0857 0881 0872 0864 1 zh Tw- 0973 0974 0971 0971 097 0969 0975 0973 0971 1 .

MPI- 0919 0926 0903 0904 0896 0892 0935 0914 0901 0.893 = MPI- 0983 0985 098 098 0978 0977 0987 0982 0979 0977

[} 0111 0111 0111 0111 0111 0111 0111 0111 0111 0111

es fr it ky nl mo svSE tr tt zhw es fr it ky nl

X o sv_SE tr t zhTw
Source Language OMP masks Source Language OMP masks

Figure 11: OMP pruning masks I0Us and overlap percentages on finetuned wav2vec?2 at 20% sparsity.

Bnstead of taking the Union in the denominator as in I0U, simply take the full number of parameters.

23

Language OMP Mask 10U at 30% Sparsity in wav2vec 2.0

es- 1 094 0932 093 0926 0924 0942 0934 0928 0922 es- 1 0981 0979 0978 0977 0976 0982 098 0978 0976

Language OMP Mask Overlap Percentage at 30% Sparsity in wav2vec 2.0

fr- 094 1 0933 0932 0928 0926 0945 0937 093 0925 055 f-0981 1 0979 0979 0978 0977 0983 0981 0978 0977

it 0932 0933 0979 0979 1 0976 0975 0975 0979 0978 0976 0974 o

0924 092 0919 0934 0928 0922 0917

ky- 093 0932 0924 1 092 092 0933 0932 0927 0917 ky- 0978 0979 0976 1 0975 0975 098 0979 0977 0974

0 v
R, 2
7)
© ©
1S £
o nl- 0926 0928 0.92 0.92 1 0915 0931 0924 0919 0914 ass. o nl- 0977 0978 0.975 0975 1 0973 0979 0976 0975 0973
P ru 0924 0926 0919 0.92 0.915 1 0927 0923 0918 0912 o ru 0976 0977 0975 0975 0973 1 0.977 0976 0974 0.972
H - F
3 sv.SE- 0942 0945 0934 0934 0931 0927 1 0939 0932 0927 3 sv_SE- 0982 0983 0979 0.98 0979 0.977 1 0981 0979 0.977
o - [=
e c o
S & 093 0937 0928 0932 0924 0923 0939 1 0929 0921 o S & 098 0981 0978 0979 0976 0976 0981 1 0978 0975
o I
[[
9 tt 0.928 0.93 0922 0927 0919 0918 0932 0929 1 0.916 9 tt 0978 0978 0976 0977 0975 0974 0979 0978 1 0.974
© c
zh Tw- 0922 0925 0917 0917 0914 0912 0927 0921 0916 1 zh TW- 0.976 0977 0974 0974 0973 0972 0977 0975 0974 1 .
MPI- 0.95 0.955 0.94 0941 0936 0933 0961 0947 0939 0934 ass. MPI- 0.985 0986 0982 0982 0.98 0979 0988 0984 0981 0.98
L 0177 0177 0177 0177 0.177 0177 0177 0177 0177 0177 L3 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58
es fr it ky nl o sV SE tr t zhTw es ir it ky nl u SE ot t zhTw
Source Language OMP masks Source Language OMP masks

Figure 12: OMP pruning masks I0Us and overlap percentages on finetuned wav2vec?2 at 30% sparsity.

Language OMP Mask 10U at 40% Sparsity in wav2vec 2.0 Language OMP Mask Overlap Percentage at 40% Sparsity in wav2vec 2.0

es- 1 0959 0954 0953 095 0948 0961 0955 0951 0948 es- 1 0983 0981 0981 0979 0979 0984 0982 098 0978
o095 1 0954 0954 0951 095 0963 0958 0953 0949 s £-0983 1 0981 0981 098 0979 0985 0983 0981 0979
it 0954 0954 1 0948 0946 0945 0955 0951 0947 0944 t 0981 0981 1 0979 0978 0977 0982 098 0978 0977
P v
2 L
W ky 0953 0954 0948 1 0946 0946 0955 0954 0951 0944 @ ky 0981 0981 0979 1 0978 0978 0982 0981 098 0977
£ £
@ n- 095 0951 0946 0946 1 0942 0953 0948 0945 0942 - o n-0979 098 0978 0978 1 0976 0981 0979 0977 0976
© T 0948 095 0945 0946 0942 1 0951 0948 0945 094 © ™ 0979 0979 0977 0978 0976 1 098 0979 0977 0975
¢ - %
S svse- 0961 0963 0955 0955 0953 0951 1 0959 0954 0951 S svse- 0984 0985 0982 0952 0981 095 1 0983 0981 098
o - o -
= <
® & 0955 0958 0951 0954 0948 0948 0959 1 0952 0947 s S 0982 0983 098 0981 0979 0979 0983 1 098 0978
@ @
Dt 0951 0953 0947 0951 0945 0945 0954 0952 1 0943 O & o098 0981 0978 093 0977 0977 0981 098 1 0977
8 &
TW- 0945 0949 0944 0944 0942 094 0951 0947 0943 1 ATW- 0978 0879 0977 0877 0976 0975 098 0978 0977 1
MPI- 0966 097 095 095 0957 0955 0974 0964 0959 0956 e MPI- 0986 0983 0984 0984 0952 0982 0989 0985 0983 0982

RP

ky nl SVSE t o zhTw

it u sv_SE tr it ky nl u /¢
Source Language OMP masks Source Language OMP masks

Figure 13: OMP pruning masks I0Us and overlap percentages on finetuned wav2vec?2 at 40% sparsity.

Language OMP Mask IOU at 50% Sparsity in wav2vec 2.0 Language OMP Mask Overlap Percentage at 50% Sparsity in wav2vec 2.0,

es 1 0971 0968 0967 0965 0964 0973 0969 0966 0963 es 1 098 0984 0983 0982 0982 0986 0984 0983 0981
- 0971 1 0968 0968 0966 0965 0974 097 0967 0965 - 098 1 0984 0984 0983 0982 0957 0985 0983 0982
it 0968 0968 1 0964 0962 0961 0969 0966 0963 096 it 0984 0984 1 0982 0981 098 0984 0983 0981 098
v o v
R 2
W Ky 0967 0968 0964 1 0962 0962 0969 0967 0965 0961 Ky 0983 0984 0982 1 0981 0981 0984 0983 0982 098
£ £
@ nl- 0965 0966 0962 0962 1 0959 0967 0964 0961 0.959 - Q ni-0982 0983 0981 0981 1 0979 0983 0982 098 0979
S s
o o
@ U 0964 0965 0961 0962 0959 1 0965 0963 0961 0958 © 0982 0982 098 098l 0979 1 0982 0981 098 0979
5 -
S svSE- 0973 0974 0969 0969 0967 0965 1 0971 0968 0966 S svSE- 0986 0987 0984 0984 0983 0982 1 0985 0984 0.983
o7 =
c <
S & 0969 097 0966 0967 0964 0963 0971 1 0966 0.963 . S - 0984 0985 0983 0983 0982 0981 0985 1 0983 0981
© ©
Ot 0966 0967 0963 0965 0961 0961 0968 0966 1 096 O ot 0983 0983 0981 0982 098 098 0984 0983 1 098
8 K]
shTW- 0963 0965 096 0961 0959 0958 0966 0963 096 1 zhTw- 0981 0982 098 098 0979 0979 0983 0981 098 1 .
MPI- 0977 0979 0972 0972 097 0968 0982 0975 0971 0969 - MPI- 0988 0989 0986 0986 0.85 0984 0991 0987 0985 0.984
[o5 o5 o5 05 05 05 05 05 05 05
es fr tt zhTwW - s ir r t zhTw .

it ky nl u sv_SE
Source Language OMP masks

it ky nl u sv_SE tr
Source Language OMP masks

Figure 14: OMP pruning masks I0Us and overlap percentages on finetuned wav2vec?2 at 50% sparsity.

24

Target Language OMP masks

it

nl

u

sv_SE

r

t

2w

MPI

RP

Language OMP Mask IOU at 60% Sparsity in wav2vec 2.0

1

0.98

0.977

0.977

0.975

0.975

0.981

0.978

0.976

0.974

0.984

0.98

0978

0.977

0976

0.975

0.982

0979

0.977

0.975

0.977

0.978

0.974

0973

0.973

0.978

0.976

0.974

0.972

0.98

0.977

0.977

0974

0973

0.973

0.978

0.977

0.976

0.972

0.975

0.976

0973

0.973

0.971

0.977

0.974

0.973

0.971

0.979

0.975

0.975

0973

0.973

0,971

0.976

0974

0.973

0.971

0.978

0.981

0.982

0.978

0.978

0977

0.976

0.98

0.978

0.976

0.987

0.978

0.979

0.976

0.977

0974

0.974

0.976

0.974

0.983

it ky nl u sv_SE tr
Source Language OMP masks

0.976

0.977

0974

0.976

0973

0.973

0.978

0976

0.972

0.974

0.975

0972

0.972

0,971

0.971

0.976

0.974

0.972

Language OMP Mask Overlap Percentage at 60% Sparsity in wav2vec 2.0

Target Language OMP masks

es

fr

sv_SE

1

0.988

0.986

0.986

0.985

0.985

0.988

0.987

0.985

0.984

Figure 15: OMP pruning masks I0Us and overlap percentages

Target Language OMP masks

fr

it

nl

u

sv_SE

r

t

zh W

MPI

RP

Language OMP Mask 10U at 70% Sparsity in wav2vec 2.0

1

0.986

0.985

0.984

0.983

0.983

0.987

0.985

0.984

0.983

0.989

0.986

0.985

0.985

0.984

0.983

0.988

0.986

0.984

0.983

0.985

0.985

0.983

0.982

0.982

0.985

0.984

0.982

0.981

0.987

it ky nl u sv_SE
Source Language OMP masks

0.984

0.985

0.983

0.982

0.982

0.985

0.984

0.983

0.981

0.987

0.983

0.984

0.982

0.982

0.981

0.984

0.983

0.981

0.986

0.983

0.983

0.982

0.982

0.981

0.983

0.983

0.981

0.98

0.985

0.987

0.988

0.985

0.985

0.984

0.983

0.986

0.985

0.984

0.991

0.985

0.986

0.984

0.984

0.983

0.983

0.986

0.984

0.982

0.988

tr

0.984

0.984

0.982

0.983

0.981

0.981

0.985

0.984

0.981

0.986

0.983

0.983

0.981

0.981

0.984

0.982

0.981

0.985

Language OMP Mask Overlap Percentage at 70% Sparsity in

Target Language OMP masks

Sv_SE

0.989

0.989

0.988

0.988

0.991

0.989

0.988

0.988

0.992

Figure 16: OMP pruning masks I0Us and overlap percentages

Target Language OMP masks

fr

nl

ru

sv_SE

r

zhTW

MPI

RP

Language OMP Mask IOU at 80% Sparsity in wav2vec 2.0

1

0.989

0.989

0.992

0.991

0.993

0.992

0.991

0.991

0.992

0.991

0.994

0.99

0.989

0.989

0.989

0.991

0.989

0.988

0.992

0.99

0.991

0.989

0.989

0.989

0.991

0.99

0.988

0.992

0.989

0.99

0.989

0.989

0.989

0.988

0.988

0.991

0.989

0.99

0.989

0.989

0.988

0.989

0.988

0.988

0.991

0.992

0.992

0.991

0.991

0.992

0.991

0.995

0.991

0.991

0.989

0.989

0.992

0.993

it ky nl u sv_SE tr
Source Language OMP masks

0.99

0.99

0.989

0.988

0.988

0.991

0.988

0.992

0.989

0.99

0.988

0.988

0.988

0.988

0.989

0.988

0.991

Language OMP Mask Overlap Percentage at 80% Sparsity in

Target Language OMP masks

es

fr

1

0.993

0.992

0.992

0.992

0.991

0.994

0.993

0.992

0.991

0.995

0.988

0.986

0.986

0.985

0.985

0.989

0.987

0.986

0.985

0.986

0.986

0.984

0.984

0.983

0.987

0.985

0.984

0.983

0.988

0.986

0.986

0.984

0.984

0.984

0.987

0.986

0.985

0.983

0.985

0.985

0.984

0.984

0.983

0.986

0.984

0.983

0.982

0.985

0.985

0.983

0.984

0.983

0.985

0.984

0.983

0.982

0.988

0.989

0.987

0.987

0.986

0.985

0.988

0.986

0.985

V.

0.987

0.987

0.985

0.986

0.984

0.984

0.988

0.986

0.984

it Ky nl wosvSE ot
Source Language OMP masks

0.985

0.986

0.984

0.985

0,983

0.983

0.986

0.986

0.983

0.984

0.985

0.983 o

0.983

0.982

0.982

0.985

0.984

0.983

on finetuned wav2vec?2 at 60% sparsity.

0.99

0.989

0.989

0.988

0.988

0.991

0.99

0.989

0.988

0.993

0.989

0.989

0.988

0.987

0.987

0.989

0.988

0.987

0.987

0.991

0.989

0.989

0.988

0.987

0.987

0.989

0.989

0.988

0.987

0.991

ky

it
Source Lang

0.988

0.988

0.987

0.987

0.986

0.989

0.988

0.987

0.986

nl

0.988

0.988

0.987

0.987

0.986

0.988

0.988

0.987

0.986

0.989

0.991

0.991

0.989

0.989

0.989

0.988

0.989

0.988

0.994

V.

0.989

0.99

0.988

0.989

0.988

0.988

0.989

0.987

0.992

uo SVSE ot
uage OMP masks

0.988

0.989

0.987

0.988

0.987

0.987

0.989

0.989

0.987

0.99

wav2vec 2.0

0.988
0.988
0.987 oo
0.987
0.986
0.986
0.988
0.987

0.987

on finetuned wav2vec?2 at 70% sparsity.

0.993

0.992

0,992

0.992

0,992

0.994

0.993

0,992

0.992

0.995

0.992

0.992

0.991

0.991

0.991

0.993

0.992

0.991

0.991

0.993

0.68

0,992

0.992

0.991

0.991

0,991

0.993

0.992

0,992

0.991

0.993

0.992

0.992

0.991

0,991

0.992

0.991

0.991

0.993

0.68

0,991

0.992

0.991

0,991

0.992

0.991

0,991

0.993

0.994

0.994

0.993

0.993

0.992

0.992

0.993

0.992

0.992

0.996

0.993

0.993

0.992

0.992

0.991

0.991

0.993

0.992

0.991

0.994

it ky nl u sv_SE tr
Source Language OMP masks

0,992

0,992

0.991

0,992

0.991

0,991

0,992

0.992

0.991

0.993

wav2vec 2.0

0.991
0.992
0.991 o

0.991

0.992
0.991

0.991

0.993

zh_TW

Figure 17: OMP pruning masks I0Us and overlap percentages on finetuned wav2vec?2 at 80% sparsity.

25

Language OMP Mask IOU at 90% Sparsity in wav2vec 2.0 Language OMP Mask Overlap Percentage at 90% Sparsity in wav2vec 2.0

es- 1 0996 0995 0995 0995 0995 0996 0996 0995 0.995 es- 1 0996 0996 0996 0995 0995 0997 0996 0996 0.995
fr- 0996 1 0996 0996 0995 0995 0996 0996 0995 0.995 -ass fr- 0996 1 0996 0996 0996 0996 0997 0996 0996 0.996
it 0995 0996 1 0995 0995 0995 0996 0995 0995 0.995 it 0996 0996 1 0995 0995 0995 099 0996 0995 0.995 o=

ky- 0995 0996 0995 1 0995 0995 0996 0995 0995 0995 ky- 0996 0996 0995 1 0995 0995 0996 0996 0996 0.995

nl- 0995 0995 0995 0995 1 0994 0995 0995 0995 0994 oes nl- 0995 0996 0995 0995 1 0995 0996 0995 0995 0995
o 0995 0995 0995 0995 0994 1 0995 0995 0995 0994 o 0995 0996 0995 0995 0995 1 0996 0995 0995 0995
sv_SE- 0996 0996 0996 0996 0995 0995 1 0996 0996 0995 svSE- 0997 0997 0996 0996 0996 099 1 0996 0996 0996

tr- 0996 0996 0995 0995 0995 0995 0996 1 0995 0995 wrs tr- 0996 0996 0996 0996 0995 0995 0996 1 099 0995

tt- 0995 0995 0995 0995 0995 0995 0996 0995 1 0994 tt- 0996 0996 0995 0996 0995 0995 0996 0996 1 0995

Target Language OMP masks
Target Language OMP masks

2hTW- 0995 0995 0995 0995 0994 0994 0995 0995 0994 1 2hTW- 0.995 0996 0995 0995 0995 0995 0996 0995 0995 1

MPI- 0997 0997 0996 0996 0996 0996 0997 0997 0996 0996 sss MPI- 0.997 0997 0996 0997 0996 0996 0998 0997 0996 0.996

svSE

it ky nl X it Ky nl o sv_SE
Source Language OMP masks Source Language OMP masks

r zh_TW

Figure 18: OMP pruning masks I0Us and overlap percentages on finetuned wav2vec?2 at 90% sparsity.

26

11.2 0MP Masks Overlap in CSR

CSR 0MP masks overlap procedure. Each set of experiments require 10x 10 rounds of xlsr
finetunings because there are 10 downstream spoken languages ASR. The experimental procedure is:
1. Finetune x1sr for a source spoken language ASR.
2. Prune the finetuned model and obtain an OMP mask for each spoken language ASR.
3. Calculate I0U/mask overlap over all pairs of spoken language masks at each sparsity.

Language OMP Mask Overlap Percentage at 10% Sparsity in XLSR-53

s 0.951

095 0948

095 0948

0.952

095 095 0.947 0952 0952
sv_SE 0951 0948 0948 0952 0947 0952 095 095
0.952
0952 095

0.617

0662 0646 0.62. 62 653 6515 652 zh TW 095 o

Target Language OMP masks
Target Language OMP masks

o MPI- 0971 0968

it ky nl o sv_SE tr
Source Language OMP masks

Figure 19: OMP pruning masks I0Us and overlap percentages on finetuned x1sr at 10% sparsity.

0% Sparsity in XLSR-53

Language OMP Mask 10U at 20% Sparsity in XLSR-53 Language OMP Mask Overlap Percentage at 2

es 0.805

0.804 0,802 0797 0. 0.809

0791 0806 0787 0779 0805 0.796
0.791 0806 0789 078 0.803

0.806 0.806 08 0795

0787 0789 08 0775 0801 0793

sv_SE A 0779 078 0795 0775 o. 0.785

0.805 0801 0.793
0.796 0.803 0793 0785

2h TW 0.801 0.801 0796 0.789 zh TW o

MPI 0.864 0.85 ass MPI

RP 0111 0111 0111 0111 0111 o0 0.11 {3 oes

Target Language OMP masks
Target Language OMP masks

svSE tr

P masks

it ky nl o sv_SE tr
Source Language OMP masks

it Ky nl
Source Language OM

Figure 20: OMP pruning masks I0Us and overlap percentages on finetuned x1sr at 20% sparsity.

27

Language OMP Mask 10U at 30% Sparsity in XLSR-53

es- 1

fr- 0.888

it 0.879

ky- 0.878

ni- 089

u 0874

sv_SE- 0.868

tr- 0.889

tt 0882

Target Language OMP masks

2h_TW- 0886

MPI- 0919

[o177

es

0.888

0873

0.872

0.884

0.869

0.863

0.883

0.876

0.88

0.909

0.177

fr

0.879

0.873

0.865

0.874

0.862

0.856

0.874

0.868

0.871

0.896

0177

it ky nl u
Source Language OM

0.878

0.872

0.865

0.875

0.863

0.857

0.878

0.873

0.872

0.896

0.89

0.884

0.874

0.875

0.871

0.867

0.886

0.879

0.883

0913

0177

0.874

0.869

0.862

0.863

0.871

0.853

0.871

0.866

0.868

0.892

0177

0.868 0.889
0.863 0883
0.856 0.874
0.857 0878
0.867 0.886
0.853 0.871

1 0.866
0.866 1
0.861 0.882
0.863 0883
0.885 0912
0177 0177
sv_SE tr
P masks

0.882

0.876

0.868

0.873

0.879

0.866

0.861

0.882

0.877

0.904

t

0.886

0.88

0.871

0.872

0.883

0.868

0.863

0.883

0.877

0912

0177

2h_TW

Target Language OMP masks

Language OMP Mask Overlap Percentage at 30% Sparsity in XLSR-53

es

fr

SV_SE |

1

0.964

0.962

0.961

0.965

0.96

0.958

0.965

0.962

0.964

0.964

0.959

0.959

0.963

0.958

0.956

0.963

0.96

0.962

0.959

0.956

0.96

0.955

0.953

0.96

0.958

0.959

0.967

0.961

0.959

0.956

0.956

0.954

0.961

0.959

0.959

0.967

0.965

0.963

0.96

0.959

0.957

0.964

0.961

0.963

0.96

0.958

0.955

0.956

0.959

0.959

0.957

0.958

0.958

0.956

0953

0.954

0.957

0957

0.955

0.956

0.965

0.963

0.96

0.961

0.964

0.959

0.957

0.962

0.963

0.962

0.96

0.958

0.959

0.961

0.957

0.955

0.962

0.961

0.964

0.962

0.959

0.959

0.963

0.958

0.956

0.963

0.961

V.

it Ky nl wosvSE ot
Source Language OMP masks

Figure 21: OMP pruning masks I0Us and overlap percentages on finetuned x1sr at 30%

Language OMP Mask IOU at 40% Sparsity in XLSR-53

es- 1

0.921

=

0.916

ky- 0.914

ni- 0923

- 0911

sv_SE- 0.908

tr- 0922

L4

0.917

Target Language OMP masks

zh_Tw- 0921

MPI

0.943

re ES

es

0.921

0.911

0.919

0.908

0.904

0.918

0913

0.916

0.936

0.916

0.911

0.905

0.912

0.903

0.899

0.912

0.907

0.927

0.25

it ky nl u
Source Language OM

0.914

0.91

0.905

0.912

0.904

0.899

0.914

0.911

0.928

0.25

0.923

0.919

0.912

0912

0.909

0.906

0.915

0.918

0.939

0.25

0.911

0.908

0.903

0.904

0.909

0.906

0.907

0.924

0.25

0.908 0.922
0.904 0918
0899 0912
0.899 0914
0906 092
0.897 091
1 0.906
0906 1
0.902 0917
0.904 0918
092 0938
0.25 025
sv_SE tr
P masks

0.917

0.913

0.907

0.911

0.915

0.906

0.902

0.917

0.914

0.933

0.921

0.916

0.91

0.91

0.918

0.907

0.904

0.918

0914

0.939

Target Language OMP masks

sparsity.

Language OMP Mask Overlap Percentage at 40% Sparsity in XLSR-53

es

fr

ky

Sv_SE

1

0.967

0.965

0.964

0.968

0.963

0.961

0.968

0.966

0.967

0.977

0.967

0.963

0.962

0.966

0.961

0.96

0.966

0.964

0.965

0.974

0.965

0.963

0.96

0.963

0.959

0.957

0.963

0.961

0.962

0.964

0.962

0.96

0.963

0.96

0.958

0.964

0.963

0.962

0.968

0.966

0.963

0.963

0.962

0.961

0.967

0.965

0.966

0.975

0.963

0.961

0.959

0.96

0.962

0.956

0.962

0.961

0.961

0.969

0.961

0.96

0.957

0.958

0.961

0.956

0.966

0.968

0.966

0.963

0.964

0.967

0.962

0.96

0.965

0.966

0.975

0.966

0.964

0.961

0.963

0.965

0.961

0.959

0.965

0.964

0.972

0.967

0.965

0.962

0.962

0.966

0.961

0.96

0.966

0.964

0.975

ky

it
Source Lang

nl

u
uage OM

Sv_SE

r

P masks

Figure 22: OMP pruning masks I0Us and overlap percentages on finetuned x1sr at 40%

Language OMP Mask IOU at 50% Sparsity in XLSR-53

e 1

0.943

=

0.939

ky- 0.938

nl- 0944

ru- 0936

sv_SE- 0933

tr- 0.944

Target Language OMP masks

MPI- 0.959

0.943

0.936

0,935

0.941

0,933

0.941

0,937

0.939

0.954

0.939

0.936

0,931

0.936

0.927

0.936

0,933

0.935

0.948

it
Sourt

0.938

0,935

0.931

0.927

0.938

0.936

0.935

0.948

ky
ce Lang

0.944

0.941

0.936

0.936

0.934

0.932

0.942

0.939

0.941

0.956

nl

0.936

0.933

0.925

0.935

0,932

0.933

0.946

0933

0.93

0.927

0.927

0.932

0.925

0.932

0.929

0.942

0,944

0.941

0.936

0.938

0.942

0,935

0,932

0.956

u sv_SE tr
uage OMP masks

0.94

0.937

0.933

0.936

0.939

0.932

0.929

0.938

0.952

0,943

0.939

0.935

0,935

0.941

0,933

0.93

0.941

0,938

0.956

Target Language OMP masks

sparsity.

Language OMP Mask Overlap Percentage at 50% Sparsity in XLSR-53

es

fr

1

0.971

0.969

0.968

0.971

0.967

0.965

0.971

0.969

0.971

0.979

0,971

0.967

0.966

0.97

0.965

0.964

0.969

0.968

0.969

0.977

0.969

0.967

0.964

0.967

0.964

0.962

0.967

0.965

0.966

0.973

0.968

0.966

0.964

0.967

0.964

0.962

0.968

0.967

0.966

0.973

0.971

0.97

0.967

0.967

0.966

0.965

0.97

0.968

0.97

0.978

0.967

0.965

0.964

0.964

0.966

0.961

0.966

0.965

0.965

0.972

0.965

0.964

0.962

0.962

0.965

0.961

0.965

0.963

0.964

0.971

0.969

0.967

0.968

0.966

0.965

0.969

0.969

0.977

0.969

0.968

0.965

0.967

0.968

0.965

0.963

0.969

0.968

0.975

0.971

0.969

0.966

0.966

0.97

0.965

0.964

0.969

0.968

0.978

it ky nl u sv_SE tr
Source Language OMP masks

Figure 23: OMP pruning masks I0Us and overlap percentages on finetuned x1sr at 50%

28

sparsity.

Language OMP Mask IOU at 60% Sparsity in XLSR-53

es- 1

fr- 0.959

it 0956

ky- 0.955

ru- 0954

sv_SE- 0.952

tr- 0959

tt- 0957

Target Language OMP masks

2 TW- 0959

MPI- 0.971

RP

0.959

0,953

0.953

0.958

0.952

0.95

0.957

0.955

0.956

0.967

Figure 24:

Language OMP Mask 10U at 70% Sparsity in XLSR-53

es- 1

fr- 0.971

it 0.969

ky- 0.969

nl- 0972

- 0.968

sv_SE- 0.966

tr- 0972

Target Language OMP masks

MPI- 0.98

0.971

0.967

0.967

0.97

0.966

0.965

0.97

0.968

0.97

0.977

Figure 25:

Language OMP Mask IOU at 80% Sparsity in XLSR-53

nl- 0982

ru- 0979

sv_SE- 0978

tr- 0982

tt- 0981

Target Language OMP masks

zh_Tw- 0.982

MPI- 0.987

0.982

0.979

0.979

0.981

0978

0.977

0.981

0.985

Figure 26:

0.956

0.953

0.954

0.949

0.947

0.954

0.952

0.953

0.962

0.955

0.953

0.954

0.95

0.947

0.955

0.953

0.953

0.962

0.96

0.958

0.954

0.954

0.953

0.951

0.958

0.956

0.957

0.968

0.954

0.952

0.949

0.946

0.953

0.951

0.952

0.952

0.947

0.947

0.951

0.946

0.951

0.949

0.959

0.957

0.954

0.955

0.958

0.953

0.951

0.957

0.957

0.968

it ky nl u sv_SE tr
Source Language OMP masks

0.957

0.955

0.952

0.953

0.956

0.951

0.949

0.957

1

0.955

0.965

0.959

0.956 055

0953

0.953

0.957 ass

0.952

0.95

0.957 ws

0.955

0.969 sss

Target Language OMP masks

Language OMP Mask Overlap Percentage at 60% Sparsity in XLSR-53

es

fr

sv_SE

1

0.975

0973

0.972

0975

0.972

0.97

0.975

0.974

0.975

0.975

0,971

0.971

0.974

0.969

0974

0.972

0.973

0.973

0.971

0.969

0972

0.969

0.967

0972

0.971

0.972

0.971

0.969

0972

0.969

0.967

0972

0.971

0.971

0.975

0.974

0972

0.972

0.971

0.97

0974

0.973

0.974

0.972

0.97

0.969

0.969

0.971

0.967

0.971

0.97

0.969

0.967

0.967

0.968

0.969

0.975

0.974

0.972

0.972

0.974

0.971

0.973

0.974

0.974

0.972

0.97

0971

0973

0.97

0.968

0973

0.972

0.975

0.973

0971

0.971

0.974

0.969

0.974

0.972

V.

it Ky nl wosvSE ot
Source Language OMP masks

OMP pruning masks I0Us and overlap percentages on finetuned x1sr at 60%

0.969

0.967

0.965

0.968

0.965

0.963

0.968

0.966

0.967

0.974

it ky nl u sv_SE
Source Language OMP masks

0.969

0.967

0.965

0.968

0.965

0.963

0.969

0.968

0.967

0.974

0.972

0.97

0.968

0.968

0.967

0.966

0.971

0.969

0.978

0.968

0.966

0.965

0.965

0.967

0.962

0.967

0.966

0.966

0.973

0.966

0.965

0.963

0.963

0.966

0.962

0.965

0.964

0.965

0.971

0.972

0.97

0.968

0.969

0.971

0.967

0.965

0.97

0.97

0.978

tr

0.97

0.968

0.966

0.968

0.969

0.966

0.964

0.969

0.976

0.971

0.97 -ass

0.967

0.967

0.97 Loss

0.966

0.965

0.978 aes

Target Language OMP masks

sparsity.

Language OMP Mask Overlap Percentage at 70% Sparsity in XLSR-53

es

fr

Sv_SE

1

0.98

0.978

0.978

0.98

0.977

0.976

0.98

0.979

0.98

0.986

0.98

0.977

0.977

0.979

0.976

0.975

0.979

0.978

0.978

0.984

0.978

0.977

0.975

0.977

0.975

0.974

0.977

0.976

0.977

0.981

0.978

0.977

0.975

0.977

0.975

0.974

0.978

0.977

0.977

0.981

0.98

0.979

0.977

0.977

0.976

0.976

0.979

0.978

0.979

0.984

0.977

0.976

0.975

0.975

0.976

0.973

0.977

0.976

0.976

0.981

0.976

0.975

0.974

0.974

0.976

0.973

0.975

0.974

0.975

0.979

0.98

0.979

0.977

0.978

0.979

0.977

0.975

0.979

0.979

0.984

0.979

0.978

0.976

0.977

0.978

0.976

0.974

0.979

0.978

0.983

0.98

0.978

0.977

0.977

0.979

0.976

0.975

0.979

0.978

0.985

ky

it
Source Lang

nl

V.

uo SVSE ot
uage OMP masks

OMP pruning masks I0Us and overlap percentages on finetuned x1sr at 70%

0.98

0.979

0.978

0.979

0.977

0.976

0.979

0.978

0.979

0.983

it ky nl u sv_SE
Source Language OMP masks

0.98

0.979

0.978

0.979

0978

0.976

0.979

0.979

0.983

0.982

0.981

0.979

0.979

0.979

0.978

0.981

0.98

0.981

0.986

0.979

0.978

0.977

0.978

0.979

0.976

0.979

0.978

0.979

0.983

0.978

0.977

0.976

0.976

0.978

0.976

0.978

0.977

0.978

0.981

0.982

0.981

0.979

0.98

0.981

0.979

0.978

0,981

0.981

0.986

tr

0.981

0.98

0.978

0.979

0.98

0.978

0.977

0.981

0.985

0.982

0.981 -ass

0.979

0.979

0.981 s

0.979

0.978

0.981 o

0.986 ass

Target Language OMP masks

sparsity.

Language OMP Mask Overlap Percentage at 80% Sparsity in XLSR-53

es

fr

1

0.985

0.984

0.984

0.986

0.983

0.983

0.985

0.985

0.985

0.99

0.985

0.983

0.983

0.985

0.983

0.982

0.985

0.984

0.984

0.988

0.984

0.983

0.982

0.983

0.982

0.981

0.983

0.983

0.983

0.986

0.984

0.983

0.982

0.983

0.982

0.981

0.984

0.983

0.983

0.987

0.986

0.985

0.983

0.983

0.983

0.982

0.985

0.984

0.985

0.989

0.68

0.983

0.983

0.982

0.982

0.983

0.983

0.982

0.983

0.986

0.983

0.982

0.981

0.981

0.982

0.982

0.981

0.982

0.985

0.985

0.985

0.983

0.984

0.985

0.983

0.982

0.984

0.985

0.989

0.985

0.984

0.983

0,983

0.984

0,982

0.981

0.984

0.984

0.988

0.985

0.984

0.983

0.983

0.985

0.983

0.982

0.985

0.984

0.989

it ky nl u sv_SE tr
Source Language OMP masks

OMP pruning masks I0Us and overlap percentages on finetuned x1sr at 80%

29

zh_TW

sparsity.

Language OMP Mask IOU at 90% Sparsity in XLSR-53 Language OMP Mask Overlap Percentage at 90% Sparsity in XLSR-53

es- 1 0991 099 099 0991 099 0989 0991 0991 0.991 es- 1 0992 0991 0991 0992 0991 099 0992 0991 0.992

fro 0991 1 099 099 0991 0989 0989 099 099 099 -ass fr- 0992 1 0991 0991 0991 099 099 0991 0991 0.991

it 099 099 1 0989 099 0989 0988 099 0989 099 0991 0991 1 099 0991 099 0989 0991 099 0991 o

Target Language OMP masks

a0 v
4
ky- 0.99 0.99 0.989 1 0.99 0.989 0.988 0.99 0.99 0.99 g ky- 0.991 0.991 0.99 1 0.991 0.99 0.989 0991 0991 0.991
£
nl- 0991 0991 0.99 0.99 1 0.99 0.989 0.991 0.99 0.991 -aes o nl- 0992 0991 0991 0991 1 0.991 0.99 0992 0991 0992
g v
ru- 099 0989 0989 0.989 0.99 1 0.988 0.99 0.989 0.989 o ru- 0.991 0.99 0.99 0.99 0.991 1 0.989 0.991 0.99 0.99
am g
sv_SE- 0989 0989 0988 00988 0989 0988 1 0989 0989 0.989 3 sv_SE- 0.99 0.99 0.989 0.989 0.99 0.989 1 0.99 0.99 0.99
i 3 &
c 034
tr- 0.991 0.99 0.99 0.99 0.991 0.99 0.989 1 0.99 0.991 75, B tr- 0992 0991 0991 0991 0992 0991 0.99 1 0991 0.992
]
tt- 0.991 0.99 0.989 0.99 0.99 0.989 0.989 0.99 1 0.99 9 tt 0991 0991 0.99 0991 0.991 0.99 0.99 0.991 1 0.991
c
zhTW- 0991 099 099 099 0991 0989 0989 0991 099 1 zhTW- 0.992 0991 0991 0991 0992 099 099 0992 0991 1
MPI- 0.994 0993 0992 0992 0993 0991 0991 0993 0992 0993 ass MPI- 0.994 0993 0993 0993 0994 0992 0992 0994 0993 0994
RP
fr it ky nl SSE tr zh_TW o e fr it ky nl o svSE ot Zh TW
Source Language OMP masks Source Language OMP masks

Figure 27: OMP pruning masks I0Us and overlap percentages on finetuned x1sr at 90% sparsity.

30

12 x1sr Cross-Lingual Mask Transfer

Cross-lingual mask transfer procedure. Each set of experiments require 10x 10x2 rounds of x1sr
finetunings because there are 10 downstream spoken languages ASR, and we finetune for each spoken
language ASR twice (the first one for retrieving mask, and second one for mask transfer). The
experimental procedure is:

1. Finetune x1sr/wav2vec2 for a source spoken language ASR.

2. Prune the finetuned model and obtain an OMP mask for each spoken language ASR.

3. Apply the OMP mask at x1sr pre-trained initializations and finetune for a target spoken
language ASR with PARP.

Figure 28]is the result, and it has the same cross-lingual mask transfer setup as that in Section 4.3 and
Figure [/} except the pre-trained model is x1sr instead of wav2vec?2.

Transferrability of Language Masks at 80% Sparsit

in XLSR-53 with PARP,

es (80%) 0.073 -0.497 -0.474 -0.613 -1.465 -0.083 -0.762 0.023 -1.925
fr (80%)
it (80%)
ky (80%) -
nl (80%)
ru (80%)
sv_SE (80%)
tr (80%)

tt (80%)

Subnetworks obtained from Source language (Sparsity %)

zh_TW (80%) - -0. - - -0.23 -1.199

it ky i ru sv_SE tr tt zh TW
Finetune subnetworks on Target language

Figure 28: Cross-lingual mask transfer for x1sr. Cross-lingual mask transfer with PARP has minimal
PER degradation (darker the better).

31

13 Details of Task Transfer Results on Pre-trained BERT

Cross-task mask transfer procedure. Each set of experiments require 9 X9 x 2 rounds of finetunings
because there are 9 subtasks in GLUE, and we finetune for each subtask twice (the first one for
retrieving mask, and second one for mask transfer). We first note that our cross-task transfer
experimental designs are closely knitted to NLP probing work’s experimental setup [36], i.e.
pretrained BERT/XLNet on 9 subtasks in GLUE. The experimental procedure is:

1. Finetune BERT/XLNet for a source task in GLUE.

2. Prune the finetuned model and obtain an IMP mask for each task.

3. Apply the IMP mask at BERT/XLNet pre-trained initializations and finetune for a target task
in GLUE with PARP.

Figure|29/is the IMP mask overlap for pre-trained BERT on the 9 natural language tasks in GLUE.
Figure% is the cross-task transfer result. For all the GLUE tasks, PARP can achieve better results
compared to BERT-Ticket (cross-task subnetwork regular finetuning) [19]]. For the tasks with poor
transferability in BERT-Ticket [19], like CoLA and STS-B, PARP still achieves good transfer scores.

IMP Mask IOU of GLUE tasks at 70% Sparsity in BERT

-100

ColA- 1 0.9943 0.9849 0.9737 0.9949 0.9876 0.9938 0.9953 0.9722
095
MRPC- 0.9943 1 0.9851 0.9738 0.9957 0.9878 0.9946 0.996 0.9724
0.90
QNLI- 0.9849 0.9851 1 0.9709 0.9853 0.9816 0.985 0.9854 0.9697
(%]
kY,
a 085
g QQpP- 0.9737 0.9738 0.9709 1 0.974 0.9718 0.9738 0.974 0.9632
a
=
W RTE- 0.9949 0.9957 0.9853 0.974 1 0.9881 0.9952 0.9972 0.9725 080
2
(O]
B
Y ssT2- 0.9876 09878 0.9816 0.9718 0.9881 1 0.9876 0.9882 0.9706 e
©
l—
sTs-B- 0.9938 0.9946 0.985 0.9738 0.9952 0.9876 1 0.9954 0.9723
-0.70
WNLI- 0.9953 0.996 0.9854 0.974 0.9972 0.9882 0.9954 1 0.9725
-0.65
MNLI- 0.9722 0.9724 0.9697 0.9632 0.9725 09706 09723 0.9725 1
ColA MRPC QNLI QQP RTE SST-2 STS-B WNLI MNLI o

Source GLUE IMP masks

Figure 29: I0Us over all GLUE tasks’ IMP pruning masks on finetuned BERT at 70% sparsity. Notice
the high overlap rates, which aligns with Observation

32

Transferrability of GLUE Masks at 70% Sparsity in BERT

ColA (70%)

MRPC (70%) - -31.41

QNLI (70%) -

QQP (70%) -

RTE (70%) -

SST-2 (70%) -

STS-B (70%) -

WNLI (70%) -

MNLI (70%) -

Subnetworks obtained from Source Task (Sparsity %)

average (70%) - d =235 -1.45 -7.07

QNLI QapP RTE ssT2 STS-B WNLI MNLI average
Finetune subnetworks on Target Task

Transferrability of GLUE Masks at 70% Sparsity in BERT with PARP

MRPC (70%) - -15.65

QNLI (70%) - -12.89

QQP (70%) - -7.14

RTE (70%) - -20.45

SST-2 (70%) - -12.22

STS-B (70%)- -17.88

WNLI (70%) - -20.12

MNLI (70%) = =3.17

Subnetworks obtained from Source Task (Sparsity %)

average (70%) - -12.17

ColA MRPC QNLI QP RTE ssT2 STS-B WNLI MNLI average
Finetune subnetworks on Target Task

Figure 30: Results for subnetwork transfer experiment (take subnetwork found by IMP at task A and
finetune it for task B). Top: the transfer results in BERT-Ticket [19]. Bottom: transfer with PARP
finetuning instead. Each row is a source task A, and each column is a target task B. All numbers are
subtracted by the scores of same-task transfer (task A = task B, and the darker the better).

33

14 Full H2L and CSR Pruning Results

We provide the full set of H2L and CSR pruning (refer to Section[4.T/and Section4.4 for experimental
description). Below are the rest of Figure] to other spoken languages from CommonVoice: Spanish
(es), French (fr), Italian (it), Kyrgyz (ky), Dutch (nl), Russian (ru), Swedish (sv-SE), Turkish(tr), Tatar
(1t), and Mandarin (zh-TW)

wav2vec?2 base + 1h Spanish (es) xIsr53 + 1h Spanish (es) Joint-Finetune + 1h Spanish (es)

40
35| —@— OMP 60 w2v-MPI

s 50/ —F PARP-P 50{ —®~ W2v-OMP

° —¥— w2v-PARP

z 2 401" _g— xlisr-OMP

g 20 301 —¥— xIsr-PARP

H 15

© 20
10
5 10

0 20 40 60 80 100 0 200 40 60 80 100 0 200 40 60 80 100
Sparsity (%) Sparsity (%) Sparsity (%)

Figure 31: Comparison of pruning techniques on H2L & CSR with 1h of Spanish (es) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + es). (Center) Pruning CSR (x1sr + es). (Right) Pruning
jointly-finetuned wav2vec2-base and x1sr on es.

80wav2vec2 base + 1h French (fr) xIsr53 + 1h French (fr) Joint-Finetune + 1h French (fr)
50 70
70 —o— OMP w2v-MPI
60
= 40{ —v— PARP-P —eo— w2v-OMP
2% 50{ —¥— w2v-PARP
zso 30 40/ —®— xIsr-OMP
& —¥— xIsr-PARP
= 40 30
z 20
=30 20
20 10 10
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Sparsity (%) Sparsity (%) Sparsity (%)

Figure 32: Comparison of pruning techniques on H2L & CSR with 1h of French (fr) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + fr). (Center) Pruning CSR (x1sr + fr). (Right) Pruning
jointly-finetuned wav2vec2-base and x1sr on fr.

wav2vec2 base + 1h ltalian (it) xlIsr53 + 1h Italian (it) oint-Finetune + 1h Italian (it)
51 —eo— omP 60 w2v-MPI
E 40 —¥— PARP-P 501 —®— w2v-OMP
s 35 —¥— W2v-PARP
z 30 401" —@— xIsr-OMP
& 25 30] —¥— xIsr-PARP
H 20
- 15 20
10 10
0 200 40 60 80 100 0 200 40 60 80 100 0 20 40 60 80 100
Sparsity (%) Sparsity (%) Sparsity (%)

Figure 33: Comparison of pruning techniques on H2L & CSR with 1h of Italian (if) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + if). (Center) Pruning CSR (x1sr + if). (Right) Pruning
jointly-finetuned wav2vec2-base and x1sr on it.

34

wav2vec2 base + 1h Kyrgyz (ky)

60

w P S
o o o

raw PER w/o LM

N
o

xIsr53 + 1h Kyrgyz (ky)

Joint-Finetune + 1h Kyrgyz (ky)

401 —o— OMP 70 W2v-MPI
351 —%— PARP-P 601 —e— w2v-OMP
30 50{ —¥— W2v-PARP
25 40 ~®— xIsr-OMP
20 —%— xIsr-PARP
30
15
20
10
10
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Sparsity (%)

Sparsity (%)

Sparsity (%)

Figure 34: Comparison of pruning techniques on H2L & CSR with 1h of Kyrgyz (ky) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + ky). (Center) Pruning CSR (x1sr + ky). (Right) Pruning
jointly-finetuned wav2vec2-base and x1sr on ky.

wav2vec2 base + 1h Dutch (nl)

raw PER w/o LM
N w B w ()] ~
o o o o o o

XIsr53 + 1h Dutch (nl)

oint-Finetune + 1h Dutch (nl)

501 _o— OMP 70 w2v-MPI
40l —¥— PARP-P 60{ —®~ W2v-OMP
50 —¥— w2v-PARP
30 ~®— xIsr-OMP
40
—¥— xIsr-PARP
20 30
20
10 10
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Sparsity (%)

Sparsity (%)

Sparsity (%)

Figure 35: Comparison of pruning techniques on H2L & CSR with 1h of Dutch (n/) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + nl). (Center) Pruning CSR (x1sr + nl). (Right) Pruning
jointly-finetuned wav2vec2-base and x1sr on nl.

raw PER w/o LM
w B w (=]
o o o o

N
o

7valav2vec2 base + 1h Russian (ru)

xIsr53 + 1h Russian (ru)

Joint-Finetune + 1h Russian (ru)

70
45 ®— OMP w2v-MPI
401 _w_ PARP-P 601 —e— w2v-OMP
35 50{ —¥— W2v-PARP
30 ~®— xIsr-OMP
25 401 _w— xIsr-PARP
20 30
15

20
10

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Sparsity (%)

Sparsity (%)

Sparsity (%)

Figure 36: Comparison of pruning techniques on H2L & CSR with 1h of Russian (ru) ASR finetuning.
(Left) Pruning H2L. (wav2vec2-base + ru). (Center) Pruning CSR (x1sr + ru). (Right) Pruning
jointly-finetuned wav2vec2-base and x1sr on ru.

35

wsaov2vec2 base + 1h Swedish (sv-SE) xIsr53 + 1h Swedish (sv-SE)

Joint-Finetune + 1h Swedish (sv-SE)

—®— OMP 70 w2v-MPI

50
s —¥— PARP-P 0] —® W2v-OMP
2 40 —¥— w2v-PARP
z 501 —@— xlsr-OMP
e 30 40{ —¥— xIsr-PARP
8

20 30

20
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Sparsity (%) Sparsity (%)

Sparsity (%)

Figure 37: Comparison of pruning techniques on H2L & CSR with 1h of Swedish (sv-SE) ASR
finetuning. (Left) Pruning H2L (wav2vec2-base + sv-SE). (Center) Pruning CSR (x1sr + sv-SE).
(Right) Pruning jointly-finetuned wav2vec2-base and x1sr on sv-SE.

wav2vec2 base + 1h Turkish (tr) xlsr53 + 1h Turkish (tr)

Joint-Finetune + 1h Turkish (tr)

70 50 ®— OMP 70 w2v-MPI
s 60 —¥— PARP-P 601 —®— w2v-OMP
2 40 —¥— W2V-PARP
= 50 50
= ~@— xlsr-OMP
o 30 40
& 40 —¥— xIsr-PARP
z
&30 20 30

20 20

10 10
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Sparsity (%) Sparsity (%)

Sparsity (%)

Figure 38: Comparison of pruning techniques on H2L & CSR with 1h of Turkish () ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + r). (Center) Pruning CSR (x1sr + fr). (Right) Pruning

jointly-finetuned wav2vec2-base and x1sr on #r.

wav2vec2 base + 1h Tatar (tt) xIsr53 + 1h Tatar (tt)

Joint-Finetune + 1h Tatar (tt)

35{ —@— OMP 60 w2v-MPI
50
= 30/ —¥— PARP-P 50, —® Ww2v-OMP
° —%¥— w2v-PARP
40 25 40
e ~®— xIsr-OMP
& 30 20 30{ —¥— XIsr-PARP
g 15
20 20
10
10 5 10
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Sparsity (%) Sparsity (%)

Sparsity (%)

Figure 39: Comparison of pruning techniques on H2L & CSR with 1h of Tatar (#f) ASR finetuning.
(Left) Pruning H2L (wav2vec2-base + tf). (Center) Pruning CSR (x1sr + #f). (Right) Pruning

jointly-finetuned wav2vec2-base and x1sr on ft.

36

wav2vec?2 base + 1h Mandarin (zh-TW

%)xlsr53 + 1h Mandarin (zh-TW) Joint-Finetune + 1h Mandarin (zh-TW)

80

raw PER w/o LM
w
o

N
o

6
55
50
45
40
35
30
25
20

—o— OMP
—¥— PARP-P

90
80
70
60
50
40
30
20

w2v-MPI
w2v-OMP
w2v-PARP
xlsr-OMP
XIsr-PARP

RAK;

0 20 40 60 80 100
Sparsity (%)

0 20 40 60
Sparsity (%)

80

100

0 20 40 60 80 100
Sparsity (%)

Figure 40: Comparison of pruning techniques on H2L. & CSR with 1h of Mandarin (zh-TW) ASR
finetuning. (Left) Pruning H2L (wav2vec2-base + zh-TW). (Center) Pruning CSR (x1sr + zh-TW).
(Right) Pruning jointly-finetuned wav2vec2-base and x1sr on zh-TW.

37

15 wav2vec2 + PARP with Random Seeds and LM Decoding

We re-iterate the two reasons why we did not including LM decoding in our main results. First, we
isolate the effect of pruning on ASR. Note that the standard LM (either 4-gram/transformer) used in
the wav2vec series are also trained on Librispeech (text-corpus) [6, 4]. Therefore, the LMs can easily
recover errors made by the acoustic model. Secondly, note that the 4-gram/transformer LM decoding
hyper-parameters are carefully searched via Bayesian optimizatio in the wav2vec series. Such
optimization procedure would be quite expensive to run for just one model, let alone thousands of
pruned models produced in this work.

We provide two sets of results to validate our claim that applying PARP on wav2vec?2 reduces the
downstream ASR:

* The first result is the impact of random seeds. We finetune wav2vec2-base with 10min data
at 10% sparsity with PARP at 8 additional seeds. Table[3]is the result with Viterbi decoding
without LM. We can see that at different seed values, pruned wav2vec2-base all converged
to similar WERSs, which is ~10% WER reductions compared to a full wav2vec2-base.

* The second result is pruned wav2vec2-base with the official 4-gram/transformer LM
decoding. The pruned wav2vec-base is finetuned on the 10min Librispeech split and
pruned at 10% sparsity with PARP. Since we do not have the compute resource to replicate
1500 beam 4-gram decoding and 500 beam transformer-LM decoding used in the original
paper [6], this experiment is based on a more moderate beam size. Similar to [6], decoding
hyper-parameters are searched via Ax on the dev-other Librispeech subset over 128 trials.
As shown in Table[6] the performance gain over the full wav2vec2-base reduces with LM
decoding, but we still observe a performance improvement at 10% sparsity with PARP.

Table 5: Pruning wav2vec-base with PARP at different trainnig seeds. Setting is on Librispeech
10min without LM decoding.

Method | seed | test-clean/test-other
Full wav2vec2-base | 2447 | 49.3/53.2
2447 38.04/44.33
0 37.01/43.02
1 37.82/43.66
2 37.59/43.55
wav2vec2-base + 10% PARP 3 37.57/43.29
5 37.48/44.10
6 37.87/43.55
7 37.65/43.53
8 38.22/43.91

Table 6: Decode pruned wav2vec-base with official 4-gram/transformer LMs. Setting is on Lib-
rispeech 10min.

Method | decoding algorithm | beam size | test-clean/test-other
viterbi (no LM) 49.3/53.2

Full wav2vec2-base 4-gram LM 5 27.82/32.02
transformer LM 5 27.16/32.68
viterbi (no LM) 37.69/43.66

wav2vec2-base + 10% PARP averaged 4-gram LM 5 25.17/32.13
transformer LM 5 25.45/32.46

“https://github.com/facebook/Ax

38

https://github.com/facebook/Ax

16 wav2vec?2 Cross-Task Mask Transfer on SUPERB

We extend experiments in Section @] to downstream tasks other than ASR, i.e. extend the trans-
ferability of pruning masks across speech tasks. We selected three drastically different target tasks
from SUPERB [120]]: Phone Recognition with 10h Librispeech data (in PER), Automatic Speaker
Verification on VoxCeleb (in EER), and Slot Filling on audio SNIPS (in slot type F3/slot value CER).
PER/EER/CER are lower the better, and F} is higher the better. The experiment procedure is as
follows:

1. Finetune wav2vec?2 for a source task in SUPERB.
2. Prune the finetuned model and obtain an OMP mask for each task.

3. Apply the OMP mask at wav2vec?2 pre-trained initializations and finetune for a target task in
SUPERB with PARP.

Table[7]is the wav2vec-base cross-task transfer result in SUPERB. We did learning rate grid search
over {1.0 x 1072,1.0 x 107%,1.0 x 1075,2.0 x 107°,3.0 x 107°,1.0 x 1075,1.0 x 10~7}, and
presented the best number. Note that different from SUPERB’s default setup, we make the upstream
wav2vec? jointly finetunable for PARP. Therefore, the hyper-parameters for each task finetuning are
not optimized, and the results here have to be taken with a grain of salt.

Table 7: Cross-task mask transfer for wav2vec-base at 50% sparsity.

Source task Target task 1: Target task 2: Target task 3: Slot Filling
Phone Recog (in PER) | Speaker Verification (in EER) | (in slot type Fi/slot value CER)
10h Librispeech ASR 0.0567 0.1230 0.7635/0.4432
1h Librispeech ASR 0.0567 0.1316 0.7563/0.4470
10min Librispeech ASR 0.0576 0.1399 0.7452/0.4596
10h Phone Recog 0.0471 0.1392 0.7575/0.4468
1h Phone Recog 0.0483 0.1138 0.7508/0.4537
10min Phone Recog 0.0535 0.1224 0.7519/0.4596
Intent Classification 0.0617 0.1165 0.7490/0.4621
Slot Filling 0.0601 0.1097 0.7708/0.4327
Keyword Spotting | 0.0656 0.1303 0.7490/0.4661
Speaker Verification 0.0790 0.1131 0.7497/0.4654
Speaker ID 0.0677 0.1271 0.7581/0.4559
Speaker Diarization 0.0756 0.1104 0.7449/0.4623

We first see that indeed the more similar source and target tasks are, the performance are better. For
instance, source subnetwork obtained from speaker related task perform better than those obtained
from ASR/keyword spotting on speaker verification. For another, source subnetwork obtained from
ASR/phone recognition perform better than those obtained from speaker related task on phone
recognition. We do note that the numbers are not off by too much, and the differences could be
potentially reduced via hyper-parameter tuning. This pilot study also suggests that subnetworks
transferability depends on task similarity. Lastly, this experiment does not contradict our main setting,
as we were primarily interested in cross-lingual transferability of subnetworks in Section4.3|

15 All experiments are run with SUPERB’s toolkit https://github.com/s3prl/s3prl.

39

https://github.com/s3prl/s3prl

17 Does Observation (1) generalize across Pre-Training Objectives?

Observation [[]states that:

For any sparsity, any amount of finetuning supervision, any pre-training model scale, and
any downstream spoken languages, the non-zero ASR pruning masks obtained from task-
agnostic subnetwork discovery has high I0Us with those obtained from task-aware subnetwork
discovery.

We provide analysis on whether Observation [T|holds across pre-training objectives, i.e. does pruning
masks from wav2vec?2 have high similarity with those from hubert [55]? The setup follows that of
Section[16/and is based on the downstream tasks in SUPERBI!%}

. Finetune wav2vec?2 for all tasks in SUPERB.
. Prune the finetuned models and obtain an OMP mask for each task.
. Finetune hubert for all tasks in SUPERB

. Prune the finetuned models and obtain an OMP mask for each task.

D A W N =

. For each task in SUPERB and at a fixed sparsity, calculate the mask I0U between wav2vec2
and hubert.

Table 8 is the mask I0Us at 50% sparsity between wav2vec-base and hubert-base on tasks in
SUPERB. The table indicates that while Observation [T holds separately for wav2vec2 (contrastive
pre-training) and hubert (mask-predict pre-training), it does not generalize across pre-training
method give the close to random mask I0Us (c.f. last row of Table E[) Therefore,

[Observation|I| holds true conditioned on the same speech SSL pre-training objective.]

Table 8: Mask I0U between wav2vec-base and hubert-base at 50% sparsity.

target task | mask I0U between wav2vec-base and hubert-base
10h Librispeech ASR 0.3472
1h Librispeech ASR 0.3473
10min Librispeech ASR 0.3473
10h Phone Recog 0.3473
1h Phone Recog 0.3473
10min Phone Recog 0.3473
Intent Classification 0.3473
Slot Filling 0.3472
Keyword Spotting | 0.3473
Speaker Verification 0.3473
Speaker ID 0.3473
Speaker Diarization 0.3472
Random Pruning | 0.3473

This finding is perhaps not so surprising, see prior work on similarity analysis between contextualized
speech [24]] and word [113] representations. They suggest that different pre-trained models’ contex-
tualized representations have low similarities, e.g. BERT v.s. XLNet. We stress that this does not
invalidate PARP. As long as Observation[I|holds, PARP’s step 2 should make learnable adjustments to
the initial mask given the high overlaps between pruning masks.

'SFor this set of experiments, we used the same optimization method (Adam with constant 1.0 x 10~ learning
rate) for finetuning wav2vec-base and hubert-base.

40

18 Pruned Weights Localization Across Layers

The wav2vec series [0, [4, 53] [53]] is known to have more valuable contextualized representations
towards the middle of the network for downstream ASR. We examine whether previous observa-
tions holds true for pruning, that weights in middle layers are pruned less. To understand such a
phenomenon, we calculated the distributions of the pruned weights/neurons across each layer, and an
example is shown in Table 0]

Table 9: wav2vec-base finetuned for Spanish (H2L setting) pruned at 50% sparsity with OMP.

layer | 1 | 2 | 3 | 4 | s | 6 | 7 | 8 | 9 | 10 | 11 |12

sparsity (%) | 53.52 | 5245 | 49.24 | 47.90 | 46.51 | 46.84 | 45.97 | 45.58 | 45.96 | 47.96 | 52.54 | 65.53

Table 9] shows that indeed bottom and higher layers of wav2vec2-base are pruned more, while the
middle layers are pruned less. We observe similar pruned weight distributions across spoken languages
(10 languages) and sparsities (10%, 20%, 30%, . .., 90%). See the rest of the sparsity distribution in
the Figures below. This analysis suggests that regardless of spoken languages, intermediate layers’
neurons are more valuable than lower and higher-level layers, manifested by the layer’s sparsity ratio.

es_bert 0.1_mask
_Hert Y.L '- 100

% - 1044 10.07 93317 91451 90708 93758 93869 94126 922 91605 99586 15.429 - 50

| ' ' ' ' | ' Il | | | ' -0
0 1 2 3 4 5 6 7 8 9 10 1

wav2vec2 BERT Layer

Sparsity

Figure 41: Sparsity over layers for wav2vec-base finetuned for Spanish es at 10% sparsity.

es_bert_0.2_mask

100
=z
'g 9% - 21.21 20.48 18.987 18.521 18.142 18.563 18.424 18.425 18.315 18.559 20.286 30.086 [50
& . | i i . . ; : ! ! ! ! -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 42: Sparsity over layers for wav2vec-base finetuned for Spanish es at 20% sparsity.
es_bert_0.3_mask
> e '— 100
% % - 32.121 31.147 28894 28106 27373 27.796 27457 27.335 27.384 28127 30899 43362 - 50
& ! | i i i . : . i | i . -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 43: Sparsity over layers for wav2vec-base finetuned for Spanish es at 30% sparsity.
es_bert_0.4_mask
> s — '— 100
'g 9 - 42971 41855 39.012 37908 36822 37.204 36.603 36.347 36555 37.923 41672 m - 50
& ' ' ' ' ' : y ' ' ' ' ' -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 44: Sparsity over layers for wav2vec-base finetuned for Spanish es at 40% sparsity.
es_bert 0.5_mask
> s '— 100
% 47895 46513 4684 45968 45581 45958 47.96 - 50
a ' . ; ; -0

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec?2 BERT Layer

Figure 45: Sparsity over layers for wav2vec-base finetuned for Spanish es at 50% sparsity.

41

es_bert_0.6_mask

100
63.678 62.828 59.513 58.077 56.517 56.731 55566 55.077 55.645 58.253 63339 74776 [50
-0

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 46: Sparsity over layers for wav2vec-base finetuned for Spanish es at 60% sparsity.

es_bert 0.7_mask

100
73.388 72905 69.835 68448 66.828 66.894 65.475 64.932 65.712 68.781 73.916 [50

Sparsity

0 1 2 3 4

5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 47: Sparsity over layers for wav2vec-base finetuned for Spanish es at 70% sparsity.

es_bert_0.8_mask

[100
77.503 71.39 75.771 75.252 76.223 79479 84011 89.924 50
-0

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 48: Sparsity over layers for wav2vec-base finetuned for Spanish es at 80% sparsity.

es_bert_0.9_mask

[100
86.659 86.314 87.389 90.192 93.17¢ 95.824 50

wav2vec2 BERT Layer

Figure 49: Sparsity over layers for wav2vec-base finetuned for Spanish es at 90% sparsity.

fr_bert_0.1_mask

100
Z
'g 9% - 10.441 10.065 93323 91505 90713 93711 93825 94147 92085 91679 99647 15431 [50
a . . : : \ 3 v ' . , ' ' -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 50: Sparsity over layers for wav2vec-base finetuned for French fr at 10% sparsity.
fr_bert_0.2_mask
> e —— [100
'% 9% - 21203 20475 18.99 18.52 18.142 18.561 18.43 18.421 18.313 18.555 20.294 30.097 50
& . | | . | . . : i | i i -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 51: Sparsity over layers for wav2vec-base finetuned for French fi at 20% sparsity.
fr_bert_0.3_mask
> e [100
g 9% - 32118 31143 28895 28102 27375 27.804 27453 27.331 27.388 28.117 30898 43376 50
& ! ! ! . \]] ' ' ! ' ' -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 52: Sparsity over layers for wav2vec-base finetuned for French fr at 30% sparsity.
fr_bert_0.4_mask
> e [100
'% 9% - 42966 41.849 39.005 37.904 36.82 37.212 36.606 36.348 36.559 37918 41681 | L-BEE 50
& ' ' ! ! i : ; ;) | ! -0

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 53: Sparsity over layers for wav2vec-base finetuned for French fir at 40% sparsity.

42

fr_bert_0.5_mask

100
[

-0

53.521 52.447 49.24 52533 65.549

[1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 54: Sparsity over layers for wav2vec-base finetuned for French fir at 50% sparsity.

fr_bert_0.6_mask

100
63.679 62.825 59.51 58.073 56.521 56.731 55.566 55.074 55.651 58.253 63.334 74.78 [50

0 1 2 3 4

5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 55: Sparsity over layers for wav2vec-base finetuned for French fr at 60% sparsity.

fr_bert_0.7_mask

ity

100
PR 73387 72902 69.833 68446 66827 66.894 65472 64.939 65.719 68777 73913 82891 [50

Spars

-0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 56: Sparsity over layers for wav2vec-base finetuned for French fr at 70% sparsity.

fr_bert_0.8_mask

100
76.222 79.474 84016 9.92 [50

wav2vec2 BERT Layer

Figure 57: Sparsity over layers for wav2vec-base finetuned for French fr at 80% sparsity.

fr_bert_0.9_mask

100
87.39 90.193 93.179 95.824 [50

wav2vec2 BERT Layer

Figure 58: Sparsity over layers for wav2vec-base finetuned for French fr at 90% sparsity.

it_bert_0.1_mask
> - T T [100
g %- 10459 10.072 93442 91544 90697 93726 9.366 93911 92077 91681 99708 15424 50
& | | | | | . i : . | i i -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 59: Sparsity over layers for wav2vec-base finetuned for Italian it at 10% sparsity.
it_bert_0.2_mask 100
2 [
E 9% - 21216 20482 18997 18526 18.155 18567 18421 18414 183 18.557 203 30.066 50
a ! . i . \ v v ' . ! ! ' -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 60: Sparsity over layers for wav2vec-base finetuned for Italian it at 20% sparsity.
it_bert_0.3_mask 100
[
E o - 32128 31149 28904 28.103 27.39 27.804 27457 27.328 27.374 28126 30.896 50
& ! | i | \ . ' ' | i i -0

[1 2 3 4 5 6 7 8 9 10
wav2vec2 BERT Layer

Figure 61: Sparsity over layers for wav2vec-base finetuned for Italian it at 30% sparsity.

43

it_bert_0.4_mask

100
41855 39.013 37914 36827 37.213 36601 36353 36553 37.909 41.678 | --hLb [50
i | ' | ' | ' | | | -0
1 2 3 4 5 6 7 8 9 10 1

wav2vec2 BERT Layer

Figure 62: Sparsity over layers for wav2vec-base finetuned for Italian it at 40% sparsity.

it_bert_0.5_mask

100
53.525 52.461 49.25 5 H 5.9 5.5 5.95 52533 65.521 [50

5 6 7 8 9 10 1
wav2vec2 BERT Layer

0 1 2 3 4

Figure 63: Sparsity over layers for wav2vec-base finetuned for Italian it at 50% sparsity.

it_bert_0.6_mask

ity

100
@ 63682 62829 59.515 58.079 56.521 56.733 55.567 55.077 55.65 58.253 63335 74758 [50

Spars

-0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 64: Sparsity over layers for wav2vec-base finetuned for Italian it at 60% sparsity.

it_bert_0.7_mask

100
72.903 69.84 68.445 66829 66.895 65.479 64.936 65.717 68.777 2 876 [50

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 65: Sparsity over layers for wav2vec-base finetuned for Italian it at 70% sparsity.

it_bert_0.8_mask

[100
80.149 79.025 9 5 5 79.4 0 8¢ 5 50

wav2vec2 BERT Layer

Figure 66: Sparsity over layers for wav2vec-base finetuned for Italian it at 80% sparsity.

it_bert_0.9_mask

100
91.614 91.76 90.403 89.768 8.647 26 86.66 86.313 90.189 93.176 9 7 [50

wav2vec2 BERT Layer

Figure 67: Sparsity over layers for wav2vec-base finetuned for Italian it at 90% sparsity.

ky_bert_ 0.1 _mask

100

=z
'g % - 10447 10077 9349 91542 90767 93711 93652 93952 92086 91741 99631 15419 [50
a . . i . i : v : . i ! i -0

0 1 2 3 4 5 6 7 8 9 10 1

wav2vec2 BERT Layer
Figure 68: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 10% sparsity.
ky_bert_0.2_mask

2z [100
E 9% - 21.205 20487 19001 18521 18.147 18562 18421 18419 18305 18549 20308 30.076 50
& . | | | | . . : | | | i -0

0 1 2 3 4 5 6 7 8 9 10 1

wav2vec2 BERT Layer

Figure 69: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 20% sparsity.

44

ity

bert_0.3_mask
ky_bert 031 [100
'E % - 32.125 31.151 28.903 28.11 27.378 27.803 27.456 27.33 27.374 28.122 30.896 50
& ! | i | \ . ' ' | i i -0
[1 2 3 4 5 6 7 8 9 10
wav2vec2 BERT Layer

Figure 70: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 30% sparsity.

ky_bert_0.4_mask
41854 39015 37914 36821 37214 36.599

[100
36.353 36549 37911 41683 | L-RALS 50
| | | i i I | | | -0
1 2 3 4 5 6 7 8 10 1
wav2vec2 BERT Layer

Figure 71: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 40% sparsity.

ky_bert_0.5_mask
53.52

52455 49249

52.537

65.527
|

4 5 6
wav2vec2 BERT Layer

100
[

Figure 72: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 50% sparsity.

ky_bert_0.6_mask
63.683 62.826 59.519 58.083 56.512

56.731 55.571

100
55.074 55643 58.253 63.338 74.767 [50
-0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 73: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 60% sparsity.

ity

bert_0.7_mask
Hy_bert 0.7, 100
'E % SEELY 72.903 69.842 68.451 66.892 65.474 64.93 65.721 68.776 73.916 82.879 [50
&

0 1 2 3 4 5

-0
6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 74: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 70% sparsity.

ky_bert_0.8_mask

77.503 77.394 75.774

100
75.251 76.221 79.479 84.014 = [
5 6
wav2vec2 BERT Layer

Figure 75: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 80% sparsity.

ky_bert_0.9_mask

wav2vec2 BERT Layer

Figure 76: Sparsity over layers for wav2vec-base finetuned for Kyrgyz ky at 90% sparsity.

ni_bert_ 0.1_mask
> - - - [100
'E 9% - 10472 10.087 93501 91624 9.0706 937 9.3565 9376 91975 91624 99805 15415 50
& | | | | | . . ‘ . | | | -0
[1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 77: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 10% sparsity.

45

nl_bert_0.2_mask

100
2
'E % - 21221 20485 18998 18525 18.156 18.566 18423 18412 18305 18547 20303 30.058 [50
& . | | | | . . : | | | i -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 78: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 20% sparsity.

nl_bert_0.3_mask 100
2 [
E % - 32131 31149 28901 28.108 27.388 27.805 27.458 27.322 27.377 28.13 30.906 50
& | | | | | [i [| | | -0

0 1 2 3 4 5 6 7 8 9 10
wav2vec2 BERT Layer

Figure 79: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 30% sparsity.

nl_bert_0.4_mask

R 100
Z
E % «E 41.86 39.02 37906 36821 37208 36.604 36.351 36.553 37.92 41.668 Rl [50
& | i | ' | | | ' i i | -0
0 3 4 5 6 7 8 9 10 1

wav2vec2 BERT Layer

Figure 80: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 40% sparsity.

nl_bert_0.5_mask

ity

100
@ 53523 52456 49.254 5 5 5.5 5.94 52.534 65519 [50

Sparsi
l
o

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 81: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 50% sparsity.

nl_bert_0.6_mask

ity

100
PR 63686 62828 59.521 58.086 56.523 56.725 55.567 55.072 55654 58254 63323 74.76 [50

Spars
|
=]

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 82: Sparsity over layers for wav2vec-base finetuned for Dutch n/ at 60% sparsity.

nl_bert 0.7_mask

100
72906 69.834 68.449 66.825 66.895 65477 64.937 65.72 68.78 9 3 [50

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 83: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 70% sparsity.

nl_bert 0.8 _mask

100
76.222 79.475 84 [50

wav2vec2 BERT Layer

Figure 84: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 80% sparsity.

nl_bert_0.9_mask

100
86.667 86.317 87.39 [50

wav2vec2 BERT Layer

Figure 85: Sparsity over layers for wav2vec-base finetuned for Dutch nl at 90% sparsity.

46

ru_bert 0.1_mask

100
% - 10461 10.079 93561 91535 90737 93645 93608 93959 91946 9178 99775 15.405 [50

Sparsity

|] i i | ' ' ' ' | | | -0

[1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 86: Sparsity over layers for wav2vec-base finetuned for Russian ru at 10% sparsity.

ru_bert 0.2_mask

100
2
'g 9% - 21221 20487 19.006 18524 18.148 18.56 18.424 18.41 18.307 18557 20311 30.045 [50
& . | | . . i i : . | . . -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 87: Sparsity over layers for wav2vec-base finetuned for Russian ru at 20% sparsity.
ru_bert_0.3_mask
> - P 100
'E 9% - 32131 31154 28.901 2811 27.38 27.805 27456 27.327 27.387 28.132 30.891 - [50
a . | | | , ' '] ' ' ' ' -0

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 88: Sparsity over layers for wav2vec-base finetuned for Russian ru at 30% sparsity.

ru_bert 0.4 mask

100
39.012 37911 36819 37215 36608 3635 36561 37.918 m [50
i i | ' | ' | i) -0

2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 89: Sparsity over layers for wav2vec-base finetuned for Russian ru at 40% sparsity.

ru_bert 0.5_mask

ity

100
L’® 53524 52453 49.257 52.527 65.509 [50
-0

Spars

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 90: Sparsity over layers for wav2vec-base finetuned for Russian ru at 50% sparsity.

ru_bert_0.6_mask

100
63.687 62.831 59.524 58.08 56.52 56.73 55.567 55.078 55.648 58.25 4.754 [50

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 91: Sparsity over layers for wav2vec-base finetuned for Russian ru at 60% sparsity.

ru_bert 0.7_mask

100
72909 69.839 68453 66.834 66.894 65.471 64.941 65.716 68.781 3 6 [50

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 92: Sparsity over layers for wav2vec-base finetuned for Russian ru at 70% sparsity.

ru_bert_0.8_mask

wav2vec2 BERT Layer

Figure 93: Sparsity over layers for wav2vec-base finetuned for Russian ru at 80% sparsity.

47

ru_bert_0.9_mask

100
[

-0

wav2vec2 BERT Layer

Figure 94: Sparsity over layers for wav2vec-base finetuned for Russian ru at 90% sparsity.

sv_SE_bert 0.1_mask

100
% - 10437 10.062 93298 91494 90698 93822 93808 94172 92101 91633 99618 15437 [50

Sparsity

| ' ' ' | | | ' | | | ' -0

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 95: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 10% sparsity.

sv_SE_bert_0.2_mask

100
9% - 21205 20471 18.989 18.52 18.144 18.56 18431 18417 18315 18.55 20304 30.095 [50

Sparsity

| ' ' ' | | ' ' | | | i -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 96: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 20% sparsity.

sv_SE_bert_0.3_mask

100
2
E 9% - 32.115 31.134 28.893 28.096 27.375 27.795 27.458 27.328 27.392 28.139 30.898 E [50
& ’ ' ' ' L — -0
0 1 2 3 4 5 6 7 8 9 10 1

wav2vec2 BERT Layer

Figure 97: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 30% sparsity.

sv_SE_bert_0.4_mask

100
Z
'E %E um‘ 39.006 37904 36819 37.211 36.602 3635 36558 37.919 41678 | --RCil [50
l%]]

i | i | i i | | -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 98: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 40% sparsity.

sv_SE_bert_0.5_mask

ity

100
L 53514 52.45 49.246 5.5 52532 65.549 [50

Sparsi

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 99: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 50% sparsity.

sv_SE_bert_0.6_mask

100
63.68 62.82 59.515 58.074 56.516 56.729 55.561 55.074 55.65 58.255 63.34 74.786 [50

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 100: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 60% sparsity.

sv_SE_bert_0.7_mask

100
72902 69.831 68445 66.823 66.894 65467 64.936 65.721 68.78 £ 2 [50

[1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 101: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 70% sparsity.

48

sv_SE_bert_0.8_mask

[100
79.019 77499 77392 75.772 75.252 76.229 79481 84012 89.926 50

[1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 102: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 80% sparsity.

fr_bert_0.9_mask

5 6
wav2vec2 BERT Layer

Figure 103: Sparsity over layers for wav2vec-base finetuned for Swedish sv-SE at 90% sparsity.

tr_bert_0.1_mask

100
2
'E % - 10447 10.069 93324 91486 90666 93775 93662 94079 92185 91672 99739 15425 [50
& | | | . | . . ‘ \ | | | -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 104: Sparsity over layers for wav2vec-base finetuned for Turkish #r at 10% sparsity.
tr_bert_0.2_mask
> R [100
'g 9% - 21.204 2048 18993 18.521 18.144 18563 18428 18411 18311 18554 20305 30.086 50
& i | | i | i ; i i i i i -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 105: Sparsity over layers for wav2vec-base finetuned for Turkish #r at 20% sparsity.
tr_bert_0.3_mask
> e [100
'E % - 32118 31155 28.894 281 27.383 27806 27.456 27.327 27.383 28122 309 50
& ! | i i . ' ' ' ' ' ' -0
0 1 2 3 4 5 6 7 8 9 10
wav2vec2 BERT Layer
Figure 106: Sparsity over layers for wav2vec-base finetuned for Turkish #r at 30% sparsity.
tr_bert_0.4_mask
> N [100
% % - 42967 41849 39.005 37904 36.819 37.21 36606 36345 36.558 37.921 41687 55.13 50
& ' ' ' ! i :] ;i i i i -0
0 1 2 3 4 5 6 7 8 9 10 1

wav2vec2 BERT Layer

Figure 107: Sparsity over layers for wav2vec-base finetuned for Turkish #r at 40% sparsity.

tr_bert_0.5_mask

[100
53.52 52454 49.245 5 83 5.96 5.582 5.95 52.541 65542 50

0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 108: Sparsity over layers for wav2vec-base finetuned for Turkish #r at 50% sparsity.

tr_bert_0.6_mask

100
63679 62.825 59518 58.078 56.515 56.728 55.565 55.079 55.647 58.251 63337 74777 [50

[1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 109: Sparsity over layers for wav2vec-base finetuned for Turkish #r at 60% sparsity.

49

tr_bert_0.7_mask

100
2
'E % SERL] 72901 69.832 68441 66828 66.897 65473 64936 65.719 68778 73917 82.887 [50
& -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 110: Sparsity over layers for wav2vec-base finetuned for Turkish #r at 70% sparsity.
tr_bert_0.8_mask
> N [100
'g % 6 82.575 80.148 79.018 77.502 77.397 75.771 75.248 76.223 79.48 84.015 9.923 50
&

4 7

5 6
wav2vec2 BERT Layer

Figure 111: Sparsity over layers for wav2vec-base finetuned for Turkish #r at 80% sparsity.

tr_bert_0.9_mask

[100
91.613 91.759 90.403 89.765 8 3 38. 90.193 93.18 95.823 50

wav2vec2 BERT Layer

Figure 112: Sparsity over layers for wav2vec-base finetuned for Turkish #r at 90% sparsity.

tt_bert_0.1_mask

100
2
'g 9% - 10.447 10.08 93513 915 9.0711 9373 93699 94007 92036 91651 9.972 15.416 [50
& | | | | . ' v : : : i . -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 113: Sparsity over layers for wav2vec-base finetuned for Tatar 7 at 10% sparsity.
tt_bert_0.2_mask 100
z [
E 9% - 21218 20486 18999 18.519 18.148 18567 18431 18411 18311 18551 20301 30.058 50
& . | , . , ' v ' ! ' ' ' -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 114: Sparsity over layers for wav2vec-base finetuned for Tatar 7 at 20% sparsity.
tt_bert_0.3_mask 100
: [
E % - 32.128 31.144 28.901 2811 27.377 278 27.454 27.33 27.385 28127 30906 43338 50
& ! | i i | : : : i i i . -0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer
Figure 115: Sparsity over layers for wav2vec-base finetuned for Tatar #f at 30% sparsity.
tt_bert_0.4_mask 100
z [
E 9% - 4298 41859 39017 37911 36819 37.205 36.601 36.345 36.56 37917 41678 | --nli] 50
& | | | | | | | i | | | -0
0 1 2 3 4 5 6 7 8 9 10 1

wav2vec2 BERT Layer

Figure 116: Sparsity over layers for wav2vec-base finetuned for Tatar 7t at 40% sparsity.

tt_bert_0.5_mask

[100
53.525 52453 49.253 B 46.51 - 4 5 52.53 65.521 50

wav2vec2 BERT Layer

Figure 117: Sparsity over layers for wav2vec-base finetuned for Tatar 7t at 50% sparsity.

50

tt_bert_0.6_mask
6283 59.517

58.082

100
56.524 56.734 55566 55.078 55.644 58.249 63333 74.762 [50
0 1 2 3 4 5 6 7 8 9
wav2vec2 BERT Layer

-0
10 1

73.392

Figure 118: Sparsity over layers for wav2vec-base finetuned for Tatar ¢t at 60% sparsity

Sparsity

tt_bert_0.7_mask
72.905 69.837 68.452 66.835

66.901
0

[100
65.474 64.929 65.713 68775 73911
1 2 3 4

7

50
5 6 8 10
wav2vec2 BERT Layer

Figure 119: Sparsity over layers for wav2vec-base finetuned for Tatar ¢ at 70% sparsity.

tt_bert_0.8_mask
79.024 77.506 77.397

[100
75.771 79473 84015 89.914
0 1 4

75.247 76.221

5 6

50
8 10
wav2vec2 BERT Layer

Figure 120: Sparsity over layers for wav2vec-base finetuned for Tatar 7 at 80% sparsity.

Sparsity

tt_bert_0.9_mask
91.617 91.759 90.402 89.76

86.664

86.315

87.387 90.192

2 50
wav2vec2 BERT Layer

Figure 121: Sparsity over layers for wav2vec-base finetuned for Tatar 7 at 90% sparsity.

zh TW_bert 0.1 _mask
> - - T T [100
'g 9% - 10474 10.089 93543 9163 90791 93721 93652 93998 92128 91735 99835 15334 50
& [] 1] 1] 1 1 ! | 1
0 1 2 3 4 5 6 7

| ' -0
8 9 10 1
wav2vec2 BERT Layer

Figure 122: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 10% sparsity.

zh_TW_bert 0.2_mask
> - - T T [100
'% 9% - 21233 20496 19.012 18.532 18.161 18.56 18.43 18417 18315 18.558 20309 29.977
L*]]]]] 1 1 [
0 1 2 3 4 5 6

50
| | | | -0
7 8 9 10 1
wav2vec2 BERT Layer

Figure 123: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 20% sparsity.

zh_TW_bert_0.3_mask
> e [100
g % - 32.14 31.157 28904 28117 27.385 27.805 27.454 27.338 27.396 28.141 30.893 4327 50
3 1]]]] 1 1 1l 1 1
0 1 2 3 4 5 6 7

| | -0
8 9 10 1
wav2vec2 BERT Layer

Figure 124: Sparsity over layers for wav2vec-base finetuned for Mandarin zi-TW at 30% sparsity.

zh_TW_bert_0.4_mask
> s [100
'% o - 42991 41863 39.021 37904 36825 37.217 36.607 36.352 36.562 37.923 41.665 m 50
l%]]]]) I 1 []])
0 1 2 3 4 5 6 7 8 9
wav2vec2 BERT Layer

-0
10 1

Figure 125: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 40% sparsity.

51

ity

zh TW_bert 0.5_mask
e [100
'E 9% JEESRELY 52.46 49.252 5 52.517 65.498 50
&] i] -0
[1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 126: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 50% sparsity.

zh_TW_bert_0.6_mask
63.694 62.833 59.525 58.084 56.521

56.737 55.562

100
55.08 55.65 58.257 63.331 74.727 [50
-0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 127: Sparsity over layers for wav2vec-base finetuned for Mandarin zi-TW at 60% sparsity.

zh TW_bert 0.7_mask

69.843 68452 66.834 66.898

65.477 64.936

100
65.72 68.772) [50
-0
0 1 2 3 4 5 6 7 8 9 10 1
wav2vec2 BERT Layer

Figure 128: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 70% sparsity.

zh _TW_bert_0.8_mask

wav2vec2 BERT Layer

Figure 129: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 80% sparsity.

zh_TW_bert_0.9_mask

wav2vec2 BERT Layer

Figure 130: Sparsity over layers for wav2vec-base finetuned for Mandarin zh-TW at 90% sparsity.

52

19 Experimental Limitations

Below, we list several limiting factors of our experimental designs:

1.

Experiments are on contrastive pre-trained models only. It is unclear whether the results
would generalize to pre-trained models with other objectives, such as mask prediction
(HuBERT) or autoregressive prediction (APC), etc.

. Although standard, our experiments are on relatively large pre-trained models (number of

parameter is 90M for wav2vec2-base and 315M for wav2vec2-large and x1sr. It would
be interesting to investigate if small pre-trained models can also be pruned and whether
Observation (1l holds for them.

. Our wav2vec2-base and wav2vec2-large are both pre-trained on Librispeech 960 hours.

Another lack of study is the effect of pre-training data selections — what happens if pre-
training and fine-tuning data are from different sources?

. Our fine-tuning dataset (Librispeech and CommonVoice) are both read speech. Experiments

on conversational (e.g. telephone) speech should be investigated.

. In addition, though opposite to our motivation, it is unclear is the results hold for high-

resource languages (e.g. 100h~1000h of fine-tuning data).

. Our ASR experiments are based on self-supervised pre-trained models. It remains to be

studied on applying PARP to E2E ASR without self-supervised pre-training.

. Lastly, we note that this study is scientific by nature. Observation[I]emerges after our initial

pilot study, and it motivates the central idea of PARP. We will leave it to follow-up work
to test whether such pruning method is effective in more realistic settings (e.g. noisy data,
limited bandwidth, etc).

53

	Introduction
	Preliminaries
	Problem Formulation
	Pruning Targets and Settings
	Subnetwork Discovery in Pre-trained SSL

	Method
	Algorithm
	Obtaining and Adjusting the Initial Subnetwork
	PARP-Progressive (PARP-P)

	Experiments and Analysis
	Comparing PARP, OMP, and IMP on LSR, H2L, and CSR
	How Important is the Initial Subnetwork (Step 1) in PARP?
	Are Pruning Masks Transferrable across Spoken Languages?
	Discovering a Single Subnetwork for 10 Spoken Languages
	Does PARP work on Pre-trained BERT/XLNet?
	Implications

	Related Work
	Conclusions
	NeurIPS Paper Checklist
	Model Details
	Model and Pruning Configurations
	Finetuning Hyper-Parameters
	PARP Hyper-Parameters
	Implementation

	Experimental Setup for LSR, H2L, and CSR
	How important is the IMP rewinding starting point?
	OMP Masks Overlap in H2L and CSR
	OMP Masks Overlap in H2L
	OMP Masks Overlap in CSR

	xlsr Cross-Lingual Mask Transfer
	Details of Task Transfer Results on Pre-trained BERT
	Full H2L and CSR Pruning Results
	wav2vec2 + PARP with Random Seeds and LM Decoding
	wav2vec2 Cross-Task Mask Transfer on SUPERB
	Does Observation 1 generalize across Pre-Training Objectives?
	Pruned Weights Localization Across Layers
	Experimental Limitations

