
(a) NSQIP data set. (b) a9a data set.

Figure 3: Minimizing (5) using Local SGD with different communication strategies. Figures (a) and
(b) show the error over iteration for NSQIP and a9a datasets, respectively. The shaded areas show the
1-standard deviation error bar.

A More numerical experiments

In this section we present additional numerical experiments. We consider binary classification and
select l2-regularized logistic regression with its corresponding loss function as the objective function
F to be minimized, i.e.,

F (x) =
1

M

M∑
j=1

(
ln(1 + exp(x>Aj))− 1(bj=1)x

>Aj

)
+
λ

2
‖x‖22, (5)

where λ is the regularization parameter, Aj ∈ Rd and bj ∈ {0, 1}, j = 1, . . . ,M are features (data
points) and their corresponding class labels, respectively.

A.1 Fixed number of workers

Here we use two large datasets. One, a real dataset from the American College of Surgeons National
Surgical Quality Improvement Program (NSQIP) to predict whether a specific patient will be re-
admitted within 30 days from discharge after general surgery. This dataset consists of M = 722,101
data points for training with d = 231 features including (i) baseline demographic and healthcare
status characteristics, (ii) procedure information and (iii) pre-operative, intra-operative, and post-
operative variables. Second, the a9a dataset from LIBSVM (Chang, Lin, 2011). This dataset consists
of M = 32,561 data points for training with d = 124 features.

We perform Local SGD with N = 10 workers, λ = 0.05, step-size sequence ηt = 3/(µ(t + 1))
(β = 1), T = 1000 iterations and batch size of b = 1 with different communication strategies: (i)
synchronized SGD with H = 1, (ii) a strategy with the time varying communication intervals with
Hi = a(i + 1), a ≈ 18 and R = 10 communication rounds proposed in this paper, (iii) a strategy
with the same number of communications however with a fixed H = T/N = 100, and finally, (iv)
one-shot averaging with H = T . Each simulation has been repeated 10 times and the average of their
performance is reported in Figure 3.

It can be seen from Figure 3 that all of the communication methods, including OSA, have similar
terminal error as synchronized SGD. This further validated our results, especially Theorem 2, since
the logistic loss is both twice differentiable and satisfies the PL condition, due to strong convexity of
the l2-regularization. Moreover, we do not notice any significant difference between the performance
of the varying and constant local steps, mainly because even a method with only one communication
round (OSA) performs just as well.
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A.2 Comparison with FedAC

Here, we perform an extensive comparison between different methods using different number of
workers N and communication rounds R. We adopt a setting similar to that of Figure 4 in Yuan, Ma
(2020). More specifically, we compare our communication strategy with other baselines and FedAC,
using logistic regression (5) on the a9a dataset with λ = 0.01 and T = 8192.

The results in Figures 4 and 5 are obtained by tuning the fixed learning rate η over the set
{1e−3, 2e−3, 5e−3, 1e−2, . . . , 2, 5, 10} for all the methods except for Local SGD with growing
intervals, where we used ηt = 3/(µ(t+ 1)) without any tuning.
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Figure 4: Comparison of Local SGD with (linearly) growing communication intervals introduced in
this paper with other baseline methods on the observed linear speed-up w.r.t. N workers (λ = 0.01).

We observe from Figure 4 that when the number of communications R is large (R ≥ 16), FedAC has
better performance across different values of N . However, as the communication becomes sparse,
Local SGD with growing communication intervals outperforms all the other methods, specifically
as the number of workers increases. We also notice that both Mini-Batch SGD and its accelerated
version have a relatively poor performance as N or H increase. Similar observations can be made
from Figure 5.
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Figure 5: Comparison of Local SGD with (linearly) growing communication intervals introduced in
this paper with other baseline methods on the dependency on number of communications (λ = 0.01).

We notice that increasing strong convexity to λ = 1.0, results in our communication strategy to
uniformly outperform all the other methods, across all values of N and R (see Figure 6).
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Figure 6: Comparison of Local SGD with (linearly) growing communication intervals introduced in
this paper with other baseline methods on the observed linear speed-up w.r.t. N workers (λ = 1.0).
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B Local SGD

Here we present a few results which will be used later to prove Theorem 1 as well as to better
understand the choice of varying number of local steps. In the following theorem, we show an upper
bound for the sub-optimality error, in the sense of function value, for any choice of communication
times I. Theorem 1 will be obtained by specializing the following bound.

First, let us introduce some notation. Let 0 = τ0 < τ1 < . . . < τR = T be the communication
times and denote the most recent communication time by τ(t) := max{t′ ∈ I|t′ ≤ t}. Define
Hi := τi+1 − τi, as the length of the (i+ 1)-st inter-communication interval, for i = 0, . . . , R− 1.
Theorem 3. Suppose Assumptions 1, 2 and 5 hold. Choose β ≥ 9κ and communication times
I = {τi|i = 1, . . . , R} such that it holds for i = 0, . . . , R− 1,

12κ2c ln(1 +
Hi − 1

τi + β
) + 3κ(1 +

c

N
)− (τi + β) ≤ 0. (6)

Set step-sizes ηt = 3/(µ(t+ β)), t = 0, 1, . . . , T − 1. Then, using Algorithm 1, we have

E[f(x̄T )]− f∗ ≤ β2(f(x̄0)− f∗)
T 2

+
9Lσ2

2µ2NT
+

18L2σ2

µ3T 2

T−1∑
t=0

t− τ(t)

t+ β
, (7)

The last term in Equation (7) is due the to disagreement between workers (consensus error), introduced
by local computations without any communication. As the inter-communication intervals become
larger, t− τ(t) becomes larger as well and increases the overall optimization error. This term explains
the trade-off between communication efficiency and the optimization error.

Note that condition (6) is mild. For instance, it suffices to set β ≥ max{12κ2c ln(1 + T/(9κ)) +
3κ(1 + c/N), 9κ}. Moreover, the bound in (7) is for the last iterate T , and does not require keeping
track of a weighted average of all the iterates.

Theorem 3 not only bounds the optimization error, but introduces a methodological approach to select
the communication times to achieve smaller errors. For the scenarios when the user can afford to
have a certain number of a communications, they can select τi to minimize the last term in (7).

One-shot averaging. Plugging H = T in Theorem 3, we obtain a convergence rate of
O(κ2σ2/(µT )) without any linear speed-up. Among previous works, only Khaled et al. (2020)
show a similar result.

B.1 Fixed-length intervals

A simple way to select the communication times I , is to split the whole training time T to R intervals
of length at most H . Then we can use the following bound in Equation (7),

T−1∑
t=0

t− τ(t)

t+ β
≤ (H − 1)

T−1∑
t=0

1

t+ β
≤ (H − 1) ln(1 +

T

β − 1
).

We state this result formally in the following corollary.
Corrollary 2. Suppose assumptions of Theorem 3 hold and in addition, workers communicate at
least once every H iterations. Then,

E[f(x̄T )]− f∗ ≤ β2(f(x̄0)− F ∗)
T 2

+
9Lσ2

2µ2NT
+

18L2σ2(H − 1)

µ3T 2
ln(1 +

T

β − 1
). (8)

Linear speed-up. Setting H = O(T/(N ln(T ))) we achieve linear speed-up in the number of
workers, which is equivalent to a communication complexity of R = Ω(N ln(T )). To the best of the
authors’ knowledge, this is the tightest communication complexity that is shown to achieve linear
speed-up. Khaled et al. (2020) and Stich, Karimireddy (2019) have shown a similar communication
complexity.

Recovering synchronized SGD. When H = 1, the last term in (8) disappears and we recover the
convergence rate of parallel SGD, albeit, with a worse dependence on κ.
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B.2 Sketch of proof

Here we give an outline of the proofs for the Local SGD results presented in this paper. The proof of
the following lemmas are provided in the next section.

Perturbed iterates. A common approach in analyzing parallel algorithms such as Local SGD is to
study the evolution of the sequence {x̄t}t≥0. We have,

x̄t+1 = x̄t − ηt
N

N∑
i=1

ĝti = x̄t − ηtg̃t, (9)

where g̃t := (
∑N
i=1 ĝ

t
i)/N is the average of the stochastic gradient estimates of all workers.

Let us define ξt := E[f(x̄t)]− f∗ to be the optimality error. The following lemma, which is similar
to a part of the proof found in Haddadpour et al. (2019), bounds the optimality error at each iteration
recursively.
Lemma 1. Let Assumptions 1, 2 and 5 hold. Then,

ξt+1 ≤ ξt(1− µηt) +
L2ηt
2N

E

[
N∑
i=1

‖x̄t − xti‖2
]

+
η2tL

2
E[‖g̃t‖22]− ηt

2N
E

[
N∑
i=1

‖∇f(xti)‖2
]
.

Equipped with Lemma 1, we can bound the consensus error (E[
∑N
i=1 ‖x̄t − xti‖2]) as well as the

term E[‖g̃t‖2] in the following lemmas.

Consensus error. In the following lemmas, we utilize the structure of the problem to bound the
consensus error recursively. Let us define gti = ∇f(xti) as the true gradient at worker i’s iterate at
time t.
Lemma 2. Let Assumptions 1, 2 and 5 hold. Then,

E

[
N∑
i=1

‖xt+1
i − x̄t+1‖2

]
≤ E

[
N∑
i=1

‖xti − x̄t‖2
]

(1− ηtµ+ η2t µL)

+ (N − 1)η2t σ
2 +

(
1− 1

N

)
η2t cE

[
N∑
i=1

‖gti‖2
]
. (10)

This lemma, bounds how much the consensus error grows at each iteration. Of course, when workers
communicate, this error resets to zero and thus, we can calculate an upper bound for the consensus
error, knowing the last iteration communication occurred and the step-size sequence. The following
lemma takes care of that. Before stating the following lemma, let us define Gt := 1

n

∑N
i=1 ‖gti‖2.

Lemma 3. Let assumptions of Theorem 3 hold. Then,

E

[
N∑
i=1

‖xti − x̄t‖2
]
≤ 12(N − 1)

t−1∑
k=τ(t)

cE
[
Gk
]

+ σ2

µ2(t+ β)2
. (11)

Variance. Our next lemma bounds E[‖g̃t‖2].
Lemma 4. Under Assumption 2 we have,

E
[∥∥g̃t∥∥2] ≤ (1 +

c

N

)
E
[
Gt
]

+
σ2

N
.

B.3 Proofs

Let us define the following notations used in the proofs presented here.

ḡt :=
1

N

n∑
i=1

gti , Gt :=
1

N

N∑
i=1

‖gti‖2, wt
i := ĝti − gti .

Moreover, define F t := {xki , ĝki |1 ≤ i ≤ N, 0 ≤ k ≤ t− 1} ∪ {xti|1 ≤ i ≤ N}.
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Proof of Lemma 1. By Assumptions 1 and 2 and (9) we have,

E[f(x̄t+1)− f(x̄t)] ≤ −ηtE[〈∇f(x̄t), g̃t〉] +
η2tL

2
E[‖g̃t‖22]. (12)

We bound the first term on the R.H.S of (12) by conditioning on F t as follows:

E[〈∇f(x̄t), g̃t〉|F t] =
1

N

N∑
i=1

〈∇f(x̄t),E[ĝti |xti]〉

=
1

2
‖∇f(x̄t)‖2 +

1

2N

N∑
i=1

‖∇f(xti)‖2 −
1

2N

N∑
i=1

‖∇f(x̄t)−∇f(xti)‖2

≥ µ(f(x̄t)− f∗) +
1

2N

N∑
i=1

‖∇f(xti)‖2 −
L2

2N

N∑
i=1

‖x̄t − xti‖2, (13)

where we used 〈a, b〉 = 1
2‖a‖

2 + 1
2‖b‖

2 − 1
2‖a− b‖

2 in the second equation and (1/2)‖∇f(x)‖2 ≥
µ(f(x)− f∗) as well as smoothness of f in the last inequality. Taking full expectation of (13) and
combining it with (12) concludes the lemma.

We state an important identity in the following lemma.
Lemma 5. Let u1, . . .un ∈ Rd be n arbitrary vectors. Define ū = (

∑n
i=1 ui)/n. Then,

n∑
i=1

‖ui − ū‖2 =

n∑
i=1

‖ui‖2 − n‖ū‖2.

Proof. We have
n∑
i=1

‖ui − ū‖2 =

n∑
i=1

‖ui‖2 + n‖ū‖2 − 2

n∑
i=1

〈ui, ū〉

=

n∑
i=1

‖ui‖2 + n‖ū‖2 − 2n〈ū, ū〉

=

n∑
i=1

‖ui‖2 − n‖ū‖2.

Proof of Lemma 2. We have,
N∑
i=1

E
[∥∥xt+1

i − x̄t+1
∥∥2] =

N∑
i=1

∥∥E [xt+1
i − x̄t+1

]∥∥2 +

N∑
i=1

E
[∥∥xt+1

i − x̄t+1 − E
[
xt+1
i − x̄t+1

]∥∥2] .
(14)

Let us consider the first term on the right hand side of (14). Taking conditional expectation of both
sides of (9) implies,

N∑
i=1

∥∥E [xt+1
i − x̄t+1| F t

]∥∥2 =

N∑
i=1

‖xti − x̄t − ηt(gti − ḡt)‖2

=

N∑
i=1

(
‖xti − x̄t‖2 + η2t ‖gti − ḡt‖2 − 2ηt〈gti ,xti − x̄t〉

)
. (15)

By L-smoothness of F , ‖∇f(x)−∇f(y)‖2 ≤ 2L(f(x)− f(y)− 〈∇f(y),x− y〉). Thus,

N∑
i=1

‖gti − ḡt‖2 ≤
N∑
i=1

‖gti −∇f(x̄t)‖2 ≤

N∑
i=1

2L
(
f(x̄t)− f(xti)− 〈gti , x̄t − xti〉

)
≤ 2L

N∑
i=1

〈gti ,xti − x̄t〉. (16)
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Moreover, by µ-strong convexity of F ,

N∑
i=1

〈gti ,xti − x̄t〉 ≥
N∑
i=1

(
f(xti)− f(x̄ti) +

µ

2
‖xti − x̄t‖2

)
≥ µ

2

N∑
i=1

‖xti − x̄t‖2. (17)

We used the Jensen’s inequality
∑N
i=1 f(xti) − f(x̄t) ≤ 0 in both equations above. Combining

(15)-(17) and having ηt < 1/L we obtain,

N∑
i=1

‖E[xt+1
i − x̄t+1|F t]‖2 ≤

N∑
i=1

‖xti − x̄t‖2 − (2ηt − 2η2tL)

N∑
i=1

〈gti ,xti − x̄t〉

≤
N∑
i=1

‖xti − x̄t‖2
(
1− ηtµ+ η2t µL

)
.

Now, consider the second term on the right hand side of (14). We have,

N∑
i=1

E
[∥∥xt+1

i − x̄t+1 − E[xt+1
i − x̄t+1]

∥∥2 |F t] =

N∑
i=1

E
[∥∥xt+1

i − E[xt+1
i ]− (x̄t+1 − E[x̄t+1])

∥∥2 |F t]
= η2t

N∑
i=1

E
[∥∥wt

i − w̄t
∥∥2 |F t]

= η2t

(
N∑
i=1

E
[∥∥wt

i

∥∥2 |F t]−NE
[∥∥w̄t

∥∥2 |F t])

= η2t

N∑
i=1

E
[∥∥wt

i

∥∥2 |F t] (1− 1

N
)

≤ (N − 1)η2t σ
2 + (1− 1

N
)η2t c

N∑
i=1

‖gti‖2,

where wt
i are defined at the beginning of this section and w̄t := (

∑N
i=1 w

t
i)/n and we used

Lemma 5 in the third equation and the conditional independence of wt
i to use E[‖w̄t‖2|F t] =

(1/N2)
∑N
i=1 E[‖wt

i‖2|F t] in the last equality. Taking full expectation of the two relations above
with respect to F t and combining them with (14) completes the proof.

Before proving Lemma 3, let us state and prove the following lemma.

Lemma 6. Let b ≥ a > 2 be integers. Define Φ(a, b) =
∏b
i=a

(
1− 2

i

)
. We then have Φ(a, b) ≤(

a
b+1

)2
.

Proof. Indeed,

ln(Φ(a, b)) =

b∑
i=a

ln

(
1− 2

i

)
≤

b∑
i=a

−2

i
≤ −2 [ln(b+ 1)− ln(a)] .

where we used the inequality ln(1−x) ≤ −x as well as the standard technique of viewing
∑b
i=a 1/i

as a Riemann sum for
∫ b+1

a
1/x dx and observing that the Riemann sum overstates the integral.

Exponentiating both sides now implies the lemma.
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Proof of Lemma 3. Define ak = E
[∑N

i=1 ‖xki − x̄k‖2
]

and ∆k = (1 − ηkµ + η2kµL) for k ≥ 0 .
By Lemma 2,

at ≤ ∆t−1a
t−1 + η2t−1(N − 1)(σ2 + cE[Gt−1])

≤ ∆t−1(∆t−2a
t−2 + η2t−2(N − 1)(σ2 + cE[Gt−2])) + η2t−1(N − 1)(σ2 + cE[Gt−1])

≤ . . . ≤
t−1∏

k=τ(t)

∆ka
τ(t) + (N − 1)

t−1∑
k=τ(t)

η2k(σ2 + cE[Gk])

t−1∏
i=k+1

∆i

= (N − 1)

t−1∑
k=τ(t)

η2k(σ2 + cE[Gk])

t−1∏
i=k+1

∆i,

where we used aτ(t) = 0 in the last equation. By the choice of stepsize and β ≥ 9κ, we have

∆k = 1− 3

k + β
+

9L

µ(k + β)2
≤ 1− 3

k + β
+

9κ

(k + β)β
≤ 1− 3

k + β
+

1

(k + β)
= 1− 2

k + β
.

Therefore, by Lemma 6,

at ≤ (N − 1)
t−1∑

k=τ(t)

9(σ2 + cE[Gk])

µ2(k + β)2
(k + β + 1)2

(t+ β)2
≤ (N − 1)

t−1∑
k=τ(t)

12(σ2 + cE[Gk])

µ2(t+ β)2
,

where we used 9(k + β + 1)2/(k + β)2 ≤ 9(β + 1)2/β2 ≤ 9(10/9)2 ≤ 12 since β ≥ 9κ ≥ 9.

Proof of Lemma 4. We have,

E[‖g̃t‖2|F t] = E[‖ḡt + ε̄t‖2|Ft] = ‖ḡt‖2 + E[‖w̄t‖2|F t] ≤ 1

N

N∑
i=1

‖gti‖2 +
1

N2

N∑
i=1

(σ2 + c‖gti‖2),

where in the last inequality we used Lemma 5 and the conditional independency of wt
i to decouple

the noise terms.

Proof of Theorem 3. Combining Equations Lemmas 1-4 and plugging ηt = 3/(µ(t+ β)) we obtain

ξt+1 ≤ ξt(1− µηt) +
18L2

µ3(t+ β)3

t−1∑
k=τ(t)

(
cE[Gk] + σ2

)
+

9L

2µ2(t+ β)2

((
1 +

c

N

)
E[Gt] +

σ2

N

)
− 3

2µ(t+ β)
E[Gt].

Let us multiply both sides of relation above by (t+ β)2 and use the following inequality

(1− µηt)(t+ β)2 =

(
1− 2

t+ β

)
(t+ β)2 = (t+ β)2 − 2(t+ β) < (t+ β − 1)2,

to obtain,

ξt+1(t+ β)2 ≤ ξt(t+ β − 1)2 +
9Lσ2

2µ2N
+

18L2

µ3(t+ β)

t−1∑
k=τ(t)

(
cE[Gk] + σ2

)
+

(
9L

2µ2

(
1 +

c

N

)
− 3(t+ β)

2µ

)
E[Gt].

Summing relation above for t = τi, . . . , τi+1 − 1, where τi, τi+1 ∈ I are two consecutive communi-
cation times, implies,

ξτi+1(τi+1 + β − 1)2 ≤ ξτi(τi + β − 1)2 +
9Lσ2

2µ2N
(τi+1 − τi) +

18L2σ2

µ3

τi+1−1∑
t=τi

t− τi
t+ β

+

τi+1−1∑
t=τi

E[Gt]

(
τi+1−1∑
k=t+1

18L2c

µ3(k + β)
+

9L

2µ2

(
1 +

c

N

)
− 3(t+ β)

2µ

)
.
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Each of the coefficients of E[Gt] in above can be bounded by,
τi+1−1∑
k=t+1

18L2c

µ3(k + β)
+

9L

2µ2

(
1 +

c

N

)
−

3(t+ β)

2µ
≤

18L2c

µ3
ln

(
τi+1 + β − 1

τi + β

)
+

9L

2µ2

(
1 +

c

N

)
−

3τi + β

2µ

=
3

2µ

(
12κ

2
c ln

(
1 +

Hi − 1

τi + β

)
+ 3κ

(
1 +

c

N

)
− (τi + β)

)
≤ 0,

where we used
∑t2
k=t1+1 1/k ≤

∫ t2
t1
dx/x = ln(t2/t1) in the first inequality and the last inequality

comes from the assumption of the theorem. Now that the coefficients of E[Gk] are non-positive, we
can simply ignore them and obtain,

ξτi+1(τi+1 + β − 1)2 ≤ ξτi(τi + β − 1)2 +
9Lσ2

2µ2N
(τi+1 − τi) +

18L2σ2

µ3

τi+1−1∑
t=τi

t− τi
t+ β

.

Recursing relation above for i = 0, . . . , R− 1 implies,

ξT (T + β − 1)2 ≤ ξ0(β − 1)2 +
9Lσ2

2µ2N
T +

18L2σ2

µ3

T−1∑
t=0

t− τ(t)

t+ β
.

Dividing both sides by (T + β − 1)2 concludes the proof.

Proof of Theorem 1. We have,

τj = τ0 +

j−1∑
i=0

Hi = a
j(j + 1)

2
, j = 0, . . . , k − 1.

Hence,

1 +
H0 − 1

τ0 + β
= 1 +

a− 1

β
≤ 1 +

2T

9κR2
≤ 1 +

T

4κR2
,

1 +
Hi − 1

τi + β
≤ 1 +

a(i+ 1)
ai(i+1)

2

≤ 3, i ≥ 1.

Thus, 12κ2c ln(1 + Hi−1
τi+β

) + 3κ(1 + c
N )− (τi + β) ≤ 0, i = 0, . . . , R− 1 and we can use Theorem

3. Moreover,

T−1∑
t=0

t− τ(t)

t+ β
≤
R−1∑
j=0

Hj−1∑
i=1

i

τj + i+ β
≤ H0 +

R−1∑
j=1

Hj−1∑
i=1

i

τj + 1 + β

= a+

R−1∑
j=1

Hj(Hj − 1)

2(τj + 1 + β)
= a+

R−1∑
j=1

a(j + 1)(a(j + 1)− 1)

aj(j + 1) + 2(1 + β)

≤ a+

R−1∑
j=1

a2(j + 1)2

aj(j + 1)
≤ 2aR.

Plugging the values of R and a implies,

T−1∑
t=0

t− τ(t)

t+ β
≤ 2aR ≤ 2(

2T

R2
+ 1)R =

4T

R
+ 2R ≤ 4T

R
+

4T

R
=

8T

R
,

where we used R ≤
√

2T in the last inequality. Using the relation above together with Theorem 3
concludes the proof.
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C One-shot averaging

In this section we prove Theorem 2 for one-shot averaging. The main idea is to use second order
approximation for gradients at any point with respect to the minimizer and show that the residual
errors are insignificant, using concentration results from Karimi et al. (2016).

C.1 Preliminaries

Define v(y,x) := ∇f(y)−
(
∇f(x) +∇2f(x)(y − x)

)
and vti = v(xti,x

∗).
Lemma 7. Let Assumption 4 hold. Then |[v(x,x∗)]i| = o(‖x− x∗‖) for i = 1, . . . , d.

Proof. Denote hi(x) = [∇f(x)]i. Then by Assumption 4, hi is continuously differentiable over an
open set containing x∗. Thus,

hi(x) = hi(x
∗) +∇hi(x∗)>(x− x∗) + o(‖x− x∗‖) = ∇hi(x∗)>(x− x∗) + o(‖x− x∗‖).

Therefore,

[v(x,x∗)]i = hi(x)−
d∑
j=1

∂2f

∂xi∂xj
(x∗)[x− x∗]j = hi(x)−∇hi(x∗)>(x− x∗) = o(‖x− x∗‖).

Let us define u(r) := max‖x−x∗‖≤r ‖v(x,x∗)‖. We have u(r) = o(r).
Theorem 4 (Karimi et al. (2016), Theorem 1). Under Assumptions 1 and 3, the following inequality,
known as the quadratic growth (QG) condition holds:

‖x− x∗‖2 ≤ 2

µ
(f(x)− f∗).

Lemma 8. Under Assumptions 1, 3 and 4 we have,

∇2f(x∗) � µ.

Proof. The result is established by using the linear approximation theorem on a sequence of points
converging to x∗ on a line, continuity of Hessian as well as the quadratic growth from Theorem 4.
Similar approach can be found in the proof of Theorem 2.26 Beck (2014).

Next, we state a Theorem from Madden et al. (2020) which we will use frequently in the rest of our
results.
Theorem 5 (Madden et al. (2020), Theorem 4 and 13). Under Assumptions 1, 3 and 6, SGD with
step-size sequence {ηt} = {θt} defined in (2), constructs a sequence of {xt} such that there exist
C1, C2 > 0 such that for t ≥ t0,

E[f(xt)]− f∗ = C1
Lσ2

µ2t
,

and w.p. ≥ 1− δ for all δ ∈ (0, 1/e),

f(xt)− f∗ ≤ C2
Lσ2 log(e/δ)

µ2t
.

Lemma 9. Under Assumptions 1 and 4 we have,

‖v(x,x∗)‖ ≤ 2L‖x− x∗‖. (18)

Proof. We have,
‖v(x,x∗)‖ = ‖∇f(x)−∇2f(x∗)(x− x∗)‖

≤ ‖∇f(x)‖+ ‖∇2f(x∗)(x− x∗)‖
≤ L‖x− x∗‖+ ‖∇2f(x∗)‖2‖x− x∗‖
≤ 2L‖x− x∗‖,

where we used ‖∇2f(x∗)‖ ≤ L in the last inequality.
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The following lemma is the key result we need to show the asymptotic performance of OSA.
Lemma 10. Under Assumptions 1, 3, 4 and 6 and steps-size sequence {ηt} = {θt} defined in (2),
we have

1. E[‖vti‖2] = o( 1
t ),

2. E[‖vti‖‖xti − x∗‖] = o( 1
t ).

Proof. Let us define u(r) := max‖x−x∗‖≤r ‖v(x,x∗)‖. By Lemma 7 we have u(r) = o(r). Also
define random variable rti = ‖xti − x∗‖.
Since u(r) = o(r), for any ε > 0 there exists s > 0 such that for r ≤ s, u(r) ≤

√
εr or u(r)2 ≤ εr2.

We have,

E[‖vti‖2] = Exti
[‖v(xti,x

∗)‖2] ≤ Erti [u(rti)
2]

=

∫ ∞
0

u(r)2prti (r)dr

=

∫ s

0

u(r)2prti (r)dr +

∫ ∞
s

u(r)2prti (r)dr

≤ ε
∫ s

0

r2prti (r)dr + 4L2

∫ ∞
s

r2prti (r)dr

= εE[(rti)
2] + (4L2 − ε)

∫ ∞
s

r2prti (r)dr, (19)

where pX denotes the Probability Density Function (PDF) for random variable X and we used
u(r) ≤ 2Lr from (18).

Without loss of generality, we assume t ≥ t0 for the rest of the proof. By Theorems 4 and 5 we have,

E
[
(rti)

2
]

= E
[∥∥xti − x∗

∥∥2] ≤ 2

µ
E[f(xti)− f∗] ≤

2C1Lσ
2

µ2t
= O

(
1

t

)
.

Moreover, define Jt(δ) := C2Lσ
2 log(e/δ)/(µ2t). Then,

Pr

(
(rti)

2 ≤ 2Jt(δ)

µ

)
≥ Pr

(
f(xti)− f∗ ≤ Jt(δ)

)
≥ 1− δ, for δ ∈ (0, 1/e), (20)

or,

F−1
(rti)

2(1− δ) ≤ 2Jt(δ)

µ
, for δ ∈ (0, 1/e), (21)

where FX denotes the Cumulative Distribution Function (CDF) for random variable X . Since
limt→∞ Jt(δ) = 0, ∃t1 ≥ t0 such that for t ≥ t1, J−1t (µs2/2) ∈ (0, 1/e). It follows that,∫ ∞

s

r2prti (r)dr =

∫ ∞
s2

r2p(rti)2(r2)dr2 =

∫ ∞
s2

r2dF(rti)
2(r2)

=

∫ 1

F(rt
i
)2 (s

2)

F−1
(rti)

2(x)dx =

∫ 0

1−F(rt
i
)2 (s

2)

−F−1
(rti)

2(1− δ)dδ

=

∫ 1−F(rt
i
)2 (s

2)

0

F−1
(rti)

2(1− δ)dδ

≤ 2

µ

∫ 1−F(rt
i
)2 (s

2)

0

Jt(δ)dδ ≤
2

µ

∫ J−1
t (µs

2

2 )

0

Jt(δ)dδ. (22)

In the equation above, we switched from Probability Density Function (PDF) prti to p(rti)2 in the
first equality. In the next equality we used pX = dFX/dX that holds for any continuous random
variable X . In third equality, we simply changed variable to x = F(rti)

2(r2) and without loss of
generality we define F−1X (y) := inf{x|FX(x) ≥ y}. In the next equation, again, we simply changed
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1
−
δ
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2

2 )

F(rti)
2(r2)

Figure 7: Illustration of integrals in (22)

variable to δ = 1− x. Finally, in the last two inequalities, we used (21) and a direct result of (20),
1− F(rti)

2(s2) ≤ J−1t (µs
2

2 ) (see Figure 7).

By Lemma 11, ∃t2 ≥ t1 such that for t ≥ t2,
∫ J−1

t (µs2/2)

0
Jt(δ)dδ ≤ εB1/t, where B1 :=

2C2Lσ
2e/µ2. Combining with (19) we obtain,

E[‖vti‖2] ≤ ε

t

(
2C1Lσ

2

µ2
+

16C2L
3σ2e

µ3

)
, t ≥ t2.

Next, we show E[‖vti‖‖xti − x∗‖] = o(1/t). Since u(r) = o(r), for any ε > 0, there exists s′ > 0
such that for r ≤ s′, u(r) ≤ εr. Then,

E[‖vti‖‖xti − x∗‖] ≤ E[u(rti)r
t
i ]

=

∫ s′

0

u(r)rprti (r)dr +

∫ ∞
s′

u(r)rprti (r)dr

≤ ε
∫ s′

0

r2prti (r) + 4L2

∫ ∞
s′

r2prti (r)dr.

Following the same steps from the first part of this proof, we obtain ∃t3 > 0 such that,

E[‖vti‖‖xti − x∗‖] ≤ ε

t

(
2C1Lσ

2

µ2
+

16C2L
3σ2e

µ3

)
, t ≥ t3.

Since we could pick ε arbitrarily small, we showed that E[‖vti‖2] = o(1/t) and E[‖vti‖‖xti −x∗‖] =
o(1/t).

Lemma 11. Let qt : (0, 1/e) → R+ be defined as qt(δ) = a1 log(e/δ)/t for some a1 > 0 and
∀t ≥ 1. Suppose y ∈ range(qt) for t ≥ t1, then for any ε > 0, there exists t2 ≥ t1 such that for any
t ≥ t2, ∫ q−1

t (y)

0

qt(δ)dδ ≤
Bε

t
,

where B = 2a1e.

Proof. Define xt such that qt(xt) = y. Then,

a1 log(e/xt)

t
= y ⇐⇒ log(

e

xt
) =

yt

a1
⇐⇒ xt = exp(1− yt

a1
). (23)
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Moreover, ∫ xt

0

qt(δ)dδ =
a1
t

∫ xt

0

log(
e

δ
)dδ

=
a1
t

(xt − xt(log(xt)− 1))

=
a1
t

(
xt + xt(

yt

a1
)

)
= xt(y +

a1
t

).,

where we used (23) in third equality. First, we note that for t ≥ a1/y, we have y + a1/t ≤ 2y. Next,
we show that for t large enough, xt ≤ Bε/(2yt) for some B > 0. We have lims→∞ exp(s)/s =∞.
Therefore ∃s0 ≥ 1 such that for s ≥ s0, exp(s)/s ≥ 1/ε. Thus for t ≥ s0a1/y we have,

exp(
ty

a1
) ≥ ty

a1ε
,

⇒xt = exp(1− yt

a1
) ≤ e(a1ε

ty
) =

Bε

2yt
,

where B := 2a1e. Therefore, for t ≥ t2 := max{s0a1/y, t1} we have
∫ xt
0
qt(δ)dδ ≤ 2xty ≤

Bε/t.

C.2 One-step progress

Lemma 12. Under Assumptions 1, 3, 4 and 6 and steps-size sequence {ηt} = {θt} defined in (2),
we have

E[‖x̄t+1 − x∗‖2] ≤ (1− ηtµ)2E[‖x̄t − x∗‖2] +
η2t σ

2

N
+ o

(
1

t2

)
. (24)

Proof. Let us define A = ∇2f(x∗). By definition,
∇f(xti) = A(xti − x∗) + vti . (25)

Plugging (25) in SGD process and averaging over all i we obtain,

x̄t+1 = x̄t − ηt
N

N∑
i=1

ĝti = x̄t − ηt
N

N∑
i=1

(
∇f(xti) + wt

i

)
= x̄t − ηt

N

N∑
i=1

(
A(xti − x∗) + vti + wt

i

)
= x̄t − ηtA(x̄t − x∗) +

ηt
N

N∑
i=1

(vti + wt
i).

Thus,

E[‖x̄t+1 − x∗‖2|Ft] = E[‖(I − ηtA)(x̄t − x∗) +
ηt
N

N∑
i=1

(vti + wt
i)‖2|Ft]

= E[‖(I − ηtA)(x̄t − x∗) +
ηt
N

N∑
i=1

vti‖2|Ft] + E[‖ ηt
N

N∑
i=1

wt
i‖2|Ft]

≤ E[‖(I − ηtA)(x̄t − x∗) +
ηt
N

N∑
i=1

vti‖2|Ft] +
η2t σ

2

N
.

Taking full expectation with respect to Ft yields,

E[‖x̄t+1 − x∗‖2] ≤ E[‖(I − ηtA)(x̄t − x∗) +
ηt
N

N∑
i=1

vti‖2] +
η2t σ

2

N

= E[‖(I − ηtA)(x̄t − x∗)‖2] +
η2t σ

2

N

+ E[‖ ηt
N

N∑
i=1

vti‖2]︸ ︷︷ ︸
T2

+E[‖(I − ηtA)(x̄t − x∗)‖‖ ηt
N

N∑
i=1

vti‖]︸ ︷︷ ︸
T3

. (26)
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Next we bound T2 and T3. Using Lemma 10 we have,

E[‖ ηt
N

N∑
i=1

vti‖2] ≤ η2t
N

N∑
i=1

E[‖vti‖2] ≤ 4

µ2t2
o

(
1

t

)
= o

(
1

t3

)
. (27)

Moreover, by Lemma 8 and f being L-smooth we have µ � A � L. It follows

1− ηtL � I − ηtA � 1− ηtµ.

Since ηt ≤ 1/L and I − ηtA is symmetric, we have ‖I − ηtA‖ ≤ 1− ηtµ ≤ 1. Then,

‖(I − ηtA)(x̄t − x∗)‖ ≤ ‖I − ηtA‖‖x̄t − x∗‖ ≤ ‖x̄t − x∗‖.

Thus,

E[‖(I − ηtA)(x̄t − x∗)‖‖ ηt
N

N∑
i=1

vti‖] ≤ E[‖x̄t − x∗‖‖ ηt
N

N∑
i=1

vti‖]

≤ E

[(
1

N

N∑
i=1

‖xti − x∗‖

)(
ηt
N

N∑
i=1

‖vti‖

)]

≤ ηt
N2

N∑
i=1

E[‖xti − x∗‖‖vti‖] +
ηt
N2

∑
i 6=j

E[‖xtj − x∗‖‖vti‖]

=
ηt
N2

N∑
i=1

E[‖xti − x∗‖‖vti‖] +
ηt
N2

∑
i 6=j

E[‖xtj − x∗‖]E[‖vti‖]

≤ 2

µt
o

(
1

t

)
+

2

µt
o

(
1√
t

)
o

(
1√
t

)
= o

(
1

t2

)
, (28)

where we used |E[X]| ≤
√
E[X2] for random variables ‖xtj − x∗‖ and vti and Lemma 10 in last

equation above. plugging (27) and (28) in (26) we obtain the desired result.

Now we are ready to present the proof of Theorem 2.

Proof of Theorem 2. Denote ψt := E[‖x̄t − x∗‖] for t ≥ 0. By Lemma 12 we can write,

ψt+1 ≤ ψt(1− ηtµ)2 +
η2t σ

2

N
+ νt,

where νt ≥ 0 and νt = o(1/t2). It follows,

ψk ≤ ψ0
k−1∏
t=0

(1− ηtµ)2︸ ︷︷ ︸
S1

+

k−1∑
t=0

η2t σ
2

N

k−1∏
l=t+1

(1− ηlµ)2︸ ︷︷ ︸
S2

+

k−1∑
t=0

νt
k−1∏
l=t+1

(1− ηlµ)2︸ ︷︷ ︸
S3

. ∀k ≥ t0.

(29)

Next, we will bound each of the terms S1, S2, and S3. Before that, we note that for t ≥ t0,

1− ηtµ = 1− 2t

(t+ 1)2
≤ 1− 2

t
.

Therefore, for t2 > t1 ≥ t0 we have,

t2−1∏
l=t1

(1− ηlµ) ≤
t2−1∏
l=t1

(1− 2

l
) = exp

(
t2−1∑
l=t1

log(1− 2

l
)

)

≤ exp

(
t2−1∑
l=t1

−2

l

)
≤ exp (2 log(t1)− 2 log(t2)) =

(
t1
t2

)2

. (30)
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Now we have the tools we need to bound S1, S2, and S3. we have,

S1 = ‖x̄0 − x∗‖2
t0−1∏
t=0

(1− ηtµ)2
k−1∏
t=t0

(1− ηtµ)2 ≤ (1− µ

L
)2t0

(
t0
k

)4

‖x̄0 − x∗‖2. (31)

S2 =

t0−1∑
t=0

η2t σ
2

N

t0−1∏
l=t+1

(1− ηlµ)2
k−1∏
l=t0

(1− ηlµ)2 +

k−1∑
t=t0

η2t σ
2

N

k−1∏
l=t+1

(1− ηlµ)2

≤ σ2

N

[
t0−1∑
t=0

1

L2
(1− µ

L
)2(t0−1−t)

(
t0
k

)4

+

k−1∑
t=t0

(
2t

µ(t+ 1)2

)2(
t+ 1

k

)4
]

=
σ2

N

[
t40

L2k4

t0−1∑
t=0

(1− µ

L
)2t +

4

µ2k4

k−1∑
t=t0

t2

]

≤ σ2

N

[
t40

L2k4

∞∑
t=0

(1− µ

L
)2t +

4

µ2k4

k−1∑
t=1

t2

]

=
σ2

N

[
t40

L2k4(1− (1− µ
L )2)

+
2k(k − 1)(2k − 1)

3µ2k4

]
≤ σ2

N

[
t40

Lµk4
+

4

3µ2k

]
=

4σ2

3Nµ2k

[
1 +

3µt40
4Lk3

]
. (32)

Next, we show S3 = o(1/k). Since νt = o(1/t2), without loss of generality, we can assume there
exists B1, B2 > 0 such that for any ε > 0, there exists k1 ≥ t0 such that,

νt ≤

{
B1

(t+1)2 , t ≥ 0,
εB2

(t+1)2 , t ≥ k1.

It follows,

S3 ≤
t0−1∑
t=0

(1− µ

L
)2(t0−1−t)

(
t0
k

)4
B1

(t+ 1)2
+

k1−1∑
t=t0

(
t+ 1

k

)4
B1

(t+ 1)2
+

k−1∑
t=k1

(
t+ 1

k

)4
εB2

(t+ 1)2

≤
∞∑
t=0

(
t0
k

)4
B1

(t+ 1)2
+

k1−1∑
t=t0

B1

k2
+

k−1∑
t=k1

εB2

k2

≤ 2t40B1

k4
+
B1(k1 − t0)

k2
+
εB2(k − k1)

k2

≤ 2εt0B1

k
+
εB1

k
+
εB2

k
=
ε(B1(2t0 + 1) +B2)

k
, for k ≥

⌈
k1
ε

⌉
.

Thus,

S3 = o

(
1

k

)
. (33)

Plugging (31)-(33) in (29) results,

E[‖x̄k − x∗‖2] ≤
(1− µ

L )2t0t40
k4

‖x̄0 − x∗‖2 +
4σ2

3Nµ2k
+

σ2t40
NLµk4

+ o

(
1

k

)
=

4σ2

3Nµ2k
+ o

(
1

k

)
.
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