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Abstract1

Node clustering is a powerful tool in the analysis of networks. We introduce a2

graph neural network framework to obtain node embeddings for directed networks3

in a self-supervised manner, including a novel probabilistic imbalance loss, which4

can be used for network clustering. Here, we propose directed flow imbalance5

measures, which are tightly related to directionality, to reveal clusters in the6

network even when there is no density difference between clusters. In contrast7

to standard approaches in the literature, in this paper, directionality is not treated8

as a nuisance, but rather contains the main signal. DIGRAC optimizes directed9

flow imbalance for clustering without requiring label supervision, unlike existing10

graph neural network methods, and can naturally incorporate node features, unlike11

existing spectral methods. Extensive experimental results on synthetic data, in the12

form of directed stochastic block models, and real-world data at different scales,13

demonstrate that our method, based on flow imbalance, attains state-of-the-art14

results on directed graph clustering when compared against 10 state-of-the-art15

methods from the literature, for a wide range of noise and sparsity levels, graph16

structures and topologies, and even outperforms supervised methods.17

1 Introduction18

Revealing an underlying community structure of directed networks (digraphs) is an important problem19

in many applications, see for example [1] and [2], such as detecting influential social groups [3]20

and analyzing migration patterns [4]. While most existing methods that could be applied to directed21

clustering use local edge densities as main signal and directionality (i.e, edge orientation) as additional22

signal, we argue that even in the absence of any edge density differences, directionality can play a23

vital role in directed clustering as it can reveal latent properties of network flows. The underlying24

intuition is that homogeneous clusters of nodes form meta-nodes in a meta-graph, with the meta-graph25

directing the flow between clusters; directed core-periphery structure is such an example [5]. Loosely26

speaking, a meta-node is a collection of nodes, and a meta-graph is a graph on such meta-nodes, with27

weighted edges collecting the overall sum of edge weights between the meta-nodes. Fig. 1(a) is28

an example of flow imbalance between two clusters, here on an unweighted network for simplicity:29

while 80% of the edges flow from the Transient cluster to the Sink cluster, only 20% flow in the other30

direction. As a real-world example, Fig. 1(b) shows the strongest flow imbalances between clusters31

detected by our method in a network of US migration flow [4]; most edges flow from the red cluster32

(label 1) to the blue one (label 2). Figures 1(c-d) show examples on a synthetic meta-graph. We could33

also think of a social network in which a set of fake accounts A have been created, and these target34

another subset B of real accounts by sending them messages. Most likely, there would be many more35

messages from A to B than from B to A, hinting that A is most likely comprised of fake accounts.36

Thus, instead of finding relatively dense groups of nodes in digraphs with a relatively small amount of37

flow between the groups, as in [6–11], our main goal is to recover clusters with strongly imbalanced38

flow among them, in the spirit of [12, 13], where directionality is the main signal. This task is39

not addressed by most methods for node clustering in digraphs, including community detection40

methods. Those methods that do lay emphasis on directionality are usually spectral methods, for41

which incorporating features is non-trivial, or graph neural network (GNN) methods that require42

labeling information. An exception is the network community detection method InfoMap [14] which43

uses directed random walks; however, it still relies on some edge density information within clusters,44
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(b) Strongest imbalanced flow on
Migration data detected by
DIGRAC, along with the

geographic locations of the counties
and state boundaries (in black).
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adjacency matrix F.

Figure 1: Visualization of cut flow imbalance and meta-graph: (a) 80% of edges flow from Transient
to Sink, while 20% of edges flow in the opposite direction; (b) top pair imbalanced flow on Migration
data [4]: most edges flow from red (1) to blue (2); (c) & (d) are for a Directed Stochastic Block
Model with a cycle meta-graph with ambient nodes, for a total of 5 clusters. Most edges flow in
direction 0→ 1→ 2→ 3→ 0, while few flow in the opposite direction. Cluster 4 is the ambient
cluster. In (a) and (c), blue lines indicate flows with random, equally likely directions; these flows do
not exist in the meta-graph adjacency matrix F. For (d), the lighter the color, the stronger the flow.

as a walk is more likely to happen when the density is higher. [15] and [16] employ Markov chains,45

but we pick InfoMap as a representative for methods based on information theory/Markov chains.46

Here we introduce DIGRAC, a GNN framework to obtain node embeddings for clustering digraphs47

(allowing weighted edges and self-loops but no multiple edges). In a self-supervised manner, a48

novel probabilistic imbalance loss is proposed to act on the digraph induced by all training nodes.49

The global imbalance score, one minus whom is the self-supervised loss function, is aggregated50

from pairwise normalized cut imbalances. The method is end-to-end in combining embedding51

generation and clustering without an intermediate step. To the best of our knowledge, this is the first52

GNN method which derives node embeddings for digraphs that directly maximizes flow imbalance53

between pairs of clusters. With an emphasis on the use of a direction-based flow imbalance objective,54

experimental results on synthetic data and real-world data at different scales demonstrate that our55

method can achieve leading performance for a wide range of network densities and topologies.56

DIGRAC’s main novelty is the ability to cluster based on direction-based flow imbalance, instead57

of using classical criteria such as maximizing relative densities within clusters. Compared with prior58

methods that focus on directionality, DIGRAC can easily consider node features and also does not59

require known node clustering labels. DIGRAC complements existing approaches in various aspects:60

(1) Our results show that DIGRAC complements classical community detection by detecting alterna-61

tive patterns in the data, such as meta-graph structures, which are otherwise not detectable by existing62

methods. This aspect of detecting novel structures in directed graphs has also been emphasized63

in [12]. (2) DIGRAC complements existing spectral methods, through the possibility of including64

exogenous information, in the form of node-level features or labels, thus borrowing their strength.65

(3) DIGRAC complements existing GNN methods by introducing an imbalance-based objective.66

(4) DIGRAC introduces imbalance measures for evaluation when ground-truth is unavailable.67

DIGRAC’s applicability extends beyond settings where the input data is a digraph: with time series68

data as input, the digraph construction mechanism can accommodate any procedure that encodes a69

pairwise directional association between the corresponding time series, such as lead-lag relationships70

and Granger causality [17], with applications such as in the analysis of information flow in brain71

networks [18], biology [19], finance [20, 21] and earth sciences [22]. DIGRAC could also facilitate72

tasks in ranking and anomaly detection, as it allows one to extrapolate from local pairwise (directed)73

interactions to a global structure inference, in the high-dimensional low signal-to-noise ratio regime.74

Main contributions. Our main contributions are as follows. •(1) We propose a GNN framework for75

self-supervised end-to-end node clustering on (possibly attributed and weighted) digraphs explicitly76

taking into account the directed flow imbalance. •(2) We propose a family of probabilistic global77

imbalance scores to serve as the self-supervised loss function and evaluation objective, including one78

based on hypothesis testing for directionality signal. To the best of our knowledge, this is the first79

method directly maximizing flow imbalance for node clustering in digraphs using GNNs. •(3) We80

extend our method to the semi-supervised setting when label information is available.81
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2 Related work82

Directed clustering has been explored by non-GNN methods. [23] performs directed clustering that83

hinges on symmetrizations of the adjacency matrix, but is not scalable as it requires large matrix mul-84

tiplications. [24] proposes a spectral co-clustering algorithm for asymmetry discovery that relies on85

in-degree and out-degree. Whenever direction is the sole information, such as in a complete network86

with lead-lag structure derived from time series [20], a purely degree-based method cannot detect the87

clusters. While [25] produces two partitions of the node set, one based on out-degree and one based on88

in-degree, our partition simultaneously takes both directions into account. The directed graph Lapla-89

cians introduced by [2] are only applicable to strongly connected digraphs, which is rarely the case90

in sparse networks arising in applications. InfoMap by [14] assumes that there is a “map” underlying91

the network, similar to a meta-graph in DIGRAC. InfoMap aims to minimize the expected description92

length of a random walk and is recommended for networks where edges encode patterns of movement93

among nodes. While related to DIGRAC, InfoMap still relies on some amount of density-based signal94

being present within each of the modules. [12] seeks to uncover clusters characterized by a strongly95

imbalanced flow circulating among them, based on eigenvectors of the Hermitian matrix (A−AT ) ·i,96

where A is the (normalized) adjacency matrix and i the imaginary unit. [12] is a purely spectral-based97

method and is not able to naturally incorporate any available node features or label information; in98

contrast, DIGRAC is a GNN-based method that is naturally able to account for such information.99

Moreover, [12] is not driven by an optimization function, but only proposes evaluation metrics that cap-100

ture the imbalance of the pairs of clusters. In contrast, inspired by [12], in DIGRAC a family of novel101

imbalance loss functions is proposed, with a probabilistic interpretation, rendering DIGRAC a fully102

trainable end-to-end pipeline. Furthermore, the rich class of imbalance evaluation and training objec-103

tives/losses proposed in this paper go far beyond the evaluation metrics considered in [12]. [13] uncov-104

ers higher-order structural information among clusters in digraphs, while maximizing the imbalance105

of the edge directions, but its definition of the flow ratio restricts the underlying meta-graph to a path.106

GNNs have been applied to digraph node classification, which is similar to digraph clustering107

but requires known clustering labels. [26] uses first and second-order proximity, constructs three108

Laplacians, but the method is space and speed-inefficient. [27] simplifies [26], builds a directed109

Laplacian based on PageRank, and aggregates information dependent on higher-order proximity.110

Building on [12, 28], [29] constructs a Hermitian matrix that encodes undirected geometric structure111

in the magnitude of its entries, and directional information in their phase. [30] introduces a digraph112

data augmentation method called Laplacian perturbation and conducts digraph contrastive learning.113

[31] proposes a spectral-based graph convolution network for digraphs, yet is restricted to strongly114

connected digraphs that are usually not realistic. [32] utilizes convolution-like anisotropic filters115

based on local subgraph structures (motifs) for semi-supervised node classification tasks in digraphs,116

but relies on pre-defined structures and fails to handle complex networks.117

In particular, [26, 27, 29, 30, 32] all require known labels, which are not generally available for118

real-world data. [2, 12, 13, 23, 24] could not trivially incorporate node attributes or node labels. In119

contrast, we propose an efficient GNN-based method that maximizes a probablistic flow imbalance120

objective, in a self-supervised manner, and which can naturally analyze attributed weighted digraphs.121

To avoid potential misunderstanding, we briefly mention several related works that we are aware of,122

but do not compare against in our experiments in the main text. While DIGRAC addresses the task123

of partitioning the nodes into disjoint sets, [33] locates a certain community within a network. In124

particular, [33] proposes a local algorithm while this paper proposes a global one. OSLOM by [34]125

is very flexible but based on a density heuristic and hence a comparison to DIGRAC on networks126

without density signal would not be fair to begin with. [35] introduces directionality in the Louvain127

algorithm. This algorithm optimizes a modularity-type function that compares the number of edges128

within communities to the expected number of edges under a specified model. It is thus an approach129

that aims to find denser-than-expected groups of vertices. When all groups have the same density, as130

in our synthetic data sets, and the only structure lies in the directionality of the edges, this method131

simply cannot be expected to perform well. The Leiden algorithm in [36] also builds on the Louvain132

method, again optimizing a modularity-type function that compares the number of edges within133

communities to the expected number of edges under a specified model. It is a powerful method for134

that task, but cannot be fairly compared to DIGRAC which is tailored to find imbalances.135

We also do not compare DIGRAC against graph pooling methods [37], which are inspired by pooling136

in CNNs and developed to discard information which is superfluous for the task at hand, as a partition137
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of the nodes which can be interpreted as clustering is only a byproduct. Moreover, graph pooling138

methods are usually developed only for undirected networks. While graph matching as in [38–40]139

and [41] can be viewed as a clustering method of networks, matching the graph of interest to a140

disconnected graph by connecting each node in the observed graph with an isolated node of the141

disconnected graph, this approach is not developed for directed networks. The underlying idea of142

these papers is complementary to the meta-graph idea which underpins DIGRAC; in the meta-graph,143

the components are connected, and estimating the directionality of these connections is the main focus.144

Hence this work addresses a very different task. We emphasize that these are all excellent methods,145

but they address different objectives and tasks. As confirmed by our experiments in Appendix146

(App.) E, comparing these methods to DIGRAC is not appropriate. DIGRAC is tailored to detect an147

imbalance signal in directed networks, and such a signal cannot be present in an undirected network.148

As it is based on imbalance, DIGRAC will not be able to detect a signal in an undirected network,149

thus rendering it not applicable to undirected networks.150

3 The DIGRAC framework151

Problem definition. Denote a (possibly weighted) digraph with node attributes as G = (V, E , w,X),152

with V the set of nodes, E the set of directed edges or links, and w ∈ [0,∞)|E| the set of edge weights.153

G may have self-loops, but no multiple edges. The number of nodes is n = |V|, and X ∈ Rn×din is a154

matrix whose rows encode the nodes’ attributes. Such a network can be represented by the attribute155

matrix X and the adjacency matrix A = (Aij)i,j∈V , with Aij = 0 if no edge exists from vi to vj ; if156

there is an edge e from vi to vj , we set Aij = we, the edge weight.157

Digraphs often lend themselves to interpreting weighted directed edges as flows, with a meta-graph158

on clusters of vertices describing the overall flow directions; see Fig. 1. A clustering is a partition of159

the set of nodes into K disjoint sets (clusters) V = C0 ∪C1 ∪ · · · ∪ CK−1 (ideally, K ≥ 2). Intuitively,160

nodes within a cluster should be similar to each other with respect to flow directions, while nodes161

across clusters should be dissimilar. In a self-supervised setting, only the number of clusters K is162

given. In a semi-supervised setting, for each of the K clusters, a fraction set V seed ⊆ V train ⊂ V of163

the set V train of all training nodes is selected to serve as the set of seed nodes, for which the cluster164

membership labels are known before training. The goal of semi-supervised clustering is to assign each165

node v ∈ V to a cluster containing some known seed nodes, without knowledge of the underlying166

flow meta-graph. The corresponding self-supervised clustering task does not use seed nodes.167

3.1 Self-supervised loss for clustering168

Our self-supervised loss function is inspired by [12], aiming to cluster the nodes by maximizing169

a normalized form of cut imbalance across clusters. We first define probabilistic versions of cuts,170

imbalance flows, and probabilistic volumes. For K clusters, the assignment probability matrix171

P ∈ Rn×K has as row i the probability vector P(i,:) ∈ RK with entries denoting the probabilities of172

each node to belong to each cluster; its kth column is denoted by P(:,k).173

•∀k, l ∈ {0, . . . ,K − 1} where K ≥ 2, the probabilistic cut from cluster Ck to Cl is defined as

W (Ck, Cl) =
∑
i,j

Ai,j ·Pi,k ·Pj,l = (P(:,k))
TAP(:,l).

174 •The imbalance flow between Ck and Cl is defined as |W (Ck, Cl)−W (Cl, Ck)|.175

For interpretability and ease of comparison, we normalize the imbalance flows to obtain an imbalance176

score with values in [0, 1] as follows (we defer additional details to App. B.2).177

•The probabilistic volume for cluster Ck is defined as178

V OL(Ck) = V OL(out)(Ck) + V OL(in)(Ck)

=
∑
i,j

(Aj,i + Ai,j) ·Pj,k

179 Then V OL(Ck) ≥W (Ck, Cl) for all l = 1, . . . ,K − 1 and180

min(V OL(Ck), V OL(Cl)) ≥ |W (Ck, Cl)−W (Cl, Ck)|. (1)

181 The imbalance term, which is used in most of our experiments, denoted CIvol_sum, is defined as182

CIvol_sum(k, l) = 2
|W (Ck, Cl)−W (Cl, Ck)|
V OL(Ck) + V OL(Cl)

∈ [0, 1]. (2)
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In particular for K = n, every node is a single cluster, and CIvol_sum(k, l) =1, but then the partition is183

not informative. The aim is to find a partition that maximizes the imbalance flow under the constraint184

that the partition has at least two sets, to capture groups of nodes that could be viewed as representing185

clusters in the meta-graph. The normalization by the volumes penalizes partitions that put most nodes186

into a single cluster. The range [0, 1] follows from Eq. (1). Other variants are discussed in App. B.3.187

To obtain a global probabilistic imbalance score, based on CIvol_sum from Eq. (2), we average over188

pairwise imbalance scores of different pairs of clusters. Since the scores discussed are symmetric and189

the cut difference before taking absolute value is skew-symmetric, we only need to consider the pairs190

in the set T = {(Ck, Cl) : 0 ≤ k < l ≤ K − 1, k, l ∈ Z}.191

A naive approach, which we call the “naive" variant, considers all possible
(
K
2

)
pairwise cut192

imbalance values. However, due to potentially high noise levels in certain data sets, one may only be193

interested in pairs that are not just noise but exhibit true signals. To this end, we introduce a “std"194

variant, which only considers pairwise cut imbalance values that are 3 standard deviations away195

from the observed purely noisy imbalance values; the standard deviation is calculated under the null196

hypothesis that the between-cluster relationship has no direction preference, i.e. Fk,l = Fl,k (entries197

of the meta-graph adjacency matrix F to be introduced later in this section), as follows.198

Suppose two clusters Ck and Cl have only noisy links between them, with no edge in the meta-graph199

F, i.e. Fkl = 0. Assume also that the underlying network is fixed in terms of the number of nodes200

and locations of edges; the only randomness stems from the direction the edges. Then we can provide201

the following theoretical guarantee.202

Proposition 1. Suppose that Ck and Cl are two clusters of nk and nl nodes, respectively, with m(k, l)203

edges between them, edge weights wij = wji ∈ [0, 1] and edge direction drawn independently204

at random with equal probability 1
2 for each direction. We assume that the edge weights satisfy205

maxe |we|(
∑
e w

2
e)
− 1

2 = o(m(k, l)). Then W (Ck, Cl) − W (Cl, Ck) is approximately normally206

distributed with mean 0 and variance ||w||2 as m(k, l)→∞.207

A consequence of Proposition 1, which is proved in App. B.1, is that under its assumptions, ap-208

proximately 99.7 % of the observations fall within 3 standard deviations from 0. While Proposition209

1 makes many assumptions and ignores reciprocal edges, the resulting threshold is still a useful210

guideline for restricting attention to pairwise imbalance values which are very likely to capture a true211

signal. In particular, we use it as motivation for our “std" variant to pick cluster pairs from T that212

satisfy (W (Ck, Cl)−W (Cl, Ck))
2
> 9 (W (Ck, Cl) +W (Cl, Ck)) .213

As we are mainly concerned about the top pairs (i.e., those exhibiting the largest imbalance flow),214

another option is the “sort" variant, which selects the largest β pairwise cut imbalance values,215

where β is half of the number of nonzero entries in the off-diagonal entries of the meta-graph216

adjacency matrix F, if the meta-graph is known or can be approximated. For example, for a “cycle"217

meta-graph with three clusters and no ambient nodes, β = 3. When the meta-graph is a “path"218

with three clusters and ambient nodes, then β = 1. When considering the “sort" variant, with219

T (β) = {(Ck, Cl) ∈ T : CIvol_sum(k, l) is among the top β values}, where 1 ≤ β ≤
(
K
2

)
, we set220

Osort
vol_sum =

1

β

∑
(Ck,Cl)∈T (β)

CIvol_sum(k, l), and Lsort
vol_sum = 1−Osort

vol_sum, (3)

221
as the corresponding loss function. Definitions of meta-graph structures are discussed in Section 4.1.222

For the other variants, the corresponding scores and loss functions are defined analogously. We apply223

the “std" variant when we have no prior knowledge on the meta-graph structure during training, and224

the “sort" variant when we have information of the number of pairs to count.225

When using the “std" variant for training, for the initial 50 epochs, we apply the “sort" variant with226

β = 3 for a reasonable starting clustering probability matrix for training, as otherwise during the initial227

training epochs possibly no pairs could be picked out. During the epochs actually utilizing this “std"228

variant, if no pairs could be picked out, we temporarily switch to the “naive" variant for that epoch.229

Regarding complexity, the objective mainly contains matrix-vector multiplications and element-wise230

matrix divisions, which are at most quadratic in the number of nodes, but usually faster with our231

sparsity-aware implementation.232

3.2 Instantiation of DIGRAC233
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Figure 2: DIGRAC overview: from feature matrix X, adjacency matrix
A and number of clusters K, we first apply a directed GNN aggregator to
obtain the node embedding matrix Z, then apply a linear layer followed by
a unit softmax function to get the probability matrix P. Applying argmax
on each row of P yields node cluster assignments. Green circles involves
our proposed imbalance objective, while the yellow circles can only be used
when ground-truth labels are provided.

To instantiate DI-234

GRAC, any aggre-235

gation scheme able236

to take directionality237

into account could be238

incorporated into our239

general framework, as240

long as it can output241

the node embedding242

matrix Z. Here, by243

default, we adapt the244

Signed Mixed Path245

Aggregation (SIMPA)246

scheme from [42]. We247

remove the signed248

parts and devise a249

simple yet effective250

directed mixed path251

aggregation scheme,252

which we call Directed253

Mixed Path Aggrega-254

tion (DIMPA), to obtain the probability assignment matrix P by applying a linear layer followed255

by a unit softmax function to the embedding generated, and feed it to the loss function. Details of256

DIMPA are provided in App. A. A framework diagram is provided in Fig. 2, and an instantiation257

using DIMPA is visualized in Fig. 5.258

4 Experiments259

In our synthetic experiments, when by design ground truth is available, performance is assessed by260

the Adjusted Rand Index (ARI) [43]. Normalized Mutual Information (NMI) results give almost the261

same ranking for the best-performing methods as the ARI, with an average Kendall tau value of 83.8%262

and standard deviation 24.9%, for pairwise ranking comparison, on the methods compared in our263

experiments. We do not focus on NMI in the main text due to its shortcomings [44], see also App. C.9.264

Clustering tasks will have different ground truths, depending on the pattern they are trying to detect.265

Many network clustering methods focus on detecting relatively dense clusters, and try to optimize266

classical network clustering measures, such as directed modularity or partition density. Ground truth267

for these clustering algorithms then relates to relatively densely connected subgroups in the data.268

DIGRAC is a novel method that addresses a novel task, namely that of detecting flow imbalances. To269

the best of our knowledge, real-world data sets with ground-truth flow imbalances are not available to270

date, and hence we introduce normalized imbalance scores to evaluate clustering performance based271

on flow imbalance. As ARI and NMI require ground-truth labels, they thus cannot be applied to the272

available real-world data sets. To address this shortcoming, for the real-world data sets, in Table 1,273

we include three performance measures which we introduce in the paper, and the appendix contains274

an additional 11 performance measures. Implementation details are provided in App. C. Anonymized275

codes and preprocessed data are available at https://anonymous.4open.science/r/DIGRAC.276

We compare DIGRAC against the most recent related methods from the literature for clustering277

digraphs. The 10 methods are • (1) InfoMap [14], • (2) Bibliometric and • (3) Degree-discounted278

introduced in [23], • (4) DI_SIM [24], • (5) Herm and • (6) Herm_sym introduced in [12],279

• (7) MagNet [29], • (8) DGCN [26], • (9) DiGCN [27], and • (10) DiGCL [30]. The abbreviations280

of these methods, when reported in the numerical experiments, are InfoMap, Bi_sym, DD_sym,281

DISG_LR, Herm, Herm_sym, MagNet, DGCN, DiGCN, DiGCL, respectively. DGCN is the least282

efficient method in terms of speed and space complexity, followed by DiGCN which involves the283

so-called inception blocks. We use the same hyperparameter settings stated in these papers. Methods284

(7), (8), (9), (10) are GNN methods which are trained with 80% nodes under label supervision, while285

all the other methods are trained without label supervision. DIGRAC further restricts itself to be286

trained on the subgraph induced by only the training nodes. All methods are designed for directed287

graphs, and all except Infomap require K to be known. Runtime comparison is provided in App. C.2,288

illustrating that DIGRAC is among the fastest among competing GNNs. Implementation details289

for competitors are provided in App. C.7.290
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Table 1: Performance comparison on real-world data sets. The best is marked in bold red and the
second best is marked in underline blue. The objectives are defined in Section 3.1.

Metric Data set InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum

Telegram 0.04±0.00 0.21±0.0 0.21±0.0 0.21±0.01 0.2±0.01 0.14±0.0 0.32±0.01
Blog 0.07±0.00 0.07±0.0 0.0±0.0 0.05±0.0 0.37±0.0 0.0±0.0 0.44±0.0

Migration N/A 0.03±0.00 0.01±0.00 0.02±0.00 0.04±0.00 0.02±0.00 0.05±0.00
WikiTalk N/A N/A N/A 0.18±0.03 0.15±0.02 0.0±0.0 0.24±0.05
Lead-Lag N/A 0.07±0.01 0.07±0.01 0.07±0.01 0.07±0.02 0.07±0.02 0.15±0.03

Ostd
vol_sum

Telegram 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.35±0.00 0.28±0.01
Blog 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00

Migration N/A 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.02±0.00 0.04±0.01
WikiTalk N/A N/A N/A 0.17±0.04 0.06±0.01 0.01±0.00 0.14±0.02
Lead-Lag N/A 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.12±0.03

Onaive
vol_sum

Telegram 0.01±0.00 0.26±0.0 0.26±0.0 0.26±0.01 0.25±0.02 0.23±0.0 0.27±0.01
Blog 0.00±0.00 0.07±0.0 0.0±0.0 0.05±0.0 0.37±0.0 0.0±0.0 0.44±0.0

Migration N/A 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.04±0.01
WikiTalk N/A N/A N/A 0.1±0.02 0.04±0.0 0.0±0.0 0.12±0.01
Lead-Lag N/A 0.30±0.06 0.28±0.06 0.27±0.06 0.29±0.05 0.29±0.05 0.32±0.11

4.1 Data sets291

Synthetic data: Directed Stochastic Block Models A standard directed stochastic blockmodel292

(DSBM) is often used to represent a network cluster structure, see for example [1]. Its parameters are293

the number K of clusters and the edge probabilities; given the cluster assignment of the nodes, the294

edge indicators are independent. The DSBMs used in our experiments also depend on a meta-graph295

adjacency matrix F = (Fk,l)k,l=0,...,K−1 and a filled version of it, F̃ = (F̃k,l)k,l=0,...,K−1, and296

on a noise level parameters η ≤ 0.5. The meta-graph adjacency matrix F is generated from the297

given meta-graph structure, calledM. To include an ambient background, the filled meta-graph298

adjacency matrix F̃ replaces every zero in F that is not part of the imbalance structure by 0.5. The299

filled meta-graph thus creates a number of ambient nodes which correspond to entries which are not300

part ofM and thus are not part of a meaningful cluster; this set of ambient nodes is also called the301

ambient cluster. First, we provide examples of structures of F without any ambient nodes, where 1302

denotes the indicator function.303

•(1) “cycle": Fk,l = (1− η)1(l = ((k+ 1) mod K)) + η1(l = ((k− 1) mod K)) + 1
21(l = k).304

•(2) “path": Fk,l = (1− η)1(l = k + 1) + η1(l = k − 1) + 1
21(l = k).305

•(3) “complete": assign diagonal entries 1
2 . For each pair (k, l) with k < l, let Fk,l be η and 1− η306

with equal probability, then assign Fl,k = 1− Fk,l.307

•(4) “star", following [45]: select the center node as ω = bK−12 c and set Fk,l = (1 − η)1(k =308

ω, l odd) + η1(k = ω, l even) + (1− η)1(l = ω, k odd) + η1(l = ω, l even).309

When ambient nodes are present, the construction involves two steps, with the first step the same as the310

above, but with the following changes: For “cycle" meta-graph structure, Fk,l = (1−η)1(l = ((k+1)311

mod (K − 1))) + η1(l = ((k − 1) mod (K − 1))) + 0.51(l = k). The second step is to assign312

0 (0.5, resp.) to the last row and the last column of F (F̃, resp.). Figures 1(c-d) display a “cycle"313

meta-graph structure with ambient nodes (in cluster 4). The majority of edges flow in the form314

0 → 1 → 2 → 3 → 0, while few flow from the opposite direction. Fig. 1(d) illustrates the315

meta-graph adjacency matrix corresponding to this F.316

In our experiments, we choose the number of clusters, the (approximate) ratio, ρ, between the largest317

and the smallest cluster size, and the number, n, of nodes. To tackle the hardest clustering task and also318

focus on directionality, all pairs of nodes within a cluster and all pairs of nodes between clusters have319

the same edge probability, p. Note that forM =“cycle", even the expected in-degree and out-degree320

of all nodes are identical. Our DSBM, which we denote by DSBM (M,1(ambient), n,K, p, ρ, η),321

is built similarly to [12] but with possibly unequal cluster sizes, with more details in App. C.3. For322

each node vi ∈ Ck, and each node vj ∈ Cl, independently sample an edge from node vi to node vj323

with probability p · F̃k,l. The parameter settings in our experiments are p ∈ {0.001, 0.01, 0.02, 0.1},324

ρ ∈ {1, 1.5}, K ∈ {3, 5, 10}, 1(ambient) ∈ {T, F} (True and False), n ∈ {1000, 5000, 30000}, and325

we also vary the direction flip probability η from 0 to 0.45, with a 0.05 step size.326
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Figure 3: Test ARI comparison on synthetic data. Dashed lines highlight DIGRAC’s performance.
Error bars are given by one standard error.
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Figure 4: Ablation study. (c-d) are on DSBM(“cycle", F, n = 1000,K = 5, p = 0.02, ρ = 1).

Real-world data We perform experiments on five real-world digraph data sets with size ranging from327

245 to over 2 million nodes: Telegram [3], Blog [46], Migration [4], WikiTalk [47], and Lead-Lag328

[20], with details in App. C.3. We set the number of clusters K to be 4, 2, 10, 10, 10, respectively,329

and values of β to be 5, 1, 9, 10, 3, respectively. Note that Lead-Lag comprises of 19 separate330

networks constructed from yearly financial time series, rendering a total of 23 real-world networks.331

4.2 Experimental results332

Training set-up As training setup, we use 10% of all nodes from each cluster as test nodes, 10% as333

validation nodes to select the model, and the remaining 80% as training nodes. In each setting, unless334

otherwise stated, we carry out 10 experiments with different data splits. Error bars are given by one335

standard error. When no node attributes are given, the matrix X for DIGRAC is taken as the stacked336

eigenvectors corresponding to the largest K eigenvalues of the random-walk symmetrized Hermitian337

matrix used in the comparison method Herm_rw. The imbalance loss function acts on the subgraph338

induced by the training nodes. To further clarify the training setup, DIGRAC uses 0% of the labels in339

training. As DIGRAC is a self-supervised method, in principle, we could use all nodes for training.340

However for a fair comparison with other GNN methods we use only 80% of the nodes for training.341

For supervised methods our split of 80% - 10% - 10% is a standard split. For the non-GNN methods,342

all nodes are used for training. The default loss function for DIGRAC is Lsort
vol_sum.343

Results on synthetic data Fig. 3 compares the numerical performance of DIGRAC with other344

methods on synthetic data. For this Fig. we generate 5 DSBM networks under each parameter setting345

and use 10 different data splits for each network, then average over the 50 runs. Error bars are given346

by one standard error. App. C provides additional implementation details.347
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We conclude that DIGRAC compares favorably against state-of-the-art methods, on a wide range348

of network densities and noise levels, on different network sizes, and with different underlying349

meta-graph structures, with and without ambient nodes. Being a self-supervised method, DIGRAC350

even attains comparable or better performance than fully-supervised GNN competitors.351

Results on real-world data For our real-world data sets, the node in- and out-degrees may not352

be identical across clusters. Moreover, as these data sets do not contain node attributes, DIGRAC353

considers the eigenvectors corresponding to the largest K eigenvalues of the Hermitian matrix from354

[12] to construct an input feature matrix. Table 1 reveals that DIGRAC provides competitive global355

imbalance scores in three objectives discussed and across all real-world data sets, and outperforms all356

other methods in 13 out of 15 instances, while attains the second-best performance for the remaining357

two instances. The N/A entries for WikiTalk are caused by memory error, and the N/A entries358

for InfoMap on Migration and Lead-Lag are due to its prediction of only one single cluster. For359

Migration, as detailed in Fig. 1(b) and App. D.4, DIGRAC is able to uncover nontrivial migration360

patterns, such as migration from California to Arizona, as discovered by [4]. Lead-Lag results in each361

year are averaged over ten runs, while the mean and standard deviation values are calculated with362

respect to the 19 years. The experiments indicate that edge directionality contains an important signal363

that DIGRAC is able to capture. As App. D.2 illustrates, DIGRAC is able to provide comparable or364

higher pairwise imbalance scores for the leading pairs. The fitted meta-graph plots in App. D.3 reveal365

that DIGRAC is able to recover a directed flow imbalance between clusters in all of the selected data366

sets. A comprehensive numerical comparison in App. D reveals similar conclusions.367

4.3 Ablation study368

Figures 4(a-b) compare the performance of DiGCN replacing the loss function by Lsort
vol_sum from369

Eq. (3), indicated by “CI” (self-supervised loss only), or “LICE" (sum of supervised and self-370

supervised loss), on two synthetic models. We find that replacing the supervised loss function with371

Lsort
vol_sum leads to comparable results, and that adding Lsort

vol_sum to the loss could be beneficial, indicating372

that the imbalance objectives are more general than only applicable to DIMPA. Fig. 4(c) compares the373

test ARI performance using three variants of loss functions on the same digraph. The current choice374

“sort" performs best among these variants, indicating a benefit in only considering top pairs of individ-375

ual imbalance scores. The “std" variant is comparable with the “sort" variant, but the “sort" variant376

performs the best with prior knowledge on the network structure. More details on loss functions, com-377

parison with other variants, and evaluation on additional metrics are discussed in App. B, with similar378

conclusions. As illustrated in Fig. 4(d), again on the same digraph, we also experiment on adding379

seeds, with the seed ratio defined as the ratio of the number of seed nodes to the number of training380

nodes. A supervised loss, following [42], is then applied to these seeds; App. C.5 contains additional381

details. In conclusion, seed nodes with a supervised loss function enhance performance, and we infer382

that our model can further boost its performance when additional label information is available.383

5 Conclusion, limitations and outlook384

DIGRAC provides an end-to-end pipeline to create node embeddings and perform directed clustering,385

with or without available additional node features or cluster labels. We illustrate DIGRAC on386

publicly available data without any personally identifiable information. DIGRAC could potentially387

have societal impact, for example, in detecting clusters of fake accounts in social networks. While388

we do not envision our work to have any negative societal impact, vigilance is of course required.389

Current limitations that could be addressed by future work include detecting the number of clusters390

[10, 48], instead of specifying it a-priori, as this is typically not available in real-world applications.391

The relatively small sizes of the networks used in the paper (the largest has 2 million nodes) also392

opens future direction in adapting our pipeline to extremely large networks, possibly combined393

with sampling methods or mini-batch [49], rendering DIGRAC applicable to large scale industrial394

applications. We also intent to further explore the effect of normalization terms in our objectives,395

and to design more powerful objectives that could explicitly account for varying edge density.396

Another future direction pertains to additional experiments in the semi-supervised setting, when there397

exist seed nodes with known cluster labels, or when additional information is available in the form of398

must-link and cannot-link constraints, popular in the constrained clustering literature [50, 51]. Further399

research directions will also address the performance in the sparse regime, where spectral methods400

are known to underperform, and various regularizations have been proven to be effective theoretically401

and empirically; e.g., see regularization in the sparse regime for the undirected settings [52–54].402

9



DIGRAC: Digraph Clustering Based on Flow Imbalance

References403

[1] Fragkiskos D Malliaros and Michalis Vazirgiannis. Clustering and community detection in404

directed networks: A survey. Physics reports, 533(4):95–142, 2013. 1, 7405

[2] William R. Palmer and Tian Zheng. Spectral clustering for directed networks. In Rosa M.406

Benito, Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis Mateus Rocha, and Marta Sales-407

Pardo, editors, Complex Networks & Their Applications IX, pages 87–99, Cham, 2021. Springer408

International Publishing. ISBN 978-3-030-65347-7. 1, 3409

[3] Alexandre Bovet and Peter Grindrod. The Activity of the Far Right on Tele-410

gram. https://www.researchgate.net/publication/346968575_The_Activity_411

of_the_Far_Right_on_Telegram_v21, 2020. 1, 8, 23, 34412

[4] Marc J Perry. State-to-state Migration Flows, 1995 to 2000. US Department of Commerce,413

Economics and Statistics Administration, US . . . , 2003. 1, 2, 8, 9, 23, 35, 36414

[5] Andrew Elliott, Angus Chiu, Marya Bazzi, Gesine Reinert, and Mihai Cucuringu. Core–415

periphery structure in directed networks. Proceedings of the Royal Society A, 476(2241):416

20190783, 2020. 1, 23, 34417

[6] Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.418

Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002. 1419

[7] Mark EJ Newman. Modularity and community structure in networks. Proceedings of the420

National Academy of Sciences, 103(23):8577–8582, 2006.421

[8] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Statistical properties422

of community structure in large social and information networks. In Proceedings of the 17th423

International Conference on World Wide Web, pages 695–704, 2008.424

[9] Elizabeth A Leicht and Mark EJ Newman. Community structure in directed networks. Physical425

Review Letters, 100(11):118703, 2008.426

[10] Yilin Chen and Jack W Baker. Community detection in spatial correlation graphs: Application427

to non-stationary ground motion modeling. Computers and Geosciences, 2021. 9428

[11] Caiyan Jia, Yafang Li, Matthew B Carson, Xiaoyang Wang, and Jian Yu. Node attribute-429

enhanced community detection in complex networks. Scientific Reports, 7(1):1–15, 2017.430

1431

[12] Mihai Cucuringu, Huan Li, He Sun, and Luca Zanetti. Hermitian matrices for clustering directed432

graphs: insights and applications. In International Conference on Artificial Intelligence and433

Statistics, pages 983–992. PMLR, 2020. 1, 2, 3, 4, 6, 7, 9, 22, 23, 24434

[13] Steinar Laenen and He Sun. Higher-order spectral clustering of directed graphs. Advances in435

Neural Information Processing Systems, 2020. 1, 3436

[14] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex networks reveal437

community structure. Proceedings of the national academy of sciences, 105(4):1118–1123,438

2008. 1, 3, 6, 40439

[15] Kun Deng, Prashant G Mehta, and Sean P Meyn. Optimal kullback-leibler aggregation via440

spectral theory of markov chains. IEEE Transactions on Automatic Control, 56(12):2793–2808,441

2011. 2, 40442

[16] Bernhard C Geiger, Tatjana Petrov, Gernot Kubin, and Heinz Koeppl. Optimal kullback–leibler443

aggregation via information bottleneck. IEEE Transactions on Automatic Control, 60(4):444

1010–1022, 2014. 2, 40445

[17] Ali Shojaie and Emily B Fox. Granger causality: A review and recent advances. arXiv preprint446

arXiv:2105.02675, 2021. 2447

[18] Mukeshwar Dhamala, Govindan Rangarajan, and Mingzhou Ding. Analyzing information448

flow in brain networks with nonparametric Granger causality. NeuroImage, 41(2):354–362,449

2008. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2008.02.020. URL https:450

//www.sciencedirect.com/science/article/pii/S1053811908001328. 2451

[19] Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. Detecting452

and quantifying causal associations in large nonlinear time series datasets. Science advances, 5453

(11), 2019. 2, 41454

10

https://www.researchgate.net/publication/346968575_The_Activity_of_the_Far_Right_on_Telegram_v21
https://www.researchgate.net/publication/346968575_The_Activity_of_the_Far_Right_on_Telegram_v21
https://www.researchgate.net/publication/346968575_The_Activity_of_the_Far_Right_on_Telegram_v21
https://www.sciencedirect.com/science/article/pii/S1053811908001328
https://www.sciencedirect.com/science/article/pii/S1053811908001328
https://www.sciencedirect.com/science/article/pii/S1053811908001328


DIGRAC: Digraph Clustering Based on Flow Imbalance

[20] Stefanos Bennett, Mihai Cucuringu, and Gesine Reinert. Detection and clustering of lead-lag455

networks for multivariate time series with an application to financial markets. 7th SIGKDD456

Workshop on Mining and Learning from Time Series (MiLeTS), 2021. 2, 3, 8, 23457

[21] Stefanos Bennett, Mihai Cucuringu, and Gesine Reinert. Lead-lag detection and network458

clustering for multivariate time series with an application to the us equity market, 2022. 2459

[22] A Harzallah and R Sadourny. Observed lead-lag relationships between indian summer monsoon460

and some meteorological variables. Climate dynamics, 13(9):635–648, 1997. 2461

[23] Venu Satuluri and Srinivasan Parthasarathy. Symmetrizations for clustering directed graphs. In462

Proceedings of the 14th International Conference on Extending Database Technology, pages463

343–354, 2011. 3, 6, 16464

[24] Karl Rohe, Tai Qin, and Bin Yu. Co-clustering directed graphs to discover asymmetries465

and directional communities. Proceedings of the National Academy of Sciences, 113(45):466

12679–12684, 2016. 3, 6467

[25] Jingnan Zhang, Xin He, and Junhui Wang. Directed community detection with network468

embedding. Journal of the American Statistical Association, pages 1–11, 2021. 3469

[26] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew Lim. Directed470

graph convolutional network. arXiv preprint arXiv:2004.13970, 2020. 3, 6471

[27] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim.472

Digraph inception convolutional networks. Advances in Neural Information Processing Systems,473

33, 2020. 3, 6, 26474

[28] Bojan Mohar. A new kind of Hermitian matrices for digraphs. Linear Algebra and its Applica-475

tions, 584:343–352, 2020. 3476

[29] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet:477

A neural network for directed graphs. arXiv preprint arXiv:2102.11391, 2021. 3, 6, 26478

[30] Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, and Changhu Wang.479

Directed graph contrastive learning. Advances in Neural Information Processing Systems, 34,480

2021. 3, 6481

[31] Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-based482

graph convolutional network for directed graphs. arXiv preprint arXiv:1907.08990, 2019. 3483

[32] Federico Monti, Karl Otness, and Michael M. Bronstein. Motifnet: A motif-based graph484

convolutional network for directed graphs. In 2018 IEEE Data Science Workshop (DSW), pages485

225–228, 2018. doi: 10.1109/DSW.2018.8439897. 3486

[33] Yuan Yao, Yicheng Pan, Shaojiang Wang, Hongan Wang, and Waqas Nazeer. Flow-based487

clustering on directed graphs: A structural entropy minimization approach. IEEE Access, 8:488

152579–152591, 2019. 3489

[34] Andrea Lancichinetti, Filippo Radicchi, José J Ramasco, and Santo Fortunato. Finding statisti-490

cally significant communities in networks. PloS one, 6(4):e18961, 2011. 3, 37491

[35] Nicolas Dugué and Anthony Perez. Directed Louvain: maximizing modularity in directed492

networks. PhD thesis, Université d’Orléans, 2015. 3, 37493

[36] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing494

well-connected communities. Scientific reports, 9(1):1–12, 2019. 3, 37495

[37] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph496

neural networks for graph pooling. In International Conference on Machine Learning, pages497

874–883. PMLR, 2020. 3498

[38] Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph499

partitioning and matching. Advances in neural information processing systems, 32:3052–3062,500

2019. 4501

[39] Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-wasserstein502

learning for graph matching and node embedding. In International conference on machine503

learning, pages 6932–6941. PMLR, 2019.504

[40] Samir Chowdhury and Tom Needham. Generalized spectral clustering via gromov-wasserstein505

learning. In International Conference on Artificial Intelligence and Statistics, pages 712–720.506

PMLR, 2021. 4507

11



DIGRAC: Digraph Clustering Based on Flow Imbalance

[41] Hongtengl Xu. Gromov-wasserstein factorization models for graph clustering. In Proceedings508

of the AAAI conference on artificial intelligence, volume 34, pages 6478–6485, 2020. 4509

[42] Yixuan He, Gesine Reinert, Songchao Wang, and Mihai Cucuringu. SSSNET: Semi-Supervised510

Signed Network Clustering. In Proceedings of the 2022 SIAM International Conference on511

Data Mining (SDM), pages 244–252. SIAM, 2022. 6, 9, 15, 25, 26512

[43] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2(1):513

193–218, 1985. 6514

[44] Xin Liu, Hui-Min Cheng, and Zhong-Yuan Zhang. Evaluation of community detection methods.515

IEEE Transactions on Knowledge and Data Engineering, 32(9):1736–1746, 2019. 6, 26516

[45] Andrew Elliott, Paul Reidy Milton Martinez Luaces, Mihai Cucuringu, and Gesine Reinert.517

Anomaly detection in networks using spectral methods and network comparison approaches.518

arXiv preprint arXiv:1901.00402, 2019. 7519

[46] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 US election:520

divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery, pages521

36–43, 2005. 8, 23522

[47] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social media.523

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages524

1361–1370, 2010. 8, 23525

[48] Maria A Riolo, George T Cantwell, Gesine Reinert, and Mark EJ Newman. Efficient method for526

estimating the number of communities in a network. Physical Review E, 96(3):032310, 2017. 9527

[49] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large528

graphs. In Proceedings of the 31st International Conference on Neural Information Processing529

Systems, pages 1025–1035, 2017. 9, 16530

[50] Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained Clustering: Advances in Algorithms,531

Theory, and Applications. CRC Press, 2008. 9532

[51] Mihai Cucuringu, Ioannis Koutis, Sanjay Chawla, Gary Miller, and Richard Peng. Scalable533

Constrained Clustering: A Generalized Spectral Method. Artificial Intelligence and Statistics534

Conference (AISTATS) 2016, 2016. 9535

[52] Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering of graphs with536

general degrees in the extended planted partition model. In 25th Annual Conference on Learning537

Theory, volume 23 of Proceedings of Machine Learning Research, pages 35.1–35.23, Edinburgh,538

Scotland, 2012. JMLR Workshop and Conference Proceedings. 9539

[53] Arash A. Amini, Aiyou Chen, Peter J. Bickel, and Elizaveta Levina. Pseudo-likelihood methods540

for community detection in large sparse networks. The Annals of Statistics, 41(4):2097–2122,541

2013.542

[54] Mihai Cucuringu, Apoorv Vikram Singh, Déborah Sulem, and Hemant Tyagi. Regularized543

spectral methods for clustering signed networks. arXiv:2011.01737, 2020. 9544

[55] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional545

networks. arXiv preprint arXiv:1609.02907, 2016. 15546

[56] Adam P Harrison and Dileepan Joseph. High performance rearrangement and multiplication547

routines for sparse tensor arithmetic. SIAM Journal on Scientific Computing, 40(2):C258–C281,548

2018. 15549

[57] Gero Greiner and Riko Jacob. The I/O Complexity of Sparse Matrix Dense Matrix Multiplica-550

tion", booktitle="LATIN 2010: Theoretical Informatics. pages 143–156, Berlin, Heidelberg,551

2010. Springer Berlin Heidelberg. ISBN 978-3-642-12200-2. 15552

[58] Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija,553

Bryan Perozzi, Greg Ver Steeg, and Aram Galstyan. Graph traversal with tensor functionals: A554

meta-algorithm for scalable learning. In International Conference on Learning Representations,555

2021. URL https://openreview.net/forum?id=6DOZ8XNNfGN. 16556

[59] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and557

expressive graph neural networks via historical embeddings. arXiv preprint arXiv:2106.05609,558

2021. 16559

12

https://openreview.net/forum?id=6DOZ8XNNfGN


DIGRAC: Digraph Clustering Based on Flow Imbalance

[60] Louis HY Chen, Larry Goldstein, and Qi-Man Shao. Normal approximation by Stein’s method.560

Springer Science & Business Media, 2010. 17561

[61] Ryan L Phillips and Rita Ormsby. Industry classification schemes: An analysis and review.562

Journal of Business & Finance Librarianship, 21(1):1–25, 2016. 23563

[62] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint564

arXiv:1412.6980, 2014. 26565

[63] Pan Zhang. Evaluating accuracy of community detection using the relative normalized mutual566

information. Journal of Statistical Mechanics: Theory and Experiment, 2015(11):P11006, 2015.567

26568

[64] Mihai Cucuringu, Vincent Blondel, and Paul Van Dooren. Extracting spatial information from569

networks with low-order eigenvectors. Phys. Rev. E, 87:032803, Mar 2013. doi: 10.1103/570

PhysRevE.87.032803. URL http://link.aps.org/doi/10.1103/PhysRevE.87.032803.571

35, 36572

[65] Stijn Van Dongen. Graph clustering via a discrete uncoupling process. SIAM Journal on Matrix573

Analysis and Applications, 30(1):121–141, 2008. 40574

13

http://link.aps.org/doi/10.1103/PhysRevE.87.032803


DIGRAC: Digraph Clustering Based on Flow Imbalance

Contents575

1 Introduction 1576

2 Related work 3577

3 The DIGRAC framework 4578

3.1 Self-supervised loss for clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 4579

3.2 Instantiation of DIGRAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5580

4 Experiments 6581

4.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7582

4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8583

4.3 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9584

5 Conclusion, limitations and outlook 9585

Appendix 15586

A Directed Mixed Path Aggregation (DIMPA) 15587

B Loss and objectives 16588

B.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16589

B.2 Additional details on probabilistic cut and volume . . . . . . . . . . . . . . . . . . 17590

B.3 Variants of normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18591

B.4 Selection of the loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19592

C Implementation details 19593

C.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19594

C.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19595

C.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22596

C.3.1 Data splits and preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 22597

C.3.2 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22598

C.3.3 Real-world data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23599

C.4 Hyperparameter selection for DIMPA . . . . . . . . . . . . . . . . . . . . . . . . 24600

C.5 Use of seed nodes in a semi-supervised manner . . . . . . . . . . . . . . . . . . . 25601

C.5.1 Supervised loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25602

C.5.2 Overall objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 26603

C.6 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26604

C.7 Implementation details for the comparison methods . . . . . . . . . . . . . . . . . 26605

C.8 Enlarged synthetic result figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 26606

C.9 NMI results example and reasons against using NMI . . . . . . . . . . . . . . . . 26607

14



DIGRAC: Digraph Clustering Based on Flow Imbalance

D Additional results on real-world data 27608

D.1 Extended result tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27609

D.2 Ranked pairwise imbalance scores . . . . . . . . . . . . . . . . . . . . . . . . . . 32610

D.3 Predicted meta-graph flow matrix plots . . . . . . . . . . . . . . . . . . . . . . . . 34611

D.4 Migration plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35612

D.5 Coping with outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35613

E Discussion of related methods that are not compared against in the main text 36614

A Directed Mixed Path Aggregation (DIMPA)615

To instantiate DIGRAC, we can employ any digraph aggregator that could generate the probability616

matrix P. In this paper, we devise a simple yet effective directed mixed path aggregation scheme,617

to obtain the probability assignment matrix P and feed it to the loss function, as a special case of618

the successful SSSNET method introduced by [42]. Thus, in order to build node embeddings, we619

capture local network information by taking a weighted average of information from neighbors620

within h hops. To this end, we row-normalize the adjacency matrix, A, to obtain A
s
. Similar621

to the regularization discussed in [55], we add a weighted self-loop to each node and normalize622

by setting A
s

= (D̃s)−1Ãs, where Ãs = A + τI, with D̃s the diagonal matrix with entries623

D̃s(i, i) =
∑
j Ã

s(i, j), and τ is a small value; we take τ = 0.5; see Section C.4 for details.624

The h-hop source matrix is given by (A
s
)h. We denote the set of up-to-h-hop source neighborhood625

matrices as As,h = {I,As
, . . . , (A

s
)h}. Similarly, for aggregating information when each node is626

viewed as a target node of a link, we carry out the same procedure for AT which is the transpose of627

A. We denote the set of up-to-h-hop target neighborhood matrices as At,h = {I,At
, . . . , (A

t
)h},628

where A
t

is the row-normalized target adjacency matrix calculated from AT . As convention, the629

superscript s stands for source and the superscript t stands for target.630

Next, we define two feature mapping functions for source and target embeddings, respectively.631

Assume that for each node in V , a vector of features is available, and summarize these features in the632

input feature matrix X. The source embedding is given by633

Zs =

 ∑
M∈As,h

ωsM ·M

 ·Hs ∈ Rn×d, (4)

634 where for each M, ωsM is a learnable scalar, d is the dimension of this embedding, and Hs =635

MLP(s,l)(X). Here, the hyperparameter l controls the number of layers in the multilayer perceptron636

(MLP) with ReLU activation; we fix l = 2 throughout. Each layer of the MLP has the same637

number d of hidden units. The target embedding Zt is defined similarly, with s replaced by t in638

Eq. (4). Different parameters for the MLPs for different embeddings are possible. After these two639

decoupled aggregations, we concatenate the embeddings to obtain the final node embedding as a640

n× (2d) matrix Z = CONCAT (Zs,Zt) . The embedding vector zi for a node vi is the ith row of Z,641

zi := (Z)(i,:) ∈ R2d.642

After obtaining the embedding matrix Z, we apply a linear layer (an affine transformation) to Z, so643

that the resulting matrix has K columns. Next, we apply the unit softmax function to the rows and644

obtain the assignment probability matrix P. Fig. 5 gives an overview of this implementation.645

To avoid computationally expensive and space unfriendly matrix operations, as described in Eq. 4,646

DIGRAC uses an efficient sparsity-aware implementation, described in Algorithm 1, without explicitly647

calculating the sets of powers As,h and At,h. We omit the subscript V for ease of notation. The648

algorithm is efficient in the sense that it takes sparse matrices as input, and never explicitly computes a649

multiplication of two n×nmatrices. Therefore, for input feature dimension din and hidden dimension650

d, if d′ = max(din, d) � n, time and space complexity of DIMPA, and implicitly DIGRAC, is651

O(|E|d′h2 + 2nd′K) and O(2|E|+ 4nd′ + nK), respectively [56, 57].652
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Figure 5: DIGRAC with DIMPA as aggregator overview: from feature matrix X and adjacency
matrix A, we first compute the row-normalized adjacency matrices A

s
and A

t
. Then, we apply two

separate MLPs on X, to obtain hidden representations Hs and Ht. Next, we compute their decoupled
embeddings using Eq. (4), and its equivalent for target embeddings. The concatenated decoupled
embeddings are the final embeddings. For node clustering tasks, we add a linear layer followed by
a unit softmax to obtain the probability matrix P. Applying argmax on each row of P yields node
cluster assignments.

While it is a current shortcoming of DIGRAC that it does not scale well to very large networks, this653

limitation is shared by all the GNN competitors compared against in the paper, and some of the654

spectral methods. DIGRAC scales well in the sense that when the underlying network is sparse,655

the sparsity is preserved throughout the pipeline. In contrast, Bi_sym and DD_sym [23] construct656

derived dense matrices for manipulation, rendering the methods no longer scalable. These methods657

resulted in N/A values in Table 1 in the main text. For large-scale networks, DIMPA is amenable658

to a minibatch version using neighborhood sampling, similar to the minibatch forward propagation659

algorithm in [49, 58]. We are also aware of a framework [59] for scaling up graph neural networks660

automatically, where theoretical guarantees are provided, and ideas there will be exploited in future.661

We expect that the theoretical guarantees could be adapted to our situation.662

Algorithm 1: Weighted Multi-Hop Neighbor Aggregation (DIMPA).

Input :(Sparse) row-normalized adjacency matrices A
s
,A

t
; initial hidden representations

Hs,Ht; hop h(h ≥ 2); lists of scalar weights
Ωs = (ωsM,M ∈ As,h),Ωt = (ωtM,M ∈ At,h).

Output :Vector representations zi for all vi ∈ V given by Z.

X̃s ← A
s
Hs; X̃t ← A

t
Ht;

Zs ← Ωs[0] ·Hs + Ωs[1] · X̃s; Zt ← Ωt[0] ·Ht + Ωt[1] · X̃t;
for i← 2 to h do

X̃s ← A
s
X̃s; X̃t ← A

t
X̃t;

Zs ← Zs + Ωs[i] · X̃s; Zt ← Zt + Ωt[i] · X̃t;
end
Z = CONCAT (Zs,Zt);

B Loss and objectives663

B.1 Proof of Proposition 1664

Moreover we clarify that we make an assumption on the limiting behavior of the weights, namely that

maxe |we|√∑
e w

2
e

= o(m(k, l))

where m(k, l) is the number of edges. This is a natural assumption: In the case that all weights are665

equal in absolute value, this assumption is satisfied as then maxe |we|√∑
e w

2
e

= 1√
m(k,l)

. The assumption is666

generally satisfied when there is not too much variability in the weights. If for example all but one667

weight pair was equal to 0, then the assumption would be violated, and also a normal approximation668

would not hold as there would only be two non-zero observations.669

Proposition 2. Suppose that Ck and Cl are two clusters of nk and nl nodes, respectively, with m(k, l)670

edges between them, with symmetric edge weights wij = wji ∈ [0, 1] and with edge direction drawn671
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independently at random with equal probability 1
2 for each direction. We assume that the edge weights672

satisfy maxe |we|√∑
e w

2
e

= o(m(k, l)). Then W (Ck, Cl)−W (Cl, Ck) is approximately normally distributed673

with mean 0 and variance ||w||2 as m(k, l)→∞.674

Proof. For each edge between the two clusters Ck and Cl, the edge direction is random, i.e. the edge
is from Ck to Cl with probability 0.5, and Cl to Ck with probability 0.5 also. Let Ek,l denote the set of
m(k, l) > 0 edges between Ck and Cl. For every edge e ∈ Ek,l, the edge direction is encoded by a
Rademacher random variable Xe with Xe = 1 if the edge is from Ck to Cl, and Xe = −1 otherwise.
Then (Xe + 1)/2 ∼ Ber(0.5) is a Bernoulli(0.5) random variable with mean 2× 0.5− 1 = 0 and
variance 22 × 0.5× (1− 0.5) = 1. We have the representation

W (Ck, Cl)−W (Cl, Ck) =
∑
e∈Ek,l

Xewe

as the sum of m(k, l) independent bounded random variables with finite third moments. Moreover,675

W (Ck, Cl)−W (Cl, Ck) has mean 0 and variance ||w||2. The assertion now follows from a version of676

the Central Limit Theorem, Theorem 3.4 in [60]; we repeat the relevant part here:677

Theorem 1 (Extract from Theorem 3.4 in [60]). Let ξ1, . . . , ξn be independent random variables
with zero means satisfying

∑n
i=1 Var(ξi) = 1 and assume that there is a δ > 0 such that |ξi| ≤ δ for

1 ≤ i ≤ n. Let Φ denote the cumulative distribution function of the standard normal distribution.
Then

sup
zinR

∣∣∣∣∣P
(

n∑
i=1

ξi ≤ z)− Φ(z)

)∣∣∣∣∣ ≤ 3.3δ.

We apply this theorem with n replaced by m(k, l), the number of edges, and take ξe = Xewe√∑
e w

2
e

.678

Then ξe has mean zero and, using an enumeration of the edges,
∑m(k,l)
e=1 Var(ξe) = 1. Moreover,679

|ξe| ≤ maxe |we|√∑
e w

2
e

=: δ holds for all e ∈ {1, . . . ,m(k, l)} and hence the theorem applies for the limit680

m(k, l)→∞. The stated result follows from using that if Z/σ has the standard normal distribution681

then Z has the mean zero normal distribution with variance σ2.682

�683

B.2 Additional details on probabilistic cut and volume684

Recall that the probabilistic cut from cluster Ck to Cl is defined as

W (Ck, Cl) =
∑

i,j∈{1,...,n}

Ai,j ·Pi,k ·Pj,l = (P(:,k))
TAP(:,l),

where P(:,k),P(:,l) denote the kth and lth columns of the assignment probability matrix P, respectively.
The imbalance flow between clusters Ck and Cl is defined as

|W (Ck, Cl)−W (Cl, Ck)|,
for k, l ∈ {0, . . . ,K − 1}. The loss functions proposed in the main paper can be understood in terms685

of a probabilistic notion of degrees, as follows. We define the probabilistic out-degree of node vi with686

respect to cluster k by d̃(out)
i,k =

∑n
j=1 Ai,j · Pj,k = (AP(:,k))i, where subscript i refers to the ith687

entry of the vector AP(:,k). Similarly, we define the probabilistic in-degree of node vi with respect to688

cluster k by d̃(in)
i,k = (ATP(:,k))i, where AT is the transpose of A. The probabilistic degree of node689

vi with respect to cluster k is d̃i,k = d̃(in)
i,k + d̃(out)

i,k = ((AT + A)P(:,k))i =
∑n
j=1(Ai,j+Aj,i) ·Pj,k.690

For comparisons and ease of interpretation, it is advantageous to normalize the imbalance flow691

between clusters; for this purpose, we introduce the probabilistic volume of a cluster, as follows.692

The probabilistic out-volume for cluster Ck is defined as V OL(out)(Ck) =
∑
i,jAj,i · Pj,k, and693

the probabilistic in-volume for cluster Ck is defined as V OL(in)(Ck)(ATP(:,k))i, where AT is the694

transpose of A. These volumes can be viewed as sum of probabilistic out-degrees and in-degrees,695

respectively; for example, V OL(in)(Ck) =
∑n
i=1 d̃

(in)
i,k . Then, it holds true that696

V OL(out)(Ck) =
∑
i,j

Ai,j ·Pi,k ≥
∑
i,j

Ai,j ·Pi,k ·Pj,l = W (Ck, Cl), (5)
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since entries in P are probabilities, which are in [0, 1], and all entries of A are nonnegative. Similarly,697

V OL(in)(Ck) ≥W (Cl, Ck).698

The probabilistic volume for cluster Ck is defined as

V OL(Ck) = V OL(out)(Ck) + V OL(in)(Ck) =
∑
i,j

(Ai,j + Aj,i) ·Pj,k.

Then, it holds true that V OL(Ck) ≥W (Ck, Cl) for all l ∈ {0, . . . ,K − 1} and699

min(V OL(Ck), V OL(Cl)) ≥ max(W (Ck, Cl),W (Cl, Ck)) ≥ |W (Ck, Cl)−W (Cl, Ck)|. (6)

When there exists a strong imbalance, then |W (Ck, Cl)−W (Cl, Ck)| ≈ max(W (Ck, Cl),W (Cl, Ck)).700

As an extreme case, if Pj,l = 1 for all nonnegative terms in the summations in Eq. (5), and701

V OL(in)(Ck) = 0, then |W (Ck, Cl)−W (Cl, Ck)| = V OL(Ck).702

B.3 Variants of normalization703

Recall that the imbalance term involved in most of our experiments, named CIvol_sum, is defined as704

CIvol_sum(k, l) = 2
|W (Ck, Cl)−W (Cl, Ck)|
V OL(Ck) + V OL(Cl)

∈ [0, 1]. (7)

An alternative, which does not take volumes into account, is given by705

CIplain(k, l) =

∣∣∣∣W (Ck, Cl)−W (Cl, Ck)

W (Ck, Cl) +W (Cl, Ck)

∣∣∣∣ = 2

∣∣∣∣ W (Ck, Cl)
W (Ck, Cl) +W (Cl, Ck)

− 1

2

∣∣∣∣ ∈ [0, 1]. (8)

We call this cut flow imbalance CIplain as it does not penalize extremely unbalanced cluster sizes.706

To achieve balanced cluster sizes and still constrain each imbalance term to be in [0, 1], one solution is707

to multiply the imbalance flow value by the minimum of V OL(Ck) and V OL(Cl), and then divide by708

max(k′,l′)∈T (min(V OL(Ck′), V OL(Cl′))), where T = {(Ck, Cl) : 0 ≤ k < l ≤ K − 1, k, l ∈ Z}.709

The reason for using T is that CIplain(k, l) is symmetric with respect to k and l, and CIplain(k, l) = 0710

whenever k = l. Note that the maximum of the minimum here equals the second largest volume711

among clusters. We then obtain CIvol_min as712

CIvol_min(k, l) = CIplain(k, l)× min(V OL(Ck), V OL(Cl))
max(k′,l′)∈T (min(V OL(Ck′), V OL(Cl′)))

. (9)

Another potential choice, denoted CIvol_max, whose normalization follows from the same reasoning713

as CIvol_sum, is given by714

CIvol_max(k, l) =
|W (Ck, Cl)−W (Cl, Ck)|

max(V OL(Ck), V OL(Cl))
∈ [0, 1]. (10)

Note that the current CIvol_sum(k, l) term can be reformulated as715

CIvol_sum(k, l) = 2
|W (Ck, Cl)−W (Cl, Ck)|
V OL(Ck) + V OL(Cl)

= 2
W (Ck, Cl) +W (Cl, Ck)

V OL(Ck) + V OL(Cl)
× CIplain(k, l), (11)

with the first term in the decomposition corresponding to the relative ratio of inter- and intra-cluster716

edge density. For our synthetic data, this term is constant as we have constant edge density across the717

graph. However, for certain real-world data sets, one could also maximize this first term by increasing718

the inter-cluster density while decreasing the intra-cluster density, which seems to be a side effect.719

However, in our experiments, we also evaluate our results with different metrics, including objectives720

without any normalization, and conclude that this side effect does not create any issues in our data721

sets.722
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Table 2: Naming conventions for objectives and loss functions

Selection variant / CI CIvol_sum CIvol_min CIvol_max CIplain

sort Osort
vol_sum,Lsort

vol_sum Osort
vol_min,Lsort

vol_min Osort
vol_max,Lsort

vol_max Osort
plain,Lsort

plain
std Ostd

vol_sum,Lstd
vol_sum Ostd

vol_min,Lstd
vol_min Ostd

vol_max,Lstd
vol_max Ostd

plain,Lstd
plain

naive Onaive
vol_sum,Lnaive

vol_sum Onaive
vol_min,Lnaive

vol_min Onaive
vol_max,Lnaive

vol_max Onaive
plain ,Lnaive

plain

B.4 Selection of the loss function723

Table 2 provides naming conventions of all the twelve pairs of variants of objectives and loss functions724

used in this paper. We select the loss functions for DIGRAC based on two representative models,725

and compare the performance of different loss functions. We use DIMPA (introduced in A) as an726

instantiation of DIGRAC’s aggregator, for which d = 32, hidden units, h = 2 hops, and no seed727

nodes. Figures 6(a) and 7 compare twelve choices of loss combinations on a DSBM with n = 1000728

nodes, K = 5 blocks, ρ = 1, p = 0.02 without ambient nodes, with a complete meta-graph structure.729

The subscript indicates the choice of pairwise imbalance, and the superscript indicates the variant730

for selecting pairs. Figures 6(b) and 8 are based on a DSBM with n = 1000 nodes, K = 5 blocks,731

ρ = 1, p = 0.02 without ambient nodes, with a cycle meta-graph structure. For these figures, dash732

lines highlight the “sort" variant as well as the “std" variant based on CIvol_sum, which have been733

introduced in the main text.734

We also plot the imbalance evolution curves for the above two synthetic models when η = 0.05, for735

all the loss variants, in Figure 9.736

These figures indicate that the “sort" variant generally provides the best test ARI performance and737

the best overall global imbalance scores, among which using normalizations CIvol_sum and CIvol_max
738

perform the best. The “std" variant is comparable with the “sort" variant in many instances, but is less739

stable in performance. We observe, however, from Figure 9, that the “std" variants normally converge740

much faster. Taking the above into account, if we have prior knowledge on the network structure,741

or when we could conduct some prior analysis on the value β to take, the “sort" variant should be742

the variant of choice. Further, from Figure 9, we observe that normalization in the loss function743

helps avoid the degenerate situation that the loss does not decrease. Such degeneracy can occur in744

the “plain” variants, raising issues about the practical usefulness of these variants. We observe that745

Lsort
vol_min appears to behave worse than Lsort

vol_sum and Lsort
vol_max, even when using the “sort" variant to746

select pairwise imbalance scores. One possible explanation is that Lsort
vol_min does not penalize extreme747

volume sizes, and that it takes minimum as well as maximum which, as functions of the data, are not748

as smooth as taking a summation. Throughout our experiments in the main text, we hence use the749

loss function Lsort
vol_sum.750

C Implementation details751

C.1 Code752

To fully reproduce our results, anonymized code and preprocessed data are available at https:753

//anonymous.4open.science/r/DIGRAC.754

C.2 Hardware755

Experiments were conducted on a compute node with 8 Nvidia RTX 8000, 48 Intel Xeon Silver756

4116 CPUs and 1000GB RAM, a compute node with 4 NVIDIA GeForce RTX 2080, 32 Intel Xeon757

E5-2690 v3 CPUs and 64GB RAM, a compute node with 2 NVIDIA Tesla K80, 16 Intel Xeon758

E5-2690 CPUs and 252GB RAM, and an Intel 2.90GHz i7-10700 processor with 8 cores and 16759

threads.760

With this setup, all experiments for spectral methods, MagNet, DiGCL, and DIGRAC can be com-761

pleted within two days, including repeated experiments, to obtain averages over multiple runs. DGCN,762

DiGCN, and MagNet have much longer run time (especially DGCN, which is space-consuming,763

and we cannot run many experiments in parallel), with a total of three days for them to finish. The764

slow speed stems from the competitor methods; some of the other GNN methods take a long time to765
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Figure 6: ARI comparison of loss functions on DSBM with 1000 nodes, 5 blocks, ρ = 1, p = 0.02
without ambient nodes, of cycle (left) and complete (right) meta-graph structures, respectively. The
first component of the legend is the choice of pairwise imbalance, and the second component is the
variant of selecting pairs. The naming conventions for the abbreviations in the legend are provided in
Table 2.
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Figure 7: Imbalance scores comparison of loss functions on DSBM with 1000 nodes, 5 blocks,
ρ = 1, p = 0.02 without ambient nodes, of the complete meta-graph structure. The legend is the
same as Fig. 6(a).
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Figure 8: Imbalance scores comparison of loss functions on DSBM with 1000 nodes, 5 blocks,
ρ = 1, p = 0.02 without ambient nodes, of the cyclic meta-graph structure. The legend is the same
as Fig. 6(a).

(a) DSBM(“complete", F,
n = 1000,K = 5, p = 0.02, ρ = 1, η = 0.05)

(b) DSBM(“cycle", F,
n = 1000,K = 5, p = 0.02, ρ = 1, η = 0.05)

Figure 9: Imbalance loss evolution comparison of loss functions on DSBM with 1000 nodes, 5
blocks, ρ = 1, p = 0.02, η = 0.05 without ambient nodes, of cycle (left) and complete (right)
meta-graph structures, respectively. The first component of the legend is the choice of pairwise
imbalance, and the second component is the variant of selecting pairs. The naming conventions for
the abbreviations in the legend are provided in Table 2.
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run. Table 1 in the main text shows N/A values for Bi_sym and for DD_sym exactly for this reason.766

Empirically, DIGRAC is among the fastest among all GNN methods to which it is compared. In767

detail, Table 3 reports the average runtime for all GNN methods on a variety of DSBM models, and768

illustrates that DIGRAC indeed takes the least or second least computational time per epoch. The769

results are averaged over 10 runs for the first 200 epochs. DiGCL is also efficient in running time,770

but with worse performance than DIGRAC even as a supervised method, see the enlarged synthetic771

results in Sec. C.8 (Figure 13). The total number of epochs required until the validation loss does not772

decrease for 200 epochs (or the maximum number of 1000 epochs is reached) varies for different773

data sets.774

Table 3: GNN average runtime (seconds per epoch) comparison. The results are averaged over 10
runs for the first 200 epochs. The fastest is highlighted in bold red while the second fastest is marked
with underline blue.

Runtime (second per epoch on average)/GNN method DiGCL DGCN DiGCN MagNet DIGRAC

DSBM( “complete", T, n = 1000,K = 5, p = 0.1, ρ = 1.5, η = 0.1) 0.107 0.606 0.469 0.369 0.308
DSBM( “path", F, n = 1000,K = 5, p = 0.02, ρ = 1, η = 0.15) 0.061 0.227 0.212 0.238 0.201
DSBM( “star", F, n = 1000,K = 5, p = 0.02, ρ = 1, η = 0.3) 0.095 0.305 0.294 0.324 0.292
DSBM( “star", F, n = 5000,K = 5, p = 0.02, ρ = 1, η = 0.4) 0.222 0.966 0.276 0.116 0.101
DSBM( “cycle", F, n = 5000,K = 5, p = 0.01, ρ = 1.5, η = 0) 0.177 0.330 0.099 0.095 0.089
DSBM( “cycle", F, n = 30000,K = 5, p = 0.001, ρ = 1, η = 0) 0.070 0.868 0.208 0.183 0.156

C.3 Data775

C.3.1 Data splits and preprocessing776

The results comparing DIGRAC with other methods on synthetic data are averaged over 50 runs, five777

synthetic networks under the same setting, each with 10 different data splits. For synthetic data, 10%778

of all nodes are selected as test nodes for each cluster (the actual number is the ceiling of the total779

number of nodes times 0.1, to avoid falling below 10% of test nodes), 10% are selected as validation780

nodes (for model selection and early-stopping; again, we consider the ceiling for the actual number),781

while the remaining roughly 80% are selected as training nodes (the actual number can never be782

higher than 80% due to using the ceiling for both the test and validation splits). To further clarify783

the training setup, we use 0% of the labels in training. As DIGRAC is a self-supervised method,784

in principle, we could use all nodes for training. However, for a fair comparison with other GNN785

methods, we use only 80% of the nodes for training. For supervised methods our split of 80% - 10% -786

10% is a standard split. For the non-GNN methods, all nodes are used for training.787

For both synthetic and real-world data sets, we extract the largest weakly connected component for788

experiments, as our framework could be applied to different weakly connected components, if the789

digraph is disconnected. Isolated nodes do not include any imbalance information. As customary in790

community detection, they are often omitted in real networks. When “ground-truth" is given, test791

results are averaged over 10 different data splits on one network. When no labels are available, results792

are averaged over 10 different data splits.793

Averaged results are reported with error bars representing one standard deviation in the figures, and794

plus/minus one standard deviation in the tables.795

C.3.2 Synthetic data796

Our synthetic data, DSBM, which we denote by DSBM (M,1(ambient), n,K, p, ρ, η), is built797

similarly to [12] but with possibly unequal cluster sizes: •(1) Assign cluster sizes n0 ≤ n1 ≤798

· · · ≤ nK−1 with size ratio ρ ≥ 1 , as follows. If ρ = 1 then the first K − 1 clusters have the799

same size bn/Kc and the last cluster has size n − (K − 1)bn/Kc. If ρ > 1, we set ρ0 = ρ
1

K−1 .800

Solving
∑K−1
i=0 ρi0n0 = n and taking integer value gives n0 =

⌊
n(1− ρ0)/(1− ρK0 )

⌋
. Further, set801

ni = bρ0ni−1c, for i = 1, · · · ,K − 2 if K ≥ 3, and nK−1 = n −∑K−2
i=0 ni. Then the ratio of802

the size of the largest to the smallest cluster is approximately ρK−10 = ρ. •(2) Assign each node803

randomly to one of K clusters, so that each cluster has the allocated size. •(3) For node vi, vj ∈ Ck,804

independently sample an edge from node vi to node vj with probability p · F̃k,k. •(4) For each pair805
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of different clusters Ck, Cl with k 6= l, for each node vi ∈ Ck, and each node vj ∈ Cl, independently806

sample an edge from node vi to node vj with probability p · F̃k,l.807

C.3.3 Real-world data808

For real-world data sets, we choose the number K of clusters in the meta-graph and the number β of809

edges between clusters in the meta-graph as follows. As they are needed as input for DIGRAC, we810

resort to Herm_rw [12] as an initial view of the network clustering. When a suitable meta-graph is811

suggested in a previous publication, then we use that choice. Otherwise, the number K of clusters812

is determined using the clustering from Herm_rw. First, we pick a range of K, and for each K, we813

calculate the global imbalance scores and plot the predicted meta-graph flow matrix F′ based on the814

clustering from Herm_rw. Its entries are defined as815

F′(k, l) = 1(W (Ck, Cl) +W (Cl, Ck) > 0)× W (Ck, Cl)
W (Ck, Cl) +W (Cl, Ck)

. (12)

These entries can be viewed as predicted probabilities of edge directions. Then, we choose K from816

this range so that the predicted meta-graph flow matrix has the highest imbalance scores and strong817

imbalance in the predicted meta-graph flow matrix.818

The choice of β, which we assume should be equal to the number of edges in the meta-graph, is as819

follows. We plot the ranked pairs of CIplain values from Herm_rw and select the β which is at least as820

large as K − 2, to allow the meta-graph to be connected, and which corresponds to a large drop in821

the plot.822

Here we provide a brief description for each of the data sets; Table 4 gives the number, n, of nodes,823

the number, |E|, of directed edges, the number |Er|, of reciprocal edges (self-loops are counted once824

and for u 6= v, a reciprocal edge u→ v, v → u is counted twice) as well as their percentage among825

all edges, for the real-world networks, illustrating the variability in network size and density (defined826

as |E|/[n(n− 1)]).827

•Telegram [3] is a pairwise influence network between n = 245 Telegram channels with |E| = 8, 912828

directed edges. It is found in [3] that this network reveals a core-periphery structure in the sense of829

[5]. A directed core-periphery structure arises when there is a densely connected group of edges – a830

core – and sparsely connected groups of peripheral nodes with edges leading into the core, as well as831

sparsely connected groups of peripheral nodes with edges coming out of the core. Following [3] we832

assume K = 4 clusters, and the core-periphery structures gives β = 5.833

•Blog [46] records |E| = 19, 024 directed edges between n = 1, 212 political blogs from the 2004834

US presidential election. In [46] it is found that there is an underlying structure with K = 2 clusters835

corresponding to the Republican and Democratic parties. Hence we choose K = 2 and β = 1.836

•Migration [4] reports the number of people that migrated between pairs of counties in the US during837

1995-2000. It involves n = 3, 075 countries and |E| = 721, 432 directed edges after obtaining the838

largest weakly connected component. We choose K = 10 and β = 9, following [12]. Since the839

original digraph has extremely large entries, to cope with these outliers, we preprocess the input840

network by841

Ai,j =
Ai,j

Ai,j + Aj,i
1(Ai,j > 0),∀i, j ∈ {1, · · · , n}, (13)

which follows the preprocessing of [12]. The results for not doing this preprocessing is provided in842

Table 12.843

•WikiTalk [47] contains all users and discussion from the inception of Wikipedia until Jan. 2008. The844

n = 2, 388, 953 nodes in the network represent Wikipedia users and a directed edge from node vi845

to node vj denotes that user i edited at least once a talk page of user j. There are |E| = 5, 018, 445846

edges. We choose K = 10 clusters among candidates {2, 3, 5, 6, 8, 10}, and β = 10.847

•Lead-Lag [20] contains yearly lead-lag matrices from 269 stocks from 2001 to 2019. We choose848

K = 10 clusters based on the GICS industry sectors [61], and choose β = 3 to emphasize the top849

three pairs of imbalance values. The lead-lag matrices are built from time series of daily price log850

returns, as detailed in [20]. The lead-lag metric for entry (i, j) in the network encodes a measure of851

the extent to which stock i leads stock j, and is obtained by applying a functional that computes the852

signed normalized area under the curve (auc) of the standard cross-correlation function (ccf). The853

resulting matrix is skew-symmetric, and entry (i, j) quantifies the extent to which stock i leads or854

lags stocks j, thus leading to a directed network interpretation. Starting from the skew-symmetric855

matrix, we further convert negative entries to zero, so that the resulting digraph can be directly fed856

23



DIGRAC: Digraph Clustering Based on Flow Imbalance

into other methods; note that this step does not throw away any information, and is pursued only to857

render the representation of the digraph consistent with the format expected by all methods compared,858

including DIGRAC. Note that the statistics given in Table 4 are averaged over the 19 years.859

Table 4: Summary statistics for the real-world networks.

data set n |E| density weighted |Er| |Er|
|E| (%)

Telegram 245 8,912 1.28 · 10−2 True 1,572 17.64
Blog 1,222 19,024 1.49 · 10−1 True 4,617 24.27
Migration 3,075 721,432 7.63 · 10−2 True 351,100 48.67
WikiTalk 2,388,953 5,018,445 8.79 · 10−7 False 723,526 14.42
Lead-Lag 269 29,159 4.04 · 10−1 True 0.00 0.00

As input features, after obtaining eigenvectors from Hermitian matrices constructed as in [12], we860

standardize each column vector so that it has mean zero and variance one. We use these features for861

all GNN methods except MagNet, since MagNet has its own way of generating random features of862

dimension one.863

C.4 Hyperparameter selection for DIMPA864

We conduct hyperparmeter selection via a greedy search, for DIGRAC implemented with DIMPA865

as its aggregator. To explain the details, consider for example the following synthetic data setting:866

DSBM with 1000 nodes, 5 clusters, ρ = 1, and p = 0.02, without ambient nodes under different867

hyperparameter settings. By default, we use the loss function Lsort
vol_sum, d = 32 hidden units, hop868

h = 2, and no seed nodes. Instead of a grid search, we tune hyperparameters according to what869

performs the best in the default setting of the respective GNN method. The procedure starts with a870

random setting. For the next iteration, the hyperparameters are set to the current best setting (based871

on the last iteration), independently. For example, if we start with a = 1, b = 2, c = 3, and we find872

that under this default setting, the best a (when fixing b = 2, c = 3) is 2 and the best b (when fixing873

a = 1, c = 3) is 3, and the best c is 3 (when fixing a = 1, b = 2), then for the next iteration, we set874

a = 2, b = 3, c = 3. If two settings give similar results, we choose the simpler setting, for example,875

the smaller hop size. When we reach a local optimum, we stop searching. Indeed, just a few iterations876

(less than five) were required for us to find the current setting, as DIGRAC tends to be robust to most877

hyperparameters.878

Fig. 10, 11 and 12 are plots corresponding to the same setting but for three different meta-graph879

structures, namely the complete meta-graph structure, the cycle structure but with ambient nodes, and880

the complete structure with ambient nodes, respectively.881

In theory, more hidden units give better expressive power. To reduce complexity, we use 32 hidden882

units throughout, which seems to have desirable performance. We observe that for low-noise883

regimes, more hidden units actually hurt performance. We can draw a similar conclusion about the884

hyperparameter selection. In terms of τ, DIGRAC seems to be robust to different choices. Therefore,885

we use τ = 0.5 throughout.886
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Figure 10: Hyperparameter analysis on different hyperparameter settings on the complete DSBM
with 1000 nodes, 5 clusters, ρ = 1, and p = 0.02 without ambient nodes.
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Figure 11: Hyperparameter analysis on different hyperparameter settings on the complete DSBM
with 1000 nodes, 5 clusters, ρ = 1, and p = 0.02 with ambient nodes.
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Figure 12: Hyperparameter analysis on different hyperparameter settings on the cycle DSBM with
1000 nodes, 5 clusters, ρ = 1, and p = 0.02 with ambient nodes.

C.5 Use of seed nodes in a semi-supervised manner887

C.5.1 Supervised loss888

For seed nodes in V seed, similar to the loss function in [42], we use as a supervised loss function the889

sum of a cross-entropy loss and a triplet loss. The cross-entropy loss is given by890

LCE = − 1

|V seed|
∑

vi∈V seed

K∑
k=1

1(vi ∈ Ck) log ((pi)k) , (14)

where 1 is the indicator function, Ck denotes the kth cluster, and (pi)k denotes the kth entry of891

probability vector (pi). With the function L : R2 → R given by L(x, y) = [x − y]+ (where the892

subscript + indicates taking the maximum of the expression value and 0), the triplet loss is defined as893

Ltriplet =
1

|S|
∑

(vi,vj ,vk)∈S

L(CS(zi, zj),CS(zi, zk), (15)

where S ⊆ V seed × V seed × V seed is a set of node triplets: vi is an anchor seed node, and vj is a seed894

node from the same cluster as the anchor, while vk is from a different cluster; and CS(zi, zj) is the895

cosine similarity of the embeddings of nodes vi and vj . We choose cosine similarity so as to avoid896

sensitivity to the magnitude of the embeddings. The triplet loss is designed so that, given two seed897

nodes from the same cluster and one seed node from a different cluster, the respective embeddings of898

the pairs from different clusters should be farther away than the embedding of the pair within the899

same cluster.900

We then consider the weighted sum LCE + γtLtriplet as the supervised part of the loss function for901

DIGRAC, for some parameter γt > 0. The parameter γt arises as follows. The cosine similarity902

between two randomly picked vectors in d dimensions is bounded by
√

ln(d)/d with high probability.903

In our experiments d = 32, and
√

ln(2d)/(2d) ≈ 0.25. In contrast, for fairly uniform clustering, the904

cross-entropy loss grows like log n, which in our experiments ranges between 3 and 17. Thus some905

balancing of the contribution is required. Following [42], we choose γt = 0.1 in our experiments.906
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C.5.2 Overall objective function907

By combining Eq. (14), Eq. (15), and Eq. (3), our objective function for semi-supervised training908

with known seed nodes minimizes909

L = Lsort
vol_sum + γs(LCE + γtLtriplet), (16)

where γs, γt > 0 are weights for the supervised part of the loss and triplet loss within the supervised910

part, respectively. We set γs = 50 as we want our model to perform well on seed nodes. The weights911

could be tuned depending on how important each term is perceived to be.912

C.6 Training913

For all synthetic data, we train DIGRAC with a maximum of 1000 epochs, and stop training when no914

gain in validation performance is achieved for 200 epochs (early-stopping). For real-world data, no915

“ground-truth" labels are available; we use all nodes to train and stop training when the training loss916

does not decrease for 200 epochs, or when we reach the maximum number of epochs, 1000.917

When using the “std" variant for training, for the initial 50 epochs, we apply the “sort" variant with918

β = 3 for a reasonable starting clustering probability matrix for training, as otherwise during the919

initial training epochs possibly no pairs could be picked out. During the epochs actually utilizing this920

“std" variant, if no pairs could be picked out, we temporarily switch to the “naive" variant to count all921

the pairs for that epoch.922

For the two-layer MLP, we do not have a bias term for each layer, and we use Rectified Linear Unit923

(ReLU) followed by a dropout layer with 0.5 dropout probability between the two layers, following924

[42]. We use Adam [62] as the optimizer and `2 regularization with weight decay 5 · 10−4 to avoid925

overfitting. We use as learning rate 0.01 throughout.926

C.7 Implementation details for the comparison methods927

In our experiments, we compare DIGRAC against five spectral methods, InfoMap, and four GNN-928

based supervised methods on synthetic data, and spectral methods and InfoMap on real data. The929

reason we are not able to compare DIGRAC with the other GNNs (namely, DGCN, DiGCN, MagNet,930

and DiGCL) on these data sets is due to the fact that these data sets do not have labels, which are931

required by the other GNN methods. We use the same hyperparameter settings stated in these papers.932

Data splits for all models are the same; the comparison GNNs are trained with 80% nodes under label933

supervision.934

For MagNet, we use q = 0.25 for the phase matrix as in [29], because it is mentioned that q = 0.25935

lays the most emphasis on directionality, which is our main focus in this paper. Code for MagNet is936

from https://github.com/matthew-hirn/magnet. For DiGCN, we use the code from https:937

//github.com/flyingtango/DiGCN/blob/main/code/digcn_ib.py with option “adj_type"938

equals “ib". As a recommended option in [27], we use three layers for DiGCN. All other settings939

are the same as in the original paper [27]. Code for DiGCL is from https://github.com/940

flyingtango/DiGCL, where we adopt the settings for Cora_ML for hyperparameters.941

C.8 Enlarged synthetic result figures942

Figure 13 enlarges the results in the main text on synthetic data, with the same conclusions to be943

drawn.944

C.9 NMI results example and reasons against using NMI945

As NMI is an often used measure for assessing similarities between partitions, Fig. 14 provides NMI946

results on some synthetic models mentioned in the main text. The results are qualitatively similar to947

the ARI results in Fig. 3.948

We do not use NMI in the main text to evaluate results as NMI is known to suffer from finite size949

effects [44, 63]. In particular NMI prefers a larger number of partitions. Moreover it has been950

observed that the NMI between two independent partitions can be much larger than zero. This feature951

makes NMI more difficult to interpret than for example ARI.952
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D Additional results on real-world data953

D.1 Extended result tables954

Tables 5, 6, 7 and 8 provide a detailed comparison of DIGRAC with spectral methods and InfoMap.955

Since no labeling information is available and all of the other competing GNN methods require labels,956

we do not compare DIGRAC with them on these real data sets.957

In Tables 5, 6, 7 and 8, we report 12 combinations of global imbalance scores by data set. The naming958

convention of these imbalance scores is provided in Table 2. To assess how balanced our recovered959

clusters are in terms of sizes, we also report the size ratio, which is defined as the size of the largest960

predicted cluster to the smallest one, and the standard deviation of sizes, size std, in order to show961

how varied the sizes of predicted clusters are. For a relatively balanced clustering, we expect the962

latter two terms to be small.963

Table 5: Performance comparison on Telegram. The best is marked in bold red and the second best
is marked in underline blue.

Metric/Method InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.04±0.00 0.21±0.00 0.21±0.00 0.21±0.01 0.20±0.01 0.14±0.00 0.32±0.01
Osort

vol_min 0.47±0.00 0.67±0.00 0.61±0.00 0.66±0.02 0.66±0.02 0.19±0.00 0.79±0.06
Osort

vol_max 0.03±0.00 0.20±0.00 0.20±0.00 0.20±0.01 0.19±0.01 0.12±0.00 0.29±0.01
Osort

plain 1.00±0.00 0.80±0.00 0.75±0.00 0.78±0.03 0.76±0.04 0.59±0.00 0.96±0.01
Ostd

vol_sum 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.35±0.00 0.28±0.01
Ostd

vol_min 0.16±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.49±0.00 0.73±0.03
Ostd

vol_max 0.01±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.29±0.00 0.25±0.01
Ostd

plain 0.68±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.90±0.05
Onaive

vol_sum 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.23±0.00 0.27±0.01
Onaive

vol_min 0.11±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.32±0.00 0.72±0.04
Onaive

vol_max 0.00±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.20±0.00 0.24±0.01
Onaive

plain 0.63±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.89±0.06
size ratio 24.750 242.000 242.000 242.000 242.00 53 3.090
size std 35.57 104.360 104.360 104.360 104.360 63.460 26.39

Table 6: Performance comparison on Blog. The best is marked in bold red and the second best is
marked in underline blue.

Metric/Method InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Osort

vol_min 0.02±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Osort

vol_max 0.05±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Osort

plain 1.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_sum 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Ostd

vol_min 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_max 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Ostd

plain 0.73±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_sum 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Onaive

vol_min 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_max 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Onaive

plain 0.76±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
size ratio 1.270 8.700 2.450 6.100 11.93 44.26 1.860
size std 64.50 485 256.200 439 516.500 584 183.20

Tables 5, 6, 7, 8, 9, 10 and 11 reveal that DIGRAC provides competitive global imbalance scores964

in all of the 12 objectives introduced, and across all the real data sets, usually outperforming all the965

other methods. Among the tables, Table 11 provides results in terms of the distance to the best yearly966

performance, averaged across the 19 years; DIGRAC usually outperforms all the other methods967

across all the years. Note that Bi_sym and DD_sym are not able to generate results for WikiTalk, as968
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Table 7: Performance comparison on Migration. The best is marked in bold red and the second best
is marked in underline blue. InfoMap results are omitted here as it predicts a single huge cluster and
could not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.03±0.00 0.01±0.00 0.02±0.00 0.04±0.00 0.02±0.00 0.05±0.00
Osort

vol_min 0.19±0.00 0.08±0.00 0.08±0.00 0.15±0.02 0.05±0.00 0.18±0.03
Osort

vol_max 0.03±0.00 0.01±0.00 0.01±0.00 0.03±0.00 0.02±0.00 0.04±0.00
Osort

plain 0.24±0.00 0.20±0.00 0.17±0.00 0.40±0.01 0.49±0.06 0.29±0.04
Ostd

vol_sum 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.02±0.00 0.04±0.01
Ostd

vol_min 0.10±0.00 0.05±0.00 0.05±0.00 0.08±0.01 0.04±0.00 0.16±0.03
Ostd

vol_max 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.03±0.01
Ostd

plain 0.13±0.00 0.12±0.00 0.11±0.00 0.20±0.01 0.20±0.01 0.26±0.01
Onaive

vol_sum 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.04±0.01
Onaive

vol_min 0.09±0.00 0.04±0.00 0.04±0.00 0.08±0.01 0.01±0.00 0.16±0.03
Onaive

vol_max 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.03±0.01
Onaive

plain 0.12±0.00 0.10±0.00 0.08±0.00 0.19±0.00 0.19±0.03 0.26±0.01
size ratio 7.780 6.070 4.360 36.05 1035.90 4.420
size std 135.210 132.76 103.43 335.790 353.060 264.500

Table 8: Performance comparison on WikiTalk. The best is marked in bold red and the second best is
marked in underline blue. InfoMap results are omitted here as its large number of predicted clusters
leads to memory error in imbalance calculation.

Metric/Method DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.18±0.03 0.15±0.02 0.00±0.00 0.24±0.05
Osort

vol_min 0.10±0.03 0.22±0.05 0.26±0.00 0.28±0.13
Osort

vol_max 0.16±0.03 0.09±0.01 0.00±0.00 0.19±0.04
Osort

plain 0.87±0.08 0.99±0.01 0.98±0.00 1.00±0.00
Ostd

vol_sum 0.17±0.04 0.06±0.01 0.01±0.00 0.14±0.02
Ostd

vol_min 0.09±0.02 0.09±0.02 0.27±0.00 0.18±0.08
Ostd

vol_max 0.15±0.04 0.04±0.00 0.00±0.00 0.11±0.02
Ostd

plain 0.72±0.03 0.70±0.05 0.98±0.00 0.84±0.06
Onaive

vol_sum 0.10±0.02 0.04±0.00 0.00±0.00 0.12±0.01
Onaive

vol_min 0.06±0.03 0.07±0.02 0.26±0.00 0.15±0.07
Onaive

vol_max 0.09±0.02 0.03±0.00 0.00±0.00 0.09±0.01
Onaive

plain 0.64±0.04 0.61±0.04 0.98±0.00 0.76±0.06
size ratio 1190162.25 2217434.50 250.48 71765.14
size std 713813.72 660060.33 657941.88 643220.37

large n × n matrix multiplication with its transpose causes memory issue, when n = 2, 388, 953.969

Small values of the size ratio and size standard deviation suggest that the normalization in the loss970

function penalizes tiny clusters, and that DIGRAC tends to predict balanced cluster sizes.971
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Table 9: Performance comparison on Lead-Lag for year 2015. The best is marked in bold red and
the second best is marked in underline blue. InfoMap results are omitted here as it usually predicts a
single huge cluster and could not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.00 0.07±0.00 0.06±0.00 0.07±0.00 0.06±0.01 0.15±0.00
Osort

vol_min 0.53±0.06 0.50±0.02 0.45±0.07 0.50±0.03 0.46±0.06 0.50±0.02
Osort

vol_max 0.07±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.15±0.01
Osort

plain 0.65±0.03 0.67±0.03 0.59±0.03 0.65±0.03 0.65±0.02 0.55±0.07
Ostd

vol_sum 0.04±0.00 0.04±0.00 0.04±0.00 0.04±0.00 0.04±0.00 0.11±0.02
Ostd

vol_min 0.27±0.03 0.27±0.02 0.24±0.02 0.27±0.02 0.26±0.04 0.35±0.04
Ostd

vol_max 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.10±0.02
Ostd

plain 0.39±0.02 0.39±0.01 0.37±0.02 0.39±0.02 0.40±0.02 0.38±0.04
Onaive

vol_sum 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.08±0.03
Onaive

vol_min 0.20±0.02 0.20±0.02 0.17±0.03 0.20±0.02 0.20±0.03 0.25±0.08
Onaive

vol_max 0.02±0.00 0.03±0.00 0.02±0.00 0.03±0.00 0.03±0.00 0.08±0.03
Onaive

plain 0.29±0.01 0.29±0.01 0.26±0.02 0.30±0.01 0.30±0.01 0.31±0.05
size ratio 3.070 3.110 3.060 2.89 2.95 15.640
size std 8.390 7.94 8.680 7.28 8.050 18.680

Table 10: Performance comparison on Lead-Lag. Results in each year is averaged over ten runs.
Mean and standard deviation (after ±) are calculated over the 19 years. The best is marked in bold
red and the second best is marked in underline blue. InfoMap results are omitted here as it usually
predicts a single huge cluster and could not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.01 0.07±0.01 0.07±0.01 0.07±0.02 0.07±0.02 0.15±0.03
Osort

vol_min 0.51±0.10 0.48±0.09 0.47±0.10 0.51±0.11 0.50±0.10 0.47±0.09
Osort

vol_max 0.07±0.01 0.06±0.01 0.06±0.01 0.07±0.01 0.07±0.01 0.14±0.03
Osort

plain 0.66±0.09 0.64±0.08 0.63±0.08 0.66±0.09 0.65±0.09 0.53±0.09
Ostd

vol_sum 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.12±0.03
Ostd

vol_min 0.27±0.04 0.27±0.04 0.25±0.04 0.27±0.03 0.27±0.03 0.38±0.07
Ostd

vol_max 0.04±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.11±0.02
Ostd

plain 0.40±0.05 0.39±0.05 0.38±0.05 0.40±0.05 0.40±0.05 0.44±0.07
Onaive

vol_sum 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.08±0.04
Onaive

vol_min 0.20±0.05 0.19±0.05 0.18±0.05 0.19±0.04 0.19±0.04 0.26±0.10
Onaive

vol_max 0.03±0.01 0.02±0.01 0.02±0.01 0.02±0.00 0.02±0.00 0.08±0.03
Onaive

plain 0.30±0.06 0.28±0.06 0.27±0.06 0.29±0.05 0.29±0.05 0.32±0.11
size ratio 3.67 3.34 3.900 4.110 3.880 8.070
size std 9.31 9.14 10.090 10.490 10.360 17.060
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Figure 13: Test ARI comparison on synthetic data. Dashed lines highlight DIGRAC’s performance.
Error bars are given by one standard error.
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Figure 14: Test NMI comparison on some synthetic data. Dashed lines highlight DIGRAC’s
performance. Error bars are given by one standard error.

Table 11: Performance comparison on Lead-Lag, where we evaluate the performance distance to the
best one in each year. Results in each year is averaged over ten runs. Mean and standard deviation
(after ±) are calculated over the 19 years. The best is marked in bold red and the second best is
marked in underline blue. InfoMap results are omitted here as it usually predicts a single huge cluster
and could not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.02 0.08±0.02 0.08±0.02 0.07±0.02 0.07±0.02 0.00±0.00
Osort

vol_min 0.01±0.01 0.05±0.03 0.06±0.03 0.02±0.02 0.02±0.02 0.06±0.04
Osort

vol_max 0.07±0.02 0.07±0.02 0.07±0.02 0.07±0.02 0.07±0.02 0.00±0.00
Osort

plain 0.01±0.02 0.03±0.03 0.05±0.03 0.01±0.02 0.02±0.02 0.14±0.03
Ostd

vol_sum 0.08±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.00±0.00
Ostd

vol_min 0.10±0.05 0.11±0.04 0.13±0.05 0.11±0.05 0.11±0.05 0.00±0.00
Ostd

vol_max 0.07±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.00±0.00
Ostd

plain 0.04±0.03 0.05±0.04 0.06±0.04 0.04±0.04 0.04±0.03 0.00±0.00
Onaive

vol_sum 0.05±0.03 0.06±0.03 0.06±0.03 0.05±0.03 0.05±0.03 0.00±0.00
Onaive

vol_min 0.06±0.07 0.07±0.06 0.08±0.07 0.07±0.08 0.07±0.08 0.00±0.00
Onaive

vol_max 0.05±0.03 0.05±0.03 0.05±0.03 0.05±0.03 0.05±0.03 0.00±0.00
Onaive

plain 0.03±0.06 0.05±0.05 0.06±0.06 0.04±0.06 0.04±0.06 0.01±0.02
size ratio 1.04 0.71 1.270 1.480 1.250 5.440
size std 0.58 0.41 1.360 1.770 1.630 8.340
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Figure 15: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on the Telegram data set. Lines are used to highlight DIGRAC’s performance.

D.2 Ranked pairwise imbalance scores972

We also plot the ranked pairwise imbalance scores for all data sets except Blog, which has only one973

possible pairwise imbalance score. For Lead-Lag, we only plot the year 2015 as an example; the plots974

for the other years are similar. Figures 15, 16, 17 and 18 illustrate that DIGRAC is able to provide975

comparable or higher pairwise imbalance scores for the leading pairs, especially on CIvol_min pairs.976

We also observe that except for CIplain, DIGRAC has a less rapid drop in pairwise imbalance scores977

after the first leading pair compared to Herm and Herm_rw, which can have a few pairs with higher978

imbalance scores than DIGRAC.979
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Figure 16: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on the Migration data set. Lines are used to highlight DIGRAC’s performance.
InfoMap results are omitted as it predicts one single huge cluster and could not produce imbalance
results.
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Figure 17: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on WikiTalk data set. Lines are used to highlight DIGRAC’s performance. InfoMap
results are omitted here because it triggers memory error due to the large number of predicted clusters.
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Figure 18: Ranked pairs of pairwise imbalance recovered by comparing methods for different choices
of normalization on Lead-Lag data set. Lines are used to highlight DIGRAC’s performance. InfoMap
results are omitted here because it only predicts a single cluster.

D.3 Predicted meta-graph flow matrix plots980

For each data set, we plot the predicted meta-graph flow matrix F′ defined in Eq. (12).981

From Fig. 19, we conclude that DIGRAC is able to recover a directed flow imbalance between982

clusters in all of the selected data sets. Fig. 19a shows a clear cut imbalance between two clusters,983

possibly corresponding to the Republican and Democratic parties. Fig. 19b plots imbalance flows in984

the real data set Telegram, where cluster 3 is a core-transient cluster, cluster 0 is a core-sink cluster,985

cluster 2 is a periphery-upstream cluster, while cluster 1 is a periphery-downstream cluster [3, 5]. For986

WikiTalk, illustrated in Fig. 19d, the lower-triangular part entries are typically source nodes for edges,987

while the upper-triangular part are target nodes. For Lead-Lag, taking the year 2015 as an example,988

DIGRAC is also able to recover high imbalance in the data.989

We also note that DIGRAC would not necessarily predict the same number of clusters as assumed, so990

that we do not need to specify the exact number of clusters before training DIGRAC; specifying the991

maximum number of possible clusters suffices.992
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Figure 19: Predicted meta-graph flow matrix from DIGRAC of five real-world data sets.

D.4 Migration plots993

We compare DIGRAC to five spectral methods for recovering clusters for the US migration data set,994

and plot the recovered clusters on a map, in Fig. 20.995

The visualization in Fig. (a-c) shows that clusters align particularly well with the political and996

administrative boundaries of the US states, as previously observed in [64]. This outcome is not997

deemed too insightful, as it trivially reveals the fact there there is significant intra-state and inter-state998

migration, and does not uncover any of the information on latent migration patterns between far-999

away states, and more generally, between regions which are not necessarily geographically cohesive.1000

DIGRAC outcomes, however, reveal nontrivial migration patterns, for example migration from New1001

York to Florida, and from California to Arizona, which is consistent with the patterns discovered by1002

[4]. Fig. 21 details on the top pair migration patterns uncovered by DIGRAC.1003

D.5 Coping with outliers1004

As mentioned in Section C.3, the preprocessing step to use ratio of migration instead of absolute1005

migration numbers is a way to cope with outliers (here, extremely large entries in the original digraph)1006

in Migration. To validate the effectiveness of this approach to cope with outliers, Table 12 provides1007

imbalance results for Migration when we do not transform the nonzero entries into ratios. Comparing1008

with Table 7, we witness an overall decrease in the performance. In this case InfoMap no longer1009

predicts a single huge cluster. However, its predicted number of clusters is about 44, which is too1010

large. This also implies that InfoMap is very sensitive to the magnitude of digraph entries, while1011

DIGRAC is not. Indeed, InfoMap gives 43 (too many) clusters for Blog, 19 (too many) for Telegram,1012

1 (too small) for Migration, and 17498 (far too many) for WikiTalk.1013

We compare DIGRAC to five spectral methods as well as InfoMap for recovering clusters for the US1014

migration data set without the preprocessing step discussed earlier, and plot the recovered clusters on1015

a map in Fig. 22. Note that all methods, except DIGRAC, recover either clusters which are trivially1016

small in size or contain one very large dominant cluster (as in (a), (b), (e) and to some extent, also1017

(f)). The DISG_LR clustering and InfoMap clustering provide clear geographic boundaries, but were1018
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(a) Bi_sym
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(b) DD_sym
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(c) DISG_LR

−120 −110 −100 −90 −80 −70

25

30

35

40

45

50

0

1

2

3

4

5

6

7

8

9

10

L
ab

el

(d) Herm
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(e) Herm_rw
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(f) DIGRAC

Figure 20: US migration predicted clusters, along with the geographic locations of the counties as
well as state boundaries (in black). InfoMap results are omitted here because it only produces one
huge cluster. The input data is normalized, following Eq. (13).

not able to recover the imbalance among clusters. Other spectral methods generally have a dominant1019

cluster containing most of the nodes, whereas DIGRAC has more balanced cluster sizes.1020

When employing methods that symmetrize the adjacency matrix (as in (a) and (b)), the migration1021

flows between counties in different states will be lost in the process. Furthermore, the visualization in1022

Fig. (c) shows that clusters align particularly well with the political and administrative boundaries1023

of the US states, as previously observed in [64]. The same is for Fig. (d). This outcome is not1024

deemed very insightful, as it trivially reveals the fact that there is significant intra-state and inter-state1025

migration, and does not uncover any of the information on latent migration patterns between far-away1026

states, and more generally, between regions which are not necessarily geographically cohesive.1027

Fig. 21 further plots the top three pairs of clusters based on four different imbalance scores given by1028

DIGRAC. As shown in the figure, DIGRAC uncovers the migration trend from coastal to interior,1029

across states. This trend of the directed flow agrees with that discussed in [4], with many people1030

migrating from New York and California to the interior states.1031

E Discussion of related methods that are not compared against in the main1032

text1033

To further emphasize the importance of directionality, our synthetic data sets have no difference in1034

density between clusters; their sole signal is in the directionality of the edges. If all edge directions1035
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(a) CIvol_sum: top pair
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(b) CIvol_sum: 2nd pair
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(c) CIvol_sum: 3rd pair
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(d) CIvol_min: top pair
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(e) CIvol_min: 2nd pair
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(f) CIvol_min: 3rd pair
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(g) CIvol_max: top pair
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(h) CIvol_max: 2nd pair
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(i) CIvol_max: 3rd pair
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(j) CIplain: top pair
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(k) CIplain: 2nd pair
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(l) CIplain: 3rd pair

Figure 21: US migration predicted cluster pairs with top imbalance, along with the geographic
locations of the counties as well as state boundaries (in black). Red (label 1) is the sending cluster
while blue (label 2) is the receiving cluster. Yellow (label 0) denotes all the other locations being
considered. Subcaptions show the imbalance score and the rank based on that score.

were to be removed, then no algorithm should be available to detect the clusters. To further support our1036

claim why some methods mentioned in Section 2 in the main text are not appropriate for comparison,1037

we have applied the default setting versions of the Louvain method [35], the Leiden algorithm [36]1038

and OSLOM [34], to our synthetic data sets, and find that they do not detect the structure in the data,1039

with ARI and NMI values very close to zero, and very low imbalance values. In particular, Louvain1040

and Leiden tend to give a larger number of clusters than the ground truth which is designed to have1041

small cluster sizes. OSLOM outputs clusters with extreme sizes, either a huge cluster containing1042

(almost always) all the nodes, or every node forming a cluster by itself. To further demonstrate that1043

comparing DIGRAC with density-based methods is unfair, We report the test ARI results for Infomap,1044

Louvain and Leiden in Figure 23.We can see that Infomap, Louvain and Leiden normally produces1045

nero-zero ARI values, which are much worse than the results from DIGRAC given in Figure 3.1046

On the real-world data sets, these methods often give numbers of clusters that do not match our1047

expectations. (Blog has two underlying parties, Telegram has a four-cluster core-periphery struc-1048

ture). Louvain clusters nodes from Blog into 8-13 clusters (too many), Telegram into 4-5 clusters1049

(acceptable), Migration into 5-7 clusters (acceptable), WikiTalk into 150-219 clusters (too many), and1050

Lead-Lag into 10-55 clusters (acceptable or a bit too many). Leiden gives 12 (too many) clusters1051

for Blog, 4-5 for Telegram, 5-6 for Migration, 170-248 (too many) for WikiTalk, and 10-55 clusters1052

(acceptable or a bit too many) for Lead-Lag. OSLOM gives 6 clusters for Blog (too many), 16 for1053

Telegram (too many), and 46 for Migration (too many). It could not generate results for WikiTalk1054
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Table 12: Performance comparison on Migration (without preprocessing). The best is marked in
bold red and the second best is marked in underline blue.

Metric/Method InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.02±0.00 0.03±0.00 0.01±0.00 0.01±0.00 0.07±0.00 0.01±0.00 0.04±0.00
Osort

vol_min 0.24±0.00 0.20±0.01 0.12±0.02 0.14±0.00 0.21±0.01 0.05±0.02 0.18±0.02
Osort

vol_max 0.02±0.00 0.03±0.00 0.01±0.00 0.01±0.00 0.06±0.00 0.00±0.00 0.04±0.00
Osort

plain 0.61±0.00 0.46±0.00 0.29±0.02 0.26±0.00 0.62±0.02 0.40±0.00 0.32±0.11
Ostd

vol_sum 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.03±0.01
Ostd

vol_min 0.03±0.00 0.09±0.00 0.04±0.01 0.05±0.00 0.08±0.01 0.02±0.01 0.11±0.03
Ostd

vol_max 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.02±0.01
Ostd

plain 0.19±0.00 0.23±0.00 0.14±0.01 0.12±0.00 0.32±0.01 0.25±0.01 0.21±0.03
Onaive

vol_sum 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.03±0.01
Onaive

vol_min 0.02±0.00 0.08±0.00 0.04±0.01 0.05±0.00 0.08±0.01 0.02±0.01 0.11±0.04
Onaive

vol_max 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.02±0.01
Onaive

plain 0.16±0.00 0.22±0.00 0.13±0.01 0.11±0.00 0.31±0.01 0.22±0.00 0.21±0.03
size ratio 8.500 3043.80 722.620 25.780 3059.20 415.880 203.230
size std 58.96 912.100 861.280 409.900 917.230 844.750 342.38

after running for 12 hours, and hence we omit its discussion here. On Lead-Lag, OSLOM places1055

every node in a single cluster for most of the years, and clusters the rest of the years into either a huge1056

single cluster or two clusters.1057

None of the methods outperform DIGRAC on our chosen performance measures from Table 1 ,1058

except on the Lead-Lag data set (See Tables 14, 15, 16 and 17 for the other results). With regards1059

to the 12 imbalance measures from Appendix Table 6, leaving out OSLOM as before, Louvain and1060

Leiden perform poorly on all of the real data sets, except on Lead-Lag. Indeed, for Lead-Lag, the1061

number of clusters we use for DIGRAC is ten according to the GICS sector memberships. However,1062

if we use the sector memberships as labels, the imbalance values are poor, which implies that ten may1063

not be a desirable choice of the number of clusters. Further, DIGRAC usually clusters the nodes into1064

smaller number of clusters, while Louvain and Leiden usually cluster the nodes into a larger number1065

of clusters (usually around 30, and sometimes above 50 clusters).1066

Table 13: Performance comparison on Lead-Lag, including Louvain and Leiden. Results in each
year is averaged over ten runs. Mean and standard deviation (after ±) are calculated over the 19 years.
The best is marked in bold red and the second best is marked in underline blue. InfoMap results are
omitted here as it usually predicts a single huge cluster and could not generate imbalance results.
Louvain and Leiden yield essentially identical results and often attain the highest objectives, while
DIGRAC almost always places either first or second across all methods considered.

Metric/Method Louvain/Leiden Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.08±0.02 0.07±0.01 0.07±0.01 0.07±0.01 0.07±0.02 0.07±0.02 0.15±0.03
Osort

vol_min 0.15±0.04 0.51±0.10 0.48±0.09 0.47±0.10 0.51±0.11 0.50±0.10 0.47±0.09
Osort

vol_max 0.08±0.02 0.07±0.01 0.06±0.01 0.06±0.01 0.07±0.01 0.07±0.01 0.14±0.03
Osort

plain 0.15±0.04 0.66±0.09 0.64±0.08 0.63±0.08 0.66±0.09 0.65±0.09 0.53±0.09
Ostd

vol_sum 0.23±0.06 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.12±0.03
Ostd

vol_min 0.46±0.11 0.27±0.04 0.27±0.04 0.25±0.04 0.27±0.03 0.27±0.03 0.38±0.07
Ostd

vol_max 0.23±0.05 0.04±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.11±0.02
Ostd

plain 0.46±0.11 0.40±0.05 0.39±0.05 0.38±0.05 0.40±0.05 0.40±0.05 0.44±0.07
Onaive

vol_sum 0.23±0.06 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.08±0.04
Onaive

vol_min 0.46±0.11 0.20±0.05 0.19±0.05 0.18±0.05 0.19±0.04 0.19±0.04 0.26±0.10
Onaive

vol_max 0.23±0.05 0.03±0.01 0.02±0.01 0.02±0.01 0.02±0.00 0.02±0.00 0.08±0.03
Onaive

plain 0.46±0.11 0.30±0.06 0.28±0.06 0.27±0.06 0.29±0.05 0.29±0.05 0.32±0.11
size ratio 124.530 3.67 3.34 3.900 4.110 3.880 8.070
size std 47.960 9.31 9.14 10.090 10.490 10.360 17.060
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(a) Bi_sym
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(b) DD_sym
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(c) DISG_LR
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(d) InfoMap
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(e) Herm
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(f) Herm_rw
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(g) DIGRAC

Figure 22: US migration predicted clusters, along with the geographic locations of the counties
as well as state boundaries (in black). The input digraph has extremely large entries; unlike in Fig.
20, we do not employ here the normalization given by Eq. (13). Altogether, this demonstrates the
robustness of DIGRAC to outliers in the data, which is not a characteristic of other state-of-the-art
methods such as Herm and Herm_rw.

Finally, we provide more examples/explanations on why these density-based methods or even other1067

methods that are based on random-walk should fail. We would mainly like to point out a family of1068

illustrative examples demonstrating the subtle nuance concerning edge density.1069

Consider a meta graph with K = 3 nodes (clusters) A,B,C with directed edges AB, BC, CA, hence1070

a directed cycle (our "cycle" DSBM models). Each pair of nodes (vi, vj) in the graph of size n is1071

connected by an edge independently with probability p (which can even be equal to 1, in the case of1072

a complete graph), hence the graph has the same density throughout. Now suppose we consider a1073

pair of nodes (vi, vj) such that vi belongs to cluster A, and vj to cluster B. Since this edge is part of1074
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Figure 23: Test ARI comparison on synthetic data for Infomap, Louvain and Leiden. Error bars are
given by one standard error.

the metagraph, with probability 1-eta, it is directed from vi to vj , and with probability eta, vj sends1075

an edge to vi (here, eta is the noise level parameter). Similar arguments can be made when vi (resp1076

vj) belongs to cluster B (resp C); and when vi (resp vj) belongs to cluster C (resp A). See Figure 241077

for an illustration. We also see that when the network is complete (see Figure 23 (g) and Table 9),1078

InfoMap [14] fails empirically as it produces a single huge cluster. As a method based on random1079

walks, this failure might occur as the chain could hardly be trapped inside a cluster as in the usual1080

setting.1081

In such synthetic DSBM models with a "cycle" meta-graph structure, it can be shown that all nodes1082

have the same in-degree and out-degree in expectation. Therefore, any density-based methods or1083

modularity-based methods should fail. As the simplest possible example, one could just consider1084

K = 3 clusters as above, without any noise (thus η = 0). InfoMap [14] tries to minimize the1085

description length, but as no description length difference occurs in the ground-truth clustering1086

structure for such "cycle" DSBMs, if we consider a brute-force optimization of the map equation.1087

Indeed, for any method that is based on a random walk, the probability of the random walker going1088

from one cluster to another is the same as staying within the cluster. Therefore, we could hardly1089

optimize anything if we base our clustering structure on a random walker’s visit frequencies/path1090

lengths. Similarly, the Markov clustering algorithm [65] is based on the intuition that higher-length1091

paths would be relatively more likely to stay within clusters – an assumption that is not warranted1092

when there is no density difference. [15] and [16] are two interesting Markov aggregation algorithms1093

based on information theory and automatic control ideas that might be able to cover the above1094
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Table 14: Performance comparison on Telegram, including Louvain and Leiden. The best is marked
in bold red and the second best is marked in underline blue.

Metric/Method Louvain/Leiden InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.08±0.01 0.04±0.00 0.21±0.00 0.21±0.00 0.21±0.01 0.20±0.01 0.14±0.00 0.32±0.01
Osort

vol_min 0.39±0.07 0.47±0.00 0.67±0.00 0.61±0.00 0.66±0.02 0.66±0.02 0.19±0.00 0.79±0.06
Osort

vol_max 0.06±0.01 0.03±0.00 0.20±0.00 0.20±0.00 0.20±0.01 0.19±0.01 0.12±0.00 0.29±0.01
Osort

plain 0.71±0.05 1.00±0.00 0.80±0.00 0.75±0.00 0.78±0.03 0.76±0.04 0.59±0.00 0.96±0.01
Ostd

vol_sum 0.07±0.01 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.35±0.00 0.28±0.01
Ostd

vol_min 0.33±0.08 0.16±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.49±0.00 0.73±0.03
Ostd

vol_max 0.05±0.01 0.01±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.29±0.00 0.25±0.01
Ostd

plain 0.59±0.05 0.68±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.90±0.05
Onaive

vol_sum 0.06±0.02 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.23±0.00 0.27±0.01
Onaive

vol_min 0.28±0.11 0.11±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.32±0.00 0.72±0.04
Onaive

vol_max 0.04±0.01 0.00±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.20±0.00 0.24±0.01
Onaive

plain 0.56±0.01 0.63±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.89±0.06

Table 15: Performance comparison on Blog, including Louvain and Leiden. The best is marked in
bold red and the second best is marked in underline blue.

Metric/Method Louvain/Leiden InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.00±0.00 0.07±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Osort

vol_min 0.01±0.01 0.02±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Osort

vol_max 0.01±0.01 0.05±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Osort

plain 1.00±0.00 1.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_sum 0.00±0.00 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Ostd

vol_min 0.00±0.00 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_max 0.00±0.00 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Ostd

plain 0.56±0.13 0.73±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_sum 0.00±0.00 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Onaive

vol_min 0.00±0.00 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_max 0.00±0.00 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Onaive

plain 0.76±0.00 0.76±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00

example and may inspire some further comparison, but we omit comparison to them for now as we1095

already have more than ten comparison methods and that InfoMap shares similar ideas to these two1096

papers. As another example, as shown in [19], using belief propagation, in our model community1097

structure should not be detectible (the right-hand side of (20) in [19] is zero for our "cycle" DSBMs).1098

Therefore, at least methods that rely on belief propagation will fail on our benchmark models.1099

41



DIGRAC: Digraph Clustering Based on Flow Imbalance

Table 16: Performance comparison on Migration, including Louvain and Leiden. The best is marked
in bold red and the second best is marked in underline blue. InfoMap results are omitted here as it
predicts a single huge cluster and could not generate imbalance results.

Metric/Method Louvain/Leiden Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.01±0.00 0.03±0.00 0.01±0.00 0.02±0.00 0.04±0.00 0.02±0.00 0.05±0.00
Osort

vol_min 0.05±0.01 0.19±0.00 0.08±0.00 0.08±0.00 0.15±0.02 0.05±0.00 0.18±0.03
Osort

vol_max 0.01±0.00 0.03±0.00 0.01±0.00 0.01±0.00 0.03±0.00 0.02±0.00 0.04±0.00
Osort

plain 0.09±0.02 0.24±0.00 0.20±0.00 0.17±0.00 0.40±0.01 0.49±0.06 0.29±0.04
Ostd

vol_sum 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.02±0.00 0.04±0.01
Ostd

vol_min 0.04±0.01 0.10±0.00 0.05±0.00 0.05±0.00 0.08±0.01 0.04±0.00 0.16±0.03
Ostd

vol_max 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.03±0.01
Ostd

plain 0.07±0.01 0.13±0.00 0.12±0.00 0.11±0.00 0.20±0.01 0.20±0.01 0.26±0.01
Onaive

vol_sum 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.04±0.01
Onaive

vol_min 0.04±0.01 0.09±0.00 0.04±0.00 0.04±0.00 0.08±0.01 0.01±0.00 0.16±0.03
Onaive

vol_max 0.00±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.03±0.01
Onaive

plain 0.07±0.00 0.12±0.00 0.10±0.00 0.08±0.00 0.19±0.00 0.19±0.03 0.26±0.01

Table 17: Performance comparison on WikiTalk, including Louvain and Leiden. The best is marked
in bold red and the second best is marked in underline blue. InfoMap results are omitted here as its
large number of predicted clusters leads to memory error in imbalance calculation.

Metric/Method Louvain/Leiden DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.01±0.00 0.18±0.03 0.15±0.02 0.00±0.00 0.24±0.05
Osort

vol_min 0.15±0.00 0.10±0.03 0.22±0.05 0.26±0.00 0.28±0.13
Osort

vol_max 0.01±0.00 0.16±0.03 0.09±0.01 0.00±0.00 0.19±0.04
Osort

plain 1.00±0.00 0.87±0.08 0.99±0.01 0.98±0.00 1.00±0.00
Ostd

vol_sum 0.00±0.00 0.17±0.04 0.06±0.01 0.01±0.00 0.14±0.02
Ostd

vol_min 0.01±0.00 0.09±0.02 0.09±0.02 0.27±0.00 0.18±0.08
Ostd

vol_max 0.00±0.00 0.15±0.04 0.04±0.00 0.00±0.00 0.11±0.02
Ostd

plain 0.42±0.00 0.72±0.03 0.70±0.05 0.98±0.00 0.84±0.06
Onaive

vol_sum 0.00±0.00 0.10±0.02 0.04±0.00 0.00±0.00 0.12±0.01
Onaive

vol_min 0.01±0.00 0.06±0.03 0.07±0.02 0.26±0.00 0.15±0.07
Onaive

vol_max 0.00±0.00 0.09±0.02 0.03±0.00 0.00±0.00 0.09±0.01
Onaive

plain 0.43±0.00 0.64±0.04 0.61±0.04 0.98±0.00 0.76±0.06

𝐶𝐶 𝐵𝐵

𝐴𝐴

Figure 24: An example of a "cycle" meta-graph.
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