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Abstract
Feature upsampling is an essential operation in constructing deep
convolutional neural networks. However, existing upsamplers ei-
ther lack specific feature guidance or necessitate the utilization of
high-resolution feature maps, resulting in a loss of performance
and flexibility. In this paper, we find that the local self-attention
naturally has the feature guidance capability, and its computational
paradigm aligns closely with the essence of feature upsampling
(i.e., feature reassembly of neighboring points). Therefore, we intro-
duce local self-attention into the upsampling task and demonstrate
that the majority of existing upsamplers can be regarded as special
cases of upsamplers based on local self-attention. Considering the
potential semantic gap between upsampled points and their neigh-
boring points, we further introduce the deformation mechanism
into the upsampler based on local self-attention, thereby proposing
LDA-AQU. As a novel dynamic kernel-based upsampler, LDA-AQU
utilizes the feature of queries to guide the model in adaptively ad-
justing the position and aggregation weight of neighboring points,
thereby meeting the upsampling requirements across various com-
plex scenarios. In addition, LDA-AQU is lightweight and can be
easily integrated into various model architectures. We evaluate the
effectiveness of LDA-AQU across four dense prediction tasks: object
detection, instance segmentation, panoptic segmentation, and se-
mantic segmentation. LDA-AQU consistently outperforms previous
state-of-the-art upsamplers, achieving performance enhancements
of 1.7 AP, 1.5 AP, 2.0 PQ, and 2.5 mIoU compared to the baseline
models in the aforementioned four tasks, respectively.

CCS Concepts
• Computing methodologies→ Object detection; Image seg-
mentation.
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Figure 1: Comparison of various upsamplers in terms of net-
work parameters, Mean Average Precision (mAP) and FLOPs
(indicated by area of circles) using Faster R-CNN [31] with
ResNet-50 [12] as the baseline model.
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1 Introduction
As a fundamental operator in deep convolutional neural networks,
feature upsampling is widely utilized in various dense prediction
tasks, including object detection, semantic segmentation, and im-
age inpainting, etc. Given the spatial downsampling characteris-
tics of convolutional and pooling operators, feature upsampling
emerges as a crucial inverse operation, indispensable for meeting
task-specific requirements. For instance, it facilitates the restoration
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(a) Nearest Neighbor Interpolation (b) Bilinear Interpolation (c) CARAFE (d) LDA-AQU (Ours)
Interpolated Point Neighbors of Interpolated Point

Figure 2: The difference in neighboring point selection schemes between LDA-AQU and other widely used upsamplers. Given an
upsampled point (red star), LDA-AQU employs the query-guided mechanism to predict the deformation offset and aggregation
weight of neighboring points, enabling adaptation to upsampling tasks across multiple scales.

of spatial resolution in pixel-level dense prediction tasks and enables
multi-scale feature fusion in feature pyramid network (FPN) [18].

Commonly used upsamplers, such as Nearest Neighbor Interpo-
lation and Bilinear Interpolation, aggregate features from neighbor-
ing points in a manually designed paradigm, making it difficult to
address the requirements of various upsampling tasks simultane-
ously. Subsequently, several learnable upsampling methods have
been proposed, including deconvolution [23] and Pixel Shuffle [32],
etc. However, these methods typically learn a fixed set of parame-
ters for the upsampling kernel, applying the same operation to all
spatial positions of the input feature map, leading to suboptimal
upsampling results. To enhance the dynamic adaptability of the
upsampling operator and enable it to address various upsampling
tasks in complex scenes, dynamic filter-based upsamplers have
been proposed [26, 35, 41]. However, these methods either lack spe-
cific feature guidance or require the intervention of high-resolution
images, limiting their application scenarios and performance.

Most existing upsampling operators can be viewed as a weighted
aggregation of features within local neighborhoods surrounding
upsampled points (i.e., feature reassembly). We observe that this
is consistent with local self-attention, which determines attention
weights and extracts contextual information from uniform neigh-
boring points. However, local self-attention naturally incorporates
the query-guided mechanism, aligning well with the upsampling
task. This involves adaptively aggregating neighborhood features
based on the attributes of the upsampled points, resulting in ex-
plicit point affiliations [26]. These insights inspire us to integrate
local self-attention into the upsampling task, achieving adaptive
upsampling with query guidance in a single layer.

In this paper, we introduce a method for incorporating local self-
attention into feature upsampling tasks. Additionally, we note that
using fixed, uniform neighboring points may lead to suboptimal up-
sampling result. As depicted in Figure 2, uniform neighboring point
selection in feature maps with high downsampling strides may
result in notable semantic disparities, hindering high-resolution
feature map generation. To address this, we introduce the deforma-
tion mechanism to dynamically adjust the positions of neighboring
points based on the features of query points (i.e., upsampled points)
and their contextual information, aiming to further enhance the

model’s adaptability. Based on above, we have named our method
as LDA-AQU, which offers the following advantages compared to
other dynamic upsamplers: 1) operates on a single layer without
requiring high-resolution inputs; 2) possesses query-guided capa-
bility, enabling the interactive generation of dynamic upsampling
kernels using the features of the query points and their neighboring
points; 3) exhibits local deformation capability, permitting dynamic
adjustment of positions to neighboring points based on the contex-
tual information of query points. These properties enable LDA-AQU
to achieve superior performance while remaining lightweight.

Through extensive experiments conducted on four dense pred-
cition tasks including object detection, semantic segmentation, in-
stance segmentation, and panoptic segmentation, we have vali-
dated the effectiveness of LDA-AQU. For instance, LDA-AQU can
obtain +1.7 AP gains for Faster R-CNN [31], +1.5 AP gains for Mask
R-CNN [11], +2.0 PQ gains for Panoptic FPN [14] on MS COCO
dataset [19]. On the semantic segmentation task, LDA-AQU also
brings +2.5 mIoU gains for UperNet [36] on ADE20K dataset [40].
On the aforementioned four dense prediction tasks, our LDA-AQU
consistently outperforms the previous state-of-the-art upsampler
while maintaining a similar FLOPs and parameters.

2 Related Work
2.1 Feature Upsampling
Commonly used upsamplers, such as Nearest Neighbor Interpola-
tion and Bilinear Interpolation, are popular for their simplicity and
efficiency in various visual tasks. To enhance the adaptability, some
learnable upsamplers have been proposed. Deconvolution [23] em-
ploys a reverse convolution operation to achieve the upsampling of
feature maps. Pixel Shuffle (PS) [32] increases the spatial resolution
of the feature map by shuffling features along both spatial and chan-
nel directions. With the popularity of dynamic networks [3, 38, 41],
some upsamplers based on dynamic kernels have been introduced.
CARAFE [35] utilizes a content-aware approach to generate dy-
namic aggregate weights. IndexNet [24] models various upsampling
operators as different index functions and proposes several index
networks to generate indexes for guiding upsampling. SAPA [26] in-
troduces the concept of point membership into feature upsampling
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and guides kernel generation through the similarity between seman-
tic clusters. In comparison, our LDA-AQU utilizes the features of
the query point to generate deformed offsets and aggregate weights
of neighboring points, achieving dynamic feature upsampling with
feature guidance from a single low-resolution input.

2.2 Dense Prediction Tasks
Dense prediction involves pixel-level tasks such as object detec-
tion [16, 30, 31], instance segmentation [1, 9, 11], panoptic segmen-
tation [14, 15, 17], and semantic segmentation [4, 23, 37]. Models
for such tasks typically include a backbone network [12, 13, 33], a
feature pyramid network [10, 18, 20], and one or more task heads.
The backbone network reduces data dimensions and extracts salient
features to decrease computational complexity and capture robust
semantic information. The feature pyramid network connects multi-
scale features to enhance the model’s perception across scales. The
task head links extracted features to the prediction task, serving as
the primary distinction among different models.

For instance, Faster R-CNN [31] uses a detection head for object
recognition and localization tasks. Mask R-CNN [11] achieves both
object detection and instance segmentation by adding an instance
segmentation head based on Faster R-CNN. Similarly, Panoptic
FPN [14] integrates semantic segmentation, instance segmentation,
and panoptic segmentation tasks by incorporating an additional
semantic segmentation head based on Mask R-CNN. UperNet [36]
uniformly conducts scene perception and parsing by integrating
various task heads. Due to the spatial reduction characteristics of
convolution and pooling operations, feature upsampling becomes
essential for accomplishing above dense prediction tasks. Our LDA-
AQU can be easily integrated into these frameworks and consis-
tently brings stable performance improvements.

2.3 Vision Transformer
As vanilla self-attention in Vision Transformer (ViT) [8] capture
global contextual information through dense interactions, the com-
putational complexity and memory usage become unbearable for
high-resolution inputs. Therefore, in recent years, numerous studies
have aimed to optimize the efficiency of ViT. Swin Transformer [22]
decreases interactive tokens by confining them to non-overlapping
windows, and then captures global dependencies through window
sliding. CSwin Transformer [7] further improves efficiency with
a cross-shaped interactive window. Additionally, some methods
based on local self-attention [27, 29, 34, 39] have been proposed to
optimize model efficiency and introduce the inductive bias of con-
volution. We incorporate local self-attention into the upsampling
task and introduce the deformation mechanism for neighboring
points to enhance the model’s dynamic adaptability.

3 Method
First, we will provide a brief overview of self-attention and local self-
attention. Then, we will elaborate on our approach for extending
the local self-attention to address feature upsampling tasks, which
we refer to as LA-AQU. Finally, we will introduce the integration
of the deformation mechanism into LA-AQU, presenting LDA-AQU
as a means to enhance its adaptability in complex scenarios.
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Figure 3: The upsampling kernels of Bilinear Interpolation-
Based (a) and Local Self-Attention-Based Upsamplers (b).

3.1 Preliminary
3.1.1 Self-Attention. Given a flattened input featuremap𝑥 ∈ R𝑁×𝐶 ,
where𝐶 is the channel size and 𝑁 = 𝐻 ×𝑊 is the number of tokens
along the spatial dimension, the output of the 𝑖-th token 𝑧𝑖 after
standard self-attention can be expressed as:

(𝑞, 𝑘, 𝑣) = (𝑥𝑊 𝑞, 𝑥𝑊 𝑘 , 𝑥𝑊 𝑣) (1)

𝑧𝑖 =

𝑁∑︁
𝑗=1

exp(𝑞𝑖𝑘T𝑗 )∑𝑁
𝑚=1 exp(𝑞𝑖𝑘T𝑚)

𝑣 𝑗 (2)

where𝑊 𝑞,𝑊 𝑘 ,𝑊 𝑣 ∈ R𝐶×𝐶 are the linear projection matrices. For
simplicity, we ignore the output projection matrix 𝑊 𝑜 and the
normalization factor 𝑑𝑘 , while also fixing the number of heads to 1.

The standard self-attention employs dense interaction for each
query to gather crucial long-range dependencies. Hence, the com-
putational complexity can be expressed as O(2𝑁 2𝐶 + 4𝑁𝐶2), with
O(2𝑁 2𝐶) for dense interaction and O(4𝑁𝐶2) for linear projection.

3.1.2 Local Self-Attention. Since the computational complexity
scales quadratically with the number of tokens, researchers are
exploring the use of local self-attention, aiming to reduce com-
putational complexity and introduce the local induction bias of
convolution. Assuming the kernel size of the neighborhood sam-
pling is 𝑛. For a flattened input feature map 𝑥 ∈ R𝑁×𝐶 , the output
of the 𝑖-th token 𝑧𝑖 after local self-attention can be expressed as:

(𝑞, 𝑘, 𝑣) = (𝑥𝑊 𝑞, 𝑥𝑊 𝑘 , 𝑥𝑊 𝑣) (3)

(𝑞, �̃�, 𝑣) = (Reshape(𝑞), 𝜙 (𝑘, 𝑛), 𝜙 (𝑣, 𝑛)) (4)

𝑧𝑖 =

𝑛2∑︁
𝑗=1

exp(𝑞𝑖�̃�T𝑗 )∑𝑛2
𝑚=1 exp(𝑞𝑖�̃�T𝑚)

𝑣𝑖 (5)

where𝑞 ∈ R𝑁×1×𝐶 denotes the queries after the 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 operation.
𝜙 (·, ·) is the sampling function, which can be easily accomplished
by the built-in funcion𝑢𝑛𝑓 𝑜𝑙𝑑 in PyTorch [28]. The �̃�, 𝑣 ∈ R𝑁×𝑛2×𝐶

are the keys and values after neighborhood sampling, respectively.
The local self-attention restricts feature interaction to the local

neighborhood of each query, thus the computational complexity
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Figure 4: The overall framework of LDA-AQU. Given an input feature map with size 𝐻 ×𝑊 ×𝐶 and an upsampling factor 𝛼 ,
LDA-AQU employs local deformable attention for feature upsampling, resulting in an output feature map with size 𝛼𝐻 ×𝛼𝑊 ×𝐶.

can be expressed as O(2𝑛2𝑁𝐶 +4𝑁𝐶2), with O(2𝑛2𝑁𝐶) for feature
interaction and O(4𝑁𝐶2) for linear projection.

3.2 Feature Upsampling via Local Deformable
Attention

3.2.1 Extending Local Self-Attention for Upsampling. Given an in-
put feature map 𝑋 ∈ R𝐻×𝑊 ×𝐶 and upsampling factor 𝛼 ∈ [1, +∞],
the output feature map 𝑌 ∈ R𝛼𝐻×𝛼𝑊 ×𝐶 can be obtained through
feature upsampling. Initially, the queries, keys, and values of the
input feature map can be obtained through the linear mapping.

(𝑄,𝐾,𝑉 ) = (𝑋𝑊𝑄 , 𝑋𝑊𝐾 , 𝑋𝑊𝑉 ) (6)

Assuming the kernel size of neighborhood sampling is 𝑘𝑢 = 3.
As shown in Figure 3(b), let 𝑝 = (𝑥,𝑦) denote the coordinate of the
point to be interpolated, where 𝑥 ∈ [0,𝑊 − 1] and 𝑦 ∈ [0, 𝐻 − 1].
Taking the grid arrangement format of aligned corner points as an
example, we can obtain the corresponding coordinate 𝑝′ = (𝑥 ′, 𝑦′)
in the input feature map by

𝑝′ = 𝜓 (𝑝) = (𝑥 𝑊

𝛼𝑊 − 1
, 𝑦

𝐻

𝛼𝐻 − 1
) (7)

Let 𝑟 = {(𝑥1, 𝑦1), (𝑥2, 𝑦1), ..., (𝑥3, 𝑦3)} denote the absolute coor-
dinates of uniform neighboring points of 𝑝′. The upsampled result
of point 𝑝 based on the local self-attention can be expressed as:

𝑌 (𝑝) =
∑︁
𝑠∈𝑟

exp(𝑄 (𝑝′)𝐾 (𝑠)T)∑
𝑡 ∈𝑟 exp(𝑄 (𝑝′)𝐾 (𝑡)T)

𝑉 (𝑠) (8)

Let 𝐹 (𝑝′, 𝑠) =
exp(𝑄 (𝑝′ )𝐾 (𝑠 )T )∑
𝑡 ∈𝑟 exp(𝑄 (𝑝′ )𝐾 (𝑡 )T ) . When𝑊𝑉 is an identity

matrix, the above formula can be further simplified to

𝑌 (𝑝) =
∑︁
𝑠∈𝑟

𝐹 (𝑝′, 𝑠)𝑋 (𝑠) (9)

Considering the properties of 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 , we have
∑
𝑠∈𝑟 𝐹 (𝑝′, 𝑠) =

1. Therefore, LA-AQU can be described as the adaptive acquisi-
tion of aggregation weights guided by the query features and the

reassembly of features from neighboring points. Indeed, many ex-
isting upsamplers can be formulated by upsampler based on local
self-attention. We will delve into this concept in Section 3.3.

3.2.2 Introducing Deformation Mechanism. LA-AQU employs a
fixed and uniform neighborhood sampling scheme for feature up-
sampling. Consequently, it becomes challenging to meet the up-
sampling needs across various complex scenarios simultaneously.
As shown in Figure 2, solely aggregating the features of uniformly
sampled neighboring points will result in the model overly em-
phasizing less significant background regions while neglecting the
features of the object itself. Therefore, we further introduce the
deformation mechanism and propose LDA-AQU.

The overall process of LDA-AQU is illustrated in Figure 4. Sim-
ilarly, considering the input feature map 𝑋 ∈ R𝐻×𝑊 ×𝐶 and the
output feature map 𝑌 ∈ R𝛼𝐻×𝛼𝑊 ×𝐶 , we initially obtain the 𝑄 ,
𝐾 , 𝑉 through Equation 6. To avoid extra dimensional transfor-
mations and reduce the number of parameters, we employ bi-
linear interpolation to upsample the matrix 𝑄 ∈ R𝐻×𝑊 ×𝐶 , re-
sulting in 𝑄 ′ ∈ R𝛼𝐻×𝛼𝑊 ×𝐶 . Then, utilizing the built-in function
𝑚𝑒𝑠ℎ𝑔𝑟𝑖𝑑 in PyTorch, we can generate the uniform coordinate ma-
trix 𝑃 ∈ R𝛼𝐻×𝛼𝑊 ×1×2 for the upsampled feature map. Through
Equation 7, we can derive the reference point coordinate matrix 𝑃 ′
by projecting 𝑃 onto the input feature map.

Assuming the kernel size of neighborhood sampling is 𝑘𝑢 , the
initial offset 𝛥𝑃 of neighboring points can be obtained as

𝛥𝑃 = {(−⌊𝑘𝑢/2⌋,−⌊𝑘𝑢/2⌋), ..., (⌊𝑘𝑢/2⌋, ⌊𝑘𝑢/2⌋)} (10)

Subsequently, we can obtain the coordinate matrix of neighbor-
ing points 𝑅 ∈ R𝛼𝐻×𝛼𝑊 ×𝑘2𝑢×2 of the upsampled points through
the broadcast mechanism by 𝑅 = 𝑃 ′ + 𝛥𝑃 .

To enable the neighboring points to dynamically adjust their
positions, we introduce a sub-network 𝜁 (·), utilizing query features
to generate the query-guided sampling point offset matrix 𝛥𝑅 ∈
R𝛼𝐻×𝛼𝑊 ×𝑘2𝑢×2. Based on the uniformneighboring point coordinate
matrix 𝑅 and the predicted offset matrix 𝛥𝑅, the final deformed
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neighboring point coordinate matrix 𝑅′ can be obtained by

𝑅′ = 𝑅 + 𝛥𝑅 = 𝑅 + 𝜁 (𝑄) (11)

Finally, we utilize the point-wise features of matrix𝑄 ′ to interact
with the corresponding local point features of 𝐾,𝑉 to complete the
upsampling task. The aforementioned process can be expressed as:

(𝑄,𝐾,𝑉 ) = (Reshape(𝑄 ′),Φ(𝐾, 𝑅′),Φ(𝑉 , 𝑅′)) (12)

𝑌 = Softmax(𝑄𝐾
T√︁
𝑑𝑘

)𝑉 (13)

where𝑄 ∈ R𝛼𝐻×𝛼𝑊 ×1×𝐶 denotes the queries after 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 opera-
tion. 𝐾,𝑉 ∈ R𝛼𝐻×𝛼𝑊 ×𝑘2𝑢×𝐶 are the keys and values after neighbor-
ing sampling. To ensure differentiability, we use bilinear sampling
function Φ(·, ·) for sampling with non-integer offsets.

Offset Predictor. The detailed structure of the offset predictor
𝜁 (·), utilized to generate the sampling point offset matrix 𝛥𝑅, is
depicted in Figure 4. We employ a 3×3 depthwise convolution to ex-
tend the perceptual range of the queries and utilize a convolutional
layer with the kernel size of 𝑘𝑒 to predict the offset for 𝑘2𝑢 points.
The ablation studies of 𝑘𝑒 and 𝑘𝑢 can be found in Section 4.6.

Offset Groups. To enhance the model’s capability in perceiving
distinct channel features and adaptability across diverse scenarios,
we partition the channels of the input feature maps within the offset
predictor 𝜁 (·), employing varied offsets for different groups.

Local Deformation Ranges. To expedite convergence speed,
we apply the 𝑇𝑎𝑛ℎ function to the results of the Offset Predictor,
limiting them to the range [−1, 1]. Additionally, we employ a factor
𝜃 to regulate the deformation range of the neighboring points. In
our experiments, we observe that increasing the value of 𝜃 will
bring some performance improvements. We believe that employ-
ing a larger local deformation range, combined with the grouping
operation, will enable the model to capture a wider range of cru-
cial features within the neighborhood for refining the upsampling
results. More detailed analysis will be conducted in Section 4.6.

3.3 Relating to Other Upsampling Methods
In this section, we will explore the relationship between different
upsamplers and LDA-AQU. Indeed, LA-AQU can already represent
the majority of upsampling schemes.

Bilinear Interpolation. Similarly, let 𝑋 ∈ R𝐻×𝑊 ×𝐶 and 𝑌 ∈
R𝛼𝐻×𝛼𝑊 ×𝐶 denote the input and output feature map, respectively.
As shown in Figure 3(a), after projection via Equation 7, the feature
vector of the upsampled point 𝑝 = (𝑥,𝑦) can be expressed as

𝑌 (𝑝) =
∑︁
𝑠∈𝑟

𝐹 (𝑝′, 𝑠)𝑋 (𝑠) (14)

where 𝑟 = {(𝑥1, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦1), (𝑥2, 𝑦2)} is the set of stan-
dard neighbor points of point 𝑝′. The bilinear interpolation kernel
𝐹 (𝑝′, 𝑠) in here can be represented as

𝐹 (𝑝′, 𝑠) = 𝑤 (𝑥 ′, 𝑠𝑥 )𝑤 (𝑦′, 𝑠𝑦) (15)

where 𝑤 (𝑎, 𝑏) = max(0, 1 − |𝑎 − 𝑏 |) represents the aggregation
weight based on the distance between point pairs.

By comparing Equation 14 and Equation 9, we can conclude
that upsampling through bilinear interpolation is indeed a spe-
cial instance of LA-AQU. When the aggregate weight of points
{(𝑥1, 𝑦1), (𝑥2, 𝑦1), (𝑥3, 𝑦1), (𝑥1, 𝑦2), (𝑥1, 𝑦3)} of 𝐹 (𝑝′, 𝑠) in Equation 9

equals zero, and the computation results are based on distance, LA-
AQU will degrade into upsampling based on bilinear interpolation.

CARAFE. CARAFE and LA-AQUboth compute dynamic content-
aware aggregation weights for neighboring points of upsampled
points. The distinction lies in LA-AQU using query-related dynamic
features to interactively generate kernel weights, whereas CARAFE
uses a convolutional layer. Moreover, the query-guided weight gen-
eration in LA-AQU enables the model to prioritize features that
closely align with its own content.

DySample. DySample achieves feature upsampling through
sampling. With the deformation mechanism, LDA-AQU achieves
similar effects but employs the query-guided mechanism for neigh-
boring deformation and feature aggregation. Compared to DySam-
ple, LDA-AQU leverages object-specific features effectively, and
the kernel-based upsampling scheme aligns better with human
intuition, i.e., using neighboring points for feature inference.

It is noteworthy that LDA-AQU avoids using the PixelShuffle
operator, in contrast to CARAFE and DySample, enabling it to
achieve any desired multiple of feature upsampling.

3.4 Complexity Analysis
Given an input feature map with the shape of 𝐻 ×𝑊 × 𝐶 , the
overall computational complexity of LDA-AQU can be expressed
as O(2𝐻𝑊𝐶2 + 2𝛼2𝑘2𝑢𝐻𝑊𝐶 + 2𝛼2𝑘2𝑢𝑘2𝑒𝐻𝑊𝐶), with O(2𝐻𝑊𝐶2) for
linear projection, O(2𝛼2𝑘2𝑢𝐻𝑊𝐶) for attention interaction, and
O(2𝛼2𝑘2𝑢𝑘2𝑒𝐻𝑊𝐶) for deformed offsets prediction. Note that we
ignore the computational complexity of depthwise convolution
and positional encoding as they are considerably lower than the
aforementioned blocks. To summarize, LDA-AQU exhibits linear
computational complexity with the number of input tokens.

4 Experiments
4.1 Experimental Settings
We evaluate the effectiveness of proposed LDA-AQU on four chal-
lenging tasks, including object detection, instance segmentation,
semantic segmentation, and panoptic segmentation.

Datasets and Evaluation Metrics. We utilize the challenging
MS COCO dataset [19] to evaluate the effectiveness of LDA-AQU
across object detection, instance segmentation, and panoptic seg-
mentation tasks, respectively. For object detection and instance
segmentaion tasks, we report the standard COCO metrics of Mean
Average Precision (mAP). For the panoptic segmentation task, we
report the PQ, SQ, and RQ metrics [15] as in Dysample [21]. For the
semantic segmentation task, we conduct performance comparison
using the ADE20K dataset [40] and report the Average Accuracy
(aAcc), Mean IoU (mIoU), Mean Accuracy (mAcc) metrics.

Implementation Details. We evaluate the effectiveness of
LDA-AQU using MMDetection [2] and MMSegmentation [5] tool-
boxes. Specifically, we adopt Faster R-CNN [31], Mask R-CNN [11],
Panoptic FPN [14] and UperNet [36] as the baseline models. If un-
specified, the offset groups, local deformation ranges, and channel
size reduction factors are set to 2, 11, and 4, respectively. We use
1× training schedule for object detection, instance segmentation
and panoptic segmentation tasks. For semantic segmentation, the
model is trained for 160K iterations. All other training strategies and
hyperparameters remain the same as in [21] for fair comparison.
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Table 1: Performance comparison of Object Detection onMS COCO based on Faster R-CNN. * denotes that the channel reduction
factor is set to 16 to balance FLOPs and performance. The best is highlighted in bold, and the second best is underlined.

Faster R-CNN Backbone 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿 Params FLOPs Reference

Nearest ResNet-50 37.5 58.2 40.8 21.3 41.1 48.9 46.8M 208.5G -
Deconv ResNet-50 37.3 57.8 40.3 21.3 41.1 48.0 +2.4M +12.6G -
PS [32] ResNet-50 37.5 58.5 40.4 21.5 41.5 48.3 +9.4M +50.2G CVPR16
CARAFE [35] ResNet-50 38.6 59.9 42.2 23.3 42.2 49.7 +0.3M +1.6G ICCV19
IndexNet [24] ResNet-50 37.6 58.4 40.9 21.5 41.3 49.2 +8.4M +46.4G ICCV19
A2U [6] ResNet-50 37.3 58.7 40.0 21.7 41.1 48.5 +38.9K +0.3G CVPR21
FADE [25] ResNet-50 38.5 59.6 41.8 23.1 42.2 49.3 +0.2M +3.4G ECCV22
SAPA-B [26] ResNet-50 37.8 59.2 40.6 22.4 41.4 49.1 +0.1M +2.4G NeurIPS22
DySample [21] ResNet-50 38.7 60.0 42.2 22.5 42.4 50.2 +65.5K +0.3G ICCV23
LDA-AQU* ResNet-50 38.9 60.4 42.4 23.3 42.8 49.7 +41.0K +0.4G -
LDA-AQU ResNet-50 39.2 60.7 42.7 22.9 43.0 50.1 +0.2M +1.7G -

Fig. 5 变形点可视化Figure 5: Visualizations of some upsampled points (first row) and their deformed neighboring points (second row). Colored
rings depict upsampled points, while scatter points of the same color are corresponding deformed neighboring points.

4.2 Object Detection
As shown in Table 1, LDA-AQU outperforms the best model, DySam-
ple, by a large margin of 0.5 AP (39.2 AP v.s 38.7 AP). Moreover,
LDA-AQU incurs only a minor increase in FLOPs and parameters,
nearly matching CARAFE but surpassing it by 0.6 AP. For fair com-
parison, we adjust the channel size reduction factor to 16 to ensure a
comparable FLOPs and parameters to DySample. Results in Table 1
indicate that the LDA-AQU maintains superior performance even
with similar FLOPs and parameters (38.9 AP v.s 38.7 AP).

4.3 Instance Segmentation
As illustrated in Table 2, LDA-AQU improves the performance of
the Mask RCNN by 1.5 bbox AP (39.8 AP v.s 38.3 AP) and 1.5 mask
AP (36.2 AP v.s 34.7 AP), surpassing DySample by 0.2 bbox AP (39.8
AP v.s 39.6 AP) and 0.5 mask AP (36.2 AP v.s 35.7 AP). Considering
the size of the input feature map in mask head is 14× 14, we reduce

the local deformation range of LDA-AQU embedded into the mask
head to 5 to prevent instability in the training process caused by
excessive deformation range. The detailed ablation study of the
deformation ranges on the mask head can be found in Section 4.6.

4.4 Panoptic Segmentation
As shown in Table 3, LDA-AQU surpasses all previous methods by
a significant margin and maintains a similar number of parameters.
For instance, LDA-AQU surpasses DySample by 0.7 PQ (42.2 PQ v.s
41.5 PQ). Even with a strong backbone like ResNet-101, LDA-AQU
still achieves a PQ gain of 1.5 (43.7 PQ v.s 42.2 PQ), surpassing
DySample by 0.7 PQ (43.7 PQ v.s 43.0 PQ).

4.5 Semantic Segmentation
As shown in Table 4, by replacing the upsamplers with LDA-AQU
in the FPN and Multi-level Feature Fusion (FUSE) of UperNet, the
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Table 2: Performance comparison of Instance Segmentation
on MS COCO based on Mask R-CNN.

Mask R-CNN Task Backbone 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿

Nearest Bbox ResNet-50 38.3 58.7 42.0 21.9 41.8 50.2
Deconv ResNet-50 37.9 58.5 41.0 22.0 41.6 49.0
PS [32] ResNet-50 38.5 59.4 41.9 22.0 42.3 49.8
CARAFE [35] ResNet-50 39.2 60.0 43.0 23.0 42.8 50.8
IndexNet [24] ResNet-50 38.4 59.2 41.7 22.1 41.7 50.3
A2U [6] ResNet-50 38.2 59.2 41.4 22.3 41.7 49.6
FADE [25] ResNet-50 39.1 60.3 42.4 23.6 42.3 51.0
SAPA-B [26] ResNet-50 38.7 59.7 42.2 23.1 41.8 49.9
DySample [21] ResNet-50 39.6 60.4 43.5 23.4 42.9 51.7
LDA-AQU ResNet-50 39.8 60.8 43.5 23.8 43.6 51.6

Nearest ResNet-101 40.0 60.4 43.7 22.8 43.7 52.0
DySample ResNet-101 41.0 61.9 44.9 24.3 45.0 53.5
LDA-AQU ResNet-101 41.3 62.3 45.2 24.4 45.5 53.7

Nearest Segm ResNet-50 34.7 55.8 37.2 16.1 37.3 50.8
Deconv ResNet-50 34.5 55.5 36.8 16.4 37.0 49.5
PS [32] ResNet-50 34.8 56.0 37.3 16.3 37.5 50.4
CARAFE [35] ResNet-50 35.4 56.7 37.6 16.9 38.1 51.3
IndexNet [24] ResNet-50 34.7 55.9 37.1 16.0 37.0 51.1
A2U [6] ResNet-50 34.6 56.0 36.8 16.1 37.4 50.3
FADE [25] ResNet-50 35.1 56.7 37.2 16.7 37.5 51.4
SAPA-B [26] ResNet-50 35.1 56.5 37.4 16.7 37.6 50.6
DySample [21] ResNet-50 35.7 57.3 38.2 17.3 38.2 51.8
LDA-AQU ResNet-50 36.2 57.9 38.5 17.3 39.1 52.8

Nearest ResNet-101 36.0 57.6 38.5 16.5 39.3 52.2
DySample ResNet-101 36.8 58.7 39.5 17.5 40.0 53.8
LDA-AQU ResNet-101 37.5 59.2 40.2 17.6 41.1 54.3

Table 3: Performance comparison of Panoptic Segmentation
on MS COCO based on Panoptic FPN.

Panoptic FPN Backbone 𝑃𝑄 𝑃𝑄𝑡ℎ 𝑃𝑄𝑠𝑡 𝑆𝑄 𝑅𝑄 Params

Nearest ResNet-50 40.2 47.8 28.9 77.8 49.3 46.0M
Deconv ResNet-50 39.6 47.0 28.4 77.1 48.5 +1.8M
PS [32] ResNet-50 40.0 47.4 28.8 77.1 49.1 +7.1M
CARAFE [35] ResNet-50 40.8 47.7 30.4 78.2 50.0 +0.2M
IndexNet [24] ResNet-50 40.2 47.6 28.9 77.1 49.3 +6.3M
A2U [6] ResNet-50 40.1 47.6 28.7 77.3 48.0 +29.2K
FADE [25] ResNet-50 40.9 48.0 30.3 78.1 50.1 +0.1M
SAPA-B [26] ResNet-50 40.6 47.7 29.8 78.0 49.6 +0.1M
DySample [21] ResNet-50 41.5 48.5 30.8 78.3 50.7 +49.2K
LDA-AQU ResNet-50 42.2 48.7 32.4 78.6 51.5 +0.1M

Nearest ResNet-101 42.2 50.1 30.3 78.3 51.4 65.0M
CARAFE [35] ResNet-101 42.8 49.7 32.5 79.1 52.1 +0.2M
DySample [21] ResNet-101 43.0 50.2 32.1 78.6 52.4 +49.2K
LDA-AQU ResNet-101 43.7 50.3 33.5 79.6 53.0 +0.1M

mIoU of baseline model has been improved from 39.78 to 42.31,
surpassing CARAFE by 1.31 mIoU and DySample by 1.23 mIoU. In
addition, we also report the aAcc and mAcc metrics of the model. As
depicted in Table 4, the performance of LDA-AQU remains superior
on these two metrics compared to other upsamplers.

4.6 Ablation Study
We conduct ablation studies on MS COCO using Faster R-CNN and
Mask R-CNN to verify the impact of hyperparameters in LDA-AQU.

Local Deformation Ranges. Initially, we assess the impact of
𝜃 in the FPN of Faster R-CNN. As shown in Table 5, setting 𝜃 of
each LDA-AQU to 11 achieves optimal performance (39.2 AP). As
𝜃 decreases, the performance of the model gradually diminishes.

Table 4: Performance comparison of Semantic Segmentation
on ADE20K based on UperNet.

UperNet Backbone aAcc mIoU mAcc

Bilinear ResNet-50 79.08 39.78 52.81
PS [32] ResNet-50 79.34 39.10 50.36
CARAFE [35] ResNet-50 79.45 41.0 52.59
FADE [25] ResNet-50 79.97 41.89 54.64
SAPA-B [26] ResNet-50 79.47 41.08 53.67
DySample [21] ResNet-50 79.82 41.08 53.00
LDA-AQU ResNet-50 80.11 42.31 55.37

Bilinear ResNet-101 80.27 42.52 54.91
DySample [21] ResNet-101 80.30 42.39 55.82
LDA-AQU ResNet-101 80.52 43.41 56.53

Table 5: Performance comparison of various local deforma-
tion ranges in the FPN of Faster R-CNN.

𝜃 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿

5 38.7 60.3 42.0 23.0 42.3 49.8
7 39.0 60.5 42.5 22.9 42.6 50.1
9 39.1 60.6 42.3 23.0 43.0 49.9
11 39.2 60.7 42.7 22.9 43.0 50.1
13 39.0 60.4 42.4 22.8 43.0 50.3

Table 6: Performance comparison of various local deforma-
tion ranges in the mask head of Mask R-CNN.

𝜃 Task 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿

3 bbox 39.6 60.6 43.2 23.7 42.9 51.1
segm 36.0 57.6 38.4 17.3 38.4 52.7

5 bbox 39.7 60.8 43.5 23.8 43.6 51.2
segm 36.2 57.9 38.5 17.3 39.1 52.8

7 bbox 39.4 60.5 43.0 23.1 43.2 50.8
segm 36.0 57.4 38.5 17.1 38.8 52.4

We believe the reason is that a few neighboring points are enough
to cover sufficient information to ensure accurate interpolation.
Therefore, the model prefers to find broader contextual information
as auxiliary items to optimize the upsampling results.

Then, we verify the influence of 𝜃 in the mask head of Mask
R-CNN. As shown in Table 6, when 𝜃 of mask head is set to 5, the
model achieves the best performance. The reason is that the size of
the input feature map of the mask head is 14 × 14, so using a larger
𝜃 will make it difficult for the model to focus on local details.

Offset Groups. We evaluate the impact of the offset groups
on model performance. As shown in Table 7, the model achieves
the optimal performance when the number of groups is set to 2.
Excessive groupings will lead to a decreased size of features utilized
for predicting offsets, thus impeding model learning.

Channel Size Reduction Factors. Finally, we evaluate the
impact of channel reduction factors on model performance. As
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Figure 6: Qualitative comparison between baseline models (first row) and LDA-AQU (second row) across various tasks (i.e.,
object detection, instance segmentation, panoptic segmentation, and semantic segmentation, from left to right).

Table 7: Performance comparison of different offset groups.

Groups 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿

1 38.9 60.3 42.1 22.8 42.5 50.3
2 39.2 60.7 42.7 22.9 43.0 50.1
4 39.0 60.3 42.3 23.0 42.7 50.3
8 38.8 60.2 42.1 23.1 42.6 50.1

Table 8: Performance comparison of various channel size
reduction factors.

Factor 𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑆 𝐴𝑃𝑀 𝐴𝑃𝐿

16 38.9 60.4 42.4 23.3 42.8 49.7
8 38.9 60.3 42.2 23.3 42.8 49.7
4 39.2 60.7 42.7 22.9 43.0 50.1
2 39.4 60.8 42.8 23.7 43.0 50.4

illustrated in Table 8, when the reduction factor is set to 16, LDA-
AQU yields an AP gain of 1.4 for Faster R-CNN (38.9 AP v.s 37.5
AP). By reducing the channel reduction factor, the performance of
the model gradually improved, finally reaching 39.4 AP. In order
to balance the performance and computational complexity of the
model, we set the channel reduction factor of LDA-AQU to 4.

4.7 Visual Inspection and Analysis
In this section, we provide some visualizations and analysis of
deformed neighbor points and results across different tasks. More
visualizations can be found in the supplementary materials.

Deformed Neighboring Points. We visualize the locations of
some upsampled points and their corresponding deformed neigh-
boring points. As shown in Figure 5, LDA-AQU can adaptively ad-
just the position of neighbor points according to the query features

(e.g., the fork in the fourth column). Even in occlusion scenes (e.g.,
third column of Figure 5), LDA-AQU demonstrates a tendency to pri-
oritize the featrues of object itself over the occluder (i.e., branches).

Qualitative Experiments. We also conduct qualitative ex-
periments to verify the effectiveness of LDA-AQU. Specifically,
we visualize the the results of the baseline models (e.g., Faster R-
CNN, Mask R-CNN, etc. ) and LDA-AQU across various visual tasks.
As shown in Figure 6, our model exhibits superior performance,
thereby validating the effectiveness of LDA-AQU.

5 Conclusion
In this paper, we introduce local self-attention into the upsampling
task. Compared with previous methods, the upsampling based on
local self-attention (LA-AQU) naturally incorporates the feature
guidance mechanism without necessitating high-resolution input.
Additionally, to enhance the adaptability of LA-AQU to complex
upsampling scenarios, we further introduce the query-guided de-
formation mechanism and propose LDA-AQU. Finally, LDA-AQU
can dynamically adjust the location and aggregation weight of
neighboring points based on the features of the upsampled point.
Through extensive experiments on four dense prediction tasks, we
evaluate the effectiveness of LDA-AQU. Specifically, LDA-AQU has
consistently demonstrated leading performance across above tasks,
while maintaining a comparable FLOPs and parameters. For fu-
ture work, we intend to explore dynamic local deformation ranges
and investigate additional application scenarios, including image
restoration, image inpainting, downsampling, etc.
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