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1 MORE EXPERIMENTAL DETAILS

We evaluate the effectiveness of LDA-AQU across four dense pre-
diction tasks (i.e., object detection, instance segmentaion, panoptic
segmentaion, and semantic segmentaion) by substituting the base
upsampler (i.e., Nearest Neighbor Upsampler or Bilinear Upsampler)
with LDA-AQU. Following the same process, we further compare
the performance of LDA-AQU with other state-of-the-art upsam-
plers, including CARAFE [14], IndexNet [9], FADE [10], SAPA [11],
DySample [8], etc.

Object Detection. We utilize Faster R-CNN [12] with ResNet [4]
as the baseline model to conduct the performance comparison
between various upsamplers and LDA-AQU on object detection
task using the MS COCO dataset [7]. Specifically, we compare the
performance of various upsamplers by replacing the upsampler
utilized in the Feature Pyramid Network (FPN) [6]. During both the
training and testing stages, the short side of input images is resized
to 800 pixels. We perform performance comparisons and ablation
studies on 4 GPUs with 2 images per GPU. The SGD optimizer
is utilized to train the network with a momentum of 0.9 and a
weight decay of 0.0001. Following previous work [2], we set the
initial learning rate to 0.01. We employ the 1x (12 epochs) training
schedule to train networks, with the learning rate decreasing by a
factor of 0.1 at the 9-th and 11-th epochs.

Instance Segmentation. We utilize Mask R-CNN [3] with
ResNet [4] as the baseline model to conduct the performance com-

parison on instance segmentaion task using the MS COCO dataset [7].

We perform performance comparison by replacing the upsamplers
of FPN and mask head in Mask R-CNN. All other settings remain
the same as for object detection.

Panoptic Segmentation. For panoptic segmentation task, we
use Panoptic FPN [5] with ResNet [4] as the baseline model to con-
duct the performance comparison using the MS COCO dataset [7].
We perform performance comparison by replacing the upsamplers
of FPN in Panoptic FPN. All other settings remain the same as for
object detection.

Semantic Segmentation. For semantic segmentation task, we
utilize UperNet [15] with ResNet [4] as the baseline model to con-
duct the performance comparison using the ADE20K dataset [16].
We train the model on 4 GPUs with 2 images per GPU. We utilize
the SGD optimizer with an initial learning rate of 0.005, a momen-
tum of 0.9, and a weight decay of 0.0005. The models are trained
for 160K iterations, utilizing the Poly learning rate policy with a
power of 0.9 and a min_Ir of 0.0001.

2 MORE ABLATION STUDIES

As in the main text, all ablation studies are conducted on models
based on Faster R-CNN [12] and ResNet-50 [4] using the MS COCO
dataset [7].

Kernel Sizes. We verify the impact of different kernel sizes of
information encoding k. and neighboring points k;, in LDA-AQU on

model performance. As illustrated in Table 1, the impact of k. and
ki, on model performance is not as significant as that of the local
deformation ranges. Larger values of k. and ky, typically result in
greater performance improvements, but they also lead to a notable
increase in computational complexity and parameters. Therefore,
we prefer to set ke and ky, to a kernel size of 3 X 3 to achieve a better
balance between computational complexity and performance.

Table 1: Performance comparison of various kernel sizes in
the FPN of Faster R-CNN.

ke ku| AP APsy APss | APs APy APL

389 605 423 | 228 424 50.1
39.1 604 428 | 233 433 499
39.2  60.7 42.7 | 229 43.0 50.1
39.2 605 42,6 | 23.2 429 50.2
393 608 427 | 233 433 503
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Upsampling scheme. We also evaluate the impact of differ-
ent upsampling methods for the queries in LDA-AQU on model
performance. As shown in Table 2, the nearest neighbor interpola-
tion upsampler performs the same as the bilinear upsampler, with
an AP of 39.2. However, their detection performance on objects
of different scales differs significantly. We posit that, due to the
higher resolution of feature maps utilized for detecting small ob-
jects, employing nearest neighbor points as precise object features
to guide the upsampling task is more appropriate. In contrast, for
low-resolution feature maps with a notable semantic gap between
points, bilinear interpolated features are preferred for guiding the
upsampling task due to their greater resemblance to the features of
the objects.

Table 2: Performance comparison of different upsampling
methods for query upsampling in LDA-AQU.

Method | AP APsy AP;5 | APs APy APp

Nearest | 39.2 60.6 423 | 23.8 42.7 503
Bilinear | 39.2 60.7 427 | 229 43.0 50.1

3 OBJECT DETECTION ON PASCAL VOC

We further evaluate the effectiveness of LDA-AQU on Pascal VOC
dataset [1]. Specifically, we utilize the VOC 2012 and VOC 2007
trainval splits for model training, and evaluate their performance
across different models on the VOC 2007 test split. We resize both
the training and test images to 640 X 640, ensuring consistency
with the training strategy and hyperparameters employed in the
experiments conducted on MS COCO. Similarly, we employ Faster
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Table 3: Performance comparison of Object Detection on Pascal VOC based on Faster R-CNN (F-RCNN). The best in each column

is highlighted in bold, and the second best is underlined.

2 b"b | % A 2 @ A & )
FRON (2] map|§ [ SIS Is|s|e|F s TSI FE T SIF e
Nearest 787 [80.5 |87.5 [78.1|67.266.3 [36.1 [87.5 [89.263.5 84,6 [74.1 [87.8 [87.080.8 |80.1 |52.3 |78.5 [80.2[85.3 |76.5
Deconv 77.7 (807 | 80.7 79.3 6.8 64.9|86.3[87.1(88.5 |61.8 [84.4|74.6 [87.0[85.8|79.7 | 79.8 |51.8 | 77.1 |79.7 [86.4[71.1
PS [13] 785 [81.0| 810 |78.4|66.4(65.9(85.4[87.4[89.1|62.2[86.3 745 87.5|87.8|79.980.0 |51.6 |84.0 [79.5 85.2|77.5
CARAFE [14] 792 [81.1|812 [79.2 [73.3/65.8 |86.3 |85.1 [89.0 |63.0 |84.8 [73.4|85.2 |85.0|80.2 | 80.2 [53.2 [84.8 |81.3|86.1 76.3
FADE [10] 793 [81.5 [81.1 |79.2|68.1 6.4 [85.8 [88.1[89.1|63.9 |86.4 |75.4 [87.5 [88.4|87.0| 80.2 [53.9|79.7 [82.4|86.1 |76.4
SAPA-B[11]  79.9 |87.0 | 86.8 [79.7 |72.9 |65.9 [85.9 [87.8|85.7 [63.4 86.6[75.1 88.9]89.0|86.2 |80.0 51.9 [78.9 80.085.5 |77.9
DySample [8]  78.9 80.9 | 81.0 [80.166.3 |66.3 86.8(87.989.3 /64.4 |36.3 [75.9 [87.9 [88.4|86.5 |80.2 |51.4 |79.3 [82.0|79.8 [77.4
LDA-AQU (ours) 80.3 88.8|81.0 79.1[72.7 |67.3 86.8|88.3(85.7 |63.5 |36.4 [79.2|88.7 [88.6 |86.8 |80.4 |53.2 |79.8 82.6/85.9 [78.4

80.5

Mean Average Precision
~ ©
© S
o o

~
©
=)

785

T T T T T T T
9 11 13 15 17 19 21
Local Deformation Range

Figure 1: Performance comparison of different local defor-
mation ranges in LDA-AQU on the Pascal VOC dataset.

R-CNN [12] with nearest neighbor interpolation as the baseline
model and compare the effects of different upsampling methods by
modifying the upsamplers implemented in FPN.

Comparision with Other State-of-the-Art Upsamplers. As
illustrated in Table 3, our LDA-AQU achieves the best performance
with an AP of 80.3, surpassing the baseline model by 1.6 AP (80.3
AP vs. 78.7 AP).

Ablation Study of Local Deformation Ranges. Then, we
evaluate the impact of varying the local deformation ranges in
LDA-AQU on the Pascal VOC dataset. As depicted in Figure 1, the
model achieves optimal performance when 6 is set to 19. This is
attributed to the larger object scale typically in the Pascal VOC
dataset compared to the MS COCO dataset, necessitating a higher
value of 6 to achieve better shape matching with the objects.

4 MORE VISUAL INSPECTION AND ANALYSIS

We augment our study with additional visualizations, including
illustrations of deformed neighboring points, alongside qualitative
experiments conducted across the aforementioned four tasks. All
visualizations are based on the backbone network of ResNet-50 [4].

Deformed Neighboring Points. As shown in Figure 2, we visu-
alize more upsampled points (i.e., queries) and their corresponding
deformed neighboring points. Many examples in Figure 2 demon-
strate that our LDA-AQU can adaptively adjust the position of
neighboring points according to the shape (e.g., umbrella, pole, leg,

etc. ) and context (e.g., boundary of two different objects) of the
objects, thereby focusing more on features related to the queries.

Qualitative Experiments on Object Detection. As depicted
in Figure 3, we visualize more object detection results to compare
the effects of Faster R-CNN with Bilinear Interpolation (BI) and
Faster R-CNN with LDA-AQU.

Qualitative Experiments on Instance Segmentation. As
illustrated in Figure 4, we present additional instance segmentation
results to compare the performance of Mask R-CNN with BI and
Mask R-CNN with LDA-AQU.

Qualitative Experiments on Panoptic Segmentation. In
Figure 5, we present additional panoptic segmentation results, com-
paring the effectiveness of Panoptic FPN with BI and Panoptic FPN
with LDA-AQU.

Qualitative Experiments on Semantic Segmentation. In Fig-
ure 6, we present more semantic segmentation results, comparing
the effectiveness of UperNet with BI and UperNet with LDA-AQU.
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Figure 2: Visualization of upsampled points (colored rings) and their corresponding deformed neighboring points (scatters
with the same color as the rings). Different groups of images are separated by black dotted lines, with the first row of each
group representing the upsampled points and the second row representing the corresponding deformed neighboring points.
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Figure 3: Visualization of prediction results based on Faster R-CNN on MS COCO. Different groups of images are separated
by black dotted lines, with the first row of each group representing the results of Faster R-CNN w/ BI and the second row
representing the results of Faster R-CNN w/ LDA-AQU.
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Figure 4: Visualization of prediction results based on Mask R-CNN on MS COCO. Different groups of images are separated
by black dotted lines, with the first row of each group representing the results of Mask R-CNN w/ BI and the second row
representing the results of Mask R-CNN w/ LDA-AQU.
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Figure 5: Visualization of prediction results based on Panoptic FPN on MS COCO. Different groups of images are separated
by black dotted lines, with the first row of each group representing the results of Panoptic FPN w/ BI and the second row
representing the results of Panoptic FPN w/ LDA-AQU.
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Figure 6: Visualization of prediction results based on UperNet on ADE20K. Different groups of images are separated by black
dotted lines, with the first row of each group representing the results of UperNet w/ BI and the second row representing the
results of UperNet w/ LDA-AQU.
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