Under review as a conference paper at ICLR 2023

A GENERATING EXPERIMENTAL CONFIGURATIONS, EXTENDED

In this section we detail how we use SpotCheck to generate random experimental configurations.

e In Section A.1, we define the different types of semantic features that can appear in each image.

e In Section A.2, we define a synthetic image dataset, how we generate random datasets, and how
we sample images from a dataset.

e In Section A.3, we define a blindspot for a synthetic image dataset, how we generate a random
blindspot, and how we generate an unambiguous set of blindspots.
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A.1 SEMANTIC FEATURES

Table 5 defines all of the semantic features that Spot Check uses to generate synthetic images.
We call these semantic features Aftributes and group them into Layers based on what part of an
image they describe. Each Attribute has two possible Values: a Default and Alternative Value. Each
synthetic image has an associated list of (Layer, Attribute, Value) triplets that describes the image.
Figure 8 shows this triplet list for two synthetic images.

We sometimes refer to the Square/Rectangle/Circle/Text Layers as Object Layers because they all
describe a specific object that can be present in an image. The location of each object within an image
is chosen randomly, subject to the constraint that each object doesn’t overlap with any other object.

Table 5: The Layers and Attributes that define the synthetic images.

Layer | Attribute | Default Value | Alternative Value
Background Color White Grey

Texture Solid Salt and Pepper Noise
Square/Rectangle/Circle/Text | Presence | False True

Size Normal Small

Color Blue Orange

Texture Solid Vertical Stripes
Square (continued) Number | 1 2
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A.2 DEFINING A DATASET USING THESE SEMANTIC FEATURES

At a high level, SpotCheck defines a Dataset by deciding whether or not each Attribute of each
Layer is Rollable (i.e., the Attribute can take either its Default or Alternative Value, uniformly at
random) or not Rollable (i.e., the Attribute only takes its Default Value). We measure a Dataset’s
complexity using the number of Rollable Attributes it has. Figure 8 describes the Rollable and Not
Rollable Attributes for an example Dataset.

Generating a Random Dataset. We start by picking which Layers will be part of the Dataset:

e Images need a background, so all Datasets have the Background Layer.

o The task is to predict whether there is a square in the image, so all Datasets have the Square Layer.

e We add 1-3 (chosen uniformly at random) of the other Object Layers (chosen uniformly at random
without replacement from the set {Rectangle, Circle, Text}) to the Dataset.

Once the Layers are chosen, we make 6-8 (chosen uniformly at random) of the Attributes Rollable:

e Each Object Layer has its Presence Attribute made Rollable.

e Then, the remaining Rollable Attributes are chosen by iteratively:
% Selecting a Layer uniformly at random from those that have at least one Not Rollable Attribute.
% Selecting an Attribute from that Layer uniformly at random from those that are Not Rollable.

Sampling an Image from a Dataset. Once a Dataset’s Rollable Attributes have been defined,
generating a random image is straightforward:

e For each Attribute from each Layer in the Dataset, we pick a random Value if the Attribute is
Rollable. Attributes that are Not Rollable will take their Default Value.
% If the Layer is an Object Layer:
o If the Presence Attribute is True, the location of the object is chosen randomly (subject to
the non-overlapping constraint).
o If the Presence Attribute is False, the object will not be rendered (regardless of the Values
chosen for the other Attributes of this Layer).
e We then use the resulting (Layer, Attribute, Value) triplet list and the list of object locations to
render a 224x224 RGB image.
o Finally, we calculate any MetaAttributes (explained next) and append these (Layer, MetaAttribute,
Value) triplets to the image’s definition list.

Calculating MetaAttributes. While each Attribute corresponds to a semantic feature, there are a
potentially infinite number of MetaAttributes that one could calculate as semantically meaningful
functions of an image. We list the MetaAttributes that we calculate in our experiments in Table
6. Because this space is infinitely large and grows with the number of Attributes, we exclude
MetaAttributes from our measure of Dataset complexity.
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Dataset Definition: Background: {Color: False,
Rollable Attributes Texture: True}

Square: {Presence: True,
Size: False,
Color: True,
Texture: True,
Number: False}

Text: {Presence: True,
Size: False,

Color: True,
Texture: False}

Example Image #1 (Background, Texture, Solid),

(Square, Presence, True),
(Square, Color, Blue),
(Square, Texture, Vertical
Stripes),

text (Text, Presence, True),
(Text, Color, Orange}

Example Image #2 (Background, Texture, Salt &
Pepper),

(Square, Presence, False),
(Square, Color, Blue),
(Square, Texture, Solid),

}éxf¥:&;,i

A (Text, Presence, True),
s (Text, Color, Blue)

Figure 8: Top Row. The definition of an example Dataset generated by Spot Check. Notice that
this Dataset has 3 Layers and 6 Rollable Attributes. Middle/Bottom Row. Two example images
generated from this Dataset along with their (Layer, Attribute, Value) triplet lists. Notice that Not
Rollable Attributes in this Dataset take on their Default Values in these images and are not in the
images’ triplet lists.
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Table 6: The MetaAttributes that we calculate for each synthetic image.

Layer | MetaAttribute | Value | Meaning

Background | Relative Position | 1 Square is above the horizontal centerline of the image
0 Square is bellow the horizontal centerline of the image
-1 No Square
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A.3 DEFINING THE BLINDSPOTS FOR A DATASET

SpotCheck defines a Blindspot using a list of (Layer, (Meta)Attribute, Value) triplets. We measure
a Blindspot’s specificity using the length of its definition list. An image belongs to a blindspot if and
only if the Blindspot’s definition list is a subset of the image’s definition list. Figure 9 shows two
example Blindspots.

Generating a Random Blindspot. SpotCheck generates a random Blindspot consisting of 5-7
(chosen uniformly at random) (Layer, (Meta)Attribute, Value) triplets for a Dataset by iteratively:

o Selecting a Layer (uniformly at random from those that have at least one Rollable Attribute® that is
not already in this Blindspot)
e Selecting a Rollable Attribute from that Layer:

% Object Layers: If the Layer’s Presence Attribute is not in this Blindspot, select its Presence
Attribute. Otherwise, select an Attribute uniformly at random from those that are not already in
this Blindspot and set the Layer’s Presence Attribute Value to True for this Blindspot.

% Background Layers: Select an Attribute uniformly at random from those that are not already in
this Blindspot.

e Selecting a Value for that Attribute (uniformly at random)

Notice that, if an Object Layer is selected more than once, then we ensure that the Object’s Presence
Attribute has a Value of True in the Blindspot definition. We enforce this Feasibility Constraint to
ensure that every triplet in the Blindspot’s definition list correctly describes the images belonging to
the Blindspot (e.g., [(Circle, Presence, False), (Circle, Color, Blue)] is infeasible because an image
with a blue circle must have a circle in it).

Generating an Unambiguous Set of Blindspots. For each Dataset, we generate 1-3 (chosen
uniformly at random) Blindspots using the process described above. However, when generating
multiple blindspots, they can be ambiguous which causes problems when using them to evaluate
BDMs.

Definition. A set of Blindspots, S1, is ambiguous if there exists a different set of Blindspots, Sa, such
that both:

1. The union of images belonging to 57 is equivalent to the union of images belonging to S;. As a
result, S7 and S2 would both correctly describe the model’s blindspots.

2. An evaluation that uses Discovery Rate (Equation 6) would penalize a BDM if it returns S5 instead
of S1. More precisely, DR(S2,51) < 1for A, = A\, = 1.

Example. Suppose that we have a very simple Dataset with two Rollable Attributes, X and Y which
are uniformly distributed and independent, and consider two different sets of Blindspots for this
Dataset:

L] Sl = {Bl,Bg} where Bl = [(X
e Sy = {B], By} where B] = [(X

1)]and By = [(X =0),(Y
1

, )
), (Y =0)]and By = [(Y =1

)]

Then, S is ambiguous because:

e 57 and S5 induce the same behavior in the model: they both mislabel an imageif X =1VY = 1.
e A BDM would be penalized for returning S5:

BP(B,, B1) = 1.0 ABP(By, By) = 0 A BP(By, B) = BP(By, B) = 0.5 —>
BR(Ss, B1) = 0.5 ABR(Sy,By) =0 —>
DR(527SI) =0

In fact, for this example, there are only two sets of two unambiguous Blindspots, ({[(X = 0), (Y =
0], [(X =1),(Y = 1)]} and {[(X = 0),(Y = 1],[(X = 1),(Y = 0)]}), and there exists no
unambiguous set of three Blindspots.

Preventing Ambiguity. In general, ambiguity occurs whenever the union of two blindspots forms a
contiguous region in the discrete space defined by the Rollable Attributes. Consequently, we prevent

3 All MetaAttributes are considered to be “Rollable” when generating a random Blindspot.
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ambiguity by ensuring that any pair of blindspots has at least two of the same Rollable Attributes
with different Values in their definition lists. We call this the Ambiguity Constraint.

Implications of the Ambiguity and Feasibility Constraints. In our experiments, our goal is to generate
experimental configurations with a diverse set of Datasets and associated Blindspots. However, the
Ambiguity Constraint (AC) and Feasibility Constraint (FC) limit the number of valid Blindspots for
any specific Dataset.

To see this, notice that the AC places more constraints on each successive Blindspot added to an
experimental configuration. This has two implications. First, that generating an experimental configu-
ration with more Blindspots requires a Dataset with more Rollable Attributes (more complexity) and
Blindspots with more triplets (more specificity). Further, because we cannot set the Attribute Values
of a Blindspot’s triplets independently of each other [FC], we need more complexity and specificty
than a simple analysis based only on the AC suggests. Second, that each successive Blindspot is more
closely related to the previous ones which means that larger sets of Blindspots are “less diverse” or
“less random” in some sense.

With these trade-offs in mind, we generated experimental configurations with:

Background, Square, and 1-3 other Object Layers
A total of 6-8 Rollable Attributes

1-3 Blindspots

5-7 triplets per Blindspot

because an experimental configuration with any combination of these values is able to satisfy the AC
and the FC while still having a diverse set of Blindspots.

Blindspot #1
(Background, Texture, Salt & Pepper), (Background, Texture, Salt & Pepper),
(Square, Presence, True), (Square, Presence, True),
(Square, Color, Orange), (Square, Color, Orange),
(Square, Texture, Striped), (Square, Texture, Striped),
(Text, Presence, True) (Text, Presence, True),
(Text, Color, Orange)

“images with salt & pepper backgrounds
blue striped squares

“images with salt & pepper backgrounds,

blue striped squares,

and text” and orange text”
Example Images
e e e e e e e e e e e e e e e e e — e — = — — ~

I' \

|
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I “text -text‘ I
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Figure 9: Two example Blindspots, Blindspot #1 (Left) and Blindspot # 2 (Right) for the example
Dataset from Figure 8. Each Blindspot is defined by a list of (Layer, (Meta)Attribute, Value) triplets
as shown above. We also display example images belonging to each Blindspot: all of the images
inside of the blue border belong to Blindspot #1, while only the subset of images inside of the orange
border belong to Blindspot #2. In this example, Blindspot #2 is more specific (defined using 6
semantic features) than Blindspot #1 (defined using 5 semantic features).
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B HOW DO OUR DEFINITIONS OF “BELONGING TO” AND “COVERING” BUILD
ON SIMILAR IDEAS IN EXISTING WORK?

At a high level, we refine these ideas so that they better reflect the fact that, in practice, a user is going
to look at the hypothesized blindspots returned by a BDM in order to come to conclusions about the
model’s true blindspots. This entails making three specific changes.

First, our definition of “belonging to” uses a high, in absolute terms, threshold for A, (i.e., 0.8) in
order to minimize the amount of noise the user has to deal with when determining the semantic
definition of a blindspot. This is in contrast to a relative definition (e.g., better than random chance)
which would lead to significant amounts of noise for uncommon blindspots. For example, Table 2
from Sohoni et al. (2020) shows that as few as one in seven images in the hypothesized blindspots are
actually from the true blindspots for the Waterbirds and CelebA datasets. While better than random
chance, the output of the BDM is still very noisy, which is likely to create problems for the user.

Second, our definition of “covering” incorporates blindspot recall in order to prevent the user from
coming to conclusions that are too narrow. For example, consider the middle row of Figure 5
from Eyuboglu et al. (2022). In these examples, the blindspots are defined as “people wearing
glasses,” “people with brown hair,” or “smiling people.” However, the BDM returns images that are
of “men wearing glasses,” “women with brown hair, and “smiling women.” As a result, the user
may incorrectly conclude that the model is exhibiting gender bias because the BDM led them to

conclusions that are too narrow.

Third, our definition of “covering” allows for hypothesized blindspots to be combined in order to take
advantage of the user’s ability to synthesize what they see and come to more general conclusions,
which is something that would be very challenging to do algorithmically. Experimentally, we observe
that this combining is essential for some of these BDMs to work on SpotCheck. Further, in
Appendix F, we qualitatively observe that this useful for real problems as well. For example, the “ties
without people” blindspots includes a set of images of “cats wearing ties” that are separate, in the
model’s representation space, from the other images in the blindspot and that, as a result, are likely to
be returned separately by a BDM.
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C HYPERPARAMETER TUNING

To tune hyperparameters, we use a secondary set of 20 ECs to calculate BDM DR and FDR. While
some of these BDMs have multiple hyperparameters, we focused on the main hyperparameter for
each BDM and left the others at their default values.

Barlow (Singla et al., 2021). The main hyperparameter is the maximum depth of the decision tree
whose leaves define the hypothesized blindspots. The results of the hyperparameter search are in
Table 7.

Spotlight (d’Eon et al., 2021). The main hyperparameter is the minimum weight assigned to a
hypothesized blindspot. The results of the hyperparameter search are in Table 8.

Domino (Eyuboglu et al., 2022). The main hyperparmeter is v which controls the relative importance
of coherence and under-performance in the hypothesized blindspots. The results of the hyperparameter
search are in Table 9.

PlaneSpot. For our BDM, the main hyperparameter is w which controls the weight of the model-
confidence dimension relative to the two spatial dimensions from the scvis embedding. The results of
the hyperparameter search are in Table 10.

Table 8: The hyperparameter tuning results for
Spotlight. We use a minimum weight of 0.01 in
our experiments. In Figure 2 we show that, de-
spite the fact that 0.01 and 0.02 have very similar
average results, they behave very differently.

Table 7: The hyperparameter tuning results for

Barlow. For maximum depths of 11 and 12, we Minimum Weight DR FDR

noticed that Barlow’s outputs matched exactly 0.005 0.49 0.04
for all of the configurations. This indicates that 0.01 0.88 0.06
it never learned a decision tree of depth 12. As 0.02 0.88 0.08
a result, we use a maximum depth of 11 for our 0.04 048 0.00
experiments.
Table 9: The hyperparameter tuning results for
Maximum Depth DR FDR Domino. We use v = 10 in our experiments.
3 0.07 0.0 v DR  FDR
4 0.14 00 5 048 0.06
5 0.19 0.0
10 0.72 0.03
6 0.27 0.12
15 0.70 0.06
7 0.36  0.15 20 060 009
8 0.37 0.09 -
9 043 0.11 .
10 043  0.08 Table 10: The hyperparameter tuning results for
11 048 0.07 PlaneSpot. We use w = 0.025 in our experi-
12 048 0.07 ments.
w DR FDR
0 0.57 0.00

0.025 095 0.00
0.05 0.88 0.00
0.1 0.87 0.00
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D WHY ARE THESE BDMS FAILING?

In this section, we are going to try to identify, from a methodological standpoint, why these BDMs
are failing. We start by defining some additional metrics that allow us to understand why a BDM
failed to cover a specific true blindspot. Then, we describe how we average those metrics across our
ECs to observe general patterns. Finally, we give some possible explanations for the observed trends.

Explaining a Specific Failure. Given the output of a BDM, ¥, we want to understand why it failed
to cover a specific true blindspot, ¥ ,,. To do this, we measure the fraction of the images in that true
blindspot, i € U,,,, that fall into each of four categories:*

e | was not returned by the BDM. Intuitively, this tells us how often the BDM does not show an
image to the user that it should. Specifically, this means that i ¢ Uy, Vk.

e 4 is found by the BDM. Intuitively, this tells us how close the BDM is to covering W ,,. Specifically,
this means that 3k | i € W), A BP(W, U,,,) > A,,.

e ¢ was part of a merged blindspot according to the BDM. Intuitively, this tells us how often the
BDM merges multiple true blindspots into a single hypothesized blindspot. Specifically, this means
that 3k | i € N BP(\i/k, Um %) > Ap. Note that BP(\if;g, Upm ¥, ) measures the fraction of the

images in 0}, that belong to any true blindspot.
e ¢ was part of a impure blindspot according to the BDM. Intuitively, this tells us how often the BDM
includes too many images that do not belong to any true blindspot into a hypothesized blindspot.

Specifically, this means that BP(Uy, U, ¥,,,) < A, (VE | i € ¥y,).

Averaging to gain more general patterns. While these metrics can help us understand why a BDM
failed to cover a specific true blindspot from a specific EC, we want to arrive at more general results.
To do this, we first average these metrics across the true blindspots in an EC that are not covered by
the BDM, {¥,,, | BR(¥, ¥,,) < ), }, and then average them across the ECs where the BDM did not
cover all of the true blindspots, {® | DR(¥, ¥) = 1}. Table 11 shows the results.

Explaining observed trends. Our main observation is that a significant portion of all of the BDMs’
failures can be explained by the fact that they tend to merge multiple true blindspots into a single
hypothesized blindspot. However, this raises the question: is the a failure of the BDMs or are
they simply inheriting the problem from their image representation, which is failing to separate the
true blindspots? To address this question, we manually inspected the 2D scvis embedding used by
PlaneSpot, which exhibits this failure the most strongly, for the 10 ECs where at least 50% of the
images in the true blindspots that were not covered belonged to a hypothesized blindspot that merges
multiple true blindspots. For 8 of those 10 ECs, the true blindspots were easily visually separable in
this 2D embedding, which means that the true blindspots are also separable in the original image
representation. Consequently, we conclude that this is a failing of the BDMs.

Additionally, we make two less significant observations. First, that Spotlight is the only BDM that
fails to return a non-trivial fraction of the images that it is should. Because it is the only BDM that
does not do this, we suggest that BDMs should partition the entire input space (including partitions
that do not have higher than average error). Second, that Barlow is the only that has more failures
due to returning impure hypothesized blindspots than merged blindspots. Between this and Barlow’s
generally poor performance, this suggests that axis-aligned decision trees are not a particularly
promising hypothesis class for BDMs.

Table 11: The average value of each of the four metrics we use to explain why a BDM failed to cover
a true blindspot.

Method Not Returned Found Merged Impure
Barlow 0.02 0.15 0.39 0.44
Spotlight 0.13 0.46 0.33 0.04
Domino 0.0 0.38 0.36 0.24
PlaneSpot 0.0 0.0 0.57 0.42

“Every image, i, falls into exactly one of these categories. The definition of each category is written under
the assumption that ¢ does not fall into any of the previous categories.
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E COCO EXPERIMENTS, DETAILS

We detail the methodology used to generate ECs using the COCO dataset (Lin et al., 2014).

E.1 PREDICTION TASK & DATA PREPROCESSING

COCO is a large-scale object detection dataset. We use the 2017 version of the dataset. We re-sample
from the given train-test-validation splits to have a larger test set of images for use in blindspot
discovery. Our final train, test, and validation sets have 66874, 44584, and 11829 images respectively.

Prediction Task. We define the binary classification task as detecting whether an object belonging to
some super-category (containing multiple of the 80 object categories) is present in the image. In our
experiments, each EC is associated with 1 of 3 different super-category prediction tasks: detecting if
an animal (e.g., a dog, cat, etc), a vehicle (e.g., a car, airplane, etc), or a furniture item (e.g., a chair,
bed, etc) are present in an image. We use the super-category definitions provided in the COCO paper
(Lin et al., 2014). We sample ECs from multiple (as opposed to only a single) prediction tasks so that
we have a larger number of possible blindspot definitions.

EC Preprocessing. For each EC, we use the EC’s prediction task to down-sample the original COCO
dataset to ensure that the dataset’s blindspots are identifiable (i.e.,, so that there is no ambiguity
or overlap in the blindspots we induce in our models). Specifically, we drop all images that have
more than 1 unique object category belonging to the task super-category (e.g.,, if the task is to detect
animals, we drop all images that have both a dog and a cat). We also down-sample so that the final
train, test, and validation sets are all class-balanced.

E.2 BLINDSPOT DEFINITIONS

All blindspots in our ECs are defined using an object category that is a subset of those belonging to
the task super-category. For example, an EC with the “animal” prediction task can have the blindspot
“zebra”, as the zebra object category belongs to the animal super-category (Figure 5).

Specificity. To measure the effect of blindspot specificity, we generate two different types of
blindspots: more and less specific. Less-specific blindspots are defined using only one object
category, such as the “zebra” blindspot. More-specific blindspots are defined using two object
categories. Like the less-specific blindspots, one of the object categories must belong to the task
super-category (e.g.,, must be an animal for an animal prediction EC). But, the second object category
used to define a more-specific blindspot must not belong to the task super-category. For example, the
second object can be “person” (but not “dog”) because a person is not an animal.

Each more-specific blindspot is then defined using (1) the presence of the object belonging to the
super-category, and (2) either the presence or absence of the object outside of the super-category.
For example, valid blindspot definitions include “images of elephants with people” (task: animal),
“images of bicycles without a backpack” (task: vehicle), or “images of dining tables with forks” (task:
furniture item). We chose to allow some blindspots to be defined using the absence of a second object
inspired by the past observation that models can incorrectly rely on the presence of spurious artifact
objects instead of identifying the true object class (Plumb et al., 2022), consequently underperforming
on images without these artifacts.

E.3 MODEL TRAINING

Similarly to our experiments using SpotCheck, we induce true blindspots by training with the
wrong labels for images belonging to blindspots. For each EC, we train a Resnet-18. We perform
model selection by picking the model with the best validation set loss.

Validating that models learn the induced blindspots. Because real data is more complex than
synthetic data, it is possible that even when we train with the wrong labels for a particular subgroup,
the model may not underperform on other images belonging to the subgroup. We call this behavior
failing to induce a true blindspot. For each true blindspot, we measure if the blindspot was successfully
induced by comparing the model’s performance on images belonging to, vs. outside of the blindspot
in the separate fest ser. We only retain ECs where the model has at least a 20% recall gap inside vs.
outside of the blindspot.
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E.4 ECs: GENERAL PooOL

We began our analysis by replicating the procedure we used to sample random ECs using
SpotCheck as closely as possible. Recall that when using SpotCheck to measure the effect
of various factors, we generated a pool of ECs where each factor (e.g.,, the number of model
blindspots and each blindspot’s specificty) were chosen independently. We repeat this general
procedure using the COCO dataset, and call these ECs the “General Pool”.

We provide pseudocode that we use to sample a pool of N = 90 ECs:

e For each super-category prediction task in {animal, vehicle, furniture item }:
% For each number of blindspots in [1, 2, 3]:
e Generate 10 experimental configurations. For each configuration:
% For each blindspot, choose the blindspot’s definition:
e Choose the blindspot’s specificity uniformly at random from {More-Specific, Less-

Specific}.

e Choose an object category that belongs to the task super-category uniformly at random
from those that were not already used in the EC’s other blindspots.
o If the blindspot is more-specific:

% Choose a second object category that does not belong to the task super-category
uniformly at random from those that are eligible. An object category is eligible if
it has not yet been used to define another of the ECs blindspots, and if both the
intersection and set difference of the first and second object categories have at
least 100 images in the train set. We impose these eligibility constraints to avoid
selecting blindspots that are too small, as we hypothesize that larger blindspots
may be easier to induce.

% Choose if the blindspot will be defined using the {Presence, Absence} of the
second object uniformly at random.

Note that for each EC sampled using the above pseudocode, the EC’s number of blindspots and each
indivudal blindspot’s specificity are selected independently.

Table 12: Counts the retained ECs in the general pool (where all blindspots are successfully induced)
for each prediction task and number of blindspots.

Prediction Task \ Number of blindspots \ Count of (ECs retained for analysis) / (total ECs sampled)

10/10
8710
7/10

8/10
6/10
5/10

8/10
6/10
7/10

animal

furniture

vehicle

W= W= W=

Summary Statistics. Of the 90 sampled ECs in the general pool, we retain 65 for our analysis,
dropping 25 where we failed to induce the sampled blindspot. Table 12 summarizes the prediction
tasks and number of blindspots in the retained general pool of ECs.

E.5 ECs: CONDITIONED POOLS

Number of Blindspots: Conditioned Pool. We provide pseudocode that we use to sample a pool of
N = 84 ECs. We hold each blindspot’s specificity constant and only sample less-specific blindspots.

Before sampling the conditioned pool ECs, we first train several models where for each model, we try
to induce a single COCO object category as a blindspot. We sample the blindspots for the conditioned
distribution only from the subset of C' object categories that were successfully induced as singleton
blindspots.
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o For each super-category prediction task in {animal, vehicle, furniture item }:
% For each number of blindspots in [1, 2, 3]:
e Using the C' object categories that belong to the task super-category and that were able to be
learned as singleton blindspots, sample up to N = 20 ECs from the list of C' nCr (number
of blindspots) possible combinations.

We only have 22 ECs with 1 (singleton) blindspot because there are only 22 total object categories
that can be induced as singleton blindspots. All blindspots were successfully induced for the 84
sampled ECs. To measure the effect of the number of blindspots, we compare BDM performance the
22,30, and 30 ECs with 1, 2, and 3 blindspots respectively.

Blindspot Specificity: Conditioned Pool. We provide pseudocode that we use to sample a pool
of N = 70 ECs. We hold the number of blindspots constant and only sample ECs with a single
blindspot.

e For each super-category prediction task in {animal, vehicle, furniture item }:
% Using the C' object categories that belong to the task super-category and that were able to be

learned as singleton blindspots, construct a list of all of the eligible blindspots:

o For the less-specific blindspots, all C' sub-categories are eligible.

e For the more-specific blindspots, we define eligibility equivalently to the general pool: i.e.,
for each C' object categories belonging to the task super-category, a second object category
(that does not belong to the task super-category) is a eligible if both the intersection and set
difference of the first and second object categories have at least 100 images in the train set.
Concretely, the list of eligible blindspots consists of all eligible pairs of objects with both
options of whether the blindspot is defined using the {Presence, Absence} of the second
object.

e From the list of eligible blindspots, sample up to 20 ECs (each with 1 blindspot) without
replacement.

Of the 60 generated more-specific ECs, we retain 48 ECs for analysis, dropping the 12 ECs where
we failed to induce the sampled blindspot. Like the other conditioned pool, there are only 22 possible
less-specific ECs. To measure the effect of blindspot specificity, we compare BDM performance on
the 48 more-specific to the 24 less-specific ECs.
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F OBSERVATIONS FROM A QUALITATIVE INSPECTION OF REAL DATA

In Section D, we used the 2D scvis embedding of the model’s learned representation as an analysis
tool to determine that these BDMs’ tendency to merge true blindspots is a failing of the methods
themselves. In this Section, we do something similar and qualitatively inspect that 2D embedding for
models trained on real image datasets in order make additional observations that may be relevant to
the design of future BDMs.

A low-dimensional embedding can work for real data. In the next subsections, we demonstrate
that this 2D embedding contains the information required to identify a wide range of blindspots from
prior work and to identify novel blindspots. As a result, it seems that dimensionality-reduction is a
potentially important aspect of BDM design or that an interactive approach based on this embedding
could be effective.

Getting a maximally general definition of a specific blindspot often requires merging multiple
groups of images. For example, reaching the conclusions presented in Figures 15, 22, 27, and 37 all
required merging several distinct groups of images. As a result, it seems that being able to suggest
candidate merges is a potentially important goal for BDM design.

A small blindspot may appear as a a small cluster (Figure 21) or as a set of outliers (Figure
33). The former is likely to cause problems for BDMs that use more standard supervised learning
techniques (e.g., those that use Linear Models or Decision Trees for their hypothesis class). The later
is likely to cause problems for BDMs that model the data distribution (e.g., those that use Gaussian
Kernels for their hypothesis class). As a result, it seems that being able to identify blindspots of
varying sizes and densities is a potentially important and challenging goal for BDM design.

The boundaries of a blindspot can be “fuzzy” in the sense that there may be images that do
not belong to the blindspot that are both close, in the image representation space, to images in
the blindspot and that have higher error. For example, looking at Figure 19, we can see that the
model’s confidence decreases relatively smoothly as we approach the region that reflects “baseball
gloves with people, but not in a baseball field.” However, if we look at the region around this region
(Figure 20), we see that these images are almost all in baseball fields. As a result, it seems that being
able to handle this fuzziness is a potentially important and challenging goal for BDM design.
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F.1 PRELIMINARIES

Before presenting the details of our results, there are two questions to address.

What blindspots do we study? We consider blindspots discovered by prior works (Hohman et al.,
2019; Sohoni et al., 2020; Singh et al., 2020; Plumb et al., 2022; Singla et al., 2021) as well as novel
blindspots (Adebayo et al., 2022). Note that these prior works:

e Are not all explicitly about blindspots (e.g., some consider “spurious patterns” which imply the
existence of blindspots).

e All consider a model that was trained with standard procedures (e.g., no adversarial training) on a
real dataset (e.g., no semi-synthetic images or sub-sampling the dataset).

e All consider blindspots that pertain to a single class.

How are our visualizations produced? To start, we use scvis (Ding et al., 2018) to learn a 2D
embedding of the model’s representation of all of the training images of the class of interest. Because
scvis combines the objective functions of tSNE and an AutoEncoder, we expect similar images to
be near each other and dissimilar images to be far from each other in this 2D embedding. Then, we
visualize that embedding and color code the points by the model’s confidence in its predictions for
the class of interest. As a result, blindspots should appear as groups of lighter colored points.

With this visualization, we start by first exploring what types of images were in different parts of the
embedding. Then, given a specific type of image, we go back and highlight the part of the embedding
that best represents that type of image. As a result, many of the figures we show are more like
“summaries that support our conclusions” than “exhaustive descriptions of all the types of images we
identified.”
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F.2 SumMIT (HOHMAN ET AL., 2019)

In Figure 1 of their paper, Hohman et al. (2019) show that their method reveals that the model is
relying on “hands holding fish” to detect “tench.”

e Dataset: ImageNet
e (lass: tench
e Blindspots: tench without people holding them

Results of inspecting the 2D embedding:

e The embedding also reveals this blindspot. However, our analysis suggests that this blindspot is
too broadly defined because “people holding tench” (Figure 10) has similar performance to “tench
in a net” (Figure 11) and that the performance drop comes from “tench underwater” (Figure 12).
We confirmed hypothesis by finding images on Google Images that match these descriptions and
measuring the model’s accuracy on them.

e Additionally, the embedding reveals mislabeled images (Figure 13).
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Class: tench

Lighter colors indicate lower confidence

Average Confidence: 97%

Figure 10: “tench with people holding them”

Class: tench

Lighter colors indicate lower confidence

Average Confidence: 98%

Figure 11: “tench in a net”
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Class: tench

Lighter colors indicate lower confidence

Average Confidence: 84%

Figure 12: “tench underwater”

Class: tench

Lighter colors indicate lower confidence Average Confidence: 10%

Figure 13: Mislabeled images
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F.3 GEORGE (SOHONI ET AL., 2020)

In Appendix C.1.4 of their paper, Sohoni et al. (2020) discuss how their method is not effective at
identifying one of the blindspots commonly studied in Group Distributionally Robust Optimization
without using an external model’s representation for the image representation.

e Dataset: CelebA
e (Class: blond hair
e Blindspot: men with blond hair

Results of inspecting the 2D embedding:

e By comparing Figure 14 to Figure 15, we can see that the embedding clearly reveals this blindspot.
e Additionally, Figure 16 shows that the embedding reveals an additional “blond women playing
sports” blindspot.

31



Under review as a conference paper at ICLR 2023

Class: Blond+Hair

Lighter colors indicate lower confidence

Average Confidence: 38%

Figure 14: “blond men”

Class: Blond+Hair

Lighter colors indicate lower confidence Average Confidence: 82%

Figure 15: “blond women”
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Class: Blond+Hair

Lighter colors indicate lower confidence

Average Confidence: 50%

Figure 16: “blond women playing sports”
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F.4 FEATURE SPLITTING (SINGH ET AL., 2020)

In Table 6 of their paper, Singh et al. (2020) organize the spurious patterns that they identify by their
own measure of bias. We consider both the most and least biased spurious patterns from that table.

Most biased.

e Dataset: COCO
o Class: baseball glove
e Blindspot: baseball gloves without people

Results of inspecting the 2D embedding:

e Comparing Figure 17 to Figure 18, we see that the embedding also reveals this blindspot.

e However, we can also see that the model’s performance is not uniform across different types of
images of “baseball gloves with people.” In particular, the embedding reveals two other blindspots
(Figures 19 and 21)

Least biased.

e Dataset: COCO
e Class: cup
e Blindspot: cups without dining tables

Results of inspecting the 2D embedding:

e Comparing Figure 22 to Figure 23, we see that the embedding also reveals this blindspot.

e However, we can also see that the model’s performance is not uniform across different types
of “cups without dining tables.” Figures 24, 25, and 26 show a few examples of the additional
blindspots the embedding reveals.

o These results highlight an interesting subtlety. The cups in images with dining tables take up a
greater portion of the image than the cups in images of sports stadiums, which raises the question:
“Does this blindspot exist solely because the model is relying on ‘context’ that it shouldn’t be? Or
is the standard image pre-processing making the cups too small (in terms of their size in pixels) to
detect?”
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Class: baseball+glove

Lighter colors indicate lower confidence

Average Confidence: 65%

Figure 17: “baseball gloves without people”
Class: baseball+glove

Lighter colors indicate lower confidence Average Confidence: 79%

Figure 18: “baseball gloves with people”
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Class: baseball+glove

Lighter colors indicate lower confidence

Average Confidence: 21%

Figure 19: “baseball gloves with people, but not in a baseball field”
Class: baseball+glove

Lighter colors indicate lower confidence Average Confidence: 52%

Figure 20: If we look at the region around the “baseball gloves with people, but not in a baseball
field” region (Figure 19), we see that the model’s confidence is still lower despite the fact that these
images still are in baseball fields.
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Class: baseball+glove

Lighter colors indicate lower confidence

Average Confidence: 46%

Figure 21: “black and white images of baseball teams”
Class: cup

Lighter colors indicate lower confidence Average Confidence: 33%

Figure 22: “Cups without dining tables”
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Class: cup

Lighter colors indicate lower confidence

Average Confidence: 63%

Figure 23: “Cups with dining tables”
Class: cup

Lighter colors indicate lower confidence Average Confidence: 26%

Figure 24: “Cups in bathrooms”
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Class: cup

Lighter colors indicate lower confidence

Average Confidence: 23%

Figure 25: “Cups in living rooms or bedrooms”
Class: cup

Lighter colors indicate lower confidence Average Confidence: 13%

Figure 26: “Cups in sports stadiums”. Is the model using ‘context’ that it shouldn’t be? Or is the
image pre-processing making detecting these cups very hard by compressing them to only a few
pixels? Or is this a limitation of the model architecture?
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F.5 SPIRE (PLUMB ET AL., 2022)

Plumb et al. (2022) claim that, compared to past works on identifying spurious patterns, that theirs
is the first to identify negative spurious patterns. So we explore the example of a negative spurious
pattern that they give. Additionally, they note that this class is part of two spurious patterns.

e Dataset: COCO

o Class: tie

e Blindspot: ties without people
e Blindspot: ties with cats

Results of inspecting the 2D embedding:

e Comparing Figure 27 to Figure 28, we see that the embedding reveals the “ties without people”
blindspot.

e Comparing Figure 29 to Figure 30, we see that the embedding reveals the “ties with cats” blindspot.
Note that this is a subset of the “ties without people” blindspot.

e Figures 31 and 32 show a few examples of the additional blindspots the embedding reveals.
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Class: tie

Lighter colors indicate lower confidence

Average Confidence: 43%

Figure 27: “ties without people”

Class: tie

Lighter colors indicate lower confidence Average Confidence: 65%

Figure 28: “ties with people”
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Class: tie

Lighter colors indicate lower confidence

Average Confidence: 34%
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Figure 29: “ties with cats”

Class: tie

Lighter colors indicate lower confidence Average Confidence: 65%

Figure 30: “ties without cats”
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Class: tie

Lighter colors indicate lower confidence

Average Confidence: 34%

Figure 31: “ties with teddybears”

Class: tie

Lighter colors indicate lower confidence Average Confidence: 17%

Figure 32: “ties with buses” Is the model using ‘context’ that it shouldn’t be or is the image pre-
processing making detecting these ties very hard (the bus driver is frequently wearing a tie, but that
tie is very small)?
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Class: frisbee

Lighter colors indicate lower confidence Average Confidence: 70%
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Figure 33: Additionally, when we see that the embedding also reveals the “frisbees without dogs or
people” blindspot from (Plumb et al., 2022). However, these images look more like outliers than a
proper cluster.
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F.6 BARLOW (SINGLA ET AL., 2021)

In Table 2 of their paper, Singla et al. (2021) summarize some of the blindspots that they identify. We
consider two of them. The first is “hog”, which is the class with the largest ALER-BER score (which
they use as a measurement of how important a blindspot is). The second is “tiger cat”, which is the
class with the largest increase in error rate for images in the blindspot.

Largest ALER-BER Score.

e Dataset: ImageNet
e Class: hog
e Blindspot: not “pinkish animals”

Results of inspecting the 2D embedding:
e By comparing Figure 34 to Figure 35, we can see that the embedding reveals this blindspot.
Largest increase in error rate.

e Dataset: ImageNet
e Class: tiger cat
e Blindspot: not “face close up”

Results of inspecting the 2D embedding:

o [t does not appear that the embedding reveals this blindspot.

e By comparing Figure 36 to Figures 37 and 38, we can see that the embedding reveals a “grey tiger
cats inside” blindspot.

e Looking at Figure 39, we can see that the embedding reveals mislabeled images.
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Class: hog

Lighter colors indicate lower confidence

Average Confidence: 84%

Figure 34: “pink hogs”
Class: hog

Lighter colors indicate lower confidence Average Confidence: 29%

Figure 35: “brown hogs”
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Class: tiger_cat

Lighter colors indicate lower confidence

Average Confidence: 35%

Figure 36: “grey tiger cats inside”
Class: tiger_cat

Lighter colors indicate lower confidence Average Confidence: 79%

Figure 37: “grey tiger cats outside”
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Class: tiger_cat

Lighter colors indicate lower confidence

Average Confidence: 46%

Figure 38: “orange tiger cats”
Class: tiger_cat

Lighter colors indicate lower confidence

Average Confidence: 27%

Figure 39: Mislabeled Images
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F.7 NEW BLINDSPOTS

Because it has been observed that it is easier to find “bugs” in models when we know what to look
for (Adebayo et al., 2022), we also explore classes that have not been discussed in prior work. We
asked a colleague to pick a class from the list of ImageNet classes and they chose “library” because
they thought that it seemed related to or correlated with other ImageNet classes.

Dataset: ImageNet

Class: library

Blindspot: images of the outside of libraries
Blindspot: images of a single bookshelf

Results of inspecting the 2D embedding:

e Figure 40 shows that the model is less able to label an image as a library when the image is of the
outside of a library. Interestingly, this is even true when the building is labeled as a library.

e By comparing Figure 41 to Figures 42 and 43, we see that, without the context clues of “people”
or “multiple bookshelves” the model is less able to label an image as a library when the image
contains only a single bookshelf. This may be a data labeling problem because “bookcase” is
another class in ImageNet.
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Class: library

Lighter colors indicate lower confidence

Average Confidence: 18%

Figure 40: “outside of libraries”
Class: library

Lighter colors indicate lower confidence Average Confidence: 45%
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Figure 41: “single bookshelf”
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Class: library

Lighter colors indicate lower confidence

Average Confidence: 68%

Figure 42: “people near bookshelves’
Class: library

Lighter colors indicate lower confidence

Average Confidence: 86%

Figure 43: “multiple bookshelves without people”
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