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A cactus with pink flowers. An antique wooden
rocking horse.

A steaming mug of hot
chocolate with whipped cream. A gleaming saxophone. A ripe watermelon sliced in half.

A simple burgundy
colored feather quill.

A crystal glass paperweight
with abstract design.

A velvet cushion stitched
with golden threads.

A small porcelain
white rabbit figurine.

A long woolen scarf,
striped red and black.

A crumpled silver
aluminum soda can. A well-worn straw sun hat. An antique glass perfume bottle. A rustic wrought-iron 

candle holder.
A vibrant, handmade

patchwork quilt.

A sparkling crystal chandelier. A cherry red vintage
lipstick tube.

A fuzzy pink
flamingo lawn ornament.

A chameleon perched
on a tree branch.A faux-fur leopard print hat.

Figure 1: More 3D generation results of PlacidDreamer.

1 DEMO VIDEO
We provide a demo video for a direct and precise demonstration of:

• Visualization of 2D generation experiments using Balanced
Score Distillation (BSD);

• Comparative performance visualization of PlacidDreamer
against baseline 3D Gaussian methods;

• Avisual gallery of the 3D generation results of PlacidDreamer.

2 MORE RESULTS OF PLACIDDREAMER
We provide more 3D generation results of PlacidDreamer in Fig-
ure 1.

3 EXPERIMENTS OF BSD ALGORITHM
BSD is a versatile score distillation algorithm. We demonstrate its
stability and versatility by applying it across various text-to-3D
open-source frameworks. Initially, within the general framework
of ThreeStudio [2], we compare the generation capabilities of SDS
[6], CSD [11], VSD [10], and BSD for NeRF [5] and DMTet [8].

Subsequently, we substitute the score distillation algorithms in
different frameworks with BSD, ensuring that all other parameters
in the experiments remains constant, to validate its enhancements.

As illustrated in Figure 2, we present the experimental results on
ThreeStudio. To ensure a fair comparison, we maintain all parame-
ters that are unrelated to score distillation at constant values, while
meticulously adjusting hyper-parameters of each score distillation
algorithm to achieve optimal effects. In the generation of NeRFs,
SDS exhibits the least detail levels and suffers from unrealistic colors.
CSD, comparing with SDS, captures more pronounced details. How-
ever, the over-saturation curtails its realism. The performances of
VSD and BSD are closely matched, with VSD displaying finer details
and BSD displaying more accurate color distributions. BSD stands
out in color accuracy, nearly matches VSD in detail richness, and
equals SDS in speed, thus positioning BSD as the superior choice
over previous score distillation methods. For DMTet refinement,
we use a NeRF sample generated by BSD as mesh initialization. We
observe that these algorithms exhibit similar quality with SDS and
CSD having subtle color deviations.
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A delicious hamburger. An ice cream sundae.

Initialization

SDS
2x Forward

CSD
3× Forward

VSD
3× Forward +

LoRA Finetune

BSD (Ours)
2x Forward

NeRF

DMTet
Refinement

DMTet 
Normal Map

Initialization

SDS
2x Forward

CSD
3× Forward

VSD
3× Forward +

LoRA Finetune

BSD (Ours)
2x Forward

ThreeStudio

Figure 2: Results on ThreeStudio comparing score distillation algorithms for basic NeRF generation and DMTet refinement.

Full body 3D model of Darth Vader. A pineapple.

   A photograph of an 
astronaut riding a horse.

A DSLR photo of a bagel filled 
with cream cheese and lox.

 LucidDreamer
  +ISM / +BSD 
   (2.2x faster)

     MVDream
  +SDS / +BSD

An elephant skull.

A tarantula, highly detailed.

       Magic123
   (NeRF Stage)
Ref / +SDS / +BSD

ProlificDreamer
   (NeRF Stage)
  +VSD / +BSD 
   (1.8x faster)

Baby phoenix on ice. A chameleon.

a DSLR photo of an ice cream sundae. A model of house in Tudor style.  A baby bunny sitting on 
top of a stack of pancakes.

Figure 3: Results of replacing other score distillation methods with BSD in text-to-3D pipelines.
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ProlificDreamerMVDream PlacidDreamer (Ours)

Text prompt: The Imperial State Crown of England.

Fantasia3D

Text prompt: A bull dog wearing a black pirate hat.

HiFA

Figure 4: Qualitative comparison with NeRF-based baseline methods.

As shown in Figure 3, replacing previous score distillation al-
gorithms with the BSD algorithm consistently improves perfor-
mance across various frameworks. In the LucidDreamer [3] pipeline,
which employs Interval Score Matching (ISM), the BSD algorithm
not only trains 2.2 times faster but also significantly enhances se-
mantic alignment and texture fidelity. ISM prioritizes guidance at
lower timesteps by assigning greater weights. Without resolving
the conflict between classifier and smoothing guidance, this leads
to over-saturation in certain scenarios (e.g., the astronaut case).
Moreover, optimizations at low timesteps often add irrelevant de-
tails, enhancing visual complexity but sometimes causing semantic
inconsistencies with the text prompt (e.g., the bagel case). In the
MVDream [9] pipeline with the SDS algorithm, BSD effectively re-
duces the color distortion problems. The capability of BSD to reduce
over-saturation is further demonstrated in experiments conducted
on the Magic123 [7] pipeline, which also show its applicability to
multi-view diffusion models [4]. Furthermore, experiments on Pro-
lificDreamer [10] reveal that BSD not only runs much faster but
also matches VSD in detail level. The experiments validate BSD as
a versatile and robust choice for score distillation.

4 COMPARISONWITH MORE BASELINE
METHODS

We conduct qualitative comparisons with several NeRF-based [5]
baseline methods, including Fantasia3D [1], HiFA [12], MVDream
[9], and ProlificDreamer [10]. As shown in Figure 4, we present the
results of these methods generating responses to the same prompts.
Fantasia3D utilizes a unique geometry generation process for en-
hanced geometry generation, yet it does not match the overall
quality of PlacidDreamer. MVDream is capable of generating stable,
multi-view consistent 3D models. However, its training process
reduces resolution, resulting in the loss of high-frequency details.
ProlificDreamer produces meshes with high-fidelity textures, but it
sometimes fails to converge, suffers from severe multi-face prob-
lems, and incurs a time cost significantly exceeding other methods.
Our PlacidDreamer, with improvements in BSD and pipeline design,

achieves balanced saturation, refined details, and more stable gen-
eration. Therefore, compared with previous NeRF-based methods,
PlacidDreamer is capable of generating higher-quality 3D assets.

5 RELATIONSHIP WITH PREVIOUS METHODS

980

20

980

20

Timestep Timestep

Iteration Iteration(a) (b)

Figure 5: Visualization of the Euclidean norm of smoothing
guidance during training: (a) 𝛿SG = 𝜖 (x𝑡 , 𝑡, ∅) of BSD. (b) 𝛿 ′SG =

𝜖 (x𝑡 , 𝑡, ∅) − 𝜖 of SDS.

Comparison with SDS. The main differences between our ap-
proach (BSD) and SDS lie in two aspects. The first is the incorpo-
ration of the Multiple-Gradient Descent Algorithm (MGDA), as
elaborated in the main text. The second is the omission of the final
term −𝜖 . The formula we derived is similar to the one provided in
the appendix of the DreamFusion [6] paper. The appendix claims
that introducing −𝜖 helps to reduce high variance of the gradients.
Despite the common inclusion of −𝜖 in most previous works that
follow the SDS paradigm, we have observed that −𝜖 can be omitted
for three reasons.

Firstly, the introduction of −𝜖 causes the magnitude of 𝛿 ′SG =

𝜖 (x𝑡 , 𝑡, ∅) − 𝜖 exhibit greater variance across different timesteps
compared with 𝛿SG = 𝜖 (x𝑡 , 𝑡, ∅). As we can clearly see in Figure 5,
the color blocks within each column of 𝛿SG are almost identical,
indicating that their magnitudes are similar. In contrast, the colors
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in each column of 𝛿 ′SG change significantly with the timestep, which
indicates that their magnitudes vary widely. This results in a fixed
CFG value being more difficult to control balance. Additionally,
we find that 𝛿 ′SG has a higher likelihood of producing the obtuse
angles between two optimization directions at low timesteps. These
factors result in a more severe over-saturation problem.

Secondly, the introduction of −𝜖 causes the magnitude of 𝛿 ′SG
to decrease during optimization, disrupting the balance. As the
rendered 2D images progressively mirror the distribution of real
2D images, the predicted noise 𝜖 (x𝑡 , 𝑡, ∅) and the added random
noise 𝜖 become numerically correlated. This correlation lowers the
magnitude of 𝛿 ′SG, visibly lightening the color blocks in each row
in Figure 5 (b). Consequently, in this scenario, classifier guidance is
likely to dominate when the CFG parameter is fixed, leading to a
more pronounced over-saturation issue. WhenMGDA is applied, its
mathematical property—increasing the proportion of components
as their magnitudes decrease—causes 𝛿 ′SG to likely dominate in
the MGDA algorithm, exacerbating the over-smoothing problem.
Thus, the magnitude reductions caused by −𝜖 are detrimental to
achieving balance.

Thirdly, despite −𝜖 having a mathematical expectation of zero,
practical challenges arise. Text-to-3D algorithms typically run only
a few thousand to tens of thousands of iterations. With 1000 differ-
ent timesteps involved, the few dozen random samples per timestep
are insufficient to mitigate their mutual impacts effectively.

v/u 0.000 0.001

0.008 0.010 0.050 0.100

0.002 0.005

v/u
Text prompt: A photograph of an astronaut riding a horse.

Figure 6: The influence of the ratio between smooth-
ing guidance and classifier guidance, represented as 𝑣/𝑢
(−∇x𝑡 log𝑝𝑡 (x𝑡 |𝑦) = 𝑢 · 𝛿CG + 𝑣 · 𝛿SG). When the ratio 𝑣/𝑢 is
set to zero, it corresponds to CSD.

Comparison with CSD. The decomposition method of CSD is
similar to ours, as both include a classifier guidance term 𝛿CG.
However, their 𝛿gen = 𝜖 (x𝑡 , 𝑡, 𝑦) − 𝜖 , whereas our 𝛿SG = 𝜖 (x𝑡 , 𝑡, ∅).
In most cases, experimental results using 𝜖 (x𝑡 , 𝑡, 𝑦) and 𝜖 (x𝑡 , 𝑡, ∅)
do not differ significantly. It should be noted that at the initial
stages of 3D generation, when initialized to a sphere, the image is
smooth, thus 𝜖 (x𝑡 , 𝑡, ∅) is correlated with 𝜖 , while 𝜖 (x𝑡 , 𝑡, 𝑦) is not
correlated with 𝜖 . This means that the 𝜖 (x𝑡 , 𝑡, ∅) is more closely
related to smoothness. Therefore, it is more accurate to refer to our
decomposition as the ’smoothing guidance’.

A more significant difference arises in understanding the effects
of the decomposed terms. CSD discovers that 𝛿gen alone does not
function effectively and occupies a very low proportion in terms
of magnitude, leading to the conclusion that 𝛿gen can be discarded.
However, according to our modeling, using only 𝛿CG causes the
generated results to overfit to a mode learned by a classifier, thereby
distilling discriminative power but not utilizing generative capa-
bilities. This leads to noticeable artifacts in 2D experiments and
over-saturation issues in 3D experiments produced by CSD. We dis-
play the results of the score distillation decomposition experiments
in higher detail in Figure 6. Furthermore, we believe that precisely
because the proportion of 𝛿SG is very small, the MGDA algorithm
is necessary to ensure its effects are not overwhelmed, hence we
propose the BSD algorithm.

A delicious hamburger. An ice cream sundae.

Figure 7: The results of applying MGDA to VSD.

Comparisonwith VSD. The derivation approach for VSD involves
sampling from a 3D distribution as part of variational inference
and utilizing a particle-based ODE (Ordinary Differential Equation)
solvor. The final expression derived is:

∇𝜃LVSD (𝜃 ) = E𝑡,𝜖,𝑐 [𝜔 (𝑡) (𝜖pretrain (x𝑡 , 𝑡, 𝑦)−𝜖𝜙 (x𝑡 , 𝑡, 𝑦))
𝜕𝑔(𝜃, 𝜋)

𝜕𝜃
],

where 𝜃 represents the parameters of the 3D model, 𝜖pretrain is the
noise predicted by the pre-trained diffusion model, 𝜖𝜙 is the noise
predicted by the diffusion model fine-tuned on the optimizing 3D
assets, and 𝑔(𝜃, 𝜋) is the differentiable renderer for the 3D assets
from perspective 𝜋 .

Unlike SDS, VSD cannot be decomposed into a combination of
classifier guidance and smoothing guidance, because 𝜖𝜙 (x𝑡 , 𝑡, 𝑦)
inherently carries probabilistic meanings, complicating its integra-
tion with any guidance term. However, we still test the effects of
incorporating −𝜖𝜙 (x𝑡 , 𝑡, 𝑦) into the smoothing guidance and ap-
plying MGDA. The results, as illustrated in Figure 7, demonstrate
improvements in detail level and content richness. Since VSD mod-
eling is not the central focus of our paper, we leave the potential
exploration of integrating VSD with MGDA to future work.

6 IMPLEMENTATION DETAILS
In the Latent-Planemodule, we utilize twoMulti-Head Self-Attention
layers, each with eight heads and a feature dimension of 32, to ex-
tract sigma features. An additional two layers are used to enhance
the multi-view features. For embeddings not derived from neural
networks, we employ sinusoidal encoding. To minimize computa-
tional demands, all MLP networks are comprised of a single linear
layer. During LoRA finetuning, only the UNet LoRA layers are fine-
tuned at a learning rate of 1 × 10−4 across 400 iterations. In our
BSD implementation, we set 𝜆 = 25 and 𝜔 (𝑡) ∝ 𝛼2𝑡 to achieve an
optimal balance of rich detail and accurate color reproduction.
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