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A MORE DETAILS OF THE PROPOSED ALGORITHM

This section introduces the detailed updates of learnable parameters in Section 4.4 and the overall
algorithm of the proposed learn2pFed.

A.1 UPDATES OF LEARNABLE PARAMETERS

Recall from that Pb({Λi, pi, ρi}) in (13) is the sum of local training losses collected by the server,
the learnable parameters {Λi, pi, ρi} are updated using the gradient descent in the final L-th cell of
the network as follows, mathematically.
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where the learning rate lr can be set empirically. Note that we denote γL
i as the copy of ρLi in the

server, then the update of γL
i is same as that of ρLi in (15). That is, ρLi is updated twice in both server

side and client sides. To sum up, the global learnable parameters {pi, γi} are first updated in the
server side as (15), and then the server broadcast the sum of losses Pb({ΛL−1

i , pLi , ρ
L
i }) to each local

client. The local learnable parameters {Λi, ρi} are then updated in the client sides as (15).

A.2 ALGORITHM

The overall algorithm is displayed as below.

Algorithm 1 Learn2pFed: layer-wise training.

Input: The number of local clients M ; the number of ADMM iterations L; the maximum epoch E
for training.

Output: Personalized local model {vLi }i∈[M ].
1: Initialize personalized models {v0i , z0i , α0

i } randomly, and global model w0. Initialize learnable
parameters {ρ0i , γ0

i ,Λ
0
i , p

0
i }. ▷ Initialization

2: for e = 1 to E do
3: for ℓ = 1 to L do
4: for i = 1 to M (parallel) do ▷ Client-Side Computation
5: Update αℓ

i via (9).
6: Update vℓi via (10).
7: Update zℓi via (11).
8: Send vector vec = vℓi − zℓi − αℓ

i to the server.
9: end for

10: Update wℓ via (12) and broadcast it to the local. ▷ Server-Side Computation
11: end for
12: The server collects each local training loss Li(Xiv

L
i , Yi) in (13) and updates the global

learnable parameters {pLi , γL
i } via (15). Then, the server broadcasts the sum of losses back to

the clients. ▷ Global Learnable Parameters Update
13: Each local client receives the losses from the server, and update the learnable parameters

both in the client sides via (15). ▷ Local Learnable Parameters Update
14: end for
15: return {vLi } after E epochs.

A.3 MORE DISCUSSIONS

In spite of the privacy, we have discussed the memory and computation cost in this subsection.
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Practical resource usage. We present the memory and computation cost of Learn2pFed in CIFAR10
classification, comparing them to those of FedAvg. For FedAvg model, its feature extractor occupies
11.19 KB, and the three linear layers occupy 187.03 KB, 39.84 KB, and 3.32 KB, respectively. Hence,
the total memory consumption is mainly in the storage of the linear layers. And its FLOPs are
0.6517M. In our collaborative training, the feature extractor occupies the same 11.19 KB, and the
Learn2pFed network only occupies 12.69 KB and cost 0.6517M FLOPs. Thus, due to the replacement
of the last few linear layers of the network with learn2pFed in the classification task, our method
saves 94.49% memory cost excluding the feature extractor and 90.11% including the feature extractor,
and a 9.04% reduction in FLOPs. However, the magnitude of these advantages will gradually decrease
as the local feature extractor grows larger. This is because learn2pFed is applied primarily to the last
few layers, and the reduction in memory brought about by these layers becomes relatively smaller
compared to the memory occupied by the feature extractor.

Memory/computation complexity. Unrolling introduces a modest increase in memory and com-
putation complexity compared to standard approaches. Our experiments show that this additional
overhead is manageable. However, for larger model architectures, the effect on resource usage may
become more noticeable.

B DETAILED EXPERIMENTAL SETUP

Hardware and software. All the experiments are implemented in PyTorch and simulated in NVIDIA
GeForce RTX 3090 GPUs. Core codes are available in the anonymous link2.

Models. In the simulation for regression, a simple 5-layer MLP model with output size of each
layer as [200, 100, 50, 10, 1]. In the real-data experiments, we consider a long short-term memory
(LSTM (Yu et al., 2019)) model with two hidden layers, followed by a fully-connected layer for
power consumption forecasting. It processes a sequence of length 3, and its hidden states have
Tanh activations with 12 dimensions. And the loss function is Mean-Squared-Error (MSE) loss.
Besides, we utilize two different CNN models for classification in CIFAR-10 and Fashion-MNIST,
respectively. Both of them are constructed by two convolution layers, each followed by a max
pooling layer, and three and one fully-connected (fc) layer, respectively, before softmax output. The
convolution channel and the output unit of fc are [6, 16] and [128, 84, 10] for CIFAR-10, [10, 20] and
[10] for Fashion-MNIST. The LeakyReLU (Xu et al., 2020) is used as the activation function, and the
loss function is Cross-Entropy (CE) loss.

C MORE NUMERICAL RESULTS

This section shows the numerical results of the ablation studies in Section 5.2 and 5.4, whose main
conclusions has been represented in the paper.

C.1 MORE NUMERICAL RESULTS IN SYNTHETIC DATA

Impact of learnable parameters in synthetic data. We aim to investigate which specific learnable
parameters play a more important role in the proposed Learn2pFed by repeating the simulations for
five times and show the results in Table 4. It shows that learning more parameters perform better.
Specifically, learning {Λi} indicating the adaptive federated collaboration is significantly effective.

2https://anonymous.4open.science/r/Learn2pFed-DD63
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Table 4: Learnable parameters ablation study w.r.t. three personalized FL settings on synthetic data:
we leave the check marks under the learnable parameters and the blanks under the non-learnable
parameters. The experiments with more learnable parameters perform better.

Learnable parameters Averaged RMSE of Learn2pFed
{Λi} {pi} {ρi} {ηi} {γi} {θi} Setting 1 Setting 2 Setting 3

✓ 0.0007± 0.0001 0.0010± 0.0001 0.0008± 0.0002
✓ 0.0018± 0.0001 0.0226± 0.0001 0.0100± 0.0003

✓ ✓ 0.0013± 0.0001 0.0008± 0.0002 0.0058± 0.0005
✓ ✓ ✓ ✓ 0.0026± 0.0024 0.0007± 0.0003 0.0015± 0.0003
✓ 0.0084± 0.0006 0.0544± 0.0037 0.0302± 0.0154

✓ 0.0037± 0.0006 0.0016± 0.0004 0.0051± 0.0000
✓ 0.0126± 0.0009 0.0059± 0.0013 0.0524± 0.0005

✓ 0.0040± 0.0004 0.0023± 0.0002 0.0045± 0.0021
✓ ✓ ✓ ✓ ✓ 0.0085± 0.0071 0.0084± 0.0038 0.0032± 0.0019

✓ ✓ ✓ ✓ ✓ 0.0018± 0.0001 0.0046± 0.0034 0.0009± 0.0003

✓ ✓ ✓ ✓ ✓ ✓ 0.0002± 0.0002 0.0003± 0.0002 0.0003± 0.0002

Impact of the number of layers on convergence in synthetic data. We investigate the impact
of varying values of the ADMM iterations L on the convergence. Additionally, we illustrate the
loss over the previous one hundred epochs as part of our analysis in Figure 5. It indicates that as L
increases, the convergence becomes more stable and the obtained solution becomes more accurate.
However, it also results in more communication rounds of Learn2pFed. In this trade-off between
performance and communication overhead, we can choose L = 10 as a suitable balance.
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Figure 5: ADMM iteration ablation study. It shows that the deeper Learn2pFed has better conver-
gence.

C.2 MORE NUMERICAL RESULTS IN IMAGE CLASSIFICATION DATA

Impact of layers where Learn2pFed starts in CIFAR-10. We conduct an ablation study on the
selection of features extracted from the layer before the specific fully-connected layers as inputs
to Learn2pFed, i.e., where Learn2pFed starts. This experiment is performed in the CIFAR-10
classification task, where M = 10, and βdir = 0.1. Table 5 shows the quantitative results. In this
study, we introduced the concept of a shared ratio, which represents the ratio of shared parameters
to local parameters. When Learn2pFed starts from the first fc layer, the shared ratio increases
significantly because the basic CNN’s parameter quantity primarily concentrates on the first fc layer.
For this reason, our method may not always demonstrate a significant ability to reduce communication
costs when starting at different layers. However, it does not impact much on the accuracy (see in
Figure 6).
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Table 5: Ablation study on layers where Learn2pFed starts. The shared ratio denotes the ratio of
local parameters to shared parameters where the latter is fixed in Learn2pFed. The fully-connected
layers’ input and output dimension (dim) follows the architecture introduced in Appendix B.

fully-connected layers local shared
first dim second dim third dim parameters ratio
[400,120] [120,84] [84,10] (KB) (%)

✓ 61.14 14.72
✓ 50.99 17.65

✓ 2.87 313.58

D MORE VISUAL ILLUSTRATIONS
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Figure 6: Accuracy of Learn2pFed in CIFAR-10
with βdir = 0.1. Where Learn2pFed starts has
little impacts on the accuracy in classification in
CIFAR-10.

In this section, we present the visual illustra-
tions to show the performance in regression (Sec-
tion 5.2) and forecasting (Section 5.3) tasks. The
local data distribution illustration in classifica-
tion (Section 5.4) is also provided in this section.

D.1 MORE VISUAL
ILLUSTRATIONS IN REGRESSION IN SEC. 5.2

Detailed implementation. We take the 3-rd poly-
nomial federated regression in setting 1 on syn-
thetic data for example, where the polynomial
coefficient vector is a = [0,−6, 18,−12]. And
we sample 1000 points from the ground-truth and
add the Gaussian noise according to the context
in Sec. 5.2. The data points are randomly scat-
tered to M = 5 clients in the ascending order
of the values in x-axis, with local clients has
[58, 172, 278, 233, 256] samples, respectively.

Visualization. We take the simulations in setting 1 in synthetic data for example, and show the
visualizations of the regression performance in Figure 7. The results indicate that a single global
model from generalized FL methods such as FedAvg and FedProx cannot achieve good performance.
In addition, their finetuning-based version and independent learning (IL) method can be easily
disturbed by the local data with Gaussian noise. On the other hand, optimization-based methods
perform well in this scenario. The proposed Learn2pFed stands out as the best fit for a three-order
polynomial model.

D.2 MORE VISUAL ILLUSTRATIONS IN FORECASTING IN SEC. 5.3

In this sub-section, we mainly show the visual illustrations in the power consumption forecasting
task in Section 5.3 with ECL dataset in setting (a) where five clients are chosen. Specifically, we will
show the performance on one of participating clients and one non-participating client.

D.2.1 DATA PRE-PROCESSING AND CHOOSING THE PARTICIPATING LOCAL CLIENTS
We first perform the data pre-processing for ELD, including giving up the clients with extremely high
consumption and the missing data. Then, we select a time period after January 1st 2012. Following
the instruction3, we first convert the ELD data values in kWh values by dividing them by 4. The
local clients with outliers and missing values are then excluded based on average electricity usage.
Second, we use the Elbow Method (Bholowalia & Kumar, 2014) to determine the number of clusters
and perform the t-SNE (Van der Maaten & Hinton, 2008) with four clusters, which visualization
is shown in Figure 8. Finally, we choose the five targets named as MT 001, MT 002, MT 003,

3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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(a) IL (b) FedAvg (c) FedProx

(d) FedAvg+FT (e) FedProx+FT (f) FedPer

(g) FedRep (h) pFedMe (i) Ditto

(j) lp proj (k) Learn2pFed

Figure 7: Visualization of the regression performance w.r.t. different (personalized) federated learning
methods under setting 1: the black dot lines denote the local ground-truth and the colored lines depict
the fitted models. Our Learn2pFed fits the three-order polynomial model best.
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Figure 8: The visualization of ELD features by t-SNE, and the five local clients used in our experiment.

MT 365 and MT 369 for personalized FL training. In this way, we guarantee the personalization in
the participating local clients.

D.2.2 MORE VISUAL ILLUSTRATIONS IN FORECASTING WITH ECL IN SETTING (A)

We compare the proposed Learn2pFed with the baseline methods, and depict the visualization of
the participating client named as MT 002 in setting (a) in Figure 9, and that of the non-participating
client named as MT 014 in Figure 10. Note that we only illustrate the prediction results of the first
two thousand data points of the testset. From Figure 9 and 10, Learn2pFed achieves best forecasting
performance.

D.3 MORE VISUAL ILLUSTRATIONS IN CLASSIFICATION IN SEC. 5.4

Visualization of local data distribution in classification tasks in personalized FL. To generate
the personalized data, we use the Dirichlet distribution (Yurochkin et al., 2019) with hyper-parameters
βdir = {0.1, 0.5, 5.0}, which is a widely considered setting (Marfoq et al., 2022; Hsu et al., 2019).
We depict the local data distribution of the training samples in CIFAR-10 in Figure 11 across M = 10
clients. It is shown that as βdir increases, the local data coverage encompasses a more comprehensive
range of sample categories, and the number of samples in each category becomes more balanced.

E LIMITATION AND FUTURE WORK

Learn2pFed focuses on dynamically determining the local parameters that should participate in the
federated collaboration, but a limitation arises in its ability to explain the physical meaning of those
parameters selected byLearn2pFed. We are curious whether it can provide some insight for model
compression or data selection. Therefore, we aim to further explore this in future work.
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(a) FedAvg (b) FedProx (c) FedPer

(d) FedRep (e) pFedMe (f) Ditto

(g) lp proj (h) Learn2pFed

Figure 9: Visualization of the forecasting performance w.r.t. different (personalized) federated
learning methods on the participating client MT 002 in ECL data under setting (a). The black lines
denote the groud-truth of the testset, and the blue lines denote the prediction results. Our Learn2pFed
achieves best forecasting performance.
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(a) FedAvg (b) FedProx (c) FedPer

(d) FedRep (e) pFedMe (f) Ditto

(g) lp proj (h) Learn2pFed

Figure 10: Visualization of the forecasting performance w.r.t. different (personalized) federated
learning methods on the non-participating client MT 014 in ECL data under setting (a). The black
lines denote the groud-truth of the testset, and the blue lines denote the prediction results. Our
Learn2pFed achieves best forecasting performance.
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(a) βdir = 0.1
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(b) βdir = 0.5
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(c) βdir = 5.0

Figure 11: Visualization of local data distribution in classification tasks in CIFAR-10 w.r.t. different
Dirichlet parameter βdir. A smaller βdir indicates the greater heterogeneity among the clients.

21


