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ABSTRACT
Few-Shot Industrial Anomaly Detection (FS-IAD) has drawn great
attention most recently since data efficiency and the ability to de-
sign algorithms for fast migration across products have become
the main concerns. The difficulty of memory-based IAD in low-
data regime primarily lies in inefficient measurement between the
memory bank and query images. We address such a pivotal issue
from a new perspective of optimal matching between features of
image regions. Taking the unbalanced nature of query features into
consideration, we adopt Conditional Transport (CT) as a metric
to compute the structural distance between representations of the
two sets to determine feature relevance. CT distance generates the
optimal matching flows between unbalanced structural elements
that achieve the minimum matching cost, which can be directly
used for IAD since it well reflects the differences of query images
compared with the normal memory. Realizing the fact that query
images usually come one-by-one or batch-by-batch, we further
propose an Online Conditional Transport (OCT) by making full use
of the current and historical query images for IAD via simultane-
ously calibrating the memory bank using the online query images
and matching features between the calibrated memory and the
current query image. Go one step further, for sparse foreground
products, we employ a predominant segment model to implement
Foreground-aware OCT (FOCT) for improving the effectiveness
and efficiency of OCT by forcing the model to pay more attention to
diverse targets rather than redundant backgrounds when calibrat-
ing the memory bank. FOCT can improve the diversity of calibrated
memory during the IAD process, which is critical for robust FS-
IAD in practice. Besides, FOCT is flexible since it can be friendly
plugged and played with any pre-trained backbones, such as WRN,
and any pre-trained segment models, such as SAM. The effective-
ness of our model is demonstrated across diverse datasets, including
benchmarks of MVTec and MPDD, achieving SOTA performance.

CCS CONCEPTS
• Computing methodologies→ Scene anomaly detection.

KEYWORDS
Industrial Anomaly Detection, Few-shot Learning, Foreground-
aware Online Conditional Transport
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1 INTRODUCTION
The fragmented nature of industrial anomalies, such as subtle
bruises and obvious breakages with various appearances and scales
[24, 28, 40], raises difficulties in detecting and classifying indus-
trial anomalies in the fully-supervised manner as primal researches
do [9, 11]. Therefore, unsupervised Industrial Anomaly Detection
(IAD) methods have been developed most recently, which efficiently
use the model trained with only normal industrial images of each
product to detect anomalous industrial images and localize the
corresponding anomalous regions precisely [3, 4, 17, 23].

Researches on unsupervised IAD can be divided into two cate-
gories, namely reconstruction-basedmodels [25, 26, 42] andmemory-
based models [10, 27, 40]. Reconstruction-based models aim to learn
continuous or discrete feature representations of normal images
utilizing Deep Generative Models (DGMs) such as Variational Au-
toEncoding (VAE) [20, 42] and diffusion models [13, 25] through a
cumbersome training process. Memory-based models usually ex-
tend DGMs with a memory bank to record the normal features
given normal training images, manifesting in various forms, includ-
ing CNN-based multi-scale features [10, 28] and Transformer-based
learnable query embeddings [40]. At test time, feature matching
between test images and memory is preferred. However, both lines
of work heavily rely on massive normal training images, either
for DGMs optimization or memory learning, and fail to generalize
across products quickly in low-data regime.

Inspired by howhuman beings detect anomalies, Few-Shot Learn-
ing (FSL) [35, 36] is introduced to IAD for learning a commonmodel
shared among multiple products and also generalizable to novel
products where limited normal training images are provided, for
example, 1 or 2 shot per product. This new paradigm is also known
as Few-Shot IAD (FS-IAD) [8, 14, 15, 31], which can be divided
into Inductive FS-IAD (IFS-IAD) models [14, 15, 31] and Transduc-
tive FS-IAD (TFS-IAD) [8] models. The former leverages statistics
of limited support (training) images to conduct IAD, while the
latter uses statistics of both support and query (test) images for
more generalizable IAD. TFS-IAD and IFS-IAD models are sepa-
rately developed to extend the generalization capability, mainly
for reconstruction-based and memory-based models of the pre-
vious studies. Additionally, meta-learning based IFS-IAD models
[14] have also been proposed to realize fast generalization to new
products.

Despite their promising results, we observe that redundant back-
grounds and large appearance variations of support images may
drive the image-level embeddings from the normal pattern far apart
in a given metric space at test time. Although the issue could be
alleviated by Deep Neural Networks (DNNs) under data-hungry
supervised training, it is almost inevitably amplified in FS-IAD and
thus negatively impacts anomaly detection and localization. More-
over, employing heuristic and linear metrics for anomaly detection
[8, 31] destroys image structures and loses local features, which can

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Illustration of our proposed framework for FS-IAD task.We first use pre-trained prompt-guided SAM for support image
segmentation. Then we design a novel online learning pipeline for memory calibration and anomaly detection, simultaneously,
which are implemented using the optimal matching flows between the memory and query images.

provide discriminative and transferable information across normal
and anomalous patterns. It should be critical for IAD in the few-
shot scenario. Therefore, a desirable metric-based algorithm should
have the ability to leverage the local discriminative representations
for feature matching and minimize the impact caused by the ir-
relevant regions for robustly distinguishing anomaly images and
their corresponding regions. Intuitively, we hope to observe that an
anomalous region should be most irrelevant to the space spanned
by normal features. Furthermore, how to discover the characteris-
tics of IAD itself and absorb them into a metric-based algorithm
design for improving generalization is another crucial problem to
be contemplated.

We aim to solve the pivot issues mentioned above under the line
of memory-based TFS-IAD, which was rarely studied before. First
of all, considering the fact that query features exhibit unbalanced
distribution along the memory bank, as detailed in the methodology
later, we adopt a theoretically guaranteed non-linear measurement
function called Conditional Transport (CT) to compare the building
blocks of two complex structured representations. CT [43] is a func-
tion for computing distance between structural representations,
which was originally proposed for GAN-based DGM optimization,
and can be friendly cascaded with DNNs for feature matching, such
as WRN [41] in this work. Given the distance between all element
pairs, CT has the formulation of the transport problem [12, 37] and
the optimal matching flows between two structures can be achieved
by minimizing the matching cost via Stochastic Gradient Descent
(SGD). Secondly, previous researches ignore the fact that industrial
images to be detected are usually coming online, which provides a
hotbed for enhancing the capability of CT function with both cur-
rent and historical query images. Therefore, we initialize a memory
bank with support features and propose an online learning pipeline
to calibrate the memory with statistics of online query images,
the anomaly detection is thereby implemented by measuring the
distance between the calibrated memory and query features with
the CT function. We name this enhanced model Online CT (OCT).
Thirdly, we find that distinguishing products and their backgrounds
in the query images is necessary to realize robust FS-IAD for sparse
foreground products. On the one hand, redundant backgrounds

are not conducive to OCT, which may introduce overwhelming
invalid calculations. On the other hand, a well-calibrated memory
with a proper foreground and background ratio performs steadily
in FS-IAD. We use a predominant segment model, such as SAM
[21] in this work to implement Foreground-aware OCT (FOCT)
to improve the effectiveness and efficiency of OCT by forcing the
model to pay more attention to diverse targets rather than redun-
dant backgrounds. We sum up our proposed framework in Fig. 1.
Our work contributes in the following ways:

• We propose a novel memory-based TFS-IAD framework that
primarily adopts a non-linear and theoretical guaranteed CT
function between the memory bank and query images for
precise feature matching.

• We make full use of the characteristics of IAD and design
a new pipeline called FOCT to enhance the generalization
capability of the aforementioned CT function.

• Our proposed model achieves SOTA anomaly detection and
localization performances in the few-shot regime under vari-
ous datasets, including MVTec [1] and MPDD [16] and fruit-
ful settings, including 1/2/4-shot.

2 RELATEDWORK
2.1 Industrial Anomaly Detection
IAD involves handling industrial training datasets that exclusively
consist of normal data, presenting challenges due to the varying
subtleties of defects. In this field, the prevailing unsupervised tech-
niques are predominantly reconstruction-basedmethods [10, 38, 40]
and memory-based models [5, 7, 28]. Reconstruction-based meth-
ods are trained exclusively with normal data on the premise that
anomalies will yield significantly higher reconstruction errors. Nev-
ertheless, this assumption does not invariably apply, occasionally
leading these approaches to encounter the identical shortcut issue,
where they inadvertently learn to reconstruct anomalies, thus re-
ducing their discriminative efficacy. Recently, memory-based mod-
els have achieved promising performances in anomaly detection
and localization, leveraging pre-trained features stored in memory
banks containing various feature hierarchies, such as PaDiM [7],
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SPADE [5], Patchcore [28], thereby significantly enhancing the de-
tection capabilities. Furthermore, various sophisticated adaptations
have been implemented, including normalizing flows [19, 29] and
student-teacher knowledge distillation [2, 30] integrated with the
features obtained from pre-trained networks, to effectively manage
the discrepancy in distribution between the pre-training natural im-
age datasets and the distinct nuances present in industrial imagery.
This paper distinguishes from the previous studies by concentrating
on few-shot anomaly detection, where only a limited number of
normal images are accessible.

2.2 Few-shot Industrial Anomaly Detection
FS-IAD has emerged as a compelling new area of research, aim-
ing to identify anomalies with only a few support samples from
target categories. FS-IAD methodologies can generally be catego-
rized into two types: Inductive FS-IAD (IFS-IAD) models [14, 15, 31]
and Transductive FS-IAD (TFS-IAD) models [8]. The majority of
existing research has focused on inductive FS-IAD approaches,
which utilize statistical information from a small set of support
(training) images, without incorporating query (test) images to
perform anomaly detection. Within this realm, generative models
have gained popularity recently, including the hierarchical gen-
erative model TDG [33], and the normalizing flow-based model
DiffNet [29], which both sketch out data distributions from the
limited support samples. Furthermore, the recently proposed Opt-
PatchCore [31] introduces an effective data augmentation method
that substantially enhances feature diversity, thus boosting the gen-
erative capabilities of the model’s memory bank. Concurrently, a
feature-augmentation strategy embodied by GraphCore [39] incor-
porates visual isometric invariant features into the memory-based
anomaly detection framework, thereby improving its ability to
distinguish anomalies. In contrast, TFS-IAD models enhance anom-
aly detection’s generalizability by utilizing statistical data from
both support and query images. An innovative approach is demon-
strated by Fastrecon [8], which employs a regression technique
with distribution regularization. This technique achieves the opti-
mal transformation from support to query features, ensuring the
reconstruction closely resembles the query sample while preserv-
ing the characteristics of normal samples. However, the reliance on
heuristic and linear metrics for anomaly detection can compromise
image structure integrity and overlook the importance of local fea-
tures. In this work, we introduce a novel memory-based TFS-IAD
framework that leverages Conditional Transport (CT) as a metric to
calculate the structural distance between the memory bank and the
query images, thereby enhancing the generalizability of FS-IAD.

3 PRELIMINARY
In this section, we introduce the preliminaries on the task for-
mulation of FS-IAD and the theory of CT function to prepare for
subsequently presenting our proposed model, FOCT.

3.1 Task Formulation
We formally define the one-class industrial anomaly detection task
following the standard 𝑛 way 𝑘 shot few-shot learning setting. In
each category, there are 𝑘 normal support images 𝒙s1:k to re-train
or fine-tune the model. At test time, given the current query image
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Figure 2: Illustration of using SAM to build the semantic
memory that is aware of foreground and background con-
texts for sparse foreground products.

𝒙
q
t being whether normal or anomalous and its historical query

image series 𝒙q1:t−1 of the corresponding category as 𝒙s1:k do. The
model predicts whether or not the query image 𝒙qt is anomalous at
the pixel and image level based on the query image series 𝒙q1:t. It is
worth mentioning that previous methods only leverage statistics of
the current query image 𝒙qt to make predictions while they always
ignore the statistics of the historical query image series 𝒙

q
1:t−1,

which may yield some suboptimal results as revealed by our work.

3.2 CT Theory
Conditional Transport (CT) is proposed to measure the distance
between two sets of weighted objects or distributions using the
non-linear mapping function such as DNN, which is built upon the
basic distance between individual objects. Specifically, given two
sets of discrete sampled objects 𝒚1:𝑛 and 𝒛1:𝑚 from distributions
𝑝 (𝒚) and 𝑝 (𝒛), where 𝑝 (𝒚) =

∑𝑚
𝑖=1 𝑎𝑖𝛿𝒚𝑖

and 𝑝 (𝒛) =
∑𝑛

𝑗=1 𝑏 𝑗𝛿𝒛 𝑗
.

𝒂 ∈ Δ𝑚 and 𝒃 ∈ Δ𝑛 separately denote the probability simplex of
R𝑚 and R𝑛 . The CT distance is defined as:

L𝝓,𝜌 = min
𝝓

∑︁
𝒚∈𝑝 (𝒚 )

∑︁
𝒛∈𝑝 (𝒛 )

𝜌C𝝓 (𝒚 → 𝒛) + (1 − 𝜌)C𝝓 (𝒛 → 𝒚) (1)

where C𝝓 (𝒚 → 𝒛) and C𝝓 (𝒛 → 𝒚) separately denote the forward
and backward CT distances, also known as navigators in the scope
of CT theory, 𝝓 is optimizable parameters, and 𝜌 is a trade-off
factor controlling strengths between the forward and backward
navigators. To better understand how CT works when minimizing
Eq. 1, we take the forward navigator as an example as follows:

C𝝓 (𝒚 → 𝒛) =
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

1
𝑛
𝜋𝑛 (𝒛 𝑗 |𝒚𝑖 ; 𝝓)𝑐 (𝒚𝑖 , 𝒛 𝑗 )

𝜋𝑛 (𝒛 𝑗 |𝒚𝑖 ; 𝝓) =
𝑒𝑥𝑝 (−𝑑𝝓 (𝒚𝑖 , 𝒛 𝑗 ))∑𝑛
𝑟=1 𝑒𝑥𝑝 (−𝑑𝝓 (𝒚𝑖 , 𝒛𝑟 ))

(2)

where 𝑐 (·, ·) is Euclidean distance, 𝜋𝑛 (𝒛 𝑗 |𝒚𝑖 , 𝝓) represents forward
transport matrix satisfying

∑𝑛
𝑗=1 𝜋𝑚 (𝒛 𝑗 |𝒚𝑖 , 𝝓) = 1, it depicts the

probability of transporting 𝒚𝑖 to 𝒛 𝑗 . 𝑑𝝓 (·, ·) denotes non-linear
measurement function, such as MLP implemented in [43]. The
forward CT can be interpreted as the expected cost of stochastically
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Figure 3: (a) Optimal matching flows calculated between the support and query features. (b) The pipeline of episodic memory
calibration consists of memory augmentation and memory compression. We use the optimal transport matrix 𝝅∗ derived from
the optimal matching flows to select the Top-K query features for augmenting the episodic memory. We employ the coreset
technique to downsample the episodic memory for compression, as shown in (c).

transporting a random source point to one of the 𝑚 randomly
instantiated "anchors" of the target distribution. By minimizing
the forward CT of Eq. 2, an unbiased statistical estimation of the
two distributions arrives. Hence, it is reasonable to measure the
relevance of one distribution against another.

4 METHODOLOGY
In this section, we outline the details of our proposed FOCT model
from the following perspectives: We first use pre-trained WRN
[41] and SAM [21] to extract foreground-aware support features
preparing for constructing the semantic memory (Sec. 4.1); Then,
we calibrate the episodic memory with the current query image
using CT function (Sec. 4.2); Finally, we implement anomaly detec-
tion by measuring the distance of the calibrated memory and the
current query image (Sec. 4.3). Moreover, we conduct analysis on
the properties and complexity of our proposed model (Sec. 4.4).

4.1 Foreground-aware Semantic Memory
In practice, we may encounter the problem of anomaly detection for
sparse foreground products. For the sake of algorithm effectiveness
and computation efficiency, we propose to use pre-trained WRN
and SAM to extract foreground and background features of support
samples for constructing the semantic memory, as shown in Fig.
2. Specifically, following the existing studies [7, 31], we firstly use
WRN parameterized by 𝜽WRN to extract the multi-scale feature
maps of support images as 𝒇 1:k = 𝑔𝜽WRN (𝒙1:k). Concurrently, we
employ SAM with parameters 𝜽SAM to calculate masks of the cor-
responding support images and downsample them to the scale of
support feature maps by 𝒎1:k = ds(g𝜽 SAM (𝒙1:k)), where ds(·) is
downsampling operation, 𝒇 1:k ∈ Rk×h×w×c and 𝒎1:k ∈ Rk×h×w.
Foreground and background features of support images can then
be separately derived by:

𝒇 fore1:Nf
= fla(𝒇 1:k ×𝒎1:k), 𝒇 back1:Nb

= fla(𝒇 1:k × (1 −𝒎1:k)) (3)

where fla(·) is a flatten operation. Nf and Nb are the number of fea-
ture vectors for the foreground and background, which are usually

huge. Hence, we compress the size of foreground and background
features according to different downsampling ratios 𝛼 and 𝛽 to re-
duce redundancy. Finally, the semantic memory can be represented
by concatenation asMs = [𝒇 fore1:𝛼Nf

,𝒇 back1:𝛽Nb
] ∈ Rn×c.

4.2 Episodic Memory Calibration with CT
Aware of the fact that query images are always coming online, we
design an episodic memory calibration that is complementary to its
semantic peer to better capture statistics of the current and histori-
cal query images. The episodic memory calibration is composed of
memory augmentation and memory compression, the pipeline of
which is shown in Fig. 3.

4.2.1 Memory augmentation. Memory augmentation aims to gather
statistics of historical query images 𝒙q1:t−1 in the old episodic mem-
ory Me

t−1 with the features of the current query image 𝒙
q
t to

form the augmented memory Me
t , for the beginning we have

Me
0 = ∅. As shown in Fig. 3 (b), memory bank is defined as the

concatenation of semantic and episodic memories and denoted by
Mt−1 = [Ms,Me

t−1]. We use the sameWRN g𝜽WRN as in extracting
features of semantic memory do for obtaining features of the cur-
rent query image as 𝒇q1:m = fla(g𝜽WRN (𝒙

q
t )), where we replace the

subscript t with q for simplicity. In order to obtain the new episodic
memory augmented with statistics of the current query image, we
need to solve the optimal matching flows between Ms and 𝒇q1:m.
According to the analysis of CT theory in the preliminaries, we
regard Ms and 𝒇

q
1:m as two sets sampled from two distributions

and formulate the distance with CT function as:

L𝝓,𝜌 = min
𝝓

𝑛∑︁
i=1

𝑚∑︁
j=1

[ 𝜌
𝑚
𝜋𝑛 (Ms

i |𝒇
q
j , 𝝓)𝑐 (M

s
i ,𝒇

q
j )

+ 1 − 𝜌

𝑛
𝜋𝑚 (𝒇qj |M

s
i , 𝝓)𝑐 (𝒇

q
j ,M

s
i )]

(4)
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Figure 4: Illustration on FS-IAD with our proposed FOCT.

For efficiently optimizing Eq. 4, we separately define the forward
and backward transport matrices 𝜋𝑛 and 𝜋𝑚 as follows:

𝜋𝑛 (Ms
i |𝒇

q
j , 𝝓) =

𝑒𝑥𝑝 (−𝑑𝝓 (Ms
i ,𝒇

q
j ))∑𝑛

𝑟=1 𝑒𝑥𝑝 (−𝑑𝝓 (Ms
r ,𝒇

q
j ))

𝜋𝑚 (𝒇qj |M
s
i , 𝝓) =

𝑒𝑥𝑝 (−𝑑𝝓 (𝒇
q
j ,M

s
i ))∑𝑚

𝑟=1 𝑒𝑥𝑝 (−𝑑𝝓 (𝒇
q
r ,Ms

i ))

(5)

where 𝝅𝑛 ∈ R𝑚×𝑛 and 𝝅𝑚 ∈ R𝑛×𝑚 . By minimizing Eq. 4 w.r.t. 𝝓
via SGD algorithms such as Adam [18], Optimal flows between the
semantic memory and current query features arrive.

Once the optimal forward transport matrix 𝝅∗
𝑛 is obtained, the

memory augmentation with Top-K selection can be implemented:

ΔMe
t = 𝒇

q
idx, idx = TopK(argmax(𝝅∗

n, dim = 1)) (6)

where ΔMe
t ∈ RK×c. It is worth noting that we conduct argmax(·)

operation for each column since we want to select query features
most relevant to normal features. Finally, the new episodic memory
is refreshed byMe

t = [Me
t−1,ΔM

e
t ]. The augmented memory bank

can now be expressed by Mt = [Ms,Me
t ] ∈ R(n+Lt )×c, where Lt

is the length of episodic memory at the 𝑡-th query image.

4.2.2 Memory compression. In practice, the memory bank can not
be infinite, suppose the capacity of the episodic memory is 𝐿. As the
number of online query images increases, the episodic memory goes
to full when Lt ≥ L. Therefore, we design another mechanism called
memory compression for efficient data management of episodic
memory. The objective is to identify a subset Me

t ⊂ Me
t that the

subset should enable the most accurate and expedited approxima-
tion of problem solutions over Me

t , aligning closely with those
computed over the entireMe

t . In our focus on anomaly detection,
the upcoming subsection employs nearest neighbor computation.
To guarantee comparable coverage of Me

t to the original episodic
memoryMe

t , we adopt a min-max facility location coreset selection
[34], addressing the inherent NP-hard problem:

Me,∗
t = argmin

Me
t

max
𝒖∈Me

t

min
𝒗∈Me

t

∥𝒖 − 𝒗∥22 (7)

whereMe,∗
t ∈ R𝜆L×c, 𝜆 ∈ {0, 1} is compressive ratio. To solve the

NP-hard problem, we employ an iterative greedy approximation
[32]. To enhance the efficiency of memory compression, we use
the Johnson-Lindenstrauss theorem proposed by [6] to reduce the

Image OCTGT FOCT
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T
ec

M
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D
D

Figure 5: Property of FOCT for sparse foreground products.

dimension of features within the episodic memory. After obtaining
the compressed episodic memory, the new episodic memory can
be depicted as M𝑡 = [Ms,Me,∗

t ] ∈ R(n+𝜆L)×c.

4.3 Anomaly Detection
After parameters 𝝓∗ of the CT function are optimized, the anomaly
score map of the current query image can be expressed by:

𝒔j =
𝑛∑︁
𝑖=1

𝜋𝑛 (Ms
i |𝒇

q
j , 𝝓

∗)𝑐 (Ms
i ,𝒇

q
j ), 𝑗 = 1, ...,𝑚 (8)

For image-level anomaly detection, we use the maximum distance
score 𝑠∗ among all the pixels 𝒔 ∈ Rm to represent 𝑠∗ = maxj=[1,m] 𝒔j.
For pixel-level localization, we first upscale the score map with bi-
linear interpolation to match the original input resolution. Then,
we smooth the score map with a Gaussian kernel width 4.

4.4 Model Analysis
4.4.1 Property of FOCT on adaptive prior. One of the important and
appealing properties our proposed FOCT enjoys is that the prior
distribution of query features can be adaptively acquired through
the CT function optimization, which fits the practical scenario
where the prior distribution of query features is usually unknown
in advance. According to the forward transport matrix in Eq. 5,
we have

∑𝑛
𝑖=1 𝜋𝑛 (Ms

i |𝒇
q
j , 𝝓

∗) = 1 while
∑𝑚

𝑗=1 𝜋𝑛 (Ms
i |𝒇

q
j , 𝝓

∗) = Ci,
usually we have Ci ≠ 1 and its real value is adaptive with query
features and the procedure of CT function optimization.

4.4.2 Property of FOCT for sparse foreground products. Another
practical and interesting property of our model is that it is com-
putationally efficient, especially for sparse foreground products,
which is usually encountered in real-world applications. As shown
in Fig. 5, compared with its variant OCT without foreground-aware
mechanism, FOCT shows more reasonable attention allocation in
processing the foreground and background.

4.4.3 Complexity analysis. We implement 𝝓 using a ReLU-activated
MLP. Taking a two-layer MLP with dimensions [𝑑1, 𝑑2, 𝑑3] for ex-
ample. The forward and backward computational complexities per
iteration take O(NMd2 (d1 + d3)), where 𝑁 and𝑀 separately refer
to the number of features of the two sets. To reduce the complexity,
we can further control the size of MLP or the size of the two sets in
achieving a trade-off between accuracy and real-time efficiency.
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Table 1: FS-IAD performance comparisons on MVTec and MPDD datasets. The results are averaged over all categories. Both
image-level and pixel-level performances are reported in AUROC (%) ↑ and F1-max (%) ↑. The best results are in bold.

Dataset Shot PaDiM (ICPR’21) RegAD (ECCV’22) PatchCore (CVPR’22) FastRecon (ICCV’23) Ours
AUROC F1-max AUROC F1-max AUROC F1-max AUROC F1-max AUROC F1-max

MVTec
1 76.6 / 89.3 88.2 / 40.2 82.9 / 92.5 – / – 76.7 / 81.6 88.5 / 38.9 84.9 / 93.3 91.6 / 49.2 87.1 / 94.4 91.6 / 51.7
2 78.9 / 91.3 89.2 / 43.7 85.7 / 94.6 – / – 84.1 / 89.8 90.7 / 45.0 88.4 / 94.4 93.2 / 51.4 90.5 / 94.8 93.3 / 53.0
4 80.4 / 92.6 90.2 / 46.1 88.2 / 95.8 – / – 88.5 / 91.2 92.6 / 48.1 91.2 / 96.0 94.1 / 52.9 93.2 / 96.2 94.9 / 54.9

MPDD
1 57.5 / 73.9 – / – 60.9 / 92.6 – / – 68.9 / 79.4 77.2 / 17.1 72.2 / 96.4 79.1 / 23.5 78.9 / 96.2 84.5 / 27.9
2 58.0 / 75.4 – / – 63.4 / 93.2 – / – 75.5 / 84.4 81.7 / 23.4 76.1 / 96.7 82.8 / 28.8 82.4 / 96.5 86.7 / 28.9
4 58.3 / 75.9 – / – 68.3 / 93.9 – / – 77.8 / 92.8 82.4 / 31.5 79.3 / 97.2 83.5 / 31.6 83.2 / 96.7 87.0 / 33.6

Image GT FOCT FastRecon Patchcore Image GT FOCT FastRecon Patchcore

Figure 6: Qualitative results of anomaly localization on MVTec (left) and MPDD (right) datasets under 2-shot scenario.

5 EXPERIMENTS
5.1 Experimental Setups
Dataset: We conduct experiments on the MVTec [1] and MPDD
[16] datasets. MVTec dataset comprises 5,354 images across 15 cat-
egories, with 3,629 defect-free and 1,725 defective images. Each
category exhibits an average of five distinct defect types, with reso-
lutions ranging from 700×700 to 1,024×1,024. MPDD dataset con-
tains 6 classes of metal products. The images are captured from var-
ious distances and spatial angles amidst non-uniform backgrounds,
which poses a significant challenge for the FS-IAD task. MPDD
consists of 888 normal training images and 458 test images, which
separately contain 176 normal images and 282 abnormal images.
The image resolution is fixed as 1,024 × 1,024. Both datasets provide
pixel-level ground truth annotations for defective regions.
CompetingMethods:We compare our proposed FOCT against the
most recently proposed SOTA full-data IAD and FS-IAD methods,
including PaDiM[7], RegAD[14], PatchCore[28], and FastRecon[8].
For a fair comparison, we keep the query images fixed and conduct
10 random support image splittings under 1/2/4 shot scenarios.
Then we use the official codes of PaDiM, RegAD, and PatchCore to
implement experiments. We report the results of FastRecon with
our own reproduction since the official code is not available yet.
Evaluation Protocols: To quantify the model performance of
image-level anomaly detection, we employ the Area Under the
Receiver Operator Curve (AUROC) and the F1-score at the optimal
threshold (F1-max) as our evaluation metrics, being consistent with
the previous works[15]. Furthermore, we utilize pixel-level AUROC

and F1-max to measure the defect localization performance. All
the results of image-level and pixel-level AUROC and F1-max for
competing methods and our model are averaged on the 10 splittings.
Implementation Details: In our experiment, we employ a WRN-
50 [41] pre-trained on ImageNet dataset [22] as the feature extractor.
Image features are obtained from the intermediate layers following
[28]. Both support and query images are reshaped to 336×336 in
the MVTec and MPDD datasets. To initialize the semantic memory,
foreground, and background subsampling ratios are 𝛼 = 10% and
𝛽 = 7.5%, respectively. Meanwhile, the episodic memory has a ca-
pacity of 𝐿 = 100 feature vectors with a compression ratio 𝜆 = 25%.
We select the top 10 foreground and top 40 background feature
vectors with the maximum transport probabilities. We update pa-
rameters of the CT function using Adam[18] with a learning rate
of 0.0001 for 100 epochs, with the trade-off factor of CT 𝜌 = 0.5. All
the experiments are conducted on one NVIDIA GTX 3090 GPU. We
will release the source code upon acceptance.

5.2 Comparisons with SOTA Methods
Few-shot Anomaly Detection. We compare the few-shot anomaly

detection performance of our proposed FOCT with recently pro-
posed competitive baselines and report image-level results with
black in Table 1. Our model significantly outperforms the previous
methods on both MVTec and MPDD datasets under image-level
AUROC and image-level F1-max metrics. Compared with the re-
sults of PaDiM and PatchCore, taking 1-shot for example, AUROC
and F1-max of our model separately exceed the two baselines more
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Table 2: Anomaly detection comparisons per product in
image-level and pixel-level AUROC (%) ↑ on MVTec and
MPDD datasets under 2-shot setting. The best results are
in bold.

Dataset PatchCore FastRecon Ours(CVPR’22) (ICCV’23)

M
V
Te
c

Bottle 99.0 / 94.3 100.0 / 98.5 99.4 / 98.3
Cable 81.7 / 87.0 83.2 / 94.5 85.0 / 94.6
Capsule 74.6 / 88.5 77.0 / 98.2 81.5 / 97.6
Hazelnut 98.8 / 96.4 99.3 / 97.8 98.8 / 92.5
MetalNut 66.7 / 82.4 92.0 / 96.8 95.1 / 93.8

Pill 79.8 / 86.9 93.0 / 98.1 92.1 / 94.4
Screw 43.7 / 89.9 44.4 / 91.9 54.8 / 95.0

Toothbrush 78.3 / 93.5 78.1 / 94.2 83.1 / 96.1
Transistor 72.2 / 72.5 84.2 / 89.8 88.2 / 79.4
Zipper 95.9 / 97.1 97.7 / 98.7 97.2 / 98.7
Carpet 97.0 / 98.8 99.5 / 99.2 98.1 / 99.0
Grid 75.9 / 70.5 79.9 / 67.8 87.2 / 91.9

Leather 100.0 / 99.4 100.0 / 99.3 100.0 / 99.4
Tile 99.1 / 95.9 99.3 / 97.0 99.2 / 95.5
Wood 98.7 / 94.8 98.4 / 94.6 98.5 / 94.9

Average 84.1 / 89.9 88.4 / 94.4 90.5 / 94.7

M
PD

D

Bracketblack 64.7 / 94.1 63.3 / 96.8 71.0 / 96.4
Bracketbrown 51.8 / 65.8 52.3 / 93.4 56.1 / 92.8
Bracketwhite 74.0 / 96.2 64.1 / 97.0 81.9 / 95.9
Connector 85.9 / 89.1 91.4 / 96.4 99.0 / 97.5
Metalplate 99.0 / 91.3 100.0 / 98.8 97.8 / 98.6
Tubes 77.8 / 70.1 85.6 / 97.8 88.3 / 97.6

Average 75.5 / 84.4 76.1 / 96.7 82.4 / 96.5

Table 3: Ablation studies with image-level and pixel-level
metrics on MPDD under 2-shot case. The best results are in
bold.

CT Online Foreground AUROC F1-max

- - - 76.1 / 96.7 82.8 / 28.8
✓ - - 77.8 / 96.6 84.9 / 29.7
✓ ✓ - 77.1 / 96.4 85.3 / 31.4
✓ ✓ ✓ 82.4 / 96.5 86.7 / 28.9

than 4% and 3%, which reveals the fact that transductive infer-
ence in few-shot scenario benefits image-level anomaly detection
a lot since more statistics on query images are considered. When
it comes to results between FastRecon and our FOCT, also con-
sidering the 1-shot case, we observe that our model outperforms
FastRecon more than 2% in AUROC. We attribute this to the fact
that our model simultaneously employs powerful non-linear mea-
surement functions and leverages statistics of query images more
thoroughly. It is worth noting that products’ sparsity in MPDD is
more obvious than MVTec, and our model achieves more gain on
MPDD against MVTec. It verifies the effectiveness of our proposed
foreground-aware semantic memory to some extent. Specifically,
our FOCT exceeds the second-best model by more than 6% and
5% in image-level AUROC and image-level F1-max under 1-shot
setting. Qualitative results are reported in Fig. 6.

Anomaly GT FOCT OCT CTNormal

Figure 7: Qualitative ablation studies of 2-shot anomaly lo-
calization on MVTec (top) and MPDD (bottom) datasets.
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(a) Foreground Subsampling Ratio α / Background Subsampling Ratio 𝛽

(b) Foreground Selection number n / Background Selection number m

Figure 8: Image-level and pixel-level AUROCs (%) ↑ of 2-shot
on MPDD dataset versus foreground and background (a) sub-
sampling ratio; (b) selection number.

Few-shot Anomaly Localization. We report the few-shot anomaly
localization results of our model compared with other compet-
itive baselines using pixel-level AUROC and pixel-level F1-max
with gray in Table 1. Our model outperforms the competitors on
the MVTec dataset across the two metrics under various few-shot
scenarios including 1/2/4 shot. Our model achieves competitive
pixel-level AUROC and exceeds more than 2% on average using
pixel-level F1-max against other competitors. An interesting ob-
servation is that our model does not achieve SOTA performance
in pixel-level AUROC, which we attempt to answer hereafter. We
find that the ground truth masks of MPDD datasets are sometimes
larger than the actual anomaly areas, examples can be found in
Fig. 6. However, anomaly score maps derived from our model have
low uncertainty. Therefore, the predicted mask after binarizing the
score map may have some relatively concentrated anomalous areas.
When calculating the metric of pixel-level AUROC, although our
model precisely localizes the anomalous areas, the IOU between
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Figure 9: Image-level and pixel-level AUROCs (%) ↑ on MPDD dataset under 2-shot setting versus (a) the memory capacity L, (b)
the memory compression ratio 𝜆, and (c) the trade-off factor 𝜌 of CT function.

the human-annotated ground truth mask and the concentrated
predicted mask remains low, which negatively impacts the recall
value of our model and leads to lower pixel-level AUROC. Besides,
we provide performance comparisons per product and report the
results in Table 2 for more detailed comprehension.

5.3 Ablative Analysis
In our ablation study, we develop three variants of our proposed
FOCT called vanilla, CT, and OCT to evaluate the effectiveness of
different components of our model. Compared with FOCT, OCT
removes the foreground-aware mechanism in semantic memory
and only uses downsampling to construct the semantic memory.
Compared with OCT, CT only leverages statistics of the current
query image and ignores statistics of historical query images. Com-
pared with CT, vanilla uses statistics of the current query image
via the linear measurement function introduced in FastRecon [8].
The results are reported in Table 3 and Fig. 7, respectively.

Affect of non-linear measurement function. Comparing the results
between vanilla and CT in Table 3, we observe that CT significantly
outperforms vanilla in almost all metrics. It approves the superiority
and effectiveness of non-linear measurement powered by the CT
function against its linear measurement peer.

Affect of statistics of historical query images. Comparing the re-
sults between CT and OCT, OCT achieves consistent improvement
in general. It reveals that statistics of historical query images mat-
ter in anomaly detection when the normal training images are
extremely limited. We also find that the metric of AUROC drops
a little in the OCT variant, and we attribute this to that OCT aug-
ments too many redundant backgrounds into the memory bank,
thus restricting anomaly detection performance in low-data regime.

Affect of foreground-aware semantic memory. According to the
results between OCT and FOCT, there exhibits some significant im-
provements in image-level metrics of AUROC and F1-max, demon-
strating the necessity and effectiveness of foreground-aware se-
mantic memory, qualitative visualizations can be found in Fig. 5.

5.4 Hyper-parameters Analysis
In this part, we mainly focus on analyzing the robustness of our
model against various hyper-parameters, including foreground

and background subsampling ratios 𝛼 and 𝛽 , foreground and back-
ground selection numbers n and m, memory capacity L, memory
compression ratio 𝜆, and trade-off factor 𝜌 of CT function. Results
are separately reported in Fig. 8 and Fig. 9.

Affect of memory initialization. We regard 𝛼 , 𝛽 , n, and m men-
tioned above as hyper-parameters of memory initialization. As we
can see an initialized memory bank with a proper foreground and
background ratio is crucial for generalized anomaly detection in
the low-data regime. We attribute this to the fact that the represen-
tativeness of the initial memory is related to such a ratio.

Affect of memory capacity. We observe that the oversized mem-
ory capacity with large L is unfriendly with boosting performance.
We believe that unexpected interference would be introduced with
the increase in memory capacity, which should have negative im-
pacts on anomaly detection.

Affect of memory compression ratio. As we can see, generally
speaking, the low or high compression ratio 𝜆 hurts AUROCs. On
one hand, the low 𝜆 may sacrifice the diversity of the memory bank.
On the other hand, the high 𝜆 may not fully utilize the statistics of
the current query images.

Affect of trade-off factor in CT function. Our model achieves ro-
bust AUROCs versus various 𝜌 values, demonstrating the flexibility
of our model when learning the CT function. Besides, the best AU-
ROCs arrive at 𝜌 = 0.5, which implies that both the forward and
backward CTs are important for improving performance.

6 CONCLUSION
In this work, we propose a novel memory-based TFS-IAD frame-
work, called FOCT, which has rarely been studied before. It consists
of three components, including foreground-aware semantic con-
struction, episodic memory calibration, and anomaly detection in
the few-shot scenario. The episodic memory calibration and anom-
aly detection are both powered by the non-linear measurement
CT function, compared with its linear counterparts without con-
sidering foreground sparsity and statistics of online query images,
FOCT shows impressive generalization capability across various
benchmark datasets under fruitful few-shot scenarios of 1/2/4 shot.
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