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ABSTRACT

Large Language Models (LLMs) have recently demonstrated impressive perfor-
mance in natural language processing due to their strong generalization and se-
quence modeling capabilities. However, their direct application to time series
forecasting remains challenging due to two fundamental issues: the inherent het-
erogeneity of temporal patterns and the modality gap between continuous nu-
merical signals and discrete language representations. In this work, we propose
TALON (Temporal-heterogeneity And Language-Oriented Network), a unified
framework that enhances LLM-based forecasting by modeling temporal hetero-
geneity and enforcing semantic alignment. Specifically, we design a Heteroge-
neous Temporal Encoder that partitions multivariate time series into structurally
coherent segments, enabling localized expert modeling across diverse temporal
patterns. To bridge the modality gap, we introduce a Semantic Alignment Module
that aligns temporal features with LLM-compatible representations, enabling ef-
fective integration of time series into language-based models while eliminating the
need for handcrafted prompts during inference. Extensive experiments on seven
real-world benchmarks demonstrate that TALON achieves superior performance
across all datasets, with average MSE improvements of up to 11% over recent
state-of-the-art methods, while maintaining higher efficiency. These results un-
derscore the effectiveness of incorporating both pattern-aware and semantic-aware
designs when adapting LLMs for time series forecasting. The code is available at:
https://anonymous.4open.science/r/TALON-BB00.

1 INTRODUCTION

Time series forecasting plays a critical role in a wide range of real-world applications, spanning
high-stakes domains such as healthcare monitoring (Jin et al., 2023) and power grid control (Shao
et al., 2024), as well as everyday services including weather forecasting (Sun et al., 2021; Zhang
et al., 2023; Price et al., 2025), traffic prediction (Jin et al., 2024c), and energy load estimation
(Wu et al., 2024). To ensure reliable forecasting in such complex and dynamic environments, it is
essential to effectively model long-range temporal dependencies (Nie et al., 2023; Liu et al., 2024c).

Recently, large language models (LLMs) have demonstrated remarkable generalization and repre-
sentation capabilities across a wide range of language and vision tasks (Touvron et al., 2023; Liu
et al., 2023; Achiam et al., 2023; Team, 2024; Liu et al., 2024b). Inspired by the shared sequential
nature of time series and language data, recent research has explored LLMs as general-purpose fore-
casters for time series applications (Ansari et al., 2024; Jin et al., 2024a; Liu et al., 2024d), aiming
to leverage their strong sequence modeling capabilities.

However, as illustrated in Figure 1 (a), multivariate time series often exhibit intrinsic heterogeneity,
where different segments and variables follow diverse and evolving patterns (Shao et al., 2024; Sun
et al., 2024; Qiu et al., 2025; Liu et al., 2025c; Shi et al., 2025). In contrast, LLMs are pretrained
on text corpora with globally consistent grammatical structures, which limits their ability to handle
fragmented or nonstationary temporal inputs. Moreover, time series are continuous and real-valued,
governed by strong temporal dependencies, whereas LLMs are inherently designed for discrete,
symbolic sequences (Ansari et al., 2024). This discrepancy in both structure and modality poses
significant challenges for directly applying LLMs to time series forecasting (Liu et al., 2025a).
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(a) Differences between time se-
ries and natural language. (b) Comparison of LLM-based forecasting paradigms.

Figure 1: (a) Time series are continuous and structurally diverse, whereas natural language is dis-
crete and syntactically uniform, posing a modality gap that hinders the direct application of LLMs to
time series forecasting. (b) Our proposed TALON introduces a framework that integrates heteroge-
neous temporal encoding with contrastive semantic alignment, enabling pattern-aware and semanti-
cally grounded forecasting without relying on prompts during inference.

As shown in Figure 1 (b), existing LLM-based forecasting methods primarily fall into two cate-
gories: (1) Tokenization-based methods, which discretize continuous sequences into symbolic to-
kens (Gruver et al., 2023; Ansari et al., 2024); and (2) Prompt-conditioned methods, which prepend
handcrafted textual templates to time series inputs (Liu et al., 2024d; Jin et al., 2024a). While both
paradigms attempt to adapt LLMs to time series data, they fail to fully account for the modality
gap. Specifically, they either disrupt temporal continuity, discard fine-grained numerical structure,
or suffer from weak alignment and a reliance on handcrafted prompts.

To address these challenges, we propose TALON (Temporal-heterogeneity And Language-Oriented
Network), a unified framework that bridges the modality gap by jointly modeling temporal het-
erogeneity and enforcing semantic alignment between time-series and language representations.
First, we propose a Heterogeneous Temporal Encoder (HTE) to partition multivariate time series
into structurally homogeneous segments based on their statistical and temporal properties, enabling
pattern-aware expert modeling. Second, we introduce a Semantic Alignment Module (SAM) that
aligns continuous features with LLM-compatible embeddings in a shared semantic space, eliminat-
ing the need for handcrafted prompts and bridging the modality gap. Finally, we employ a LLM
Forecasting Head (LFH) that combines a pretrained LLM with lightweight projection layers to
autoregressively generate future segments from the aligned representations. We evaluate TALON
on seven real-world time series forecasting benchmarks, where it consistently outperforms both
LLM-based and deep learning baselines across various prediction horizons. Our contributions are
summarized as follows:

• We identify and characterize the modality misalignment problem in LLM-based time series
forecasting from both structural and semantic perspectives, highlighting how the discrep-
ancy between continuous signals and discrete language inputs limits existing paradigms.

• We propose TALON, a novel framework that integrates heterogeneous pattern decomposi-
tion and semantic alignment to enable fine-grained forecasting and cross-modal represen-
tation learning.

• Experimentally, TALON consistently outperforms state-of-the-art baselines across seven
real-world forecasting benchmarks, achieving up to 11% reduction in MSE while improv-
ing both accuracy and generalization.

2 RELATED WORK

Deep Learning for Time Series Forecasting. Deep learning has become a cornerstone in time se-
ries forecasting, with various architectures designed to capture complex temporal dependencies.
Convolutional neural networks are widely used to extract local temporal patterns and variable-
wise dependencies (Wu et al., 2023; Eldele et al., 2024; Wang et al., 2025). More recently,
Transformer-based models have gained popularity due to their global receptive fields and self-
attention mechanisms, which enable long-range dependency modeling. For instance, PatchTST (Nie
et al., 2023) proposes a channel-independent patching mechanism to decouple variable interactions,
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Figure 2: Overview of the TALON architecture. (1) Heterogeneous Temporal Encoder quantifies
segment-level complexity and routes each segment to specialized experts via a pattern-based rout-
ing mechanism. (2) Semantic Alignment Module generates structured, token-level prompts that
encode expert routing hints and temporal context, and applies contrastive learning to align time-
series and language representations, thereby enabling semantic grounding without inference-time
prompts. (3) LLM Forecasting Head takes the aligned features as input and performs autoregressive
next-segment prediction. This design supports complexity-aware modeling, prompt-free inference,
and semantically aligned forecasting under heterogeneous temporal patterns.

while iTransformer (Liu et al., 2024c) enhances multivariate modeling by treating each univariate
series as an individual token. To further address the heterogeneity of temporal patterns, several meth-
ods introduce mechanisms such as mixture-of-experts (Ni et al., 2024; Qiu et al., 2025; Liu, 2025)
and subspace-based pattern grouping (Sun et al., 2024), improving robustness to non-stationary and
diverse dynamics. Despite these advances, most existing methods remain constrained by limited pa-
rameterization and small-scale training corpora (Chen et al., 2020; Liu et al., 2021; Cai et al., 2024;
Liu et al., 2024e).

Large Language Models for Time Series. Motivated by the sequential nature shared between time
series and language, such as local-to-global dependency structures and autoregressive generation,
recent studies have explored adapting LLMs to time series forecasting (Gruver et al., 2023; Jin
et al., 2024b). One line of work discretizes time series into symbolic tokens via quantization or
pattern clustering, enabling direct utilization of token-based LLMs (Gruver et al., 2023; Ansari
et al., 2024). Another line of research retains raw numerical inputs and leverages textual prompts
to provide contextual guidance (Liu et al., 2024d; Jin et al., 2024a; Niu et al., 2025). While these
approaches benefit from the generalization capabilities of pretrained LLMs, they typically overlook
the pattern and semantic mismatch between natural language and continuous time series, leading to
limited scalability and suboptimal representation alignment.

3 PRELIMINARIES

Given a multivariate input sequence X = (xt−L+1, . . . , xt) ∈ RL×C , the goal of time series fore-
casting is to predict the future values Y = (xt+1, . . . , xt+H) ∈ RH×C , where L is the look-back
window length, H is the forecasting horizon, and C is the number of variables. The task is to learn
a predictive function fθ such that Y = fθ(X).

4 METHOD

4.1 OVERALL ARCHITECTURE

As illustrated in Figure 2, our proposed framework TALON consists of three key components: the
Heterogeneous Temporal Encoder (HTE), the Semantic Alignment Module (SAM), and the LLM
Forecasting Head (LFH).

To focus on modeling temporal variations, we follow the channel-independent strategy (Liu et al.,
2024d), decomposing the multivariate input into C separate univariate sequences. Each univariate
sequence is further segmented into N consecutive non-overlapping patches of length S, with each
patch denoted as si = {x(i−1)S+1, . . . , xiS} ∈ RS , i = 1, · · · , N .

3
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The HTE module extracts token-level statistical features from each patch and dynamically routes
it to a specialized expert (e.g., Linear, CNN, LSTM) via a learnable gating mechanism, enabling
localized and pattern-aware temporal modeling. Next, the SAM constructs token-adaptive prompts
based on the patch’s complexity and temporal context. These prompts are processed by a frozen
LLM to produce semantic embeddings in the language modality. To bridge the modality gap between
continuous time-series features and discrete language representations, we introduce a fine-grained
contrastive alignment loss at the token level. This encourages the time-series-derived representations
to align closely with the language embeddings, effectively transforming them into language-aligned
features suitable for LLM-based forecasting. Finally, the LFH takes the aligned embeddings as input
and employs a autoregressive decoder, consisting of a frozen LLM and a linear projection layer, to
generate forecasting outputs. This design supports variable prediction lengths while maintaining
low inference cost. We elaborate on each module in the following subsections.

4.2 HETEROGENEOUS TEMPORAL ENCODER

Multivariate time series often exhibit complex and heterogeneous temporal dynamics, including
diverse trends, fluctuations, and long-range dependencies across variables and time (Shao et al.,
2024). To effectively model such variability, we propose the Heterogeneous Temporal Encoder
(HTE), which learns pattern-aware representations by dynamically adapting expert selection to the
complexity and temporal structure of each input patch.

As shown in Figure 2, HTE consists of three key components: (1) Pattern Quantification, (2) Pattern-
Adaptive Routing, and (3) Heterogeneous Pattern Extractors.

Pattern Quantification. To characterize the local temporal structure of each patch, HTE computes
a compact set of interpretable token-level statistical features (e.g., trend strength, variation, and
autocorrelation). These features quantify local temporal dynamics and serve as the basis for routing
each patch to a specialized modeling branch tailored to distinct temporal behaviors.

Given a univariate patch si ∈ RS , we compute three descriptors: trend strength (c1), local variation
(c2), and autocorrelation coefficient (c3) (Qiu et al., 2024; Li et al., 2024). These features form a
quantification vector ci = [c1, c2, c3] ∈ R3, which characterizes the local structure of si and serves
as the input to the expert routing mechanism. The specific calculation formulas are provided in the
Appendix C.

Pattern-Adaptive Routing. Inspired by Variational Autoencoder-style stochastic modeling
(Kingma et al., 2013), we introduce latent uncertainty into the expert selection process by encoding
both the input patch si and its complexity ci into latent scores. Specifically, we compute:

z̃i = ReLU(siW
t
0)W

t
1 , (1)

c̃i = ReLU(ciW
c
0 )W

c
1 , (2)

where W t
0 ∈ RS×d, W c

0 ∈ R3×d, and W t
1 ,W

c
1 ∈ Rd×K for K experts.

We inject Gaussian noise ϵi ∼ N (0, 1) and compute routing logits:

zi = z̃i + ϵi · Softplus(c̃i), (3)

hi = ziW
H , (4)

where WH ∈ RK×K is a projection matrix that maps the latent vector to the expert scoring space,
and h, ϵ ∈ RK . To promote sparsity, we retain the top-k entries in hi before applying softmax:

G(si) = Softmax(KeepTopk(hi, k)), (5)

KeepTopk(hi, k)j =

{
hi,j , if j ∈ Topk(hi),

−∞, otherwise.
(6)

Heterogeneous Pattern Extractors. Unlike previous methods that adopt a unified architecture for
all time segments (Nie et al., 2023; Liu et al., 2024c) or apply homogeneous experts uniformly
across patches (Sun et al., 2024; Qiu et al., 2025), we recognize that time series often exhibit diverse
temporal patterns, such as trends, local fluctuations, and long-range dependencies, which motivate a
heterogeneous modeling strategy. To this end, we design a lightweight expert pool comprising three
complementary branches that provide diverse temporal modeling capacities, enabling the framework
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to adapt to heterogeneous temporal dynamics and improve robustness across varied forecasting sce-
narios:

1. Linear Expert for modeling trend-like patterns: eLinear
i = si ·WLinear.

2. CNN Expert for capturing local dependencies: eCNN
i = Wproj · (Conv2(ReLU(Conv1(si)))).

3. LSTM Expert for modeling long-term memory: eLSTM
i = Wproj · LSTM(si)[−1], where

LSTM(si)[−1] denotes the hidden state of the last time step given input si.

Let eji denote the output of the j-th expert. The final representation for patch si is computed as a
weighted aggregation over all expert outputs:

ei =

K∑
j=1

G(si)j · eji , (7)

where G(si) ∈ RK is the sparse gating vector produced by the pattern-adaptive routing mechanism.

Expert Regularization. To prevent expert collapse and promote diverse expert usage, we incorpo-
rate a load-balancing regularization term inspired by (Shazeer et al., 2017):

LMoE = Limportance + Lload. (8)

Here, Limportance minimizes the coefficient of variation across expert gate importance scores, while
Lload penalizes imbalanced token-to-expert assignments. This regularization stabilizes training and
promotes more efficient utilization of the expert capacity.

4.3 SEMANTIC ALIGNMENT MODULE

Most existing LLM-based time series forecasting approaches rely on static, global prompts shared
across all tokens (Jin et al., 2024a), which fail to capture the temporal heterogeneity inherent in
multivariate time series and limit generalization to local patterns. Furthermore, these methods typ-
ically adopt shallow alignment strategies (Liu et al., 2024d), resulting in representations that are
misaligned with the architecture of LLMs and fail to fully exploit their reasoning capabilities.

To address these limitations, we propose the Semantic Alignment Module (SAM), which performs
fine-grained token-level alignment between temporal features and their corresponding textual se-
mantics via contrastive learning. By generating token-adaptive prompts and embedding both modal-
ities into a shared latent space, SAM enables the LLM to reason in a space that is both semantically
meaningful and temporally aware.

Token-Adaptive Prompt
[Expert Routing Hint]
The available expert types are: Linear, CNN,
LSTM.

[Patch Time Context]
This patch consists of ⟨token len⟩ time steps,
from ⟨patch start⟩ to ⟨patch end⟩.
It is part of a longer input window, which
spans from ⟨x start⟩ to ⟨x end⟩ and contains
⟨seq len⟩ time steps.

[Complexity Features]
Trend Strength: ⟨c1⟩.
Local Variation: ⟨c2⟩.
Temporal Dependency: ⟨c3⟩.

Token-Adaptive Prompt. Unlike language to-
kens that follow consistent syntactic structures,
time series tokens encode heterogeneous tempo-
ral semantics. Applying a uniform prompt across
such tokens can obscure informative variations.
Inspired by recent advances in visual prompting
(Liu et al., 2025f), we extend the idea of differen-
tiated prompts to time series.

We construct token-adaptive prompts using in-
terpretable statistical descriptors for each token,
with each prompt integrating three aspects: (1)
expert routing hints, (2) patch-wise temporal con-
text, and (3) complexity-aware features. Mo-
tivated by the attention analysis in (Liu et al.,
2025a), we place numerical features at the end
of the prompt to guide the LLM’s focus toward
informative value tokens. These elements are to-
kenized using the LLM tokenizer to yield prompt embeddings pi.

Semantic Alignment. To bridge the modality gap between temporal signals and language represen-
tations, we design a contrastive alignment mechanism that injects prompt semantics into temporal

5
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features at the token level. For each token i, we align its temporal feature ei with its associated
prompt embedding pi via a contrastive objective:

Lalign = − 1

N

N∑
i=1

log
exp(⟨ei, pi⟩ /τ)∑N
i=1 exp(⟨ei, pi⟩ /τ)

, (9)

where ⟨·, ·⟩ denotes cosine similarity, τ is a temperature parameter, and all vectors are ℓ2-normalized.

This alignment enforces temporal features to reside in a shared semantic space with their corre-
sponding prompts, thereby enabling the LLM to interpret temporal patterns with enhanced semantic
consistency.

4.4 LLM FORECASTING HEAD

By aligning temporal features with language semantics, we enable the LLM to operate on time series
in a semantically grounded representation space. The aligned features ei are first passed through a
frozen pretrained LLM for deep contextual reasoning, after which a lightweight decoder projects the
resulting representations into future predictions:

Ŷ = MLP(LLM(e)). (10)

Our autoregressive decoding allows flexible forecasting without retraining for different horizons,
fully utilizing LLMs’ inherent capacity for multi-step generation (Liu et al., 2024d).

The final training objective jointly optimizes forecasting accuracy, expert utilization, and semantic
alignment:

L = LMSE + αLMoE + βLalign. (11)
This formulation enables accurate and generalizable forecasts while maintaining an efficient decod-
ing pipeline.

4.5 INFERENCE PIPELINE

As shown in Figure 2, the inference process is streamlined and fully prompt-free. The input time
series is first segmented into patches s1, s2, . . . , sN , and each patch is processed by the Heteroge-
neous Temporal Encoder. A gating mechanism aggregates outputs from the top-k experts, yielding
semantically enriched features e1, e2, . . . , eN , which are then passed through a frozen pretrained
LLM to perform autoregressive forecasting.

By eliminating the need for textual prompts and semantic alignment during inference, our framework
supports efficient, pattern-aware forecasting with minimal computational overhead. This design
enables faster inference and enhanced deployment flexibility, while retaining the representational
benefits of heterogeneous expert modeling.

5 EXPERIMENT

5.1 DATA AND EXPERIMENT SETTING

Dataset. We evaluate the long-term forecasting performance across seven widely-used time series
benchmarks, including ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2), Weather, Electricity, and
Traffic. These datasets are standard benchmarks in the long-term forecasting literature (Liu et al.,
2024d). Detailed descriptions are provided in Appendix A.1.

Baselines and Evaluation. We compare TALON against state-of-the-art baselines from two cat-
egories: (1) LLM-based forecasting methods, including LangTime (Niu et al., 2025), CALF (Liu
et al., 2025b), AutoTimes (Liu et al., 2024d), TimeLLM (Jin et al., 2024a), and FPT (Zhou et al.,
2023); (2) Deep learning-based forecasting models, including SimpleTM (Chen et al., 2025),
Timer XL (Liu et al., 2025e), TimeMixer (Wang et al., 2024), iTransformer (Liu et al., 2024c),
PatchTST (Nie et al., 2023), and TimesNet (Wu et al., 2023).

Implementation Details. Following the common setup in (Liu et al., 2024d), we fix the input look-
back window size to L = 672 for all experiments and use pre-trained GPT2 based model (Radford
et al., 2019) with the first 6 Transformer layers as our backbone. To ensure fair comparisons, we re-
run all baselines. All the experiments are conducted using PyTorch (Paszke et al., 2019) on NVIDIA
A100 GPUs.

6
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Table 1: Multivariate forecasting (672-pred-{96, 192, 336, 720}) results under the one-for-all set-
ting. Following Liu et al. (2024d), a single model is trained on a 96-step prediction horizon and
evaluated on all horizons using rolling forecasting. The best results are in bold, and the second-best
are underlined. Averaged results are reported here and full results are provided in Table 8. IMP
denotes the average MSE and MAE reduction of TALON over each baseline across seven datasets.

Model
LLM-based methods Deep learning forecasting methods

TALON LangTime CALF AutoTimes TimeLLM FPT SimpleTM Timer XL TimeMixer iTransformer PatchTST TimesNet
(Ours) (2025) (2025b) (2024d) (2024a) (2023) (2025) (2025e) (2024) (2024c) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.386 0.420 0.406 0.422 0.416 0.429 0.402 0.428 0.542 0.520 0.422 0.437 0.424 0.450 0.407 0.429 0.418 0.434 0.432 0.451 0.441 0.451 0.495 0.489
ETTh2 0.355 0.395 0.364 0.399 0.373 0.419 0.400 0.431 0.416 0.446 0.370 0.407 0.367 0.414 0.377 0.414 0.385 0.417 0.399 0.423 0.392 0.429 0.455 0.463
ETTm1 0.345 0.380 0.398 0.405 0.367 0.417 0.364 0.389 0.477 0.463 0.365 0.401 0.358 0.386 0.371 0.392 0.411 0.409 0.377 0.405 0.360 0.392 0.505 0.442
ETTm2 0.259 0.319 0.262 0.323 0.281 0.341 0.277 0.327 0.310 0.359 0.283 0.337 0.268 0.325 0.281 0.333 0.277 0.330 0.282 0.338 0.284 0.341 0.293 0.347
Weather 0.239 0.278 0.265 0.282 0.255 0.298 0.252 0.290 0.271 0.308 0.248 0.284 0.247 0.282 0.322 0.355 0.244 0.282 0.258 0.286 0.247 0.284 0.260 0.291

ECL 0.162 0.255 0.178 0.272 0.239 0.296 0.168 0.261 0.185 0.288 0.257 0.354 0.167 0.261 0.173 0.272 0.167 0.257 0.167 0.260 0.180 0.283 0.207 0.304
Traffic 0.373 0.253 0.418 0.273 0.891 0.442 0.379 0.265 0.414 0.305 0.428 0.312 0.436 0.317 0.378 0.256 0.442 0.321 0.384 0.272 0.408 0.298 0.619 0.330

IMP. – – – – 7% 10% 17% 21% 5% 11% 17% 20% 11% 16% 6% 14% 9% 12% 8% 14% 7% 12% 8% 14% 22% 20%

Table 2: Multivariate forecasting (672-pred-{96, 192, 336, 720}) results under the one-for-one set-
ting. A separate model is trained and evaluated for each prediction horizon. The best results are
in bold, and the second-best are underlined. Averaged results are reported here and full results are
provided in Table 9.

Models
One-for-all Trained respectively on specific lookback / prediction length

TALON LangTime CALF AutoTimes TimeLLM FPT SimpleTM Timer XL TimeMixer iTransformer PatchTST TimesNet
(Ours) (2025) (2025b) (2024d) (2024a) (2023) (2025) (2025e) (2024) (2024c) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.386 0.420 0.451 0.447 0.440 0.452 0.457 0.466 0.578 0.529 0.438 0.446 0.422 0.449 0.450 0.455 0.428 0.442 0.451 0.465 0.468 0.467 0.484 0.489
ETTh2 0.355 0.395 0.388 0.408 0.366 0.402 0.390 0.421 0.435 0.455 0.396 0.427 0.361 0.395 0.370 0.407 0.374 0.409 0.400 0.426 0.417 0.438 0.433 0.455
ETTm1 0.345 0.380 0.415 0.414 0.363 0.393 0.411 0.418 0.406 0.417 0.359 0.390 0.356 0.390 0.359 0.391 0.418 0.423 0.372 0.403 0.387 0.409 0.444 0.434
ETTm2 0.259 0.319 0.266 0.323 0.266 0.321 0.307 0.353 0.290 0.345 0.274 0.330 0.269 0.329 0.276 0.329 0.269 0.327 0.274 0.335 0.289 0.343 0.303 0.353
Weather 0.239 0.278 0.277 0.294 0.241 0.281 0.249 0.287 0.273 0.313 0.242 0.282 0.244 0.281 0.324 0.356 0.262 0.293 0.261 0.290 0.240 0.280 0.252 0.290

ECL 0.162 0.255 0.174 0.268 0.165 0.262 0.172 0.269 0.176 0.276 0.166 0.263 0.166 0.261 0.170 0.258 0.166 0.257 0.163 0.258 0.166 0.267 0.203 0.307
Traffic 0.373 0.253 0.469 0.378 0.386 0.265 0.385 0.268 0.402 0.284 0.408 0.288 0.453 0.331 0.382 0.263 0.404 0.285 0.386 0.275 0.397 0.279 0.622 0.329

IMP. – – – – 12% 18% 4% 10% 10% 13% 15% 18% 6% 12% 6% 14% 9% 13% 8% 13% 7% 13% 9% 14% 20% 20%

5.2 TIME SERIES FORECASTING

Setups. We consider two evaluation protocols to assess the forecasting performance of our model:
(1) To evaluate the generalization capability of one-for-all forecasting, we adopt the rolling forecast
setting (Liu et al., 2024d; 2025e), where a single model is trained on a 96-step prediction horizon
and then directly applied to all other horizons. During inference, the predicted values are recursively
fed into the lookback window to generate subsequent predictions. (2) For the conventional one-for-
one setting, we follow the standard multivariate evaluation protocol adopted by TimesNet (Wu et al.,
2023), where a separate model is trained and evaluated for each prediction horizon.

Results. The average forecasting results are reported in Table 1 and Table 2. In the one-for-all
setting (Table 1), TALON consistently achieves the lowest MSE across all seven datasets, with an
average improvement of up to 10% over state-of-the-art deep forecasters and 12% over recent LLM-
based methods. In the conventional one-for-one setting (Table 2), it further achieves state-of-the-art
performance with up to 20% MSE reduction. These results highlight TALON’s strong generalization
capability and its effectiveness in modeling heterogeneous and evolving temporal patterns.

5.3 ZERO-SHOT FORECASTING

Setups. LLMs have exhibited remarkable zero-shot generalization capabilities across various do-
mains (Brown et al., 2020). To assess whether TALON inherits this ability, we adopt the widely
used zero-shot forecasting protocol (Jin et al., 2024a; Liu et al., 2024d), where a model is trained
on a source domain and directly evaluated on an unseen target domain without any fine-tuning.
Following this setting, we use the ETT benchmark family and conduct evaluations across multiple
cross-domain scenarios, including both resolution shifts and domain shifts among ETT variants. As
in the full-shot experiments, we adopt the long-term forecasting protocol for evaluation.

Results. The zero-shot forecasting results are summarized in Table 3. TALON consistently achieves
the best MSE performance in 4 tasks, outperforming all compared methods. Specifically, it achieves
8%∼20% relative MSE improvement, demonstrating robust generalization across diverse transfer
scenarios, including both resolution-level shifts and cross-domain adaptations. These results vali-
date the effectiveness of TALON in capturing local temporal structures and leveraging LLM-based
semantic alignment for strong transferability. Full results are provided in Table 10.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Zero-shot forecasting result.

Models TALON LangTime AutoTimes Timer XL

(Ours) (2025) (2024d) (2025e)

Metric MSE MAE MSE MAE MSE MAE MSE MAE

h1→h2/m1/m2 0.478 0.446 0.622 0.490 0.506 0.451 0.512 0.461
h2→h1/m1/m2 0.554 0.493 0.753 0.545 0.712 0.547 0.592 0.514
m1→h1/h2/m2 0.432 0.434 0.474 0.451 0.436 0.433 0.480 0.458
m2→h1/h2/m1 0.457 0.456 0.588 0.516 0.519 0.479 0.494 0.470

IMP. – – – – 20% 8% 10% 4% 8% 4%

Table 4: Comparison with MoE-based methods.

Models TALON FreqMoE MoFE-time TimeMoE TFPS

(Ours) (2025) (2025d) (2025) (2024)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.386 0.420 0.440 0.429 0.396 0.423 0.402 0.429 0.448 0.443
ETTh2 0.355 0.395 0.367 0.396 0.438 0.439 0.472 0.458 0.380 0.403
ETTm1 0.345 0.380 0.375 0.396 0.391 0.420 0.407 0.427 0.395 0.407
ETTm2 0.259 0.319 0.271 0.338 0.278 0.347 0.324 0.377 0.276 0.321

IMP. – – – – 7% 3% 10% 7% 16% 11% 10% 4%

(a) t-SNE (b) L2 distribution

Figure 3: Visualization of time–text alignment
for TALON and AutoTimes on ETTh1-96.

Figure 4: Analysis of
expert assignment dis-
tributions.

Figure 5: TALON gen-
eralization with differ-
ent LLM backbones.

5.4 COMPARED WITH MOE-BASED METHODS

We compare TALON with recent MoE-based forecasting approaches. As shown in Table 4 (with
full results reported in Table 11), TALON achieves the best MSE scores across all datasets, with
an average improvement of 7% to 16% over existing methods. These consistent gains highlight the
advantage of heterogeneous expert modeling: by incorporating diverse inductive biases, TALON
adapts to evolving temporal dynamics and heterogeneous patterns across segments, leading to more
reliable and robust forecasts. This demonstrates the importance of architectural diversity in enhanc-
ing model generalization and handling non-stationary dynamics across time series segments.

5.5 MODEL ANALYSIS

Cross-Modal Embedding Alignment Analysis. To evaluate the quality of cross-modal alignment,
we analyze both the spatial structure and the quantitative similarity between time-series and textual
embeddings. As shown in Figure 3 (a), the t-SNE visualization shows that TALON’s temporal and
textual embeddings form more compact clusters, indicating stronger semantic coupling. In contrast,
AutoTimes exhibits a more scattered distribution, suggesting weaker alignment between modalities.
We also compute the L2 distance between aligned time-text embedding pairs across the test set.
As shown in Figure 3 (b), TALON achieves a significantly smaller mean distance than AutoTimes,
confirming its stronger cross-modal correspondence.

Expert Assign. Figure 4 illustrates the expert assignment distributions of TALON across ETTh2,
ETTm1, and Weather. Each bar indicates the percentage of input segments that are most confidently
routed to a given expert. We observe that the expert utilization patterns vary significantly across
datasets. For example, the Weather dataset shows a strong preference for Expert 0, whereas ETTh2
and ETTm1 exhibit more balanced and diverse assignments, indicating greater temporal complexity
and higher pattern heterogeneity (Sun et al., 2024). This variation highlights TALON’s ability to
adaptively route segments to specialized experts based on underlying pattern characteristics, vali-
dating the effectiveness of its pattern-aware routing mechanism.

Generality. Previous LLM4TS approaches (Zhou et al., 2023; Jin et al., 2024a) typically target
specific language models. In contrast, TALON is designed to be compatible with any decoder-
only LLM. We evaluate this generality by replacing the default GPT-2 backbone with representative
alternatives: Qwen (Team, 2024), Deepseek (Liu et al., 2024a), and LLaMA (Touvron et al., 2023).
We choose AutoTimes as the baseline, as it exhibits the smallest relative performance improvement
(5% in MSE) under TALON in Table 1. As shown in Figure 5, TALON consistently outperforms
AutoTimes across all datasets and LLMs, with relative MSE reductions annotated on each bar. These
results confirm that our framework is reliably enhances forecasting performance regardless of the
underlying LLM. Full results are provided in Table 12.
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Table 5: Performance of ablation studies.
Models ETTh1 ETTh2 ETTm1 ETTm2

Metric MSE MAE MSE MAE MSE MAE MSE MAE

TALON 0.386 0.420 0.355 0.395 0.345 0.380 0.259 0.319
w/o HTE 0.403 0.427 0.365 0.405 0.347 0.380 0.267 0.325

w/o HTE R 0.403 0.426 0.360 0.400 0.349 0.382 0.268 0.323
w/o SAM 0.393 0.422 0.367 0.408 0.350 0.382 0.266 0.319

w/o Prompt 0.389 0.419 0.363 0.406 0.352 0.383 0.266 0.322
w/o LLM 0.418 0.435 0.386 0.434 0.396 0.411 0.280 0.333

Table 6: Effectiveness of heterogeneous experts
in HTE.

Heterogeneous Experts ETTh1 ETTh2 ETTm1 ETTm2

Linear CNN LSTM MSE MAE MSE MAE MSE MAE MSE MAE

✓ ✓ ✓ 0.386 0.420 0.355 0.395 0.345 0.380 0.259 0.319
% ✓ ✓ 0.389 0.419 0.370 0.407 0.354 0.385 0.266 0.322
✓ % ✓ 0.401 0.426 0.360 0.400 0.353 0.386 0.265 0.320
✓ ✓ % 0.393 0.422 0.363 0.405 0.350 0.382 0.263 0.320

Ablation Studies. We conduct ablation studies to evaluate the contributions of TALON’s key com-
ponents. As shown in Table 5, removing the full HTE module (w/o HTE) increases average MSE
by 8.6%, while disabling only the routing mechanism (w/o HTE R) leads to a 8.1% increase, high-
lighting the value of expert specialization and routing. Disabling SAM (w/o SAM) results in a 7.2%
increase in MSE, demonstrating its benefit in aligning temporal and textual representations. Re-
placing our token-adaptive prompt with a static TimeLLM-style prompt (w/o Prompt) leads to 5.6%
degradation, validating the design of context-aware prompt construction. Removing the LLM (w/o
LLM) causes the most significant drop, with a 33.9% increase in MSE, indicating the essential role
of LLM’s reasoning capacity. These results confirm that each module meaningfully contributes to
TALON’s performance, and their combination produces a synergistic effect for modeling complex,
heterogeneous temporal dynamics.

Analysis of HTE. Table 6 validates the effectiveness of the HTE design. The fully heterogeneous
setup consistently achieves the best performance across all datasets. In contrast, removing any single
expert type leads to notable performance degradation (8.1%, 7.9%, and 5.8%, respectively). These
results underscore the complementary nature of distinct temporal modeling perspectives. Their in-
tegration enables the model to adapt to diverse temporal patterns within multivariate time series,
thereby enhancing generalization across different forecasting scenarios.

Figure 6: Efficiency
comparison across
LLM-based forecasters.

Figure 7: Parameter
sensitivity of α and β
on the ETTh1 dataset.

Efficiency Analysis. As shown in Figure 6,
we compare TALON’s efficiency with other
LLM-based models on ETTh1-96. TALON
achieves the lowest MSE while maintaining a
compact model size (∼ 1.7M) and fast infer-
ence (∼ 2s), showing that careful architectural
design can improve accuracy without increas-
ing computational cost. This efficiency stems
from TALON’s lightweight temporal encoder
and prompt-free semantic alignment, which to-
gether reduce input redundancy by removing
handcrafted prompts and mitigate input com-
plexity by preserving the temporal continuity
and numerical precision of the original series.

Parameter Sensitivity. We assess the robustness of our method to α and β via a grid search, report-
ing MSE results on ETTh1 in Figure 7 and on other datasets in Figure 8. The performance remains
relatively stable across a wide range of α and β values, demonstrating that our model is not overly
sensitive to specific hyperparameter settings and can deliver robust performance without extensive
hyperparameter tuning. We provide additional analysis on the effect of top-k expert selection in the
Appendix D.5, and observe that activating multiple experts better captures pattern heterogeneity and
improves forecasting performance.

6 CONCLUSION

This paper presents TALON, a novel framework for time series forecasting that integrates temporal
heterogeneity modeling and semantic alignment within a unified foundation model architecture. By
incorporating a heterogeneous temporal encoder and a semantic-aware fusion mechanism, TALON
enables off-the-shelf large language models to perform pattern-aware and semantically aligned fore-
casting across diverse scenarios. Extensive experiments on multiple benchmarks demonstrate that
TALON achieves state-of-the-art accuracy while maintaining high efficiency and scalability. It also
generalizes well in zero-shot settings and seamlessly incorporates both numerical and textual tem-
poral cues. In future work, we plan to further improve pattern modeling via more adaptive and fine-
grained mechanisms, and enhance domain transferability through efficient adaptation techniques.
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7 ETHICS STATEMENT

This work focuses on adapting large language models to time series forecasting, with an emphasis
on modeling temporal heterogeneity and semantic alignment. It relies solely on publicly available
benchmark datasets that contain no personally identifiable or sensitive human data. No private or
proprietary information was accessed or used. The study fully adheres to the ICLR Code of Ethics.

8 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the model architecture, training setup, and evaluation protocols
in Sections 4 and 5. Hyperparameter settings, training configurations, and preprocessing pipelines
are documented in Appendix A. Anonymized source code, configuration files, and reproduction
scripts have be released at https://anonymous.4open.science/r/TALON-BB00. All
benchmark datasets used in this work are publicly available. Furthermore, ablation studies and
sensitivity analyses (Section 5.5 and Appendix D) demonstrate the robustness of our findings. These
efforts collectively ensure that all reported results can be reliably reproduced.
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A IMPLEMENTATION DETAILS

A.1 BENCHMARK DATASETS

To evaluate the effectiveness and generalization ability of our proposed model, we conduct exper-
iments on seven widely-used benchmark datasets, covering a diverse range of domains including
electricity, traffic, and weather. The detailed dataset statistics are summarized in Table 7.

• ETTh1 & ETTh2: These datasets are part of the Electricity Transformer Temperature
(ETT) benchmark, which records hourly temperature readings from two electricity trans-
formers. Each dataset contains 7 variables.

• ETTm1 & ETTm2: These are the minute-level variants of the ETT benchmark, with a
finer temporal granularity of 15 minutes. Each dataset contains 7 variables and significantly
more samples due to the higher sampling rate.

• Weather: This dataset includes 21 meteorological variables, such as temperature, humid-
ity, and wind speed, recorded every 10 minutes in 2020 at the Max Planck Biogeochemistry
Institute’s weather station.

• Electricity: This dataset records hourly electricity consumption for 321 clients. Due to
its multivariate nature and high dimensionality, it is commonly used to evaluate model
scalability and performance in high-dimensional forecasting tasks.

• Traffic: This dataset records hourly occupancy rates from 862 road sensors on freeways
in the San Francisco Bay Area, spanning from January 2015 to December 2016. Its high
dimensionality and complex temporal patterns make it a challenging benchmark for multi-
variate long-term forecasting.

We follow the same data processing and train-validation-test set split protocol used in TimesNet
Wu et al. (2023), where the train, validation, and test datasets are strictly divided according to
chronological order to ensure no data leakage. For long-term forecasting, we fix the context length
of TALON and the lookback window of other baseline models to 672, while the prediction lengths
vary among {96, 192, 336, 720}. Detailed settings are summarized in Table 7.

Table 7: Detailed dataset descriptions. Dim denotes the variate number. Dataset Size denotes the
total number of time points in (Train, Validation, Test) split respectively. Forecast Length denotes
the future time points to be predicted. Frequency denotes the sampling interval of time points.

Dataset Dim Forecast Length Dataset Size Frequency Information

ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Electricity
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Electricity
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Electricity
ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Electricity
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Transportation

A.2 IMPLEMENTATION DETAILS

TALON encodes statistical information in natural language form and uses a pretrained LLM (GPT2
Achiam et al. (2023)) to obtain prompt embeddings by extracting the final token’s representation
Liu et al. (2024d; 2025a). For multivariate forecasting, prompts are constructed independently for
each variable and pre-tokenized to avoid runtime overhead.

After obtaining the prompt embeddings, TALON repurposes the LLM for time series forecasting.
During training, only the parameters of the Heterogeneous Temporal Encoder and Forecast Head are
updated, while the LLM remains frozen. At inference, TALON employs autoregressive decoding
over language-aligned features to generate variable-length predictions without relying on textual
prompts, ensuring efficient and scalable deployment.
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All experiments are conducted using PyTorch Paszke et al. (2019) on NVIDIA A100 GPUs. We
use the Adam optimizer Kingma & Ba (2014), with the initial learning rate randomly sampled
from the range [10−4, 10−2]. Following the Channel Independence setting in Nie et al. (2023),
each time series channel is modeled independently. The batch size is selected from {256, 384},
and each model is trained for 10 epochs. For evaluation, we rerun the baseline models using their
official implementations. Specifically, most baselines are obtained from the TimesNet benchmark
Wu et al. (2023) and the Timer XL repository Liu et al. (2025e). For methods not included in these
repositories, we follow the original official implementations released by the authors to ensure fair
and consistent comparison.

B METRICS

Mean Squared Error (MSE). Mean Squared Error is one of the most widely used metrics for
evaluating time series forecasting performance. It calculates the average of the squared differences
between predicted values and ground truth values:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2. (12)

where yi and ŷi denote the true and predicted values, respectively, and N is the total number of
predictions. MSE penalizes larger errors more severely, making it sensitive to outliers and suitable
for applications that prioritize accurate modeling of extreme values.

Mean Absolute Error (MAE). Mean Absolute Error measures the average magnitude of the errors
between predicted and true values, without considering their direction:

MAE =
1

N

N∑
i=1

|yi − ŷi|. (13)

Compared to MSE, MAE is more robust to outliers and provides a direct interpretation of the average
forecast error in the same units as the original data. It is especially useful when consistent accuracy
across the entire forecast range is desired.

Both MSE and MAE are used in our evaluation to provide a comprehensive assessment of forecast-
ing performance, balancing sensitivity to large deviations (MSE) and overall robustness (MAE).

IMP. IMP (Improvement) quantifies the relative performance gain of our proposed method
(TALON) over each baseline method. Specifically, it denotes the average percentage reduction in
both MSE and MAE across all seven datasets, defined as:

IMPMSE =
1

D

D∑
d=1

MSE(d)
baseline −MSE(d)

TALON

MSE(d)
baseline

, (14)

IMPMAE =
1

D

D∑
d=1

MAE(d)
baseline −MAE(d)

TALON

MAE(d)
baseline

, (15)

where D is the number of datasets, and MSE(d)
baseline and MAE(d)

baseline refer to the error metrics of a
given baseline on dataset d. Positive IMP values indicate that TALON achieves lower errors and
thus better forecasting performance.

IMP provides a concise summary of overall improvement, enabling direct comparison of the relative
effectiveness of TALON against each baseline across diverse datasets.

C TIME SERIES CHARACTERISTICS

We quantify the complexity of each univariate time series segment using three interpretable indica-
tors: trend strength, local variation, and temporal dependency. Formally, for a univariate segment
s ∈ RS , we extract the following:
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Trend Strength. The trend of a time series refers to the long-term changes or patterns that occur
over time. Intuitively, it represents the general direction in which the data is moving. Trend strength
measures how much of the deseasonalized signal’s variance can be explained by the underlying trend
component. To compute it, we apply Seasonal-Trend decomposition using Loess (STL) to extract
trend, seasonal, and residual components:

s = Trend + Seasonal + Residual. (16)

We then calculate the deseasonalized signal s′ = s− Seasonal and define trend strength as:

TrendStrength = max

(
0, 1− Var(Residual)

Var(s′)

)
. (17)

This formulation reflects the proportion of variance in the deseasonalized signal that is attributable
to the trend component.

Local Variation. We compute the first-order difference ∆st = st − st−1 and define local variation
as:

Variation = σ(lag(1 + std(∆s))− 1.0), (18)

where σ is the sigmoid function. This maps the log-scaled standard deviation to [0, 1] for robust
normalization.

Temporal Dependency. We compute lag-1 autocorrelation:

Autocorr = |acf(s)[1]|, (19)

where acf is the autocorrelation function. If the signal is constant or contains invalid values, the
score is set to zero for robustness.

The final complexity descriptor is a 3-dimensional vector given by:

c = [c1, c2, c3] (20)

= [TrendStrength,Variation,Autocorr] ∈ [0, 1]3. (21)

The full procedure for computing the statistical complexity descriptor is outlined in Algorithm 1.

Algorithm 1 Statistical Complexity Computation for Time Series Patches

Require: A univariate time series patch s ∈ RS

Ensure: A complexity vector c = [c1, c2, c3] ∈ R3

1: Trend Strength (c1):
2: Apply STL decomposition on s: s = Trend + Seasonal + Residual
3: Compute deseasonalized signal: s′ = s− Seasonal
4: if Var(s′) = 0 then
5: c1 ← 0
6: else
7: c1 ← 1−Var(Residual)/Var(s′)
8: end if
9: Derivative Standard Deviation (c2):

10: Compute first-order difference: ∆s = s2:S − s1:S−1

11: c2 ← log(1 + std(∆s)), then apply sigmoid scaling: c2 ← 1/(1 + exp(−(c2 − 1.0)))
12: Autocorrelation (c3):
13: Compute lag-1 autocorrelation:
14: c3 ← |Corr(s1:S−1, s2:S)|
15: return c = [c1, c2, c3]

D SUPPLEMENTARY RESULTS

D.1 TIME SERIES FORECASTING

We compare the performance of TALON with state-of-the-art LLM-based forecasting methods and
well-acknowledged deep learning forecasters. Table 8 reports the results under the one-for-all fore-
casting setting across the ETT, ECL, Traffic, and Weather datasets. In this setup, each model is
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Table 8: Multivariate forecasting (672-pred-96, 192, 336, 720) results under the one-for-all setting.
Following Liu et al. (2024d), a single model is trained on a 96-step prediction horizon and evaluated
on all horizons using rolling forecasting. The best results are in bold, and the second-best are
underlined.

LLM-based methods Deep learning forecasting methods

TALON LangTime CALF AutoTimes TimeLLM FPT SimpleTM Timer XL TimeMixer iTransformer PatchTST TimesNetModels
(Ours) (2025) (2025b) (2024d) (2024a) (2023) (2025) (2025e) (2024) (2024c) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.351 0.392 0.373 0.397 0.387 0.415 0.365 0.405 0.476 0.477 0.386 0.412 0.383 0.419 0.363 0.396 0.375 0.405 0.387 0.419 0.398 0.417 0.450 0.463
192 0.381 0.415 0.404 0.416 0.397 0.421 0.396 0.423 0.545 0.517 0.422 0.433 0.416 0.439 0.404 0.423 0.409 0.426 0.421 0.440 0.432 0.441 0.471 0.475
336 0.398 0.427 0.416 0.428 0.417 0.431 0.414 0.433 0.559 0.530 0.440 0.445 0.421 0.450 0.427 0.439 0.429 0.439 0.444 0.457 0.452 0.456 0.493 0.487
720 0.414 0.446 0.433 0.447 0.462 0.450 0.432 0.452 0.588 0.558 0.440 0.460 0.477 0.491 0.436 0.458 0.458 0.466 0.474 0.490 0.483 0.492 0.567 0.532

Avg. 0.386 0.420 0.406 0.422 0.416 0.429 0.402 0.428 0.542 0.520 0.422 0.437 0.424 0.450 0.407 0.429 0.418 0.434 0.432 0.451 0.441 0.451 0.495 0.489

ETTh2

96 0.302 0.349 0.296 0.348 0.289 0.347 0.286 0.348 0.386 0.421 0.291 0.348 0.289 0.352 0.299 0.355 0.295 0.354 0.304 0.362 0.307 0.370 0.406 0.432
192 0.355 0.388 0.370 0.397 0.376 0.400 0.371 0.408 0.404 0.435 0.368 0.399 0.353 0.399 0.367 0.401 0.369 0.402 0.384 0.410 0.392 0.423 0.459 0.458
336 0.371 0.406 0.385 0.414 0.392 0.458 0.420 0.453 0.411 0.447 0.400 0.430 0.393 0.439 0.393 0.428 0.408 0.435 0.431 0.443 0.419 0.447 0.452 0.466
720 0.393 0.435 0.404 0.436 0.433 0.474 0.521 0.516 0.463 0.479 0.419 0.452 0.434 0.467 0.448 0.472 0.468 0.479 0.478 0.479 0.452 0.477 0.502 0.496

Avg. 0.355 0.395 0.364 0.399 0.373 0.419 0.400 0.431 0.416 0.446 0.370 0.407 0.367 0.414 0.377 0.414 0.385 0.417 0.399 0.423 0.392 0.429 0.455 0.463

ETTm1

96 0.278 0.339 0.329 0.364 0.312 0.362 0.297 0.350 0.385 0.406 0.295 0.356 0.285 0.345 0.296 0.347 0.319 0.361 0.313 0.368 0.297 0.354 0.390 0.396
192 0.324 0.367 0.378 0.393 0.328 0.375 0.344 0.377 0.490 0.471 0.338 0.384 0.339 0.370 0.349 0.378 0.375 0.392 0.351 0.391 0.340 0.381 0.463 0.426
336 0.358 0.388 0.407 0.413 0.364 0.458 0.380 0.398 0.504 0.481 0.377 0.410 0.369 0.404 0.387 0.402 0.428 0.418 0.387 0.413 0.374 0.401 0.533 0.454
720 0.418 0.424 0.476 0.452 0.464 0.472 0.433 0.431 0.529 0.495 0.452 0.455 0.438 0.425 0.453 0.441 0.523 0.464 0.456 0.450 0.431 0.433 0.636 0.493

Avg. 0.345 0.380 0.398 0.405 0.367 0.417 0.364 0.389 0.477 0.463 0.365 0.401 0.358 0.386 0.371 0.392 0.411 0.409 0.377 0.405 0.360 0.392 0.505 0.442

ETTm2

96 0.173 0.260 0.175 0.266 0.186 0.263 0.184 0.265 0.228 0.311 0.177 0.266 0.177 0.265 0.185 0.270 0.178 0.264 0.180 0.274 0.186 0.276 0.195 0.285
192 0.223 0.299 0.228 0.301 0.268 0.327 0.247 0.307 0.271 0.338 0.244 0.310 0.237 0.306 0.247 0.312 0.242 0.306 0.240 0.312 0.247 0.318 0.253 0.323
336 0.278 0.333 0.280 0.335 0.293 0.377 0.298 0.341 0.318 0.366 0.302 0.350 0.290 0.340 0.304 0.348 0.299 0.343 0.301 0.353 0.303 0.355 0.314 0.362
720 0.362 0.383 0.365 0.391 0.376 0.395 0.378 0.395 0.422 0.420 0.410 0.423 0.369 0.391 0.389 0.402 0.391 0.405 0.407 0.416 0.397 0.414 0.411 0.420

Avg. 0.259 0.319 0.262 0.323 0.281 0.341 0.277 0.327 0.310 0.359 0.283 0.337 0.268 0.325 0.281 0.333 0.277 0.330 0.282 0.338 0.284 0.341 0.293 0.347

Weather

96 0.161 0.213 0.168 0.207 0.168 0.221 0.166 0.221 0.208 0.263 0.169 0.230 0.169 0.217 0.286 0.334 0.168 0.214 0.172 0.224 0.159 0.214 0.169 0.228
192 0.206 0.256 0.221 0.256 0.243 0.303 0.219 0.268 0.246 0.291 0.219 0.253 0.208 0.256 0.305 0.345 0.209 0.257 0.224 0.266 0.211 0.260 0.223 0.268
336 0.258 0.296 0.284 0.302 0.256 0.315 0.277 0.311 0.286 0.319 0.268 0.305 0.265 0.306 0.330 0.358 0.261 0.298 0.283 0.305 0.268 0.303 0.288 0.308
720 0.331 0.348 0.387 0.364 0.351 0.353 0.346 0.360 0.343 0.358 0.335 0.349 0.345 0.348 0.367 0.382 0.337 0.360 0.354 0.351 0.351 0.358 0.362 0.359

Avg. 0.239 0.278 0.265 0.282 0.255 0.298 0.252 0.290 0.271 0.308 0.248 0.284 0.247 0.282 0.322 0.355 0.244 0.282 0.258 0.286 0.247 0.284 0.260 0.291

Electricity

96 0.133 0.227 0.144 0.240 0.133 0.230 0.135 0.230 0.139 0.243 0.138 0.237 0.131 0.226 0.137 0.230 0.136 0.227 0.135 0.231 0.136 0.240 0.182 0.287
192 0.151 0.243 0.161 0.257 0.284 0.320 0.153 0.247 0.168 0.274 0.249 0.354 0.159 0.248 0.154 0.268 0.151 0.244 0.156 0.250 0.157 0.261 0.192 0.295
336 0.163 0.260 0.180 0.275 0.276 0.316 0.172 0.266 0.184 0.283 0.280 0.381 0.172 0.268 0.169 0.274 0.170 0.260 0.172 0.267 0.182 0.288 0.201 0.303
720 0.202 0.288 0.228 0.316 0.264 0.317 0.212 0.300 0.249 0.352 0.362 0.442 0.208 0.302 0.233 0.315 0.213 0.298 0.204 0.294 0.244 0.343 0.255 0.332

Avg. 0.162 0.255 0.178 0.272 0.239 0.296 0.168 0.261 0.185 0.288 0.257 0.354 0.167 0.261 0.173 0.272 0.167 0.257 0.167 0.260 0.180 0.283 0.207 0.304

Traffic

96 0.338 0.232 0.379 0.254 0.355 0.249 0.347 0.249 0.383 0.264 0.384 0.278 0.410 0.306 0.347 0.245 0.418 0.311 0.350 0.257 0.374 0.273 0.602 0.317
192 0.360 0.245 0.403 0.265 1.127 0.521 0.366 0.258 0.399 0.298 0.402 0.290 0.416 0.307 0.362 0.244 0.429 0.315 0.373 0.266 0.391 0.284 0.614 0.325
336 0.374 0.249 0.424 0.275 1.136 0.522 0.383 0.267 0.423 0.323 0.427 0.311 0.437 0.318 0.381 0.255 0.442 0.321 0.390 0.274 0.409 0.299 0.618 0.329
720 0.418 0.285 0.468 0.298 0.944 0.475 0.420 0.286 0.452 0.334 0.501 0.368 0.483 0.339 0.424 0.281 0.479 0.339 0.423 0.291 0.460 0.335 0.641 0.349

Avg. 0.373 0.253 0.418 0.273 0.891 0.442 0.379 0.265 0.414 0.305 0.428 0.312 0.436 0.317 0.378 0.256 0.442 0.321 0.384 0.272 0.408 0.298 0.619 0.330

trained with a fixed input length of 672 and an output length of 96. During inference, we adopt a
rolling forecasting strategy: the predicted values are iteratively appended to the input to reach the
target forecast horizon.

In addition, we also evaluate the one-for-one setting, where separate models are trained for each
forecast length. The corresponding results are provided in Table 9. All baselines are reproduced
using their official implementations to ensure fair comparison.

D.2 ZERO-SHOT FORECASTING

Following the zero-shot forecasting protocol proposed in AutoTimes Liu et al. (2024d), each experi-
ment consists of a source dataset and a target dataset. The model is trained exclusively on the source
dataset and directly applied to the target dataset without any fine-tuning or adaptation.

For the case of ETTh1 → ETTh2, the model is trained on ETTh1 and evaluated on ETTh2. We
directly reuse the trained model from the one-for-all forecasting experiment reported in Table 8.
The detailed results are presented in Table 10.

D.3 COMPARED WITH MOE-BASED METHODS

As shown in Table 11, TALON consistently outperforms four recent MoE-based methods across all
datasets and prediction lengths. It achieves the lowest MSE in 13 out of 16 settings and ranks first
in average MSE on every dataset. On average, TALON reduces the MSE by 10.7% compared to the
baselines, demonstrating its strong modeling capability. This performance gain is attributed to the
use of heterogeneous experts, which introduce diverse temporal inductive biases to better capture
complex and non-stationary dynamics. Note that since the original TimeMoE paper does not report
results trained on individual datasets, we adopt the TimeMoE results reported in MoFE-time, while
other baselines use the results reported in their original papers.
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Table 9: Multivariate forecasting (672-pred-{96, 192, 336, 720}) results under the one-for-one set-
ting. A separate model is trained and evaluated for each prediction horizon. The best results are in
bold, and the second-best are underlined.

Models
One-for-all Trained respectively on specific lookback / prediction length

TALON LangTime CALF AutoTimes TimeLLM FPT SimpleTM Timer XL TimeMixer iTransformer PatchTST TimesNet
(Ours) (2025) (2025b) (2024d) (2024a) (2023) (2025) (2025e) (2024) (2024c) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.351 0.392 0.373 0.397 0.387 0.415 0.365 0.405 0.476 0.477 0.386 0.412 0.383 0.419 0.363 0.396 0.375 0.405 0.387 0.419 0.398 0.417 0.450 0.463
192 0.381 0.415 0.402 0.427 0.415 0.433 0.456 0.469 0.596 0.533 0.425 0.435 0.409 0.434 0.425 0.438 0.410 0.433 0.422 0.443 0.441 0.450 0.468 0.476
336 0.398 0.427 0.443 0.447 0.465 0.463 0.489 0.486 0.546 0.516 0.453 0.455 0.428 0.455 0.459 0.461 0.442 0.450 0.449 0.463 0.491 0.482 0.465 0.479
720 0.414 0.446 0.588 0.517 0.494 0.498 0.516 0.506 0.692 0.589 0.486 0.483 0.470 0.489 0.554 0.524 0.483 0.482 0.547 0.534 0.540 0.520 0.553 0.540

Avg. 0.386 0.420 0.451 0.447 0.440 0.452 0.457 0.466 0.578 0.529 0.438 0.446 0.422 0.449 0.450 0.455 0.428 0.442 0.451 0.465 0.468 0.467 0.484 0.489

ETTh2

96 0.302 0.349 0.296 0.348 0.289 0.347 0.286 0.348 0.386 0.421 0.291 0.348 0.289 0.352 0.299 0.355 0.295 0.354 0.304 0.362 0.307 0.370 0.406 0.432
192 0.355 0.388 0.396 0.404 0.355 0.388 0.387 0.414 0.426 0.446 0.378 0.418 0.354 0.392 0.358 0.395 0.368 0.398 0.380 0.408 0.416 0.432 0.444 0.462
336 0.371 0.406 0.389 0.405 0.390 0.420 0.425 0.452 0.461 0.472 0.436 0.461 0.386 0.402 0.393 0.423 0.396 0.425 0.433 0.445 0.487 0.477 0.444 0.465
720 0.393 0.435 0.471 0.473 0.430 0.455 0.460 0.470 0.465 0.482 0.479 0.482 0.416 0.434 0.429 0.457 0.436 0.460 0.482 0.488 0.460 0.474 0.439 0.460

Avg. 0.355 0.395 0.388 0.408 0.366 0.402 0.390 0.421 0.435 0.455 0.396 0.427 0.361 0.395 0.370 0.407 0.374 0.409 0.400 0.426 0.417 0.438 0.433 0.455

ETTm1

96 0.278 0.339 0.329 0.364 0.312 0.362 0.297 0.350 0.385 0.406 0.295 0.356 0.285 0.345 0.296 0.347 0.319 0.361 0.313 0.368 0.297 0.354 0.390 0.396
192 0.324 0.367 0.398 0.399 0.343 0.382 0.396 0.413 0.392 0.410 0.332 0.378 0.346 0.388 0.332 0.376 0.373 0.398 0.347 0.386 0.389 0.404 0.527 0.467
336 0.358 0.388 0.435 0.426 0.373 0.399 0.461 0.445 0.409 0.412 0.380 0.400 0.370 0.399 0.369 0.399 0.451 0.447 0.380 0.408 0.385 0.415 0.402 0.422
720 0.418 0.424 0.498 0.466 0.424 0.427 0.490 0.464 0.438 0.439 0.429 0.425 0.424 0.428 0.441 0.441 0.529 0.488 0.448 0.450 0.477 0.463 0.456 0.450

Avg. 0.345 0.380 0.415 0.414 0.363 0.393 0.411 0.418 0.406 0.417 0.359 0.390 0.356 0.390 0.359 0.391 0.418 0.423 0.372 0.403 0.387 0.409 0.444 0.434

ETTm2

96 0.173 0.260 0.175 0.266 0.186 0.263 0.184 0.265 0.228 0.311 0.177 0.266 0.177 0.265 0.185 0.270 0.178 0.264 0.180 0.274 0.186 0.276 0.195 0.285
192 0.223 0.299 0.243 0.312 0.236 0.299 0.285 0.338 0.253 0.320 0.243 0.309 0.237 0.310 0.230 0.302 0.235 0.301 0.243 0.316 0.246 0.312 0.281 0.339
336 0.278 0.333 0.285 0.332 0.280 0.334 0.337 0.377 0.305 0.352 0.299 0.345 0.300 0.351 0.285 0.338 0.287 0.341 0.297 0.350 0.310 0.354 0.326 0.368
720 0.362 0.383 0.362 0.384 0.364 0.389 0.423 0.433 0.373 0.398 0.375 0.401 0.364 0.390 0.406 0.407 0.376 0.401 0.375 0.401 0.414 0.432 0.410 0.419

Avg. 0.259 0.319 0.266 0.323 0.266 0.321 0.307 0.353 0.290 0.345 0.274 0.330 0.269 0.329 0.276 0.329 0.269 0.327 0.274 0.335 0.289 0.343 0.303 0.353

Weather

96 0.161 0.213 0.168 0.207 0.168 0.221 0.166 0.221 0.208 0.263 0.169 0.230 0.169 0.217 0.286 0.334 0.168 0.214 0.172 0.224 0.159 0.214 0.169 0.228
192 0.206 0.256 0.227 0.265 0.208 0.257 0.223 0.269 0.232 0.280 0.209 0.259 0.209 0.257 0.306 0.345 0.209 0.257 0.222 0.265 0.217 0.266 0.220 0.270
336 0.258 0.296 0.326 0.331 0.253 0.295 0.264 0.302 0.259 0.325 0.256 0.299 0.263 0.300 0.332 0.361 0.249 0.289 0.288 0.309 0.249 0.290 0.265 0.302
720 0.331 0.348 0.389 0.372 0.335 0.350 0.342 0.357 0.392 0.384 0.334 0.338 0.337 0.350 0.370 0.386 0.421 0.414 0.362 0.360 0.337 0.349 0.356 0.362

Avg. 0.239 0.278 0.277 0.294 0.241 0.281 0.249 0.287 0.273 0.313 0.242 0.282 0.244 0.281 0.324 0.356 0.262 0.293 0.261 0.290 0.240 0.280 0.252 0.290

Electricity

96 0.133 0.227 0.144 0.240 0.133 0.230 0.135 0.230 0.139 0.243 0.138 0.237 0.131 0.226 0.137 0.230 0.136 0.227 0.135 0.231 0.136 0.240 0.182 0.287
192 0.151 0.243 0.166 0.260 0.159 0.262 0.157 0.263 0.164 0.273 0.154 0.251 0.155 0.244 0.155 0.246 0.154 0.244 0.154 0.249 0.156 0.255 0.196 0.303
336 0.163 0.260 0.175 0.272 0.174 0.270 0.176 0.275 0.179 0.284 0.167 0.265 0.166 0.264 0.168 0.266 0.169 0.264 0.169 0.266 0.170 0.273 0.204 0.308
720 0.202 0.288 0.212 0.301 0.195 0.286 0.219 0.306 0.223 0.303 0.205 0.297 0.213 0.311 0.218 0.291 0.206 0.295 0.193 0.288 0.203 0.300 0.229 0.328

Avg. 0.162 0.255 0.174 0.268 0.165 0.262 0.172 0.269 0.176 0.276 0.166 0.263 0.166 0.261 0.170 0.258 0.166 0.257 0.163 0.258 0.166 0.267 0.203 0.307

Traffic

96 0.338 0.232 0.379 0.254 0.355 0.249 0.347 0.249 0.383 0.264 0.384 0.278 0.410 0.306 0.347 0.245 0.418 0.311 0.350 0.257 0.374 0.273 0.602 0.317
192 0.360 0.245 0.459 0.422 0.372 0.259 0.372 0.259 0.385 0.284 0.396 0.282 0.444 0.327 0.368 0.255 0.376 0.265 0.368 0.274 0.380 0.264 0.607 0.323
336 0.374 0.249 0.507 0.402 0.389 0.267 0.389 0.271 0.403 0.284 0.407 0.286 0.468 0.344 0.386 0.264 0.390 0.275 0.390 0.272 0.402 0.288 0.633 0.333
720 0.418 0.285 0.531 0.435 0.429 0.284 0.431 0.292 0.438 0.304 0.445 0.306 0.489 0.345 0.429 0.288 0.431 0.291 0.437 0.298 0.433 0.292 0.647 0.343

Avg. 0.373 0.253 0.469 0.378 0.386 0.265 0.385 0.268 0.402 0.284 0.408 0.288 0.453 0.331 0.382 0.263 0.404 0.285 0.386 0.275 0.397 0.279 0.622 0.329

(a) ETTh2 (b) ETTm1 (c) ETTm2

Figure 8: Parameter sensitivity of α and β of the proposed method on the ETTh2, ETTm1, and
ETTm2 datasets.

D.4 GENERALITY

To evaluate the generality of TALON, we replace the default GPT-2 (124M) Achiam et al. (2023)
backbone with several representative decoder-only LLMs: Qwen-0.5B Team (2024), Deepseek-1.5B
Liu et al. (2024a), and LLaMA-7B Touvron et al. (2023).

We adopt AutoTimes as the baseline for comparison, as it is the strongest baseline in Table 8, where
TALON achieves the smallest relative MSE reduction, making it a challenging reference point.

As shown in Table 12, TALON consistently outperforms AutoTimes across all datasets and predic-
tion lengths, confirming that its design is broadly transferable and robust to the underlying language
model. Interestingly, forecasting performance does not monotonically scale with model size: smaller
models such as GPT-2 sometimes outperform larger ones like LLaMA-7B, suggesting that pretrain-
ing corpus, architectural choices, and tokenization strategies are critical factors beyond parameter
count. While a systematic study of LLM scale is left for future work, our results demonstrate that
TALON delivers consistent improvements across diverse backbones, highlighting its general appli-
cability.
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Table 10: Zero-shot forecasting result.

TALON LangTime AutoTimes Timer XLModel (Ours) (2025) (2024d) (2025e)

Metric MSE MAE MSE MAE MSE MAE MSE MAE

96 0.290 0.348 0.338 0.373 0.294 0.352 0.305 0.358
192 0.350 0.387 0.418 0.417 0.354 0.388 0.372 0.400
336 0.378 0.411 0.429 0.427 0.383 0.416 0.397 0.425ETTh2

720 0.410 0.439 0.430 0.435 0.409 0.439 0.420 0.450

Avg. 0.357 0.396 0.404 0.413 0.360 0.399 0.373 0.408

96 0.778 0.574 1.023 0.628 0.818 0.571 0.788 0.575
192 0.752 0.570 1.060 0.642 0.802 0.566 0.791 0.577
336 0.749 0.569 1.079 0.651 0.818 0.572 0.832 0.595ETTm1

720 0.760 0.576 1.079 0.661 0.823 0.581 0.870 0.616

Avg. 0.760 0.572 1.060 0.646 0.815 0.572 0.820 0.591

96 0.226 0.316 0.290 0.354 0.242 0.327 0.240 0.324
192 0.281 0.349 0.358 0.390 0.307 0.363 0.304 0.362
336 0.335 0.380 0.422 0.422 0.368 0.397 0.367 0.398ETTm2

720 0.427 0.429 0.543 0.478 0.456 0.444 0.463 0.449

ETTh1

Avg. 0.317 0.368 0.403 0.411 0.343 0.383 0.343 0.383

96 0.473 0.469 0.541 0.495 0.523 0.492 0.443 0.454
192 0.526 0.507 0.742 0.579 0.619 0.553 0.524 0.513
336 0.589 0.547 1.019 0.675 0.783 0.636 0.597 0.554ETTh1

720 0.732 0.621 1.405 0.820 1.039 0.752 0.766 0.645

Avg. 0.580 0.536 0.927 0.642 0.741 0.608 0.583 0.542

96 0.703 0.538 1.052 0.608 1.250 0.662 0.782 0.578
192 0.739 0.564 0.996 0.605 1.055 0.634 0.831 0.610
336 0.791 0.594 0.956 0.605 0.972 0.639 0.864 0.636ETTm1

720 0.854 0.630 0.952 0.624 0.991 0.687 0.931 0.676

Avg. 0.772 0.582 0.989 0.611 1.067 0.655 0.852 0.625

96 0.217 0.305 0.249 0.328 0.231 0.317 0.245 0.320
192 0.274 0.341 0.310 0.363 0.290 0.353 0.310 0.359
336 0.330 0.375 0.359 0.393 0.348 0.390 0.365 0.392ETTm2

720 0.423 0.428 0.455 0.449 0.443 0.448 0.439 0.437

ETTh2

Avg. 0.311 0.362 0.343 0.383 0.328 0.377 0.340 0.377

96 0.638 0.552 0.619 0.515 0.597 0.522 0.718 0.586
192 0.623 0.541 0.649 0.526 0.608 0.525 0.712 0.584
336 0.618 0.541 0.644 0.527 0.607 0.529 0.739 0.598ETTh1

720 0.616 0.550 0.637 0.535 0.609 0.547 0.764 0.617

Avg. 0.624 0.546 0.637 0.526 0.605 0.531 0.733 0.596

96 0.327 0.384 0.368 0.407 0.350 0.396 0.339 0.393
192 0.388 0.420 0.454 0.455 0.409 0.427 0.405 0.431
336 0.416 0.439 0.494 0.485 0.433 0.444 0.431 0.446ETTh2

720 0.443 0.462 0.548 0.524 0.457 0.465 0.445 0.463

Avg. 0.393 0.426 0.466 0.468 0.412 0.433 0.405 0.433

96 0.187 0.273 0.215 0.294 0.192 0.275 0.203 0.284
192 0.247 0.311 0.285 0.338 0.258 0.315 0.269 0.325
336 0.300 0.344 0.343 0.375 0.314 0.349 0.325 0.358ETTm2

720 0.383 0.394 0.431 0.426 0.396 0.399 0.406 0.408

ETTm1

Avg. 0.279 0.331 0.318 0.358 0.290 0.334 0.301 0.344

96 0.524 0.488 0.700 0.556 0.671 0.546 0.539 0.495
192 0.552 0.508 0.728 0.577 0.687 0.559 0.578 0.520
336 0.570 0.525 0.751 0.597 0.684 0.567 0.610 0.540ETTh1

720 0.609 0.559 0.817 0.649 0.711 0.598 0.626 0.565

Avg. 0.563 0.520 0.749 0.595 0.688 0.568 0.588 0.530

96 0.285 0.350 0.336 0.385 0.315 0.375 0.286 0.353
192 0.352 0.392 0.402 0.421 0.370 0.409 0.357 0.398
336 0.387 0.416 0.430 0.444 0.394 0.427 0.411 0.431ETTh2

720 0.402 0.437 0.475 0.477 0.440 0.462 0.416 0.450

Avg. 0.356 0.399 0.411 0.432 0.380 0.418 0.368 0.408

96 0.402 0.414 0.522 0.478 0.441 0.418 0.463 0.431
192 0.428 0.433 0.556 0.498 0.466 0.437 0.489 0.454
336 0.456 0.452 0.604 0.524 0.493 0.456 0.527 0.480ETTm1

720 0.523 0.492 0.729 0.582 0.560 0.498 0.620 0.528

ETTm2

Avg. 0.452 0.448 0.603 0.520 0.490 0.452 0.525 0.473

D.5 PARAMETER SENSITIVITY

Sensitivity to α and β. As shown in Figure 8, we further investigate the sensitivity of the hyper-
parameters α and β on three additional datasets: ETTh2, ETTm1, and ETTm2. Across all datasets,
our method exhibits strong robustness to a wide range of α and β values. The MSE variation
across the grid is minimal (mostly within 0.01), indicating stable performance regardless of exact
hyperparameter choices. Although slight differences exist in the optimal setting per dataset (e.g.,
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Table 11: Comparison between TALON and MoE-based methods. The best results are in bold, and
the second-best are underlined.

Models TALON FreqMoE MoFE-time TimeMoE TFPS

(Ours) (2025) (2025d) (2025) (2024)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.351 0.392 0.371 0.388 0.337 0.380 0.360 0.396 0.398 0.413
192 0.381 0.415 0.426 0.422 0.381 0.411 0.386 0.413 0.423 0.423
336 0.398 0.427 0.475 0.447 0.414 0.436 0.407 0.433 0.484 0.461
720 0.414 0.446 0.488 0.459 0.453 0.466 0.457 0.476 0.488 0.476

Avg. 0.386 0.420 0.440 0.429 0.396 0.423 0.402 0.429 0.448 0.443

ETTh2

96 0.302 0.349 0.287 0.337 0.307 0.352 0.352 0.388 0.313 0.355
192 0.355 0.388 0.361 0.386 0.389 0.418 0.425 0.434 0.405 0.410
336 0.371 0.406 0.407 0.423 0.514 0.480 0.526 0.485 0.392 0.415
720 0.393 0.435 0.414 0.438 0.543 0.505 0.585 0.526 0.410 0.433

Avg. 0.355 0.401 0.367 0.396 0.438 0.439 0.472 0.458 0.380 0.403

ETTm1

96 0.278 0.339 0.314 0.356 0.294 0.352 0.319 0.373 0.327 0.367
192 0.324 0.367 0.356 0.380 0.333 0.381 0.359 0.401 0.374 0.395
336 0.358 0.388 0.385 0.404 0.400 0.433 0.404 0.433 0.401 0.408
720 0.418 0.424 0.446 0.445 0.536 0.514 0.545 0.501 0.479 0.456

Avg. 0.345 0.380 0.375 0.396 0.391 0.420 0.407 0.427 0.395 0.407

ETTm2

96 0.173 0.260 0.173 0.266 0.189 0.278 0.258 0.320 0.170 0.255
192 0.230 0.299 0.235 0.310 0.249 0.327 0.270 0.338 0.235 0.296
336 0.282 0.333 0.290 0.350 0.294 0.356 0.365 0.405 0.297 0.335
720 0.362 0.383 0.385 0.424 0.381 0.425 0.403 0.445 0.401 0.397

Avg. 0.262 0.319 0.271 0.338 0.278 0.347 0.324 0.377 0.276 0.321

Table 12: Generality evaluation of TALON across different decoder-only LLM backbones on four
benchmark datasets. TALON consistently improves upon the strong baseline AutoTimes across all
settings, demonstrating robust transferability and model-agnostic behavior. The best results are in
bold, and the second-best are underlined.

Models AutoTimes GPT-2 (124M) Qwen-0.5B Deepseek-1.5B LLaMA-7B

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.365 0.405 0.351 0.392 0.360 0.396 0.362 0.399 0.358 0.394
192 0.396 0.423 0.381 0.415 0.387 0.414 0.390 0.416 0.382 0.418
336 0.414 0.433 0.398 0.427 0.403 0.425 0.403 0.425 0.393 0.421
720 0.432 0.452 0.414 0.446 0.410 0.440 0.419 0.443 0.412 0.441

Avg. 0.402 0.428 0.386 0.420 0.390 0.419 0.393 0.421 0.386 0.419

ETTh2

96 0.286 0.348 0.302 0.349 0.286 0.348 0.283 0.347 0.282 0.346
192 0.371 0.408 0.355 0.388 0.346 0.389 0.340 0.386 0.350 0.392
336 0.420 0.453 0.371 0.406 0.370 0.412 0.361 0.406 0.376 0.418
720 0.521 0.516 0.393 0.435 0.418 0.451 0.407 0.445 0.433 0.462

Avg. 0.400 0.431 0.355 0.395 0.355 0.400 0.348 0.396 0.360 0.405

ETTm1

96 0.297 0.350 0.278 0.339 0.289 0.345 0.291 0.348 0.285 0.345
192 0.344 0.377 0.324 0.367 0.334 0.373 0.329 0.371 0.333 0.373
336 0.380 0.398 0.358 0.388 0.368 0.394 0.362 0.391 0.371 0.395
720 0.433 0.431 0.418 0.424 0.423 0.425 0.417 0.423 0.434 0.431

Avg. 0.364 0.389 0.345 0.380 0.353 0.384 0.350 0.383 0.356 0.386

ETTm2

96 0.184 0.265 0.173 0.260 0.177 0.262 0.177 0.266 0.174 0.263
192 0.247 0.307 0.223 0.299 0.240 0.305 0.230 0.302 0.232 0.302
336 0.298 0.341 0.278 0.333 0.296 0.342 0.283 0.335 0.283 0.335
720 0.378 0.395 0.362 0.383 0.380 0.397 0.374 0.390 0.369 0.389

Avg. 0.277 0.327 0.259 0.319 0.273 0.327 0.266 0.323 0.264 0.322

(α = 0.06, β = 0.06) on ETTm1), the overall insensitivity highlights that our method does not
depend on meticulous tuning, making it practical and easy to deploy in real-world scenarios.

Top-k Expert Selection. We conduct a sensitivity analysis on the top-k parameter, which controls
the number of activated experts during routing. As shown in Table 13, both k = 2 and k = 3 achieve
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Table 13: Parameter sensitivity of k of TALON on the ETTh1, ETTh2, ETTm1, and ETTm2 datsets.

k = 1 k = 2 k = 3

H MSE MAE MSE MAE MSE MAE

ETTh1

96 0.358 0.397 0.360 0.397 0.351 0.392
192 0.389 0.419 0.391 0.418 0.381 0.415
336 0.409 0.433 0.409 0.431 0.398 0.427
720 0.433 0.455 0.429 0.449 0.414 0.446

Avg. 0.397 0.426 0.397 0.424 0.386 0.420

ETTh2

96 0.282 0.346 0.302 0.349 0.293 0.352
192 0.345 0.390 0.355 0.388 0.353 0.397
336 0.374 0.418 0.371 0.406 0.379 0.423
720 0.432 0.462 0.393 0.435 0.434 0.465

Avg. 0.358 0.404 0.355 0.395 0.365 0.409

ETTm1

96 0.282 0.342 0.278 0.339 0.278 0.340
192 0.325 0.369 0.324 0.367 0.328 0.370
336 0.365 0.392 0.358 0.388 0.364 0.391
720 0.413 0.421 0.418 0.424 0.424 0.425

Avg. 0.346 0.381 0.345 0.380 0.348 0.381

ETTm2

96 0.194 0.282 0.172 0.259 0.173 0.260
192 0.262 0.326 0.230 0.299 0.223 0.299
336 0.333 0.369 0.283 0.334 0.278 0.333
720 0.438 0.429 0.361 0.385 0.362 0.383

Avg. 0.307 0.352 0.261 0.319 0.259 0.319
1st Count 3 2 9 9 8 9

competitive performance across most datasets and prediction lengths. Specifically, k = 2 yields the
most first-place results overall (9 for both MSE and MAE), while k = 3 also performs strongly (8 for
MSE and 9 for MAE). This suggests that leveraging multiple experts generally improves the model’s
ability to capture heterogeneous temporal patterns, compared to using a single expert (k = 1).
Moreover, the performance remains relatively stable across different k values, demonstrating the
robustness of the expert routing mechanism.

E SHOWCASES

To further illustrate the forecasting quality of TALON, we randomly select representative prediction
examples on three datasets: ETTh1, ETTm1, and Weather, each with a forecast horizon of 192 time
steps. We compare TALON against three strong baselines: Timer XL Liu et al. (2025e), AutoTimes
Liu et al. (2024d), and PatchTST Nie et al. (2023). As shown in Figure 9, TALON consistently
generates predictions that better align with the ground truth, particularly in segments exhibiting
nonstationarity, local fluctuations, or abrupt structural shifts.

These improvements stem from TALON’s Heterogeneous Temporal Encoder, which employs a mix-
ture of diverse architectural primitives to accommodate varying levels of temporal complexity. This
design allows TALON to flexibly capture sharp transitions, smooth trends, and localized irregular-
ities, avoiding the modeling bias introduced by homogeneous structures. In contrast, methods like
PatchTST and AutoTimes often rely on fixed patch tokenization or prompt-based representations,
which may be less robust when faced with irregular periodicities or regime shifts.

Furthermore, TALON’s language-aligned temporal encoding leverages pretrained LLMs to extract
semantic representations from natural language descriptions of statistical characteristics. These
prompt embeddings serve as informative priors that enhance the model’s understanding of temporal
structure. By incorporating natural language priors, TALON gains a higher-level understanding of
variable dependencies and temporal structures, which is especially beneficial in noisy or nonstation-
ary environments where conventional models may overfit or underfit critical dynamics.

Overall, these qualitative results validate TALON’s design philosophy of semantic-informed,
pattern-aware forecasting, demonstrating its strong generalization ability across diverse datasets and
dynamic regimes.
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(a) ETTh1: 672 input, 192 prediction

(b) ETTm1: 672 input, 192 prediction

(c) Weather: 672 input, 192 prediction

Figure 9: Forecasting examples across ETTh1, ETTm1, and Weather datasets (672-step input, 192-
step prediction).

F BORADER IMPACT

F.1 IMPACT ON REAL-WORLD APPLICATIONS

TALON’s ability to align statistical time series features with natural language representations opens
new avenues for integrating symbolic and numeric modalities in forecasting systems. This design
makes it particularly suitable for real-world domains where both structured signals and contextual
information (e.g., textual reports, user logs, or event annotations) coexist. For instance, in energy
demand forecasting, TALON can incorporate external textual sources such as weather bulletins or
maintenance notices, improving predictive accuracy during anomalous events. Similarly, in finance
or supply chain domains, TALON offers a scalable and adaptable solution to model nonstationary
dynamics without retraining for every configuration, thereby reducing operational cost and latency.

F.2 IMPACT ON FUTURE RESEARCH

TALON bridges the gap between natural language processing and time series forecasting, contribut-
ing to the emerging paradigm of language-aligned modeling for structured signals. It introduces
a flexible framework where natural language is not merely used as input, but also as a medium to
encode domain knowledge in a human-interpretable way. This may inspire future work on hybrid
modeling paradigms that combine statistical priors, expert annotations, and language reasoning for
enhanced interpretability and adaptability. Additionally, the modular design of TALON, separat-
ing prompt encoding, temporal modeling, and autoregressive decoding, facilitates future integration
with other modalities (e.g., vision or graphs), or with reinforcement learning for decision-aware
forecasting.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used in preparing this paper. Their role was limited to as-
sisting with language polishing, such as improving grammar, refining phrasing, and enhancing read-
ability of the manuscript. LLMs were not used for research ideation, methodological design, data
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analysis, or experimental validation. All scientific content, ideas, and results are solely the work of
the authors.
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