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ABSTRACT

Large Language Models (LLMs) have recently demonstrated impressive perfor-
mance in natural language processing due to their strong generalization and se-
quence modeling capabilities. However, their direct application to time series
forecasting remains challenging due to two fundamental issues: the inherent het-
erogeneity of temporal patterns and the modality gap between continuous nu-
merical signals and discrete language representations. In this work, we propose
TALON (Temporal-heterogeneity And Language-Oriented Network), a unified
framework that enhances LLM-based forecasting by modeling temporal hetero-
geneity and enforcing semantic alignment. Specifically, we design a Heteroge-
neous Temporal Encoder that partitions multivariate time series into structurally
coherent segments, enabling localized expert modeling across diverse temporal
patterns. To bridge the modality gap, we introduce a Semantic Alignment Module
that aligns temporal features with LLM-compatible representations, enabling ef-
fective integration of time series into language-based models while eliminating the
need for handcrafted prompts during inference. Extensive experiments on seven
real-world benchmarks demonstrate that TALON achieves superior performance
across all datasets, with average MSE improvements of up to 11% over recent
state-of-the-art methods, while maintaining higher efficiency. These results un-
derscore the effectiveness of incorporating both pattern-aware and semantic-aware
designs when adapting LLM:s for time series forecasting. The code is available at:
https://anonymous.4open.science/r/TALON-BBOO.

1 INTRODUCTION

Time series forecasting plays a critical role in a wide range of real-world applications, spanning
high-stakes domains such as healthcare monitoring (Jin et al., 2023)) and power grid control (Shao
et al, 2024), as well as everyday services including weather forecasting (Sun et al., 2021} [Zhang
et al [2023} Price et al.| [2025), traffic prediction (Jin et al., 2024c), and energy load estimation
(Wu et al.l [2024). To ensure reliable forecasting in such complex and dynamic environments, it is
essential to effectively model long-range temporal dependencies (Nie et al., 2023} |Liu et al., 2024c).

Recently, large language models (LLMs) have demonstrated remarkable generalization and repre-
sentation capabilities across a wide range of language and vision tasks (Touvron et al., 2023} |[Liu
et al., 2023; |/Achiam et al.| 2023; Team, [2024; Liu et al.| 2024b). Inspired by the shared sequential
nature of time series and language data, recent research has explored LLMs as general-purpose fore-
casters for time series applications (Ansari et al., 2024; Jin et al., 2024a; Liu et al., |2024d), aiming
to leverage their strong sequence modeling capabilities.

However, as illustrated in Figureﬂ] (a), multivariate time series often exhibit intrinsic heterogeneity,
where different segments and variables follow diverse and evolving patterns (Shao et al., 2024; Sun
et al., 2024} |Qiu et al.| 2025} |Liu et al} [2025c¢; Shi et al.} [2025). In contrast, LLMs are pretrained
on text corpora with globally consistent grammatical structures, which limits their ability to handle
fragmented or nonstationary temporal inputs. Moreover, time series are continuous and real-valued,
governed by strong temporal dependencies, whereas LLMs are inherently designed for discrete,
symbolic sequences (Ansari et al.| [2024). This discrepancy in both structure and modality poses
significant challenges for directly applying LLMs to time series forecasting (Liu et al.l 2025a).
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Figure 1: (a) Time series are continuous and structurally diverse, whereas natural language is dis-
crete and syntactically uniform, posing a modality gap that hinders the direct application of LLMs to
time series forecasting. (b) Our proposed TALON introduces a framework that integrates heteroge-
neous temporal encoding with contrastive semantic alignment, enabling pattern-aware and semanti-
cally grounded forecasting without relying on prompts during inference.

As shown in Figure [I] (b), existing LLM-based forecasting methods primarily fall into two cate-
gories: (1) Tokenization-based methods, which discretize continuous sequences into symbolic to-
kens (Gruver et al., 2023} |Ansari et al., 2024); and (2) Prompt-conditioned methods, which prepend
handcrafted textual templates to time series inputs (Liu et al., 2024d; |Jin et al.| 2024a). While both
paradigms attempt to adapt LLMs to time series data, they fail to fully account for the modality
gap. Specifically, they either disrupt temporal continuity, discard fine-grained numerical structure,
or suffer from weak alignment and a reliance on handcrafted prompts.

To address these challenges, we propose TALON (Temporal-heterogeneity And Language-Oriented
Network), a unified framework that bridges the modality gap by jointly modeling temporal het-
erogeneity and enforcing semantic alignment between time-series and language representations.
First, we propose a Heterogeneous Temporal Encoder (HTE) to partition multivariate time series
into structurally homogeneous segments based on their statistical and temporal properties, enabling
pattern-aware expert modeling. Second, we introduce a Semantic Alignment Module (SAM) that
aligns continuous features with LLM-compatible embeddings in a shared semantic space, eliminat-
ing the need for handcrafted prompts and bridging the modality gap. Finally, we employ a LLM
Forecasting Head (LFH) that combines a pretrained LLM with lightweight projection layers to
autoregressively generate future segments from the aligned representations. We evaluate TALON
on seven real-world time series forecasting benchmarks, where it consistently outperforms both
LLM-based and deep learning baselines across various prediction horizons. Our contributions are
summarized as follows:

* We identify and characterize the modality misalignment problem in LLM-based time series
forecasting from both structural and semantic perspectives, highlighting how the discrep-
ancy between continuous signals and discrete language inputs limits existing paradigms.

* We propose TALON, a novel framework that integrates heterogeneous pattern decomposi-
tion and semantic alignment to enable fine-grained forecasting and cross-modal represen-
tation learning.

» Experimentally, TALON consistently outperforms state-of-the-art baselines across seven
real-world forecasting benchmarks, achieving up to 11% reduction in MSE while improv-
ing both accuracy and generalization.

2 RELATED WORK

Deep Learning for Time Series Forecasting. Deep learning has become a cornerstone in time se-
ries forecasting, with various architectures designed to capture complex temporal dependencies.
Convolutional neural networks are widely used to extract local temporal patterns and variable-
wise dependencies (Wu et al.l 2023} |[Eldele et al., 2024; Wang et al., [2025). More recently,
Transformer-based models have gained popularity due to their global receptive fields and self-
attention mechanisms, which enable long-range dependency modeling. For instance, PatchTST (Nie
et al.,2023) proposes a channel-independent patching mechanism to decouple variable interactions,
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Figure 2: Overview of the TALON architecture. (1) Heterogeneous Temporal Encoder quantifies
segment-level complexity and routes each segment to specialized experts via a pattern-based rout-
ing mechanism. (2) Semantic Alignment Module generates structured, token-level prompts that
encode expert routing hints and temporal context, and applies contrastive learning to align time-
series and language representations, thereby enabling semantic grounding without inference-time
prompts. (3) LLM Forecasting Head takes the aligned features as input and performs autoregressive
next-segment prediction. This design supports complexity-aware modeling, prompt-free inference,
and semantically aligned forecasting under heterogeneous temporal patterns.

while iTransformer (Liu et al) 2024c) enhances multivariate modeling by treating each univariate
series as an individual token. To further address the heterogeneity of temporal patterns, several meth-
ods introduce mechanisms such as mixture-of-experts (Ni et al., 2024; |Q1u et al., 2025} [Liu, [2025))
and subspace-based pattern grouping (Sun et al.,2024), improving robustness to non-stationary and
diverse dynamics. Despite these advances, most existing methods remain constrained by limited pa-
rameterization and small-scale training corpora (Chen et al., 20205 Liu et al., 2021} (Cai et al., [2024;
Liu et al., [2024€).

Large Language Models for Time Series. Motivated by the sequential nature shared between time
series and language, such as local-to-global dependency structures and autoregressive generation,
recent studies have explored adapting LLMs to time series forecasting (Gruver et al.| 2023} Jin
et al.l 2024b). One line of work discretizes time series into symbolic tokens via quantization or
pattern clustering, enabling direct utilization of token-based LLMs (Gruver et al.| 2023 |Ansari
et al.,|2024). Another line of research retains raw numerical inputs and leverages textual prompts
to provide contextual guidance (Liu et al., |2024d; Jin et al.| 20244} Niu et al., |2025). While these
approaches benefit from the generalization capabilities of pretrained LLMs, they typically overlook
the pattern and semantic mismatch between natural language and continuous time series, leading to
limited scalability and suboptimal representation alignment.

3 PRELIMINARIES

Given a multivariate input sequence X = (Z¢—r41,...,2¢) € REXC | the goal of time series fore-
casting is to predict the future values Y = (441,...,7¢1m) € REXY where L is the look-back
window length, H is the forecasting horizon, and C' is the number of variables. The task is to learn
a predictive function fp such that Y = fp(X).

4 METHOD

4.1 OVERALL ARCHITECTURE

As illustrated in Figure |2 our proposed framework TALON consists of three key components: the
Heterogeneous Temporal Encoder (HTE), the Semantic Alignment Module (SAM), and the LLM
Forecasting Head (LFH).

To focus on modeling temporal variations, we follow the channel-independent strategy (Liu et al.,
2024d), decomposing the multivariate input into C' separate univariate sequences. Each univariate
sequence is further segmented into N consecutive non-overlapping patches of length S, with each
patch denoted as s; = {z(;_1)s11,-..,Tis} € R®,i=1,---  N.
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The HTE module extracts token-level statistical features from each patch and dynamically routes
it to a specialized expert (e.g., Linear, CNN, LSTM) via a learnable gating mechanism, enabling
localized and pattern-aware temporal modeling. Next, the SAM constructs token-adaptive prompts
based on the patch’s complexity and temporal context. These prompts are processed by a frozen
LLM to produce semantic embeddings in the language modality. To bridge the modality gap between
continuous time-series features and discrete language representations, we introduce a fine-grained
contrastive alignment loss at the token level. This encourages the time-series-derived representations
to align closely with the language embeddings, effectively transforming them into language-aligned
features suitable for LLM-based forecasting. Finally, the LFH takes the aligned embeddings as input
and employs a autoregressive decoder, consisting of a frozen LLM and a linear projection layer, to
generate forecasting outputs. This design supports variable prediction lengths while maintaining
low inference cost. We elaborate on each module in the following subsections.

4.2 HETEROGENEOUS TEMPORAL ENCODER

Multivariate time series often exhibit complex and heterogeneous temporal dynamics, including
diverse trends, fluctuations, and long-range dependencies across variables and time (Shao et al.,
2024). To effectively model such variability, we propose the Heterogeneous Temporal Encoder
(HTE), which learns pattern-aware representations by dynamically adapting expert selection to the
complexity and temporal structure of each input patch.

As shown in Figure2] HTE consists of three key components: (1) Pattern Quantification, (2) Pattern-
Adaptive Routing, and (3) Heterogeneous Pattern Extractors.

Pattern Quantification. To characterize the local temporal structure of each patch, HTE computes
a compact set of interpretable token-level statistical features (e.g., trend strength, variation, and
autocorrelation). These features quantify local temporal dynamics and serve as the basis for routing
each patch to a specialized modeling branch tailored to distinct temporal behaviors.

Given a univariate patch s; € RS, we compute three descriptors: trend strength (c;), local variation
(c2), and autocorrelation coefficient (c3) (Qiu et al., 2024} |Li et al., [2024). These features form a
quantification vector ¢; = [c1, ¢2,¢3] € R3, which characterizes the local structure of s; and serves
as the input to the expert routing mechanism. The specific calculation formulas are provided in the

Appendix [C]

Pattern-Adaptive Routing. Inspired by Variational Autoencoder-style stochastic modeling
(Kingma et al.,|2013)), we introduce latent uncertainty into the expert selection process by encoding
both the input patch s; and its complexity c¢; into latent scores. Specifically, we compute:

%; = ReLU(s; WHWH, (1)

where W¢ € R9*4, W§ € R3*9, and Wi, Wy € R¥*K for K experts.

We inject Gaussian noise €; ~ A (0, 1) and compute routing logits:
z; = Z; + €; - Softplus(é;), 3)
hi =W, “)

where WH ¢ RE*K is a projection matrix that maps the latent vector to the expert scoring space,
and h, e € R, To promote sparsity, we retain the top-k entries in h; before applying softmax:

G(s;) = Softmax(KeepTopk(h;, k)), (5)

otherwise.

(6)
—o0,

KeepTopk(h;, k), = {
Heterogeneous Pattern Extractors. Unlike previous methods that adopt a unified architecture for
all time segments (Nie et al.| 2023} Liu et al.l |2024c) or apply homogeneous experts uniformly
across patches (Sun et al., 2024;[Q1u et al., 2025)), we recognize that time series often exhibit diverse
temporal patterns, such as trends, local fluctuations, and long-range dependencies, which motivate a
heterogeneous modeling strategy. To this end, we design a lightweight expert pool comprising three
complementary branches that provide diverse temporal modeling capacities, enabling the framework
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to adapt to heterogeneous temporal dynamics and improve robustness across varied forecasting sce-
narios:

Linear
i

2. CNN Expert for capturing local dependencies: €S™N = W, - (Conva(ReLU(Conv (s;)))).

%

1. Linear Expert for modeling trend-like patterns: e = 8; * Wiinear-

3. LSTM Expert for modeling long-term memory: e}S™ = W - LSTM(s;)[_1], where

%

LSTM(s;)[—1] denotes the hidden state of the last time step given input s;.

Let eg denote the output of the j-th expert. The final representation for patch s; is computed as a
weighted aggregation over all expert outputs:

K

e, — Z G(Si)j . e{, (7)

j=1
where G(s;) € R¥ is the sparse gating vector produced by the pattern-adaptive routing mechanism.

Expert Regularization. To prevent expert collapse and promote diverse expert usage, we incorpo-
rate a load-balancing regularization term inspired by (Shazeer et al., 2017):

‘CMOE = Eimpnrtance + Elnad- (8)

Here, Limportance Minimizes the coefficient of variation across expert gate importance scores, while
Li0ad penalizes imbalanced token-to-expert assignments. This regularization stabilizes training and
promotes more efficient utilization of the expert capacity.

4.3 SEMANTIC ALIGNMENT MODULE

Most existing LLM-based time series forecasting approaches rely on static, global prompts shared
across all tokens (Jin et al., |2024a), which fail to capture the temporal heterogeneity inherent in
multivariate time series and limit generalization to local patterns. Furthermore, these methods typ-
ically adopt shallow alignment strategies (Liu et al., 2024d)), resulting in representations that are
misaligned with the architecture of LLMs and fail to fully exploit their reasoning capabilities.

To address these limitations, we propose the Semantic Alignment Module (SAM), which performs
fine-grained token-level alignment between temporal features and their corresponding textual se-
mantics via contrastive learning. By generating token-adaptive prompts and embedding both modal-
ities into a shared latent space, SAM enables the LLM to reason in a space that is both semantically
meaningful and temporally aware.

Token-Adaptive Prompt. Unlike language to-
kens that follow consistent syntactic structures, . .
time series tokens encode heterogeneous tempo- [Expert Routing Hint] 4
ral semantics. Applying a uniform prompt across The available expert types are: Lincar, CNN,
. . L LSTM.
such tokens can obscure informative variations.
Inspired by recent advances in visual prompting [Patch Time Context]
(L1iu et al., [20251), we extend the idea of differen- This patch consists of (token_len) time steps,
tiated prompts to time series. from (patch_start) to (patch_end).
It is part of a longer input window, which

spans from (x_start) to (x_end) and contains
(seq_len) time steps.

We construct token-adaptive prompts using in-
terpretable statistical descriptors for each token,
with each prompt integrating three aspects: (1)

expert routing hints, (2) patch-wise temporal con- [Complexity Features]
text, and (3) complexity-aware features. Mo- Trend Strength: (c; ).
tivated by the attention analysis in (Liu et al.| Local Variation: (cz).
20254), we place numerical features at the end Temporal Dependency: (cs).

of the prompt to guide the LLM’s focus toward
informative value tokens. These elements are to-
kenized using the LLM tokenizer to yield prompt embeddings p;.

Semantic Alignment. To bridge the modality gap between temporal signals and language represen-
tations, we design a contrastive alignment mechanism that injects prompt semantics into temporal
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features at the token level. For each token i, we align its temporal feature e; with its associated
prompt embedding p; via a contrastive objective'

ah n — Z exp 6“pl> /T) (9)
“N iy exp((ei,pi) /7))

where (-, -) denotes cosine similarity, 7 is a temperature parameter, and all vectors are ¢5-normalized.

This alignment enforces temporal features to reside in a shared semantic space with their corre-
sponding prompts, thereby enabling the LLM to interpret temporal patterns with enhanced semantic
consistency.

4.4 LLM FORECASTING HEAD

By aligning temporal features with language semantics, we enable the LLM to operate on time series
in a semantically grounded representation space. The aligned features e; are first passed through a
frozen pretrained LLM for deep contextual reasoning, after which a lightweight decoder projects the
resulting representations into future predictions:

Y = MLP(LLM(e)). (10)

Our autoregressive decoding allows flexible forecasting without retraining for different horizons,
fully utilizing LLMs’ inherent capacity for multi-step generation (Liu et al.l [2024d).

The final training objective jointly optimizes forecasting accuracy, expert utilization, and semantic
alignment:

L = Lyse + aoLyvior + Bﬁalign- (11

This formulation enables accurate and generalizable forecasts while maintaining an efficient decod-
ing pipeline.

4.5 INFERENCE PIPELINE

As shown in Figure [2] the inference process is streamlined and fully prompt-free. The input time
series is first segmented into patches s1, S2, ..., SN, and each patch is processed by the Heteroge-
neous Temporal Encoder. A gating mechanism aggregates outputs from the top-k experts, yielding
semantically enriched features ej, e, ..., en, which are then passed through a frozen pretrained
LLM to perform autoregressive forecasting.

By eliminating the need for textual prompts and semantic alignment during inference, our framework
supports efficient, pattern-aware forecasting with minimal computational overhead. This design
enables faster inference and enhanced deployment flexibility, while retaining the representational
benefits of heterogeneous expert modeling.

5 EXPERIMENT

5.1 DATA AND EXPERIMENT SETTING

Dataset. We evaluate the long-term forecasting performance across seven widely-used time series
benchmarks, including ETT datasets (ETTh1, ETTh2, ETTm1, ETTm?2), Weather, Electricity, and
Traffic. These datasets are standard benchmarks in the long-term forecasting literature (Liu et al.,
2024d)). Detailed descriptions are provided in Appendix

Baselines and Evaluation. We compare TALON against state-of-the-art baselines from two cat-
egories: (1) LLM-based forecasting methods, including LangTime (Niu et al., 2025), CALF (Liu
et al., 2025b), AutoTimes (Liu et al., 2024d), TimeLLM (Jin et al., |2024a)), and FPT (Zhou et al.,
2023)); (2) Deep learning-based forecasting models, including SimpleTM (Chen et al., [2025),
Timer_XL (Liu et al.| 2025¢), TimeMixer (Wang et al.l [2024)), iTransformer (Liu et al., 2024c),
PatchTST (Nie et al., 2023), and TimesNet (Wu et al., 2023).

Implementation Details. Following the common setup in (Liu et al.l 2024d), we fix the input look-
back window size to L = 672 for all experiments and use pre-trained GPT2 based model (Radford
et al.,2019) with the first 6 Transformer layers as our backbone. To ensure fair comparisons, we re-
run all baselines. All the experiments are conducted using PyTorch (Paszke et al.,2019) on NVIDIA
A100 GPUs.
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Table 1: Multivariate forecasting (672-pred-{96, 192, 336, 720}) results under the one-for-all set-
ting. Following [Liu et al.| (2024d), a single model is trained on a 96-step prediction horizon and
evaluated on all horizons using rolling forecasting. The best results are in bold, and the second-best
are underlined. Averaged results are reported here and full results are provided in Table [§ IMP
denotes the average MSE and MAE reduction of TALON over each baseline across seven datasets.

LLM-based methods Deep learning forecasting methods
Model TALON LangTime CALF AutoTimes TimeLLM FPT SimpleTM Timer XL TimeMixer | iTransformer PatchTST TimesNet
(Ours) (2025} (2025b) (2024d) (2024a (2023} (2025} (2025¢ (2024} (2024¢ (2023} (2023}

Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

ETThl | 0.386 0.420 | 0.406 0.422 | 0.416 0.429 | 0.402 0.428 | 0.542 0.520 | 0.422 0.437 | 0424 0.450 | 0.407 0.429 | 0.418 0.434 | 0.432 0.451 | 0441 0.451 | 0.495 0.489
ETTh2 | 0.355 0.395 | 0.364 0.399 | 0.373 0.419 | 0400 0.431 | 0416 0.446 | 0.370 0.407 | 0.367 0.414 | 0.377 0.414 | 0.385 0.417 | 0.399 0.423 | 0.392 0.429 | 0455 0.463
ETTml | 0.345 0.380 | 0.398 0.405 | 0.367 0.417 | 0.364 0.389 | 0.477 0.463 | 0.365 0.401 | 0.358 0.386 | 0.371 0.392 | 0.411 0.409 | 0.377 0.405 | 0.360 0.392 | 0.505 0.442
ETTm2 | 0.259 0.319 | 0262 0.323 | 0.281 0.341 [ 0.277 0.327 | 0.310 0.359 | 0.283 0.337 | 0.268 0.325 | 0.281 0.333 | 0.277 0.330 | 0.282 0.338 | 0.284 0.341 | 0.293 0.347
Weather | 0.239 0.278 | 0.265 0.282 | 0.255 0.298 | 0.252 0.290 | 0.271 0.308 | 0.248 0.284 | 0.247 0.282 | 0.322 0.355 | 0.244 0.282 | 0.258 0.286 | 0.247 0.284 | 0.260 0.291

ECL 0.162 0.255 | 0.178 0.272 | 0.239 0.296 | 0.168 0.261 | 0.185 0.288 | 0.257 0.354 | 0.167 0.261 | 0.173 0.272 | 0.167 0.257 | 0.167 0.260 | 0.180 0.283 | 0.207 0.304
Traffic | 0.373 0.253 | 0.418 0.273 | 0.891 0.442 | 0379 0.265 | 0.414 0.305 | 0428 0312 | 0.436 0.317 | 0.378 0.256 | 0.442 0.321 | 0.384 0.272 | 0.408 0.298 | 0.619 0.330
IMP. -— = 1% 10% 11% 21% 5% 11% 17% 20% 11% 16% 6% 14% 9% 12% 8% 14% 1% 12% 8% 14% 22% 20%

Table 2: Multivariate forecasting (672-pred-{96, 192, 336, 720}) results under the one-for-one set-
ting. A separate model is trained and evaluated for each prediction horizon. The best results are

in bold, and the second-best are underlined. Averaged results are reported here and full results are
provided in Table [0}

One-for-all Trained respectively on specific lookback / prediction length
Models | TAT 0N LangTime CALF AutoTimes | TimeLLM FPT SimpleTM | TimerXL | TimeMixer | iTransformer | PaichTST TimesNet
(Ours) (025} (025b] (024d] (20242 023} (025} (2025¢ (024 (2024¢ (023} (023}

Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

ETThl | 0.386 0.420 | 0.451 0.447 | 0.440 0.452 | 0457 0.466 | 0.578 0.529 | 0.438 0.446 | 0.422 0.449 | 0.450 0.455 | 0.428 0442 | 0.451 0.465 | 0.468 0.467 | 0.484 0.489
ETTh2 |0.355 0.395 | 0.388 0.408 | 0.366 0.402 | 0.390 0.421 | 0.435 0.455|0.396 0.427 | 0361 0.395 | 0.370 0.407 | 0.374 0.409 | 0.400 0.426 | 0.417 0.438 | 0.433 0455
ETTml | 0.345 0.380 | 0.415 0.414 | 0.363 0.393 | 0.411 0.418 | 0.406 0.417 | 0.359 0.390 | 0.356 0.390 | 0.359 0.391 | 0.418 0.423 | 0.372 0.403 | 0.387 0.409 | 0.444 0.434
ETTm2 | 0.259 0.319 | 0.266 0.323 | 0.266 0.321 | 0.307 0.353 | 0.290 0.345 | 0.274 0.330 | 0.269 0.329 | 0.276 0.329 | 0.269 0.327 | 0.274 0.335 | 0.289 0.343 | 0.303 0.353
Weather | 0.239 0.278 | 0.277 0.294 | 0.241 0.281 | 0.249 0.287 | 0.273 0.313 | 0.242 0.282 | 0.244 0.281 | 0.324 0.356 | 0.262 0.293 | 0.261 0.290 | 0.240 0.280 | 0.252 0.290

ECL |0.162 0.255|0.174 0.268 | 0.165 0.262 | 0.172 0.269 | 0.176 0.276 | 0.166 0.263 | 0.166 0.261 | 0.170 0.258 | 0.166 0.257 | 0.163 0.258 | 0.166 0.267 | 0.203 0.307
Traffic | 0.373 0.253 | 0.469 0.378 | 0.386 0.265 | 0.385 0.268 | 0.402 0.284 | 0.408 0.288 | 0.453 0.331 | 0.382 0.263 | 0.404 0.285 | 0.386 0.275 | 0.397 0.279 | 0.622 0.329

IMP. -—  -= 12% 18% 4% 10% 10% 13% 15% 18% 6% 12% 6% 14% 9% 13% 8% 13% 1% 13% 9% 14% 20% 20%

5.2 TIME SERIES FORECASTING

Setups. We consider two evaluation protocols to assess the forecasting performance of our model:
(1) To evaluate the generalization capability of one-for-all forecasting, we adopt the rolling forecast
setting (Liu et al.l [2024d; |2025¢), where a single model is trained on a 96-step prediction horizon
and then directly applied to all other horizons. During inference, the predicted values are recursively
fed into the lookback window to generate subsequent predictions. (2) For the conventional one-for-
one setting, we follow the standard multivariate evaluation protocol adopted by TimesNet (Wu et al.,
2023)), where a separate model is trained and evaluated for each prediction horizon.

Results. The average forecasting results are reported in Table (1| and Table In the one-for-all
setting (Table [I)), TALON consistently achieves the lowest MSE across all seven datasets, with an
average improvement of up to 10% over state-of-the-art deep forecasters and 12% over recent LLM-
based methods. In the conventional one-for-one setting (Table , it further achieves state-of-the-art
performance with up to 20% MSE reduction. These results highlight TALON’s strong generalization
capability and its effectiveness in modeling heterogeneous and evolving temporal patterns.

5.3 ZERO-SHOT FORECASTING

Setups. LLMs have exhibited remarkable zero-shot generalization capabilities across various do-
mains (Brown et al.| [2020). To assess whether TALON inherits this ability, we adopt the widely
used zero-shot forecasting protocol (Jin et al. [2024a; [Liu et al) [2024d)), where a model is trained
on a source domain and directly evaluated on an unseen target domain without any fine-tuning.
Following this setting, we use the ETT benchmark family and conduct evaluations across multiple
cross-domain scenarios, including both resolution shifts and domain shifts among ETT variants. As
in the full-shot experiments, we adopt the long-term forecasting protocol for evaluation.

Results. The zero-shot forecasting results are summarized in Table[3] TALON consistently achieves
the best MSE performance in 4 tasks, outperforming all compared methods. Specifically, it achieves
8%~20% relative MSE improvement, demonstrating robust generalization across diverse transfer
scenarios, including both resolution-level shifts and cross-domain adaptations. These results vali-
date the effectiveness of TALON in capturing local temporal structures and leveraging LLM-based
semantic alignment for strong transferability. Full results are provided in Table
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Table 3: Zero-shot forecasting result.

Table 4: Comparison with MoE-based methods.

| TALON | LangTime | AutoTimes | Timer XL | TALON | FreqMoE | MoFE-time | TimeMoE |  TFPS
Models Models
| ©Ous) | (@025) | (2024d) | (2025¢) | (©Ous) | (025} | (025d) | (2025} | (2024)
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE ~ Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
hi—h2/m1/m2 | 0.478 0.446 | 0.622 0490 | 0.506 0451 |0.512 0461  ETThl | 0.386 0.420 | 0.440 0.429 | 0.396 0.423 | 0.402 0.429 | 0.448 0.443
h2—h1/m1/m2 | 0.554 0.493 | 0.753 0545 | 0.712 0547 | 0.592 0514  ETTh2 | 0.355 0.395 | 0.367 0.396 | 0.438 0.439 | 0.472 0.458 | 0380 0.403
mi—h1/h2/m2 | 0.432 0434 | 0.474 0451 | 0436 0.433 | 0480 0458  ETTml | 0.345 0.380 | 0.375 0.396 | 0.391 0.420 | 0.407 0.427 | 0.395 0.407
m2—h1/h2/ml | 0.457 0.456 | 0.588 0.516 | 0.519 0479 | 0.494 0470  ETTm2 | 0.259 0319 | 0.271 0338 | 0.278 0.347 | 0324 0.377 | 0276 0.321
IMP. -~ [20% 8% | 10% 4% | 8% 4% IMP. | -~ - 7% 3% | 10% 1% 16% 1% | 10% 4%

O TALON-Text
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Figure 3: Visualization of time—text alignment
for TALON and AutoTimes on ETTh1-96.
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5.4 COMPARED WITH MOE-BASED METHODS

We compare TALON with recent MoE-based forecasting approaches. As shown in Table [ (with
full results reported in Table @), TALON achieves the best MSE scores across all datasets, with
an average improvement of 7% to 16% over existing methods. These consistent gains highlight the
advantage of heterogeneous expert modeling: by incorporating diverse inductive biases, TALON
adapts to evolving temporal dynamics and heterogeneous patterns across segments, leading to more
reliable and robust forecasts. This demonstrates the importance of architectural diversity in enhanc-
ing model generalization and handling non-stationary dynamics across time series segments.

5.5 MODEL ANALYSIS

Cross-Modal Embedding Alignment Analysis. To evaluate the quality of cross-modal alignment,
we analyze both the spatial structure and the quantitative similarity between time-series and textual
embeddings. As shown in Figure 3] (a), the t-SNE visualization shows that TALON’s temporal and
textual embeddings form more compact clusters, indicating stronger semantic coupling. In contrast,
AutoTimes exhibits a more scattered distribution, suggesting weaker alignment between modalities.
We also compute the L2 distance between aligned time-text embedding pairs across the test set.
As shown in Figure 3] (b), TALON achieves a significantly smaller mean distance than AutoTimes,
confirming its stronger cross-modal correspondence.

Expert Assign. Figure []illustrates the expert assignment distributions of TALON across ETTh2,
ETTml, and Weather. Each bar indicates the percentage of input segments that are most confidently
routed to a given expert. We observe that the expert utilization patterns vary significantly across
datasets. For example, the Weather dataset shows a strong preference for Expert O, whereas ETTh2
and ETTm1 exhibit more balanced and diverse assignments, indicating greater temporal complexity
and higher pattern heterogeneity (Sun et al., 2024). This variation highlights TALON’s ability to
adaptively route segments to specialized experts based on underlying pattern characteristics, vali-
dating the effectiveness of its pattern-aware routing mechanism.

Generality. Previous LLMA4TS approaches (Zhou et al.l 2023} Jin et all [2024a) typically target
specific language models. In contrast, TALON is designed to be compatible with any decoder-
only LLM. We evaluate this generality by replacing the default GPT-2 backbone with representative
alternatives: Qwen (Team, [2024), Deepseek (Liu et al.,2024a)), and LLaMA (Touvron et al., [2023).
We choose AutoTimes as the baseline, as it exhibits the smallest relative performance improvement
(5% in MSE) under TALON in Table[I] As shown in Figure [5] TALON consistently outperforms
AutoTimes across all datasets and LLMs, with relative MSE reductions annotated on each bar. These
results confirm that our framework is reliably enhances forecasting performance regardless of the
underlying LLM. Full results are provided in Table[T2]
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Table 5: Performance of ablation studies. Table 6: Effectiveness of heterogeneous experts

Models | ETThl | ETTh2 | ETTml | ETTm2 in HTE.
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE

TALON | 0.386 0.420 0.355 0.395 | 0.345 0.380 0.259 0.319
w/o HTE | 0.403 0.427 | 0.365 0.405 | 0.347 0.380 | 0.267 0.325

Heterogeneous Experts |~ ETThl |  ETTh2 | ETTml | ETTm2
Linear CNN LSTM | MSE MAE | MSE MAE | MSE MAE | MSE MAE

w/o HTER | 0.403 0426 | 0.360 0.400 | 0349 0.382 | 0.268 0.323 ‘)/( v v 0.386 0.420 0.355 0.395 0.345 0.380 0.259 0.319
wio SAM | 0393 0.422 | 0.367 0.408 | 0.350 0.382 | 0.266 0.319 v ¥ |0389 041910370 04070354 0.385 | 0266 0322
wlo Prompt | 0.389 0.419 | 0363 0.406 | 0.352 0.383 | 0.266 0.322 v X v 0.401 0.426 | 0.360 0.400 | 0.353 0.386 | 0.265 0.320
w/o LLM 0.418 0.435 | 0386 0434 | 0396 0411 | 0280 0.333 v v X 0.393  0.422 | 0.363 0.405 | 0.350 0.382 | 0.263 0.320

Ablation Studies. We conduct ablation studies to evaluate the contributions of TALON’s key com-
ponents. As shown in Table 5] removing the full HTE module (w/o HTE) increases average MSE
by 8.6%, while disabling only the routing mechanism (w/o HTE_R) leads to a 8.1% increase, high-
lighting the value of expert specialization and routing. Disabling SAM (w/o SAM) results in a 7.2%
increase in MSE, demonstrating its benefit in aligning temporal and textual representations. Re-
placing our token-adaptive prompt with a static TimeLLM-style prompt (w/o Prompt) leads to 5.6%
degradation, validating the design of context-aware prompt construction. Removing the LLM (w/o
LLM) causes the most significant drop, with a 33.9% increase in MSE, indicating the essential role
of LLM’s reasoning capacity. These results confirm that each module meaningfully contributes to
TALON’s performance, and their combination produces a synergistic effect for modeling complex,
heterogeneous temporal dynamics.

Analysis of HTE. Table [] validates the effectiveness of the HTE design. The fully heterogeneous
setup consistently achieves the best performance across all datasets. In contrast, removing any single
expert type leads to notable performance degradation (8.1%, 7.9%, and 5.8%, respectively). These
results underscore the complementary nature of distinct temporal modeling perspectives. Their in-
tegration enables the model to adapt to diverse temporal patterns within multivariate time series,
thereby enhancing generalization across different forecasting scenarios.

Efficiency Analysis. As shown in Figure [6]

we compare TALON'’s efficiency with other ™[ . "
LLM-based models on ETTh1-96. TALON om
achieves the lowest MSE while maintaining a oom
compact model size (~ 1.7M) and fast infer- oao
ence (~ 2s), showing that careful architectural .. -
design can improve accuracy without increas- o] mon W .. 0mn
ing computational cost. This efficiency stems EEE O Y od2 0os o
from TALON’s lightweight temporal encoder

and prompt-free semantic alignment, which to- Figure 6: Efficiency Figure 7: Parameter
gether reduce input redundancy by removing comparison across sensitivity of o and 3
handcrafted prompts and mitigate input com- [].M-based forecasters. on the ETTh1 dataset.
plexity by preserving the temporal continuity

and numerical precision of the original series.

0.400
0.398
0.396
0.394
FPT CALF 0.392
0.390

0388

0386

Parameter Sensitivity. We assess the robustness of our method to a and (8 via a grid search, report-
ing MSE results on ETTh1 in Figure 7 and on other datasets in Figure[8] The performance remains
relatively stable across a wide range of « and (8 values, demonstrating that our model is not overly
sensitive to specific hyperparameter settings and can deliver robust performance without extensive
hyperparameter tuning. We provide additional analysis on the effect of top-k expert selection in the
Appendix [D.3] and observe that activating multiple experts better captures pattern heterogeneity and
improves forecasting performance.

6 CONCLUSION

This paper presents TALON, a novel framework for time series forecasting that integrates temporal
heterogeneity modeling and semantic alignment within a unified foundation model architecture. By
incorporating a heterogeneous temporal encoder and a semantic-aware fusion mechanism, TALON
enables off-the-shelf large language models to perform pattern-aware and semantically aligned fore-
casting across diverse scenarios. Extensive experiments on multiple benchmarks demonstrate that
TALON achieves state-of-the-art accuracy while maintaining high efficiency and scalability. It also
generalizes well in zero-shot settings and seamlessly incorporates both numerical and textual tem-
poral cues. In future work, we plan to further improve pattern modeling via more adaptive and fine-
grained mechanisms, and enhance domain transferability through efficient adaptation techniques.
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7 ETHICS STATEMENT

This work focuses on adapting large language models to time series forecasting, with an emphasis
on modeling temporal heterogeneity and semantic alignment. It relies solely on publicly available
benchmark datasets that contain no personally identifiable or sensitive human data. No private or
proprietary information was accessed or used. The study fully adheres to the ICLR Code of Ethics.

8 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the model architecture, training setup, and evaluation protocols
in Sections ] and [5] Hyperparameter settings, training configurations, and preprocessing pipelines
are documented in Appendix [A] Anonymized source code, configuration files, and reproduction
scripts have be released at https://anonymous.4open.science/r/TALON-BBOO. All
benchmark datasets used in this work are publicly available. Furthermore, ablation studies and
sensitivity analyses (Section[5.5]and Appendix D) demonstrate the robustness of our findings. These
efforts collectively ensure that all reported results can be reliably reproduced.
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A IMPLEMENTATION DETAILS

A.1 BENCHMARK DATASETS

To evaluate the effectiveness and generalization ability of our proposed model, we conduct exper-
iments on seven widely-used benchmark datasets, covering a diverse range of domains including
electricity, traffic, and weather. The detailed dataset statistics are summarized in Table

e ETThl & ETTh2: These datasets are part of the Electricity Transformer Temperature
(ETT) benchmark, which records hourly temperature readings from two electricity trans-
formers. Each dataset contains 7 variables.

« ETTm1 & ETTm2: These are the minute-level variants of the ETT benchmark, with a
finer temporal granularity of 15 minutes. Each dataset contains 7 variables and significantly
more samples due to the higher sampling rate.

* Weather: This dataset includes 21 meteorological variables, such as temperature, humid-
ity, and wind speed, recorded every 10 minutes in 2020 at the Max Planck Biogeochemistry
Institute’s weather station.

* Electricity: This dataset records hourly electricity consumption for 321 clients. Due to
its multivariate nature and high dimensionality, it is commonly used to evaluate model
scalability and performance in high-dimensional forecasting tasks.

* Traffic: This dataset records hourly occupancy rates from 862 road sensors on freeways
in the San Francisco Bay Area, spanning from January 2015 to December 2016. Its high
dimensionality and complex temporal patterns make it a challenging benchmark for multi-
variate long-term forecasting.

We follow the same data processing and train-validation-test set split protocol used in TimesNet
Wu et al| (2023), where the train, validation, and test datasets are strictly divided according to
chronological order to ensure no data leakage. For long-term forecasting, we fix the context length
of TALON and the lookback window of other baseline models to 672, while the prediction lengths
vary among {96, 192, 336, 720}. Detailed settings are summarized in Table

Table 7: Detailed dataset descriptions. Dim denotes the variate number. Dataset Size denotes the
total number of time points in (Train, Validation, Test) split respectively. Forecast Length denotes
the future time points to be predicted. Frequency denotes the sampling interval of time points.

Dataset \Dim\ Forecast Length \ Dataset Size \Frequency\ Information

ETThl 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Electricity
ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Electricity
ETTml 7 {96, 192, 336, 720} | (34465, 11521, 11521) 15 min Electricity
ETTm2 7 {96, 192, 336, 720} | (34465, 11521, 11521) 15 min Electricity
‘Weather 21 | {96, 192, 336, 720} | (36792, 5271, 10540) 10 min Weather
Electricity | 321 | {96, 192, 336, 720} | (18317, 2633, 5261) 1 hour Electricity
Traffic 862 | {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Transportation

A.2 IMPLEMENTATION DETAILS

TALON encodes statistical information in natural language form and uses a pretrained LLM (GPT2
Achiam et al.| (2023)) to obtain prompt embeddings by extracting the final token’s representation
Liu et al.| (2024d; 2025a). For multivariate forecasting, prompts are constructed independently for
each variable and pre-tokenized to avoid runtime overhead.

After obtaining the prompt embeddings, TALON repurposes the LLM for time series forecasting.
During training, only the parameters of the Heterogeneous Temporal Encoder and Forecast Head are
updated, while the LLM remains frozen. At inference, TALON employs autoregressive decoding
over language-aligned features to generate variable-length predictions without relying on textual
prompts, ensuring efficient and scalable deployment.
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All experiments are conducted using PyTorch [Paszke et al| (2019) on NVIDIA A100 GPUs. We
use the Adam optimizer Kingma & Ba (2014)), with the initial learning rate randomly sampled
from the range [10~%4,1072]. Following the Channel Independence setting in Nie et al.| (2023)),
each time series channel is modeled independently. The batch size is selected from {256, 384},
and each model is trained for 10 epochs. For evaluation, we rerun the baseline models using their
official implementations. Specifically, most baselines are obtained from the TimesNet benchmark
Wau et al.[(2023)) and the Timer_XL repository Liu et al.| (2025¢). For methods not included in these
repositories, we follow the original official implementations released by the authors to ensure fair
and consistent comparison.

B METRICS

Mean Squared Error (MSE). Mean Squared Error is one of the most widely used metrics for
evaluating time series forecasting performance. It calculates the average of the squared differences
between predicted values and ground truth values:

N

1
MSE = =% (v — 4:)°. (12)
=1

where y; and ¢; denote the true and predicted values, respectively, and NV is the total number of
predictions. MSE penalizes larger errors more severely, making it sensitive to outliers and suitable
for applications that prioritize accurate modeling of extreme values.

Mean Absolute Error (MAE). Mean Absolute Error measures the average magnitude of the errors
between predicted and true values, without considering their direction:

N
1 N
MAE = ~ E_l ly: — 0il. (13)

Compared to MSE, MAE is more robust to outliers and provides a direct interpretation of the average
forecast error in the same units as the original data. It is especially useful when consistent accuracy
across the entire forecast range is desired.

Both MSE and MAE are used in our evaluation to provide a comprehensive assessment of forecast-
ing performance, balancing sensitivity to large deviations (MSE) and overall robustness (MAE).

IMP. IMP (Improvement) quantifies the relative performance gain of our proposed method
(TALON) over each baseline method. Specifically, it denotes the average percentage reduction in
both MSE and MAE across all seven datasets, defined as:

D (d) (d)
1 < MSEY . — MSE

IMPMSE — 5 E basel @ TALON, (14)

d=1 MSEbaseline

D (d) (d)

— l MAEbaseline — MAETALON 1

IMPyiag = 75 @ , (15)

d=1 MAEbaseline

where D is the number of datasets, and MSEISZS)eline and MAEI()ZlS)ehne refer to the error metrics of a
given baseline on dataset d. Positive IMP values indicate that TALON achieves lower errors and

thus better forecasting performance.

IMP provides a concise summary of overall improvement, enabling direct comparison of the relative
effectiveness of TALON against each baseline across diverse datasets.

C TiIME SERIES CHARACTERISTICS

We quantify the complexity of each univariate time series segment using three interpretable indica-
tors: trend strength, local variation, and temporal dependency. Formally, for a univariate segment
s € R, we extract the following:

15



Under review as a conference paper at ICLR 2026

Trend Strength. The trend of a time series refers to the long-term changes or patterns that occur
over time. Intuitively, it represents the general direction in which the data is moving. Trend strength
measures how much of the deseasonalized signal’s variance can be explained by the underlying trend
component. To compute it, we apply Seasonal-Trend decomposition using Loess (STL) to extract
trend, seasonal, and residual components:

s = Trend + Seasonal + Residual. (16)
We then calculate the deseasonalized signal s’ = s — Seasonal and define trend strength as:
Var(Residual)
Var(s') ) ’
This formulation reflects the proportion of variance in the deseasonalized signal that is attributable
to the trend component.

TrendStrength = max (0, 1-— (17

Local Variation. We compute the first-order difference As; = s; — s;_1 and define local variation
as:
Variation = o (lag(1 + std(As)) — 1.0), (18)

where o is the sigmoid function. This maps the log-scaled standard deviation to [0, 1] for robust
normalization.

Temporal Dependency. We compute lag-1 autocorrelation:
Autocorr = |acf(s)[1]], (19)

where acf is the autocorrelation function. If the signal is constant or contains invalid values, the
score is set to zero for robustness.

The final complexity descriptor is a 3-dimensional vector given by:
Cc= [Cla C2, 63] (20)
= [TrendStrength, Variation, Autocorr] € [0, 1]°. 21

The full procedure for computing the statistical complexity descriptor is outlined in Algorithm I

Algorithm 1 Statistical Complexity Computation for Time Series Patches

Require: A univariate time series patch s € RS
Ensure: A complexity vector ¢ = [cy, c2, c3] € R3

1: Trend Strength (c;):

2: Apply STL decomposition on s: s = Trend + Seasonal + Residual
3: Compute deseasonalized signal: s’ = s — Seasonal

4: if Var(s’) = 0 then

5: C1 < 0

6: else

7: ¢ < 1 — Var(Residual)/Var(s’)

8: end if

9: Derivative Standard Deviation (c3):

10: Compute first-order difference: As = s9.g — S81.5-1

11: ¢g < log(1 + std(As)), then apply sigmoid scaling: ¢z <— 1/(1 + exp(—(c2 — 1.0)))
12: Autocorrelation (c3):

13: Compute lag-1 autocorrelation:

14: ¢3 + |Corr(s1.5-1,82:5)]

15: return ¢ = [c1, ¢z, ¢3]

D SUPPLEMENTARY RESULTS

D.1 TIME SERIES FORECASTING
We compare the performance of TALON with state-of-the-art LLM-based forecasting methods and

well-acknowledged deep learning forecasters. Table [§|reports the results under the one-for-all fore-
casting setting across the ETT, ECL, Traffic, and Weather datasets. In this setup, each model is
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Table 8: Multivariate forecasting (672-pred-96, 192, 336, 720) results under the one-for-all setting.
Following Liu et al.|(2024d), a single model is trained on a 96-step prediction horizon and evaluated
on all horizons using rolling forecasting. The best results are in bold, and the second-best are
underlined.

LLM-based methods Deep learning forecasting methods

Models TALON LangTime CALF AutoTimes TimeLLLM FPT SimpleTM Timer XL TimeMixer iTransformer PatchTST TimesNet
(Ours) 2025 20256 [2024d (024a 023 2025 [2025¢ (2024] [2024c] {2023 2023

Metric MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 |0.351 0.392 | 0.373 0.397 | 0.387 0.415 | 0.365 0.405 | 0.476 0.477 | 0.386 0.412 | 0.383 0.419 | 0.363 0.396 | 0.375 0.405 | 0.387 0.419 | 0.398 0.417 | 0.450 0.463
192 | 0.381 0.415 | 0.404 0.416 | 0.397 0.421 | 0.396 0.423 | 0.545 0.517 | 0.422 0.433 | 0.416 0.439 | 0.404 0423 | 0.409 0.426 | 0.421 0.440 | 0.432 0.441 | 0.471 0.475
336 | 0.398 0.427 | 0.416 0.428 | 0.417 0.431 | 0.414 0.433 | 0.559 0.530 | 0.440 0.445 | 0.421 0.450 | 0.427 0.439 | 0.429 0.439 | 0.444 0.457 | 0.452 0.456 | 0.493 0.487
720 | 0.414 0.446 | 0.433 0447 | 0.462 0.450 | 0.432 0.452 | 0.588 0.558 | 0.440 0.460 | 0.477 0.491 | 0436 0.458 | 0.458 0.466 | 0.474 0.490 | 0.483 0.492 | 0.567 0.532
Avg. 0386 0.420 0406 0422 0416 0429 0402 0428 0.542 0520 | 0.422 0437 | 0424 0450 | 0.407 0.429 | 0.418 0434 | 0.432 0451 | 0.441 0451 0495 0.489
96 | 0302 0.349 | 0.296 0.348 | 0.289 0.347 | 0.286 0.348 | 0.386 0.421 | 0.291 0.348 | 0.289 0.352 | 0.299 0.355 | 0.295 0.354 | 0.304 0.362 | 0.307 0.370 | 0.406 0.432
192 | 0.355 0.388 | 0.370 0.397 | 0.376 0.400 | 0.371 0.408 | 0.404 0.435 | 0.368 0.399 | 0.353 0.399 | 0.367 0.401 | 0.369 0.402 | 0.384 0.410 | 0.392 0.423 | 0.459 0.458
336 | 0.371 0.406 | 0.385 0.414 | 0392 0.458 | 0.420 0.453 | 0.411 0.447 | 0400 0.430 | 0.393 0.439 | 0.393 0.428 | 0.408 0.435 | 0.431 0.443 | 0.419 0.447 | 0.452 0.466
720 | 0.393 0.435 | 0.404 0.436 | 0.433 0474 | 0.521 0.516 | 0.463 0.479 | 0419 0.452 | 0.434 0467 | 0448 0.472 | 0.468 0.479 | 0.478 0.479 | 0.452 0.477 | 0.502 0.496
Avg. 0.355 0.395 0.364 0399 0373 0419 0400 0431 0416 0446|0370 0.407 | 0.367 0414 | 0.377 0.414 | 0.385 0.417 | 0.399 0.423 | 0.392 0.429 0.455 0.463
96 | 0.278 0.339 | 0.329 0364 | 0312 0.362 | 0.297 0.350 | 0.385 0.406 | 0.295 0.356 | 0.285 0.345 | 0.296 0.347 | 0.319 0.361 | 0.313 0.368 | 0.297 0.354 | 0.390 0.396
19210324 0.367 | 0.378 0.393 | 0.328 0.375 | 0.344 0.377 | 0.490 0.471 | 0.338 0.384 | 0.339 0.370 | 0.349 0.378 | 0.375 0.392 | 0.351 0.391 | 0.340 0.381 | 0.463 0.426
336 | 0.358 0.388 | 0.407 0.413 | 0.364 0.458 | 0.380 0.398 | 0.504 0.481 | 0.377 0.410 | 0.369 0.404 | 0.387 0.402 | 0.428 0.418 | 0.387 0.413 | 0.374 0.401 | 0.533 0.454
720 | 0.418 0.424 0.464 0472 | 0433 0431 | 0.529 0495 | 0452 0455 | 0438 0425 | 0.453 0.441 | 0.523 0.464 | 0.456 0.450 | 0.431 0.433 | 0.636 0.493
Avg. 0345 0.380 0367 0417 0364 0389 0477 0463 | 0365 0401 | 0358 0.386 | 0.371 0.392 | 0.411 0.409 | 0.377 0.405 | 0.360 0392 0.505 0.442
96 |0.173  0.260 | 0.1 0.186  0.263 | 0.184 0.265 | 0.228 0.311 | 0.177 0.266 | 0.177 0.265 | 0.185 0.270 | 0.178 0.264 | 0.180 0.274 | 0.186 0.276 | 0.195 0.285
192 | 0.223 0.299 0.268 0.327 | 0.247 0.307 | 0.271 0.338 | 0.244 0.310 | 0.237 0.306 | 0.247 0.312 | 0.242 0.306 | 0.240 0.312 | 0.247 0.318 | 0.253 0.323
336 | 0.278 0.333 0293 0.377 | 0.298 0.341 | 0.318 0.366 | 0.302 0.350 | 0.290 0.340 | 0.304 0.348 | 0.299 0.343 | 0.301 0.353 | 0.303 0.355 | 0.314 0.362
720 | 0.362 0.383 0.376  0.395 | 0.378 0.395 | 0.422 0.420 | 0.410 0.423 | 0.369 0.391 | 0.389 0.402 | 0.391 0.405 | 0.407 0.416 | 0.397 0414 | 0411 0.420
Avg. 0.259 0319 0.281 0.341 0277 0327 0310 0.359 | 0.283 0.337 | 0.268 0.325 | 0.281 0.333 | 0.277 0.330 | 0.282 0.338 | 0.284 0.341 0.293 0.347
96 | 0.161 0213 0.168 0.221 | 0.166 0.221 | 0.208 0.263 | 0.169 0.230 | 0.169 0.217 | 0.286 0.334 | 0.168 0.214 | 0.172 0.224 | 0.159 0.214 | 0.169 0.228
192 1 0.206 0.256 | 0.221 0.256 | 0.243 0.303 | 0.219 0.268 | 0.246 0.291 | 0.219 0.253 | 0.208 0.256 | 0.305 0.345 | 0.209 0.257 | 0.224 0.266 | 0.211 0.260 | 0.223 0.268
336 | 0.258 0.296 | 0.284 0.302 | 0.256 0.315 | 0.277 0.311 | 0.286 0.319 | 0.268 0.305 | 0.265 0.306 | 0.330 0.358 | 0.261 0.298 | 0.283 0.305 | 0.268 0.303 | 0.288 0.308
720 | 0.331 0.348 | 0.387 0.364 | 0.351 0.353 | 0.346 0.360 | 0.343 0.358 | 0.335 0.349 | 0.345 0.348 | 0.367 0.382 | 0.337 0.360 | 0.354 0.351 | 0.351 0.358 | 0.362 0.359
Avg. 0239 0278 0265 0282 0255 0298 0252 0290 0271 0308|0248 0.284 | 0247 02820322 0.355 | 0244 0.282 | 0.258 0.286 | 0.247 0.284 0.260 0.291
96 | 0.133 0.227 | 0.144 0.240 | 0.133 0.230 | 0.135 0.230 | 0.139 0.243 | 0.138 0.237 | 0.131 0.226 | 0.137 0.230 | 0.136 0.227 | 0.135 0.231 | 0.136 0.240 | 0.182 0.287
192 | 0.151 0.243 | 0.161 0.257 | 0.284 0.320 | 0.153 0.247 | 0.168 0.274 | 0.249 0.354 | 0.159 0.248 | 0.154 0.268 | 0.151 0.244 | 0.156 0.250 | 0.157 0.261 | 0.192 0.295
336 | 0.163  0.260 | 0.180 0.275 | 0.276 0.316 | 0.172 0.266 | 0.184 0.283 | 0.280 0.381 | 0.172 0.268 | 0.169 0.274 | 0.170 0.260 | 0.172 0.267 | 0.182 0.288 | 0.201 0.303
720 | 0.202 0.288 | 0.228 0.316 | 0.264 0.317 | 0.212 0.300 | 0.249 0.352 | 0.362 0.442 | 0.208 0.302 | 0.233 0315 | 0.213 0.298 | 0.204 0.294 | 0.244 0.343 | 0.255 0.332
Avg. 0.162 0.255 0.178 0272 0239 0.296 0.168 0.261 0.185 0.288 | 0.257 0.354 | 0.167 0.261 | 0.173 0.272 | 0.167 0.257 | 0.167 0.260 | 0.180 0.283 0.207 0.304

96 | 0338 0.232 | 0.379 0.254 | 0.355 0.249 | 0.347 0.249 | 0.383 0.264 | 0.384 0.278 | 0.410 0.306 | 0.347 0.245 | 0418 0.311 | 0.350 0.257 | 0.374 0.273 | 0.602 0.317
192 1 0.360 0.245 | 0.403 0.265 | 1.127 0.521 | 0.366 0.258 | 0.399 0.298 | 0.402 0.290 | 0.416 0.307 | 0.362 0.244 | 0.429 0.315 | 0.373 0.266 | 0.391 0.284 | 0.614 0.325

ETThl

‘Weather

Electricity

Traffic 336 | 0.374 0.249 | 0424 0275 | 1.136  0.522 | 0.383 0.267 | 0423 0.323 | 0.427 0.311 | 0437 0.318 | 0.381 0.255 | 0.442 0.321 | 0.390 0.274 | 0.409 0.299 | 0.618 0.329
720 | 0.418 0.285 | 0.468 0.298 | 0.944 0.475 | 0.420 0.286 | 0.452 0.334 | 0.501 0.368 | 0.483 0.339 | 0.424 0.281 | 0.479 0.339 | 0.423 0.291 | 0.460 0.335 | 0.641 0.349
Avg. 0373 0253 0418 0273 0.891 0442 0379 0265 0414 0305|0428 0312|0436 0317 | 0378 0.256 | 0.442 0321 | 0.384 0.272 | 0.408 0.298 0.619 0.330

trained with a fixed input length of 672 and an output length of 96. During inference, we adopt a
rolling forecasting strategy: the predicted values are iteratively appended to the input to reach the
target forecast horizon.

In addition, we also evaluate the one-for-one setting, where separate models are trained for each
forecast length. The corresponding results are provided in Table [0} All baselines are reproduced
using their official implementations to ensure fair comparison.

D.2 ZERO-SHOT FORECASTING

Following the zero-shot forecasting protocol proposed in AutoTimes|Liu et al.|(2024d), each experi-
ment consists of a source dataset and a target dataset. The model is trained exclusively on the source
dataset and directly applied to the target dataset without any fine-tuning or adaptation.

For the case of ETThl — ETTh2, the model is trained on ETTh1 and evaluated on ETTh2. We
directly reuse the trained model from the one-for-all forecasting experiment reported in Table [§]
The detailed results are presented in Table [I0]

D.3 COMPARED WITH MOE-BASED METHODS

As shown in Table [IT} TALON consistently outperforms four recent MoE-based methods across all
datasets and prediction lengths. It achieves the lowest MSE in 13 out of 16 settings and ranks first
in average MSE on every dataset. On average, TALON reduces the MSE by 10.7% compared to the
baselines, demonstrating its strong modeling capability. This performance gain is attributed to the
use of heterogeneous experts, which introduce diverse temporal inductive biases to better capture
complex and non-stationary dynamics. Note that since the original TimeMoE paper does not report
results trained on individual datasets, we adopt the TimeMOoE results reported in MoFE-time, while
other baselines use the results reported in their original papers.
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Table 9: Multivariate forecasting (672-pred-{96, 192, 336, 720}) results under the one-for-one set-
ting. A separate model is trained and evaluated for each prediction horizon. The best results are in
bold, and the second-best are underlined.

One-for-all Trained respectively on specific lookback / prediction length
Models TALON M FPT SimpleTM | Timer XL | Time

(Ours)
Metric MSE MAE ) ) ) ) ) ) 2 MAE MSE MAE

96 | 0.351 0.392 | 0.373
192 | 0.381 0.415 | 0.402

0.387 0.415|0.365 0405 | 0476 0.477 | 0.386 0.412 | 0.383 0.419 | 0.363 0.396 | 0.375 0.405 | 0.387 0.419 | 0.398 0.417 | 0.450 0.463
0.415 0.433 | 0456 0.469 | 0.596 0.533 | 0.425 0.435 | 0.409 0.434 | 0.425 0438 | 0410 0.433 | 0.422 0.443 | 0.441 0.450 | 0.468 0.476
336 | 0.398 0.427 | 0.443 0.465 0.463 | 0.489 0.486 | 0.546 0.516 | 0.453 0.455 | 0428 0.455 | 0.459 0.461 | 0.442 0.450 | 0.449 0463 | 0.491 0.482 | 0.465 0.479
720 | 0.414 0.446 | 0.588 0494 0.498 | 0.516 0.506 | 0.692 0.589 | 0.486 0.483 | 0.470 0.489 | 0.554 0.524 | 0.483 0.482 | 0.547 0.534 | 0.540 0.520 | 0.553 0.540
Avg. 0.386 0.420 0.451 0447 0440 0452 0457 0466 0.578 0.529 | 0.438 0.446 | 0422 0.449 | 0.450 0.455 | 0.428 0.442 | 0.451 0.465 | 0.468 0.467 0.484 0.489
96 |0.302 0.349 | 0.296 0.348 | 0.289 0.347 | 0.286 0.348 | 0.386 0.421 | 0.291 0.348 | 0.289 0.352 | 0.299 0.355 | 0.295 0.354 | 0.304 0.362 | 0.307 0.370 | 0.406 0.432
192| 0355 0.388 | 0.396 0.404 | 0.355 0.387 0.414 | 0426 0446 | 0.378 0.418 | 0.354 0.392 | 0.358 0.395 | 0.368 0.398 | 0.380 0.408 | 0.416 0.432 | 0.444 0.462
336 | 0.371 0.406 | 0.389 0.405 | 0.390 0.425 0452 | 0461 0472 | 0436 0.461 | 0.386 0.402 | 0.393 0423 | 0.396 0.425 | 0.433 0.445 | 0.487 0.477 | 0.444 0.465
720 | 0.393 0.435 | 0.471 0.473 | 0.430 0.460 0.470 | 0.465 0.482 | 0479 0.482 | 0.416 0.434 | 0.429 0.457 | 0436 0.460 | 0.482 0.488 | 0.460 0.474 | 0.439 0.460
Avg. 0355 0395 0388 0.408 0.366 0390 0.421 0435 0455|0396 0427|0361 0.395 | 0.370 0.407 | 0.374 0.409 | 0.400 0.426 | 0.417 0438 0.433 0455
96 | 0.278 0.339 | 0.329 0.364 | 0.312 0297 0.350 | 0.385 0.406 | 0.295 0.356 | 0.285 0.345| 0.296 0.347 | 0.319 0.361 | 0.313 0.368 | 0.297 0.354 | 0.390 0.396
192 | 0.324 0.367 | 0.398 0.399 | 0.343 0396 0.413 | 0.392 0.410 | 0.332 0378 | 0.346 0.388 0.398 | 0.347 0.386 | 0.389 0.404 | 0.527 0.467
336 | 0.358 0.388 | 0.435 0.426 | 0.373 0461 0.445 | 0.409 0.412 | 0.380 0.400 | 0.370 0.399 0447 | 0.380 0.408 | 0.385 0.415 | 0.402 0.422
720 | 0.418 0.424 | 0.498 0.466 | 0.424 0.490 0.464 | 0.438 0439 | 0429 0425 | 0424 0428 0.488 | 0.448 0.450 | 0477 0.463 | 0.456 0.450
Avg. 0.345 0380 0.415 0414 0.363 0411 0.418 0.406 0.417 | 0.359 0.390 | 0.356 0.390 | 0.359 0.391 | 0.418 0.423 | 0.372 0.403 | 0.387 0.409 0.444 0.434
96 | 0.173  0.260 | 0.175 0.266 | 0.186 0.184 0.265 | 0.228 0.311 | 0.177 0.266 | 0.177 0.265 | 0.185 0.270 | 0.178 0.264 | 0.180 0.274 | 0.186 0.276 | 0.195 0.285
1920223 0.299 | 0.243 0312 | 0.236 0.285 0338 | 0.253 0.320 [ 0.243 0309 | 0.237 0.310 | 0.230 0.302 | 0.235 0.301 | 0.243 0.316 | 0.246 0312 | 0.281 0.339
336 | 0.278 0.333 | 0.285 0.332 | 0.280 0.334 | 0.337 0.377 | 0.305 0.352 | 0.299 0.345 | 0.300 0.351 | 0.285 0.338 | 0.287 0.341 | 0.297 0.350 | 0.310 0.354 | 0.326 0.368
720 | 0.362 0.383 | 0.362 0.384 | 0.364 0.389 | 0.423 0.433 | 0.373 0.398 | 0.375 0.401 | 0.364 0.390 | 0.406 0.407 | 0.376 0.401 | 0.375 0.401 | 0.414 0.432 | 0.410 0.419
Avg. 0259 0319 0266 0323 0266 0321 0307 0353 0290 03450274 0330|0269 0329|0276 0.329 | 0269 0.327 | 0.274 0.335 | 0.289 0.343 0303 0.353
96 | 0.161 0.213 | 0.168 0.207 | 0.168 0.221 | 0.166 0.221 | 0.208 0.263 | 0.169 0.230 | 0.169 0.217 | 0.286 0.334 | 0.168 0.214 | 0.172 0.224 | 0.159 0.214 | 0.169 0.228
192 | 0.206 0.256 | 0.227 0.265 | 0.208 0.257 | 0.223 0.269 | 0.232 0.280 | 0.209 0.259 | 0.209 0.257 | 0.306 0.345 | 0.209 0.257 | 0.222 0.265 | 0.217 0.266 | 0.220 0.270
336 | 0.258 0.296 | 0.326 0.331 | 0.253 0.295 | 0.264 0.302 | 0.259 0.325 | 0.256 0.299 | 0.263 0.300 | 0.332 0.361 | 0.249 0.289 | 0.288 0.309 | 0.249 0.290 | 0.265 0.302
720 | 0.331 0.348 | 0.389 0.372 | 0.335 0.350 | 0.342 0.357 | 0.392 0.384 | 0.334 0.338 | 0.337 0.350 | 0.370 0.386 | 0.421 0.414 | 0.362 0.360 | 0.337 0.349 | 0.356 0.362
Avg. 0.239 0278 0277 0294 0241 0.281 0.249 0.287 0.273 0313 | 0.242 0.282 | 0.244 0.281 | 0.324 0.356 | 0.262 0.293 | 0.261 0.290 | 0.240 0.280 0.252 0.290
96 | 0.133 0.227 | 0.144 0.240 | 0.133 0.230 | 0.135 0.230 | 0.139 0.243 | 0.138 0.237 | 0.131 0.226 | 0.137 0.230 | 0.136 0.227 | 0.135 0.231 | 0.136 0.240 | 0.182 0.287
192 0151 0.243 | 0.166 0.260 | 0.159 0.262 | 0.157 0.263 | 0.164 0.273 | 0.154 0251 | 0.155 0.244 0.154 0.249 | 0.156  0.255 | 0.196 0.303
336 | 0.163 0.260 | 0.175 0.272 | 0.174 0.270 | 0.176 0.275 | 0.179 0.284 | 0.167 0.265 | 0.166 0.264 . 0.169 0.266 | 0.170 0.273 | 0.204 0.308
720 | 0.202 0.288 | 0.212 0.301 | 0.195 0.286 | 0.219 0.306 | 0.223 0.303 | 0.205 0.297 | 0.213 0.311 | 0.218 0.291 | 0.206 0.295 | 0.193 0.288 | 0.203 0.300 | 0.229 0.328
Avg. 0.162 0255 0.174 0268 0.165 0262 0.172 0269 0.176 0276 | 0.166 0.263 | 0.166 0.261 | 0.170 0.258 | 0.166 0.257 | 0.163 0.258 | 0.166 0.267 0.203 0.307
96 |0.338 0.232 | 0.379 0.254 | 0.355 0.249 | 0.347 0.249 | 0.383 0.264 | 0.384 0.278 | 0.410 0.306 | 0.347 0.245 | 0.418 0.311 | 0.350 0.257 | 0.374 0.273 | 0.602 0.317
192 | 0.360 0.245 | 0.459 0.422 | 0.372 0.259 | 0.372 0.259 | 0.385 0.284 | 0.396 0.282 | 0.444 0.327 | 0.368 0.255 | 0.376 0.265 | 0.368 0.274 | 0.380 0.264 | 0.607 0.323

ETThl

‘Weather

Electricity

Traffic | 336 | 0374 0.249 | 0507 0402 | 0389 0267|0389 0271 | 0403 0284 | 0407 0286 | 0.468 0344 [ 0386 0264|0390 0275 0390 0272|0402 0288 | 0.633 0333
720 | 0.418 0.285 | 0.531 0.435 | 0.429 0.284 | 0.431 0.292 | 0.438 0.304 | 0.445 0.306 | 0.489 0.345 | 0429 0.288 | 0.431 0.291 | 0.437 0.298 | 0.433 0.292 | 0.647 0.343
Avg. 0.373 0.253 0469 0378 0386 0.265 0.385 0.268 0.402 0.284 | 0.408 0.288 | 0.453 0.331 | 0.382 0.263 | 0.404 0.285 | 0.386 0.275 | 0.397 0279 0.622 0.329
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Figure 8: Parameter sensitivity of o and 5 of the proposed method on the ETTh2, ETTml, and
ETTm?2 datasets.

D.4 GENERALITY

To evaluate the generality of TALON, we replace the default GPT-2 (124M) |Achiam et al.| (2023))
backbone with several representative decoder-only LLMs: Qwen-0.5B ), Deepseek-1.5B

(20244d), and LLaMA-7B [Touvron et al. (2023).

We adopt AutoTimes as the baseline for comparison, as it is the strongest baseline in Table[8] where
TALON achieves the smallest relative MSE reduction, making it a challenging reference point.

As shown in Table[T2] TALON consistently outperforms AutoTimes across all datasets and predic-
tion lengths, confirming that its design is broadly transferable and robust to the underlying language
model. Interestingly, forecasting performance does not monotonically scale with model size: smaller
models such as GPT-2 sometimes outperform larger ones like LLaMA-7B, suggesting that pretrain-
ing corpus, architectural choices, and tokenization strategies are critical factors beyond parameter
count. While a systematic study of LLM scale is left for future work, our results demonstrate that
TALON delivers consistent improvements across diverse backbones, highlighting its general appli-
cability.
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Table 10: Zero-shot forecasting result.

Model

TALON
(Ours)

LangTime
(2025)

AutoTimes
(2024d)

Timer_XL
(2025¢)

Metric

| MSE

MAE | MSE

MAE

| MSE

MAE | MSE

MAE

ETTh2

96
192
336
720

0.290
0.350
0.378
0.410

0.348
0.387
0.411
0.439

0.338
0.418
0.429
0.430

0.373
0.417
0.427
0.435

0.294
0.354
0.383
0.409

0352
0.383
0416
0.439

0.305
0.372
0.397
0.420

0.358
0.400
0.425
0.450

‘ Avg.

| 0.357

0.396

0.404

0.413

0.360

0.399

0.373

0.408

ETTml
ETThl

96
192
336
720

0.778
0.752
0.749
0.760

0.574
0.570
0.569
0.576

1.023
1.060
1.079
1.079

0.628
0.642
0.651
0.661

0.818
0.802
0.818
0.823

0.571
0.566
0.572
0.581

0.788
0.791
0.832
0.870

0.575
0.577
0.595
0.616

| 0.760

0.572

1.060

0.646

0.815

0.572

0.820

0.591

ETTm2

96
192
336
720

0.226
0.281
0.335
0.427

0.316
0.349
0.380
0.429

0.290
0.358
0.422
0.543

0.354
0.390
0.422
0.478

0.242
0.307
0.368
0.456

0.327
0.363
0.397
0.444

0.240
0.304
0.367
0.463

0.324
0.362
0.398
0.449

| 0317

0.368

0.403

0.411

0.343

0.383

0.343

0.383

ETThl

96
192
336
720

0.473
0.526

0.589
0.732

0469
0.507
0.547
0.621

0.541
0.742
1.019
1.405

0.495
0.579
0.675
0.820

0.523
0.619
0.783
1.039

0.492
0.553
0.636
0.752

0.443
0.524
0.597
0.766

0.454
0.513

0.554
0.645

Avg.

| 0.580

0.536

0.927

0.642

0.741

0.608

0.583

0.542

ETTml
ETTh2

96
192
336
720

0.703
0.739
0.791
0.854

0.538
0.564
0.594
0.630

1.052
0.996
0.956
0.952

0.608
0.605
0.605
0.624

1.250
1.055
0.972
0.991

0.662
0.634
0.639
0.687

0.782
0.831
0.864
0.931

0.578
0.610
0.636
0.676

| Avg.

| 0.772

0.582

0.989

0.611

1.067

0.655

0.852

0.625

ETTm2

96
192
336
720

0.217
0.274
0.330
0.423

0.305
0.341
0.375
0.428

0.249
0.310
0.359
0.455

0.328
0.363
0.393
0.449

0.231
0.290
0.348
0.443

0317
0.390
0.448

0.245
0.310
0.365
0.439

0.320
0.359
0.392
0437

Avg.

| 0311

0.362

0.343

0.383

0.328

0.377

0.340

0.377

ETThl

96
192

720

0.638
0.623
0.618
0.616

0.552

0.619
0.649
0.644
0.637

0.515
0.526
0.527
0.535

0.597
0.608
0.607
0.609

0.522
0.525
0.529
0.547

0.718

0.586

‘ Avg.

| 0.624

0.637

0.526

0.605

0.531

ETTh2
ETTml

96
192

720

0.327
0.388
0.416
0.443

0.368

0.407

0.350

0.396
0.427
0.444
0.465

| Avg.

| 0.393

0.433

ETTm2

96
192

720

0.187
0.247
0.300
0.383

0275
0.315
0.349
0.399

| Avg.

| 0.279

0.334

ETThl

96
192
336
720

0.524

0.546

‘ Avg.

ETTh2
ETTm2

ETTml

D.5 PARAMETER SENSITIVITY

Sensitivity to o and 3. As shown in Figure
parameters « and /3 on three additional datasets:

we further investigate the sensitivity of the hyper-
ETTh2, ETTm1, and ETTm2. Across all datasets,
our method exhibits strong robustness to a wide range of « and S values. The MSE variation
across the grid is minimal (mostly within 0.01), indicating stable performance regardless of exact
hyperparameter choices. Although slight differences exist in the optimal setting per dataset (e.g.,
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Table 11: Comparison between TALON and MoE-based methods. The best results are in bold, and
the second-best are underlined.

| TALON | FreqMoE | MoFE-time | TimeMoE |  TFPS
Models

|  uss) | (2025) | (2025d) | (2025) | @ (2024)
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.351 0.392 | 0.371 0.388 | 0.337 0.380 | 0.360 0.396 | 0.398 0.413
192 | 0.381 0.415 | 0.426 0.422 | 0.381 0.411 | 0.386 0.413 | 0.423 0.423
336 | 0.398 0.427 | 0.475 0.447 | 0.414 0.436 | 0.407 0.433 | 0.484 0.461
720 | 0.414 0.446 | 0.488 0.459 | 0.453 0.466 | 0.457 0.476 | 0.488 0.476

0.420 0.440 0429 0.396 0423 0402 0429 0.448 0.443

96 | 0.302 0.349 | 0.287 0.337 | 0.307 0.352 | 0.352 0.388 | 0.313 0.355
192 1 0.355 0.388 | 0.361 0.386 | 0.389 0.418 | 0.425 0.434 | 0.405 0.410
336 | 0.371 0.406 | 0.407 0.423 | 0.514 0.480 | 0.526 0.485 | 0.392 0.415
720 | 0.393 0.435 | 0.414 0.438 | 0.543 0.505 | 0.585 0.526 | 0.410 0.433

0.401 0.367 0.396 0.438 0439 0472 0458 0.380 0.403
96 | 0.278 0.339 | 0.314 0.356 | 0.294 0.352 | 0.319 0.373 | 0.327 0.367
192 | 0.324 0.367 | 0.356 0.380 | 0.333 0.381 | 0.359 0.401 | 0.374 0.395
336 | 0.358 0.388 | 0.385 0.404 | 0.400 0.433 | 0.404 0.433 | 0.401 0.408
720 | 0.418 0.424 | 0.446 0.445 | 0.536 0.514 | 0.545 0.501 | 0.479 0.456
0.380 0.375 0.396 0.391 0.420 0407 0427 0395 0.407

96 | 0.173 0.260 | 0.173 0.266 | 0.189 0.278 | 0.258 0.320 | 0.170 0.255
192 1 0.230 0.299 | 0.235 0.310 | 0.249 0.327 | 0.270 0.338 | 0.235 0.296
336 | 0.282 0.333 | 0.290 0.350 | 0.294 0.356 | 0.365 0.405 | 0.297 0.335
720 | 0.362 0.383 | 0.385 0.424 | 0.381 0.425 | 0.403 0.445 | 0.401 0.397

Avg. [ 0262 0319 0271 0338 0278 0347 0324 0377 0276 0.321

Avg.

=
@
®
=N

ETTh2

Avg.

=
W
]
L]

ETTml

Avg.

=
W
B
by

ETTm2

Table 12: Generality evaluation of TALON across different decoder-only LLM backbones on four
benchmark datasets. TALON consistently improves upon the strong baseline AutoTimes across all
settings, demonstrating robust transferability and model-agnostic behavior. The best results are in
bold, and the second-best are underlined.

Models | AutoTimes | GPT-2(124M) | Qwen-0.5B | Deepseek-1.5B | LLaMA-7B
Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.365 0.405 | 0.351 0.392 | 0.360 0.396 | 0.362 0.399 | 0.358 0.394

ETThI 192 | 0.396 0.423 | 0.381 0.415 | 0.387 0.414 | 0.390 0416 |0.382 0.418
336 | 0414 0.433 | 0.398 0427 | 0403 0.425 | 0403 0425 |0.393 0.421

720 | 0432 0.452 | 0414 0.446 | 0.410 0.440 | 0.419 0.443 | 0412 0441

Avg. ‘ 0.402 0.428 ‘ 0.386 0.420 ‘ 0.390 0.419 ‘ 0.393 0421 0386 0.419

96 | 0.286 0.348 | 0.302 0.349 | 0.286 0.348 | 0.283 0.347 | 0.282 0.346

ETTh2 192 | 0.371 0.408 | 0.355 0.388 | 0.346 0.389 | 0.340 0.386 | 0.350 0.392
336 | 0420 0.453 | 0.371 0.406 | 0.370 0.412 | 0.361 0.406 | 0.376 0.418

720 | 0.521 0.516 | 0.393 0.435 | 0.418 0.451 | 0.407 0.445 | 0.433 0.462

Avg. ‘ 0.400 0.431 ‘ 0.355 0.395 ‘ 0.355 0.400 ‘ 0.348 0396 0.360 0.405

96 | 0.297 0.350 | 0.278 0.339 | 0.289 0.345| 0.291 0.348 | 0.285 0.345

ETTml 192 | 0.344 0.377 | 0.324 0.367 | 0.334 0.373 | 0.329 0.371 | 0.333 0.373
M31336 10380 0.398 | 0.358 0.388 | 0.368 0.394 | 0.362 0.391 | 0.371 0.395
720 | 0433 0.431 | 0418 0.424 | 0.423 0.425 | 0.417 0.423 | 0.434 0431

Avg. ‘ 0.364 0.389 ‘ 0.345 0.380 ‘ 0.353 0.384 ‘ 0.350 0.383 0.356 0.386

96 | 0.184 0.265| 0.173 0.260 | 0.177 0.262 | 0.177 0.266 | 0.174 0.263

ETTm2 192 | 0.247 0.307 | 0.223  0.299 | 0.240 0.305 | 0.230 0.302 | 0.232 0.302
M2 1336|0298 0.341 | 0278 0.333 | 0.296 0342 | 0.283 0.335 | 0.283 0335
720 | 0.378 0.395 | 0.362 0.383 | 0.380 0.397 | 0.374 0.390 | 0.369 0.389

Avg. ‘ 0.277 0.327 ‘ 0.259 0.319 ‘ 0.273 0.327 ‘ 0266 0323 0.264 0.322

(e = 0.06,8 = 0.06) on ETTml), the overall insensitivity highlights that our method does not
depend on meticulous tuning, making it practical and easy to deploy in real-world scenarios.

Top-k Expert Selection. We conduct a sensitivity analysis on the top-k parameter, which controls
the number of activated experts during routing. As shown in Table[I3] both & = 2 and k = 3 achieve
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Table 13: Parameter sensitivity of k£ of TALON on the ETTh1, ETTh2, ETTm1, and ETTm?2 datsets.

| | k=1 | k=2 | k=3
| H | MSE MAE | MSE MAE | MSE MAE

96 | 0.358 0.397 | 0.360 0.397 | 0.351 0.392
192 | 0.389 0.419 | 0.391 0.418 | 0.381 0.415
336 | 0.409 0.433 | 0.409 0.431 | 0.398 0.427
720 | 0.433 0.455 | 0.429 0.449 | 0.414 0.446

Avg. ‘ 0.397 0.426 ‘ 0397 0.424 ‘ 0.386 0.420

96 | 0.282 0.346 | 0.302 0.349 | 0.293 0.352
1921 0.345 0.390 | 0.355 0.388 | 0.353 0.397
336 | 0.374 0.418 | 0.371 0.406 | 0.379 0.423
720 | 0.432 0.462 | 0.393 0.435 | 0.434 0.465

Avg. ‘ 0.358 0.404 ‘ 0.355 0.395 ‘ 0.365 0.409

96 | 0.282 0.342 | 0.278 0.339 | 0.278 0.340
1921 0.325 0.369 | 0.324 0.367 | 0.328 0.370
336 | 0.365 0.392 | 0.358 0.388 | 0.364 0.391
720 | 0.413 0.421 | 0.418 0.424 | 0.424 0425

Avg. ‘ 0.346 0.381 ‘ 0.345 0.380 ‘ 0.348 0.381

96 | 0.194 0.282 | 0.172 0.259 | 0.173 0.260
1921 0.262 0.326 | 0.230 0.299 | 0.223 0.299
336 | 0.333 0.369 | 0.283 0.334 | 0.278 0.333
720 | 0.438 0.429 | 0.361 0.385 | 0.362 0.383
Avg. ‘ 0.307 0.352 ‘ 0.261 0.319 ‘ 0.259 0.319

1 Count | 3 2 ]9 9 | 8 9

ETTh1

ETTh2

ETTml

ETTm2

competitive performance across most datasets and prediction lengths. Specifically, k£ = 2 yields the
most first-place results overall (9 for both MSE and MAE), while k£ = 3 also performs strongly (8 for
MSE and 9 for MAE). This suggests that leveraging multiple experts generally improves the model’s
ability to capture heterogeneous temporal patterns, compared to using a single expert (k = 1).
Moreover, the performance remains relatively stable across different k values, demonstrating the
robustness of the expert routing mechanism.

E SHOWCASES

To further illustrate the forecasting quality of TALON, we randomly select representative prediction
examples on three datasets: ETTh1, ETTm1, and Weather, each with a forecast horizon of 192 time
steps. We compare TALON against three strong baselines: Timer_XL [Liu et al.|(2025¢), AutoTimes
Liu et al|(2024d), and PatchTST [Nie et al| (2023). As shown in Figure [9) TALON consistently
generates predictions that better align with the ground truth, particularly in segments exhibiting
nonstationarity, local fluctuations, or abrupt structural shifts.

These improvements stem from TALON’s Heterogeneous Temporal Encoder, which employs a mix-
ture of diverse architectural primitives to accommodate varying levels of temporal complexity. This
design allows TALON to flexibly capture sharp transitions, smooth trends, and localized irregular-
ities, avoiding the modeling bias introduced by homogeneous structures. In contrast, methods like
PatchTST and AutoTimes often rely on fixed patch tokenization or prompt-based representations,
which may be less robust when faced with irregular periodicities or regime shifts.

Furthermore, TALON’s language-aligned temporal encoding leverages pretrained LLMs to extract
semantic representations from natural language descriptions of statistical characteristics. These
prompt embeddings serve as informative priors that enhance the model’s understanding of temporal
structure. By incorporating natural language priors, TALON gains a higher-level understanding of
variable dependencies and temporal structures, which is especially beneficial in noisy or nonstation-
ary environments where conventional models may overfit or underfit critical dynamics.

Overall, these qualitative results validate TALON’s design philosophy of semantic-informed,
pattern-aware forecasting, demonstrating its strong generalization ability across diverse datasets and
dynamic regimes.
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Figure 9: Forecasting examples across ETTh1l, ETTm1, and Weather datasets (672-step input, 192-
step prediction).

F BORADER IMPACT

F.1 IMPACT ON REAL-WORLD APPLICATIONS

TALON’s ability to align statistical time series features with natural language representations opens
new avenues for integrating symbolic and numeric modalities in forecasting systems. This design
makes it particularly suitable for real-world domains where both structured signals and contextual
information (e.g., textual reports, user logs, or event annotations) coexist. For instance, in energy
demand forecasting, TALON can incorporate external textual sources such as weather bulletins or
maintenance notices, improving predictive accuracy during anomalous events. Similarly, in finance
or supply chain domains, TALON offers a scalable and adaptable solution to model nonstationary
dynamics without retraining for every configuration, thereby reducing operational cost and latency.

F.2 IMPACT ON FUTURE RESEARCH

TALON bridges the gap between natural language processing and time series forecasting, contribut-
ing to the emerging paradigm of language-aligned modeling for structured signals. It introduces
a flexible framework where natural language is not merely used as input, but also as a medium to
encode domain knowledge in a human-interpretable way. This may inspire future work on hybrid
modeling paradigms that combine statistical priors, expert annotations, and language reasoning for
enhanced interpretability and adaptability. Additionally, the modular design of TALON, separat-
ing prompt encoding, temporal modeling, and autoregressive decoding, facilitates future integration
with other modalities (e.g., vision or graphs), or with reinforcement learning for decision-aware
forecasting.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used in preparing this paper. Their role was limited to as-
sisting with language polishing, such as improving grammar, refining phrasing, and enhancing read-
ability of the manuscript. LLMs were not used for research ideation, methodological design, data
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analysis, or experimental validation. All scientific content, ideas, and results are solely the work of
the authors.
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