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A Reproducibility of Experiments

A.1 Brief Introduction to PyGCL

PyGCL is a PyTorch-based battery-included toolkit for implementing Graph Contrastive Learning
(GCL) models. We use it extensively in our benchmarking study to implement and execute all
experiments. PyGCL provide encapsulated implementations of four main components of GCL
algorithms, corresponding to our proposed design dimensions in this work:

• Graph augmentation transforms input graphs into congruent graph views.

• Contrasting architectures and modes generate positive and negative pairs according to node and
graph embeddings.

• Contrastive objectives compute the likelihood scores for positive and negative pairs.

• Negative mining strategies improve the negative sample set by considering the relative similarity
(i.e. hardness) of negative samples.

PyGCL also implements utility functions for model training, performance evaluation, and experiment
management.

Table S1: Graph augmentation schemes and their corresponding classes in PyGCL.

Augmentation Class name

Edge Adding (EA) EdgeAdding
Edge Removing (ER) EdgeRemoving

Node Feature Masking (FM) FeatureMasking
Node Feature Dropout (FD) FeatureDropout

Edge Attribute Masking (EAM) EdgeAttrMasking
Edge Attribute Dropout (EAD) EdgeAttrDropout
Personalized PageRank (PPR) PPRDiffusion

Markov Diffusion Kernel (MDK) MarkovDiffusion
Node Dropping (ND) NodeDropping

Subgraphs induced by Random Walks (RWS) RWSampling

∗To whom correspondence should be addressed.
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A.1.1 Package Reference

Graph augmentation. In GCL.augmentor, PyGCL provides the Augmentor base class, which
offers a unified interface for graph augmentation functions. A list of graph augmentation functions
and their corresponding class names in PyGCL in given in Table S1. Due to complexity issues, Edge
Flipping (EF) is implemented as a composition of Edge Adding (EA) and Edge Removing (ER).

PyGCL supports composing arbitrary numbers of augmentation functions together. The Compose
class can be used for jointly using a list of augmentation functions consecutively. Additionally, the
RandomChoice class can be used to randomly draw a few augmentation functions each time.

Contrasting architectures and modes. Existing GCL architectures could be grouped into two lines:
negative-sample-based methods and negative-sample-free ones.

• Negative-sample-based approaches can either have one single branch or two branches of graph
encoders. In single-branch contrasting, we only need to construct one graph view and perform
contrastive learning within this view. In dual-branch models, we generate two graph views and
perform contrastive learning within and across views.

• Negative-sample-free approaches eschew the need of explicit negative samples. Currently, PyGCL
supports the bootstrap-style contrastive learning as well contrastive learning by variance reduction
within embeddings (such as Barlow Twins and VICReg).

Internally, PyGCL calls DefaultSampler classes in GCL.model that receive embeddings and
produce positive/negative masks. PyGCL implements three contrasting modes: (a) Local-Local (L–
L), (b) Global-Global (G–G), and (c) Global-Local (G–L) modes. Methods of L–L and G–G modes
contrast embeddings at the same scale and the latter G–L one performs cross-scale contrasting. All
supported contrasting architectures and modes and their implementation in PyGCL are summarized
in Tables S2 and S3.

Contrastive objectives. In GCL.loss, PyGCL provides implementation for the following contrastive
objectives: InfoNCE, Jensen-Shannon Divergence (JSD), Triplet Margin (TM), Bootstrapping Latent
(BL), Barlow Twins (BT), and VICReg, as summarized in Table S4. All these objectives are able to
contrast any arbitrary positive and negative pairs, except for Barlow Twins and VICReg losses that
perform contrastive learning within embeddings.

Table S2: Graph contrasting architectures and its corresponding classes in PyGCL.

Contrasting architectures Supported contrastive modes Need negative samples Class name

Single-branch contrasting G–L only ✓ SingleBranchContrast
Dual-branch contrasting L–L, G–G, and G–L ✓ DualBranchContrast

Bootstrap contrasting L–L, G–G, and G–L ✗ BootstrapContrast
Within-embedding contrasting L–L and G–G ✗ WithinEmbedContrast

Table S3: Graph contrasting modes and their corresponding classes in PyGCL.

Contrasting modes Class name

Same-scale contrasting (L–L and G–G) SameScaleSampler
Cross-scale contrasting (G–L) CrossScaleSampler

Table S4: Contrastive objectives and their corresponding classes in PyGCL.

Augmentation Class name

InfoNCE loss InfoNCELoss
Jensen-Shannon Divergence (JSD) loss JSDLoss

Triplet Margin (TM) loss TripletLoss
Bootstrapping Latent (BL) loss BootstrapLoss

Barlow Twins (BT) loss BTLoss
VICReg loss VICRegLoss
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Table S5: Negative mining strategies and its corresponding implementation in PyGCL.

Negative mining strategy Class name

Hard negative mixing GCL.models.HardMixing
Conditional negative sampling GCL.models.Ring
Debiased contrastive objective GCL.losses.DebiasedInfoNCE, GCL.losses.DebiasedJSD

Hardness-biased negative sampling GCL.losses.HardnessInfoNCE, GCL.losses.HardnessJSD

Table S6: Evaluators and their corresponding implementation in PyGCL.

Evaluator Class name

Trainable Logistic regression LRTrainableEvaluator
Logistic regression based on scikit-learn LRSklearnEvaluator

Support vector machine based on scikit-learn SVMEvaluator
Random forest based on scikit-learn RFEvaluator

Negative mining strategies. PyGCL implements several negative sampling strategies: Hard Negative
Mixing (HNM), Conditional Negative Sampling (CNS), Debiased Contrastive Learning (DCL)
objective, and Hardness-Biased Negative Mining (HBNM), as summarized in Table S5.

The former two models serve as an additional sampling step similar to existing Sampler instances
and can be used in conjunction with any objectives. The last two objectives are only compatible with
the InfoNCE and JSD losses.

Utilities for evaluating embeddings. PyGCL further provides a variety of evaluator functions
to evaluate the embedding quality in GCL.eval. Specifically, we provide two kinds of evaluator
base classes: BaseTrainableEvaluator for trainable (e.g., logistic regression) evaluation and
BaseSKLearnEvaluator for evaluation based on Scikit-learn [1]. These two base classes share
almost identical call signatures. After feeding the evaluator with embeddings and ground-truths,
evaluation results with metrics as keys and mean and standard deviation as values will be returned.
Users can define their own evaluation by inheriting one of the two base classes. All available
evaluation classes are summarized as in Table S6.

In addition, we provide two functions to generate dataset splits: random_split (for generating split
indices for training, test, and validation sets) and from_PyG_split (for converting from predefined
PyTorch-Geometric [2] split indices of training, test, and validation sets).

A.1.2 Example Usage

We showcase an example of implementing existing work using PyGCL: we can implement GRACE
[3] with very few lines of code. The code snippet is shown as in Listing S1.

Listing S1: Implementing GRACE [3] with PyGCL.
1 import GCL.loss as L
2 import GCL.augmentor as A
3 from GCL.model import DualBranchContrast
4 from GCL.eval import random_split, LRTrainableEvaluator
5

6 # Graph augmentator
7 aug1 = A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)])
8 aug2 = A.Compose([A.EdgeRemoving(pe=0.3), A.FeatureMasking(pf=0.3)])
9

10 # Graph encoder
11 gconv = GConv(input_dim=dataset.num_features, hidden_dim=32,

activation=torch.nn.ReLU, num_layers=2)
12 encoder_model = Encoder(encoder=gconv, augmentor=(aug1, aug2),

hidden_dim=32, proj_dim=32)
13
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14 # Contrasting model
15 contrast_model = DualBranchContrast(loss=L.InfoNCE(tau=0.2),

mode=’L2L’, intraview_negs=True)
16 z, z1, z2 = contrast_model(data.x, data.edge_index, data.edge_attr)
17 h1, h2 = [contrast_model.project(x) for x in [z1, z2]]
18 loss = contrast_model(h1, h2)
19

20 # Evaluator
21 split = random_split(num_samples=z.size(0), num_splits=10,

train_ratio=0.1, test_ratio=0.8)
22 evaluator = LRTrainableEvaluator(
23 input_dim=z.size(1), num_classes=data.y.max().item() + 1,
24 metrics={’micro_f1’: partial(f1_score, average=’micro’), ’macro_f1’:

partial(f1_score, average=’macro’)},
25 split=split, device=data.x.device, test_metric=’micro_f1’)
26 test_result = evaluator(z, data.y)

A.2 Instructions for Reproducing Experimental Results

We list instructions for reproducing the experiments in this paper. We provide trial scripts in the
experiment that can run GCL tasks on different configurations. These scripts are hosted along the
PyGCL project, yet on a different repository. You can access them at https://github.com/Gra
phCL/BenchmarkingGCL.

• Experiments investigating the impact of data augmentation (Table 3, Figures 3 and 4) can be repro-
duced by executing trial.py, passing the configuration file to the --config argument and change
the data augmentation schemes with the --augmentor1:scheme and --augmentor2:scheme
arguments. For example, the result on the Wiki dataset with Edge Removing (ER) augmen-
tation can be reproduced by executing python trial.py --config params/wikics.json
--augmentor1:scheme ER --augmentor2:scheme ER.

• Sensitivity analysis with varied topology augmentation probabilities (Figure 2) can be reproduced
using trial.py similarly by specifying the base configuration and modifying data augmentation
schemes via command-line arguments. The probability of a specific augmentation can be modi-
fied through the --augmentor1:ER:prob and --augmentor2:ER:prob argument, taking Edge
Removing (ER) as an example.

• Experiments on different contrastive objectives and contrasting modes can be reproduced using
the trial.py and BGRL_trial.py scripts with arguments specified. To specify objectives and
modes, we can change the --obj:loss and --mode arguments respectively. Specially, experiments
involving the Bootstrapping Latent (BL) architecture should use the dedicated BGRL_trial.py
script, while Barlow Twins (BT) and VICReg can be run with trial.py by passing bt and vicreg
to the --obj:loss argument respectively.

• Sensitivity analysis of the temperature τ in InfoNCE objective (Figure 5) can be reproduced by
running trial.py with different τ values filling in the --obj:infonce:tau argument.

• Performance of various negative mining strategies (Figure 6) can be reproduced by running
trial.py and specifying the negative mining strategy in --obj:loss.

• Ablation studies on batch normalization in Bootstrapping Latent objective (Table S10) can be
reproduced with the BGRL_trial.py script. The type of the encoder, projector and predictor
normalizations can be specified in the --obj:bl:encoder_norm, --obj:bl:projector_norm,
and --obj:bl:predictor_norm arguments.

B Implementation Details and Experimental Protocols

Implementation details. Unlike GRACE [3], for all objectives we include only inter-view negative
samples. In every experiment, we use grid search to find the optimal embedding dimension among
[64, 128, 256, 512], learning rate among [0.0001, 0.001, 0.01, 0.1], the number of GNN layers
among [2, 3, 4], and weight decay parameter among [10−5, 10−6, 10−7, 5× 10−8, 10−8]. To ensure
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Table S7: Summary of large-scale datasets.

Dataset Domain Task #Graphs Avg. #nodes Avg. #edges #Features Metric

ogbg-molhiv
Molecules

Binary graph
classification 41,127 25.5 27.5 9 (nodes)

3 (edges)

ROC-AUC

PCQM4M-10K Graph
regression 10,000 14.1 29.1 MAE

convincing experiments and observations, we first perform an exhaustive search over the entire design
space. Then, we select and report representative results to reveal common, useful practices. Then,
with the aim of conducting controlled experiments, we fix as many variables, e.g., the GNN encoder
architecture, embedding dimensions, the number of epochs, and activation functions, as possible
for every dataset. In particular, when examining contrastive objectives and contrasting modes, we
slightly fine-tune the hyperparameter of learning rate and objective-specific parameters (e.g., τ in
InfoNCE), since different objective functions give contrastive scores in different magnitudes.

The temperature τ in the InfoNCE loss is chosen from 0.1 to 0.9. The batch size for graph datasets is
chosen between [32, 64, 128, 256, 512]. We also apply the early stopping strategy with a window
size of 50 and the model with the lowest loss will be used in evaluation. All experiments are executed
on GeForce RTX 3090 GPUs with 24GB memory. All models are implemented with PyTorch 1.9
[4] and PyTorch Geometric 1.7.0 [2]. All datasets can be accessed at PyTorch-Geometric [2] and
TUDataset [5].

Evaluation protocols. We mainly evaluate models with different design considerations on two
benchmark tasks: (1) unsupervised node classification and (2) unsupervised graph classification.
For all experiments, we follow the linear evaluation scheme used in Veličković et al. [6], where the
models are first trained in an unsupervised manner, and then the frozen embeddings are fed into a
ℓ2-regularized logistic regression classifier to fit the labeled data. Following previous work, we run
the model with ten random splits (10% for training, 10% for validation, and the remaining 80% data
for testing) and report the averaged accuracies (%) as well as standard deviation scores.

C Additional Experiments

C.1 Large-Scale Evaluation

Besides standard classification tasks, we further evaluate GCL on large-scale datasets from the Open
Graph Benchmarks [7, 8].

Summary of datasets, tasks, and metrics. We use two additional datasets ogbg-molhiv for binary
graph classification and a downsampled version of PCQM4M-LSC for graph regression. In the two
datasets, each graph represents a molecule, where nodes and edges correspond to atoms and chemical
bonds, respectively. Details of statistics of the two datasets are summarized in Table S7.

• For ogbg-molhiv, the task is to predict a certain molecular property, measured in terms of Receiver
Operating Characteristic Area Under Curve (ROC-AUC) scores. We follow the official scaffold
splitting where structurally different molecules are separated into different subsets.

• For PCQM4M-LSC, we randomly subsample 10K graphs according to PubChem ID (CID) and
denote the resulting dataset as PCQM4M-10K. The regression task is to predict HOMO-LUMO
energy gap in electronvolt (eV) given 2D molecular graphs. We report the model performance in
terms of Mean Absolute Error (MAE).

Since there are edge features associated with each graph, we use the GINE model proposed in Hu
et al. [9] as the encoder. For edge features, we examine two extra augmentation schemes Edge
Attribute Masking (EAM) and Edge Attribute Dropout (EAD), similar to node-level FM and FD
(denoted as NFM and NFD in the performance table). All other evaluation protocols remain the same
as previously stated.

Experiments on different augmentation schemes. In Table S8, we report the performance on the
two large-scale datasets with different data augmentation schemes while keeping the contrasting
mode to global-global and the objective to InfoNCE. We have findings consistent with those in
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Table S8: Performance (ogbg-molhiv in ROC-AUC and PCQM4M-10K in MAE) with different
augmentation schemes.

Augmentation ogbg-molhiv PCQM4M-10K

None 55.86±2.02 0.604142±0.046415

ER 63.21±2.69 0.545553±0.011173
ND 65.18±2.53 0.528665±0.011708

RWS 63.36±3.75 0.545109±0.007593

NFD 57.82±1.67 0.573832±0.012382
NFM 56.79±1.86 0.568972±0.007222

EAM 56.88±3.90 0.573943±0.008932
EAD 56.78±2.38 0.579321±0.018473

Table S9: Performance (ogbg-molhiv in ROC-AUC and PCQM4M-10K in MAE) with different
contrasting modes and contrastive objectives. The best performing results for objectives (row-wise)
and contrasting modes (column-wise) are highlighted in boldface and underline respectively.

Obj.
ogbg-molhiv PCQM4M-10K

L–L G–L G–G L–L G–L G–G

InfoNCE 65.22±2.92 62.08±1.87 64.12±2.07 0.537680±0.023940 0.568529±0.012488 0.532407±0.015661
JSD 62.02±2.98 62.98±2.42 61.51±2.01 0.587797±0.017347 0.578025±0.022175 0.565639±0.030184
TM 60.56±3.12 60.12±2.32 60.46±0.65 0.532207±0.026155 0.595626±0.074961 0.574360±0.011049

Observation 1 that (1) both ER and ND have lead to competitive performance consistently on the two
datasets; (2) RWS is inferior to the other two topology augmentation schemes due to the limited size
of graphs, as pointed out in Observation 1; (3) using feature augmentation (NFM, NFD, EAM, and
EAD) alone cannot achieve satisfying performance. We suspect that for these two molecule datasets,
structural information plays a more important role in GCL.

Experiments on contrasting modes and contrastive objectives. Then, we examine different con-
trasting modes and contrastive objectives, where the results are shown in Table S9. Data augmentation
schemes are set to the combination of ER and NFM in all variants. From the table, we observe trends
consistent to those in Table 4b that the global-global mode yields competitive performance on graph
tasks and InfoNCE outperforms other objectives under most settings.

C.2 Ablation Studies on Batch Normalization of the Bootstrapping Latent Loss

Previous work [10] empirically demonstrates that Batch Normalization (BN) compensates for im-
proper initialization for contrastive learning models, instead of introducing implicit negative samples.
To further demonstrate this phenomenon in GCL, we perform ablation studies by using BN or not in
three critical components in the BL loss, i.e. the GNN encoder, the projector, and the predictor, on
the node classification task. The results in Table S10 show that using BN in the GNN encoder solely
is almost sufficient to obtain promising performance.

Table S10: Ablation studies on batch normalization of the bootstrapping latent loss. ✓ denotes having
an extra BN layer in corresponding component.

Encoder Projector Predictor Wiki CS Physics Computer

✓ ✓ ✓ 80.61±0.04 93.29±0.07 95.31±0.01 89.81±0.07
✓ ✓ ✗ 79.93±0.06 93.08±0.05 95.24±0.01 88.64±0.04
✓ ✗ ✓ 80.01±0.03 92.93±0.10 95.00±0.04 87.42±0.15
✓ ✗ ✗ 79.54±0.08 92.87±0.04 95.11±0.08 87.97±0.20
✗ ✓ ✓ 79.42±0.09 93.53±0.03 95.23±0.05 87.45±0.11
✗ ✓ ✗ 79.46±0.03 92.82±0.06 95.15±0.02 88.32±0.08
✗ ✗ ✓ 79.96±0.04 78.32±0.69 85.91±3.32 57.80±0.33
✗ ✗ ✗ 78.73±0.20 74.87±0.18 58.50±0.31 62.88±0.08
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Figure S1: A histogram of negatives and their semantic similarity scores with an anchor node from
the Wiki dataset. With the similarity to the anchor node increasing, there are more positive samples
(i.e. false negatives), leading to wrong selection of hard negatives.

D Discussions on Negative Mining Strategies for GCL

The studied negative mining schemes, originally designed for grid data, measures the relative hardness
of negative pairs using dot-product of embeddings. Our observation in Section 3.3 is that adopting
these hard negative mining schemes naïvely for graph-structured data may end up selecting hard but
false negative samples, possibly due to the smoothing nature of GNNs.

To see this clearly, in Figure S1, we present a histogram of negatives and their semantic similarity
scores with a randomly selected anchor node from the Wiki dataset. It is evident from the figure that
with the similarity increasing, there are more positive samples (i.e. false negatives) as shown in blue,
possibly leading to wrong selection of hard negatives. Furthermore, at the beginning of training, node
embeddings suffer from poor quality, which may be another obstacle of selecting true hard negative
samples. Therefore, by selecting hard negative samples merely according to similarity measure of
embeddings, these hard negatives are potentially positive samples, which produces adverse learning
signals to the contrastive objective.

E Background and Related Work

Recently, Self-Supervised Learning (SSL) has shown its great capability in alleviating the label
scarcity problem when applying machine learning models. As a subfield of SSL, Contrastive Learning
(CL) has attained increasing popularity due to its simplicity and promising empirical performance. In
essence, CL aims to learn discriminative representations by repulsing negative pairs and attracting
positive pairs. Initially proposed for learning visual representations, visual CL work usually generates
multiple views of the input images using data augmentation [11–14] at first. Under this multiview
setting, congruent samples corresponding to one specific image in these views are usually considered
as positive samples and other samples within the same batch [15, 16] or in an extra memory banks
[17, 18] are used as negatives.

Graph Contrastive Learning (GCL) adapts the idea of CL to the graph domain. However, due to
the complex, irregular structure of graph data, how to design strategies for constructing positive
and negative samples for GCL is more challenging than CL for visual data or natural language data.
Prior GCL work proposes data augmentation techniques for graph-structured data, explores different
contrasting modes to build contrastive pairs, and examines various contrastive objectives that score
positive and negative pairs. Regarding graph augmentation, many previous studies propose data
augmentation techniques for general graph-structured data [19–21]. For GCL, You et al. [22] study
four different data augmentation including node dropping, edge perturbation, subgraph sampling, and
feature masking; MVGRL [23] employs graph diffusion to generate graph views with more global
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information; GCA [24] proposes adaptive augmentation techniques to further consider important
topology and attribute information. Many other methods explore various contrasting modes using
different parts of a graph. For example, GRACE [3] contrasts node-node pairs, GraphCL [22]
considers graph-graph pairs, while DGI [25], InfoGraph [26], and MVGRL [23] constructs graph-
node contrasting pairs. Although there has been several survey papers on self-supervised graph
representation learning [27–29], to the best of our knowledge, none of existing work provides rigorous
empirical evidence on the impact of each component involved in GCL.

F Details of Design Dimensions

F.1 Data Augmentation

F.1.1 Topology Augmentation

Topology augmentation perturbs the structural space of the graph by modifying its adjacency matrix
A. In this work, we consider the following types of topology augmentation:

• Edge perturbation randomly adds and/or removes a portion of edges in the original graph.
Formally, we sample a random masking matrix R̃ ∈ {0, 1}N×N , where each entry is drawn from a
Bernoulli distribution R̃ij ∼ Bern(pr). Here pr is the probability for adding/removing an edge.
The resulting adjacency matrix can be computed as

Ã = A⊙ R̃, (S1)

where ⊙ is an element-wise operator. In this work, we consider three variants of edge perturbation,
including Edge Removing (ER), Edge Adding (EA), and Edge Flipping (EF), corresponding to
⊙ being instantiated as add, subtract, and exclusive or operations, respectively.

• Node perturbation considers topology transformation in a node-wise manner. Because of the
transductive nature of most GNN models, we mainly consider Node Dropping (ND) in this
category. Similarly to ER, we assign each node with a probability pd being dropped. ND is
equivalent to masking out all adjacent edges to the dropped node in the adjacency matrix.

• Subgraph sampling modifies the graph structure at the subgraph level. In this work, we are
primarily concerned with Subgraphs induced by Random Walks (RWS). Starting from a node,
we sample a random walk that has a probability pij to travel from node vi to vj and a probability
pe to return to the start node [30]. Then, nodes appearing in this walk sequence are selected to
construct a subgraph.

• Diffusion enriches the structure with more global information by adding new edges and changing
edge weights. The resulting adjacency matrix takes a general form as

Ã =

∞∑
k=0

ΘkT
k, (S2)

where Θk is the weighting coefficient controlling the amount of information at order k with∑∞
k=0 Θk = 1 and T is a generalized transition matrix computed from A. We point out that the

diffusion operator usually converts the original graph into a dense one, bringing heavy computa-
tion to graph convolutions. Therefore, in this paper, to ensure sparsity, we consider two sparse
diffusion transformations: Personalized PageRank (PPR) [31] followed by hard thresholding as
sparsification [32] and Markov Diffusion Kernels (MDK) [33, 34].

F.1.2 Feature Augmentation

Feature augmentation modifies to the attribute matrix X . In this work, we concern the following two
types of feature transformation functions.

• Feature Masking (FM) randomly masks a fraction of dimensions with zeros in node features:

X̃ = [x1 ◦ m̃; x2 ◦ m̃; · · · ; xN ◦ m̃]⊤, (S3)

where ◦ is Hadamard product and m ∈ {0, 1}F is a random vector with each entry drawn from a
Bernoulli distribution with a probability (1− pm).
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• Instead of masking node entries in a column-wise manner, we can also apply element-wise dropout
[35] to the node feature matrix. In this Feature Dropout (FD) scheme, each entry has a probability
pf of being randomly masked with zero.

F.2 Contrasting Modes

For an anchor instance, contrasting modes determine the positive and negative sets at different
granularities of the graph. In mainstream work, three contrasting modes are widely employed.

• Local-local CL targets at contrasting between node-level representations in the two views. For a
node embedding vi being the anchor, the positive sample is its congruent counterpart in another
view ui; embeddings other than ui are then naturally selected as negatives.

• Global-local CL enforces the compatibility between node- and graph-level embeddings. Specif-
ically, for every global embedding s being the anchor instance, its the positive sample is all its
node embedding vi within the graph. The global-local scheme shall be considered as a proxy for
local-local CL, provided that the readout function r is expressive enough [25, 36]. Note that when
only one graph is provided, we need an explicit corruption function (e.g., random shuffling) to
construct negative samples from original node embeddings [23, 25].

• Global-global CL further achieves consistency between the graph embeddings of the two aug-
mented views from the same graph. For a graph embedding s1, the positive sample is the embedding
s2 of the other augmented view. In this case, other graph embeddings in the batch are considered
as negative samples. This scheme can be applied to datasets with multiple graphs.

F.3 Contrastive Objectives

Contrastive objectives are used to train the encoder to maximize the agreement between positive
samples and the discrepancy between negatives. We consider the following objective functions in this
work.

• Information Noice Contrastive Estimation (InfoNCE) [37, 38] gives a lower bound of Mutual
Information (MI) up to a constant, defined as

JInfoNCE(vi) = − 1

P

∑
pj∈P(vi)

log
eθ(vi,pj)/τ

eθ(vi,pj)/τ +
∑

qj∈Q(vi)
eθ(vi,qj)/τ

. (S4)

Here θ(·, ·) is a critic function measuring the similarity between two embeddings. Most work
implements it with an additional projection head on embeddings followed by simple cosine
similarity, i.e.

θ(u,v) =
g(u)⊤g(v)

∥g(u)∥∥g(v)∥ ,

where g(·) is a multilayer perceptron.

• Jensen-Shannon Divergence (JSD) computes the JS-divergence between the joint distribution
and the product of marginals:

JJSD(vi) =
1

P

∑
pj∈P(vi)

log d(vi,pj) +
1

Q

∑
qj∈Q(vi)

log(1− d(vi, qj)), (S5)

where d(·, ·) is a discriminator function, usually computing the inner product of node representations
with a sigmoid activation:

d(u,v) = σ(g(u)⊤g(v)).

We kindly note that Hjelm et al. [39] employ a softplus version of the JS divergence:

JSP-JSD(vi) = − 1

P

∑
pj∈P(vi)

sp(−d(vi,pj))−
1

Q

∑
qj∈Q(vi)

sp(d(vi, qj)), (S6)

where sp(x) = log(1+ ex). We empirically find that SP-JSD performs similarly to JSD. Therefore,
we stick to SP-JSD in all experiments.
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• Triplet Margin loss (TM) directly enforces the relative distance between positive and negative
pairs:

JTM(vi) = max
{ 1

P

∑
pj∈P(vi)

∥vi − pj∥ −
1

Q

∑
qj∈Q(vi)

∥vi − qj∥+ ϵ, 0
}
, (S7)

where ϵ is the margin constant. TM is widely studied in metric learning literature [40].

Conceptually, these objective functions are related to the InfoMax principle [41], which aims to
maximize the MI between representations of the same node in the two views. To be specific,
InfoNCE and JSD are proved to be lower bounds of MI [42–44]; TM is also known to increase MI
between positive representations but their relationship between MI maximization is not theoretically
guaranteed. We further note that the InfoMax interpretation of these objectives may not be consistent
with its behavior in practice [45] and many recent studies provide theoretical understanding behind
their success [46, 47].

In addition, we explore the following three contrastive objectives that rely on no explicit construction
of negative samples:

• Bootstrapping Latent loss (BL) simply minimizes cosine similarity consistency between positive
node embeddings without explicit negative samples [10, 48–50]:

JBL(vi) = − q(vi)
⊤v′

i

∥q(vi)∥∥v′
i∥
. (S8)

Here vi is the embedding from an online encoder on vi while v′
i is the embedding obtained from

an offline encoder on P (vi), and q(·) is a predictor attempting to predict v′
i from vi. We follow

previous work [49] that symmetrize the architecture by also employing the online encoder on P (vi)
and predicts an offline representation on vi.
Note that it is easy to see that directly optimizing Eq. (S8) will result in a trivial solution that
q(vi) = v′

i. To avoid model collapsing, additional requirements are imposed such as asymmetric
dual encoders, updating the offline encoder with exponential moving average [48], and batch
normalization [51].

• Barlow Twins loss (BT) proposes to encourages similar representations between augmented views
of a sample, while minimizing the redundancy within the latent representation vector [52–54]:

JBT =
∑
i

(1−Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij , (S9)

where C is the correlation matrix cross representations resulting from two augmented views and λ
is a trade-off hyperparameter controlling the on- and off-diagonal terms.

• VICReg loss further combines variance and covariance regularization terms with the Barlow Twins
loss [55]:

JVICReg = λs(V ,U) + µ(v(U) + v(V )) + γ(c(U) + c(V )), (S10)

where s(·, ·) measures mean-squared Euclidean distance between each pair of node representations,
v(·) is a hinge loss on the standard deviation of projections along the batch dimension, and c(·)
defines a covariance term similar to BT. λ, µ, and γ control the importance of each term. Compared
to the BT loss, VICReg is shown to be insensitive to any normalization tricks and much stabler
than BT.

The latter BT and VICReg losses theoretically relate to the information bottleneck principle [53, 54],
which learns representations being invariant to data augmentation while retaining informative about
the sample itself [56, 57].

F.4 Negative Mining Strategies

Notwithstanding subtle differences in prior arts, existing work presumes embeddings of nodes or
graphs other than the anchor instance to be dissimilar to the anchor and thus considers them as
negatives. Hence it is natural to see that large batch/sampling sizes are needed for effective CL
[16, 17], since more negatives usually introduce more informative training signals.
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In order to enrich the learning process with informative negative samples, many visual CL methods
[58–63] advocate the explicit use of negative mining in the embedding space. Some methods develop
debasing terms to select truly negative samples so as to avoid contrasting same-label instances; some
other propose to upweight hard negative samples (points that are difficult to distinguish from an
anchor) and remove easy ones that are less informative to improve the discriminative power of the
GCL model. In our benchmarking study, we consider the following four negative mining techniques:

• Debiased Contrastive Learning (DCL) [60] develops a debiased InfoNCE objective to correct
for the sampling of same-label data points (false negatives), motivated by the observation that
sampling negative examples from truly different labels improves performance. Specifically, due to
unavailability of ground-truth labels, DCL decomposes the data distribution p(x) to positive and
negative distributions and estimates the negative p(x−) from the positive distribution p(x+) with
an class prior τ+, which essentially reweights positive and negative terms in the denominator of
InfoNCE. In our experiments, we set τ+ = 0.1 following its original implementation.

• Hardness-Biased Negative Mining (HBNM) [62] improves DCL by further introducing an
exponential distribution q with a weighting hyperparameter (to denote the hardness level) β so that
it allows the model to concentrate the distribution of negative samples around those having high
similarity with the anchor. DCL could be regarded as a special case of HBNM when β = 0.

• Hard Negative Mixing (HNM) proposes to upweight hard negative samples by mixing up other
hard samples [61, 64, 65]. Here we first select 2S hardest samples of the top-K similar to the
anchor sample, denoted as {ri}2Si=1. Thereafter, we synthesize S samples for each view. Taking the
first view as an example, its synthesized hard negative samples are computed by

ṽi = αivi + (1− αi)ri+s, (S11)

where αi is sampled from a Beta distribution αi ∼ Beta(1, 1).

• Conditional Negative Sampling (CNS) [63] proposes a ring-like negative sampling strategy to
choose semi-hard negatives (that are not so hard and not so easy to an anchor sample) to yield
strong representations. To be specific, CNS defines a lower and upper percentile l and u of pairwise
distances to construct a support negative example set SB . Then, CNS constructs a conditional
distribution for negative examples based on SB such that negative samples are not too easy nor too
hard for the anchor sample.

It should be noted that the above negative mining strategies, originally designed for grid data, all
measure the relative similarity of positive/negative pairs using dot-product of embeddings.
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