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1.	Introduction	
The	 catalytic	 conversion	 of	 CO₂	 into	 valuable	

chemicals	 is	 one	 of	 the	 major	 current	 directions	 in	
sustainable	 chemistry.	 However,	 the	 inherent	
chemical	 stability	 of	 CO₂	 and	 the	 complexity	 of	 the	
associated	 catalytic	 reaction	 networks	 present	
significant	challenges.	These	networks	involve	a	vast	
number	 of	 intermediates	 and	 competing	 reaction	
pathways,	 complicating	 both	 mechanistic	
understanding	 and	 catalyst	 design.1,2	 Traditional	
computational	 approaches,	while	 providing	 valuable	
insight,	 are	 often	 constrained	 by	 their	 inability	 to	
systematically	 explore	 the	 full	 reaction	 space.	 The	
need	for	a	framework	capable	of	handling	this	reaction	
pathway	 diversity	 has	 driven	 the	 integration	 of	
machine	learning	into	reaction	network	modeling.3	
ML	 models,	 trained	 on	 high-throughput	 DFT	

calculations,	 enable	 the	 automated	 exploration	 of	
extensive	catalytic	reaction	networks,	identifying	key	
intermediates,	transition	states,	and	energetic	trends	
with	unprecedented	efficiency.4	These	models	extend	
beyond	 simplistic	 thermodynamic	 descriptors,	
facilitating	 microkinetic	 modeling	 that	 brings	
computational	 predictions	 closer	 to	 experimentally	
relevant	 conditions.5	 By	 refining	 Brønsted-Evans-
Polanyi	 (BEP)	 relationships	 and	 accelerating	 the	
identification	of	kinetically	viable	reaction	pathways,	
machine	learning	transforms	catalyst	screening	into	a	
predictive	 science,	 vastly	 improving	 the	 rational	
design	of	 catalysts	 for	 selective	CO₂	conversion.6,7	 In	
this	presentation,	we	will	address	the	construction	of	
the	microkinetic	model	 and	 the	 underlying	 reaction	
network	using	a	recently	developed	machine	learning	
model	that	predicts	activation	(free)	energies,	trained	
on	extensive	DFT	data.	
	

2.	Results	and	Discussion	
	We	 modeled	 nanostructured	 catalysts	 using	 M79	

truncated	 octahedral	 nanoparticles	 with	 the	 fcc	
structure	and	extended	 	 (111)	 facets.	 Such	choice	of	
models	is	in	line	with	the	thermodynamic	preference	
for	 (111)	 terminations	 in	 late	 transition	 metal	
nanoparticles,8	 observed	 experimentally.	 The	
obtained	transition	states	(TS)	were	generally	located	
on	nanoparticle	facets,	while	certain	key	steps—such	
as	CO₂	activation	and	C–O	cleavage	in	methanediolate	
intermediates—required	TS	at	edge	sites	due	to	their	
distinct	electronic	and	steric	environments.	
Spin-polarized	DFT	calculations	 for	 the	generation	

of	the	training	and	test	datasets	were	performed	using	
the	revPBE	functional	with	a	415	eV	plane-wave	cutoff	
and	 the	 PAW	 method,	 including	 D3	 dispersion	
corrections.	We	 formulated	BEP	relationships	 for	Cu	
and	 Pd	 nanoparticle	 systems,	 clustering	 elementary	
steps	based	on	transition	state	structures	rather	than	
conventional	 reaction	 categories	 such	 as	
hydrogenation	or	C–C	coupling.	
These	 BEP	 relationships	 formed	 the	 basis	 of	 the	

trained	ML	models,	where	TS	 structure	and	 location	

on	nanoparticle	terraces	or	edge	sites	were	included	
as	 model	 features	 alongside	 metal	 identity	 and	
coordination	 type.	 This	 allowed	 us	 to	 encode	 the	
structural	 and	 energetic	 characteristics	 of	 transition	
states	 systematically,	 enabling	 the	 inclusion	 of	 data	
beyond	 Cu	 and	 Pd.	 While	 Cu	 and	 Pd	 datasets	
encompassed	 full	 catalytic	 reaction	 networks,	 the	
datasets	for	Ni,	Co,	Rh,	Pt,	and	Au	were	limited	to	key	
transformations:	 C–C	 couplings,	 C–O	 cleavages,	 and	
selected	 hydrogenation	 and	 protonation	 reactions,	
chosen	 for	 their	 mechanistic	 significance	 in	 tuning	
selectivity	and	activity.	
A	 baseline	 one-hot	 encoding	 scheme	 was	

implemented	 to	 categorize	 reaction	 class	
(hydrogenation,	 protonation,	 C–C	 coupling,	 or	 C–O	
cleavage),	TS	identity	(nucleophilic	addition	to	C(sp²),	
sp³-like,	hydroxyl	or	 carboxyl	acidity,	or	metathesis-
like),	 and	 metal	 identity.	 After	 hyperparameter	
optimization	via	grid	search,	kernel	 ridge	regression	
(KRR)	and	CatBoost	models	were	 trained	 (Figure	1)	
with	RMSE	values	for	KRR	and	CatBoost	on	the	test	set	
equal	to	0.30	and	0.32	eV,	respectively,	and	with	mean	
absolute	 error	 (MAE)	of	 0.25	 eV.	Thus,	 the	obtained	
precision	is	significantly	better	than	~0.5	eV	precision	
obtained	 in	 previous	 studies	 for	 activation	 energies	
with	the	same	type	of	DFT	functionals.9	
An	 advanced	 model	 was	 developed	 to	 further	

improve	 prediction	 accuracy	 by	 incorporating	
reaction-specific	 structural	 descriptors	 into	 a	 neural	
network	 (NN).	 The	 NN	 was	 designed	 to	 leverage	
Coulomb	 matrices	 as	 numerical	 representations	 of	
reactant	 and	 product	 structures.	 The	matrices	 were	
processed	 using	 a	 convolutional	 neural	 network	
architecture	 to	 extract	 spatially	 localized	 patterns	
relevant	to	activation	barrier	predictions.	
A	squeeze-and-excitation	attention	mechanism	was	

implemented,	 which	 adaptively	 reweighted	
convolutional	 features	 based	 on	 their	 learned	
importance.	 This	 mechanism	 enhanced	 the	 model’s	
focus	 on	 chemically	 relevant	 interactions	 while	
suppressing	noise,	improving	predictive	stability.	The	
extracted	convolutional	features	were	combined	with	
categorical	 one-hot	 encoded	 reaction	 descriptors,	
including	metal	and	TS	identities.	
Cross-validation	 was	 employed	 to	 evaluate	 the	

robustness	of	the	NN	model,	with	model	performance	
evaluated	 across	 five	 folds.	The	 average	MAE	across	
the	 folds	was	0.23	eV,	 indicating	prediction	stability.	
The	final	model	was	trained	on	the	entire	dataset	and	
evaluated	on	a	held-out	test	set,	yielding	RMSE	=	0.24	
eV	 and	 MAE	 =	 0.18	 eV,	 demonstrating	 improved	
generalizability	 compared	 to	 the	 conventional	 KRR	
and	CatBoost	models.	
The	trained	models	enabled	inference	predictions	of	

activation	barriers	across	extended	catalytic	reaction	
networks,	 covering	 46	 surface	 reactions	 and	 12	
adsorption-desorption	equilibria	on	Ni,	Co,	Rh,	Pt,	and	
Au	 (with	 the	 data	 on	Cu	 and	Pd	 available	 from	DFT	
computations).	 This	 framework	 facilitated	 the	
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construction	of	microkinetic	models	that	informed	our	
recommendations	 for	 multimetallic	 catalyst	 design.	
	
2.1	Related	work	
Previous	 studies	 have	 explored	 BEP-based	 ML	

models	 for	 activation	 energy	 prediction	 relying	 on	
pre-reaction	 intermediate	 structures	 without	
explicitly	 distinguishing	 transition	 state	 types	 in	 the	
involved	reactions.	Notably,	Göltl,	Mavrikakis,	and	co-
workers	 developed	 BEP-based	 ML	 models	 that	
categorized	reactions	based	on	reactant	structures. 6,7	
	
2.2	Figures	and	tables	

	
Fig.	 1:	 Parity	 plots	 comparing	 DFT-calculated	 and	
ML-predicted	activation	free	energies	of	various	elementary	
steps	 in	CO2	 hydrogenation	 to	ethanol	on	 transition	metal	
catalysts	using	KRR,	CatBoost,	NN	models.	
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