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ABSTRACT

Code large language models (LLMs) have shown remarkable advances in code
understanding, completion, and generation tasks. Programming benchmarks, com-
prised of a selection of code challenges and corresponding test cases, serve as
a standard to evaluate the capability of different LLMs in such tasks. However,
most existing benchmarks primarily focus on Python and are still restricted to
a limited number of languages, where other languages are translated from the
Python samples degrading the data diversity. To further facilitate the research
of code LLMs, we propose a massively multilingual code benchmark covering
40 programming languages (MCEVAL) with 16K test samples, which substan-
tially pushes the limits of code LLMs in multilingual scenarios. The benchmark
contains challenging code completion, understanding, and generation evaluation
tasks with finely curated massively multilingual instruction corpora MCEVAL-
INSTRUCT. In addition, we introduce an effective multilingual coder MCODER
trained on MCEVAL-INSTRUCT to support multilingual programming language
generation. Extensive experimental results on MCEVAL show that there is still a
difficult journey between open-source models and closed-source LLMs in numer-
ous languages. The instruction corpora and evaluation benchmark are available at
https://github.com/MCEVAL/McEval.
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def find_median(nums):
nums.sort()
n = len(numbers)
if n % 2 == 1:

m = nums[n//2]
else:

[MASK]
m = (m1 + m2)/2

return m

def find_median(nums):
nums.sort()
n = len(numbers)
if n % 2 == 1:

m = nums[n//2]
else:

m1 = nums[n//2-1]
m2 = nums[n//2]
m = (m1 + m2)/2

return m

Problem: Find the median 
number given list.

def find_median(nums):
nums.sort()
n = len(numbers)
if n % 2 == 1:

m = nums[n//2]
else:

m1 = nums[n//2-1]
m2 = nums[n//2]
m = (m1 + m2)/2

return m

Problem: Please fill the
[MASK] and output the 
complete function.

Problem: Please describe 
the function in English.

Python
Java
C++

Figure 1: MCEVAL comprised three
tasks: code generation, code completion,
and code explanation.

Large language models (LLMs) designed for code, such
as Codex (Chen et al., 2021), CodeGen (Nijkamp et al.,
2023), Code Llama (Rozière et al., 2023), DeepSeek-
Coder (Guo et al., 2024), and CodeQwen (Hui et al., 2024)
excel at code understanding, completion, and generation
tasks.

Code LLMs with a large number of parameters (e.g.
7B, 13B, or larger) are pre-trained on large-scale code
databases with self-supervised autoregressive objectives,
followed by instruction tuning (Ouyang et al., 2022) for
aligning to human preferences and downstream code-
related tasks. Most code benchmarks (Chen et al., 2021;
Austin et al., 2021; Athiwaratkun et al., 2023) are intro-
duced to evaluate the performance of code LLMs by as-
sessing their ability to generate executable code based on
the problem descriptions. The assessments aim to gauge
the capacity of the models to understand and generate
code effectively, thereby contributing to facilitating and streamlining the programming process for
developers. The execution-based method executes generated code against test cases to measure the
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† Corresponding Author.
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success rate. Due to the difficulty of creating the problem and its corresponding solution (requiring
specialized programming staff), the development of evaluation benchmarks is limited within Python,
with a few other languages being translated from Python. Therefore, the community desperately needs
a massively multilingual programming benchmark (not from HumanEval or MBPP) comprised of
instruction corpora and evaluation set to comprehensively facilitate and evaluate the generation,
completion, and understanding capability of LLMs.

To facilitate the development of code LLMs, we introduce a complete framework that includes
the multilingual code instruction corpora, multilingual coder (MCODER), and multilingual code
evaluation benchmark. First, we propose MCEVAL, the first massively multilingual code evaluation
benchmark (from human handwriting) covering 40 languages (16K samples in total), encompassing
multilingual code generation, multilingual code explanation, and multilingual code completion
tasks. Then, we create a massively multilingual instruction corpora MCEVAL-INSTRUCT of 40
languages. We initially select and refine high-quality code snippets from various programming
languages (PLs) using an LLM. The LLM then generates clear and self-contained instructional
content, including problem descriptions and corresponding solutions, based on the refined snippets.
To ensure consistency and enhance learning across languages, we introduce cross-lingual code
transfer, adapting instructional content to different PLs while increasing sample complexity. Based
on open-source models and MCEVAL-INSTRUCT, MCODER is used as a strong baseline to explore
the transferability of LLMs among different PLs.

The contributions are summarized as follows: (1) We propose MCEVAL with enough test samples
(16K), a true massively multilingual multitask code evaluation benchmark (not from HumanEval
or MBPP) covering 40 languages, encompassing multilingual code generation, multilingual code
explanation, and multilingual code completion tasks. (2) We introduce MCEVAL-INSTRUCT, the
massively multilingual code instruction corpora covering from the multilingual code snippet from
40 languages. Based on MCEVAL-INSTRUCT, an effective multilingual coder MCODER is used as
a strong baseline for MCEVAL. (3) We systematically evaluate the understanding and generation
capabilities of 20+ models on our created MCEVAL and create a leaderboard to evaluate them on
40 programming languages dynamically. Notably, extensive experiments suggest that comprehen-
sive multilingual multitask evaluation can realistically measure the gap between open-source (e.g.
DeepSeekCoder and CodeQwen1.5) and closed-source models (e.g. GPT-3.5 and GPT-4).

2 MULTILINGUAL CODE EVALUATION: MCEVAL

2.1 DATASET STATISTICS
Table 1: MCEVAL dataset statistics.

Statistics Value
Questions
Code Generation 2, 007
Code Explanation 2, 007
Code Completion 12, 017

- Single-Line 2, 998
- Multi-Line 2, 998
- Span 4, 014
- Span(light) 2, 007

Total Test Cases 10, 086

Difficulty Level
- Easy 1, 221
- Medium 401
- Hard 385

Length
Prompt

- maximum length 793 tokens
- minimum length 16 tokens
- avg length 173.8 tokens

Solution(Output)
- maximum length 666 tokens
- minimum length 4 tokens
- avg length 120.9 tokens

The created MCEVAL is comprised of three key code-related
tasks covering 40 programming languages, including multi-
lingual code generation, multilingual code explanation, and
multilingual code completion tasks. The multilingual code
generation and explanation tasks separately contain 2K sam-
ples, where each language has nearly 50 samples. The code
completion task can be decomposed intomulti-line comple-
tion (3K samples), single-line completion (3K samples), span
completion (4K samples), and span completion (light) (2K
samples) (Bavarian et al., 2022).

In Table 1, we display the number of questions, test cases, and
difficulty levels corresponding to the three tasks in MCEVAL
and the number of questions in the four sub-tasks of the
completion task. Moreover, we counted the token length
of the prompt and solutions. (The tokens are calculated
based on the Llama-3 tokenizer.) Among these tasks, the
span completion (light) task is similar in form to the span
completion task. However, in the span completion (light)
task, each problem is paired with all the corresponding code,
making it a balanced version of the span completion task
(fewer samples for fast inference and the same test size of
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Figure 2: Data statistics of the MCEVAL benchmark involving 40 programming languages.

each programming language). The results of span completion (light) can better reflect the differences
in model performance across different languages.

Figure 2 plots the length of the prompt, solution(output), and the number of test cases of each
programming language. In Table 2, We compared MCEVAL with other multilingual benchmarks. It
is noteworthy that our benchmark provides a significant supplement to current benchmarks in terms
of both the variety of programming languages and the number of questions.

Table 2: Comparison between MCEVAL and other multilingual code benchmarks. ♢The number of
each of the three tasks (Generation, Explanation, and Completion).

Benchmark Multi-Task #Languages Data source #Questions

MuliPL-E (Cassano et al., 2023) ✗ 18 Translate ~3,000
MBXP Athiwaratkun et al. (2023) ✓ 10 Translate 12,425
HumanEval-X Zheng et al. (2023b) ✓ 5 Hand-Written 820
HumanEval-XL Peng et al. (2024) ✗ 12 Hand-Written 22,080

MCEVAL ✓ 40 Hand-Written 16,031 (2007/2007/12017)♢

2.2 HUMAN ANNOTATION & QUALITY CONTROL

To create the massively multilingual code evaluation benchmark MCEVAL, the annotation of mul-
tilingual code samples is conducted utilizing a comprehensive and systematic human annotation
procedure, underpinned by rigorously defined guidelines to ensure accuracy and consistency. Initially,
10 software developers in computer science are recruited as multilingual programming annotators with
proven proficiency in the respective programming languages. Following a detailed training session
on the annotation protocol, which emphasizes the importance of context, syntactical correctness,
and semantic fidelity across languages, annotators are tasked with creating problem definitions and
the corresponding solution. The annotators should follow: (1) Provide a clear and self-contained
problem definition, answer the question with any tools, and design the test cases to evaluate the
correctness of the code. (2) Classify them into multiple difficulties (Easy/Middle/Hard), based on
algorithmic complexity and functionality. Each sample is independently annotated by at least two
annotators to minimize subjective bias and errors. Discrepancies between annotators are resolved
through consensus or adjudication by a senior annotator. Finally, three volunteers are employed to
evaluate the correctness of the benchmark (> 90% accuracy) and correct the errors. (See Appendix
A.2 for more details).

2.3 EVALUATION TASKS

Multilingual Code Generation. Given the k-th programming language Lk ∈ {Li}Ki=1, where
K = 40 is the number of programming languages, we provide the problem description qLk and
examples test cases eLk as the input for code LLMs M to generate the corresponding code aLk . We
obtain the sampled code result from the code generation distribution P (aLk |qLk , eLk ;M) from code
LLM M, and then feed the test cases into the generated code, where the generated outputs by code
should equal the expected outputs. The process can be described as:

rLk = I(P (aLk |qLk , eLk ;M);uLk ) (1)
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Instruction: Language Python

def find_min_n_greater_than_k(k: int) -> int:
# Initialize variables
    n = 1
    S_n = 0

# Calculate the minimum n for which S_n > k
    while S_n <= k:
        S_n += 1 / n
        n += 1
    return n - 1

Reference Solution

def test_find_min_n_greater_than_k():
    assert find_min_n_greater_than_k(1) == 2, "Test case 1 
failed."
    assert find_min_n_greater_than_k(3) == 11, "Test case 2 
failed."
    assert find_min_n_greater_than_k(5) == 83, "Test case 3 
failed."
    print("All test cases passed.")

# Run the test function
test_find_min_n_greater_than_k()

Test Cases

fn separate_paren_groups(paren_string: String) -> 
Vec<String>{

    let mut result:Vec<String> = vec![];
    let mut current_string:String = String::new();
    let mut current_depth:u32 = 0;

    for c in paren_string.chars(){
        if c == '('{
            current_depth += 1;
            current_string.push(c);
        }
        else if c == ')' {
            current_depth -= 1;
            current_string.push(c);

            if current_depth == 0{
                result.push(current_string.clone());
                current_string.clear()
            }
        }
    }
    return result;
}

Provide a concise natural language description 
(docstring) of the Rust code in English using at 
most 500 characters.

Instruction: Language Rust

Write a Python function ‘def 
find_min_n_greater_than_k(k: int) -> int:’ to 
solve the following problem:
Calculate the smallest positive integer n such that the 
sum of the harmonic series up to 1/n is greater than a 
given positive integer k.

The harmonic series is defined as S_n = 1 + 1/2 + 1/3 
+ ... + 1/n.

Args:
- k (int): A positive integer representing the threshold 
value the harmonic series sum must exceed.

Returns:
- int: The smallest integer n for which the harmonic 
series sum S_n exceeds the threshold k.

Examples:
>>> find_min_n_greater_than_k(1)
2
>>> find_min_n_greater_than_k(3)
11

Input to this function is a string containing 
multiple groups of nested parentheses. Your goal 
is to separate those group into separate strings 
and return the list of those.
Separate groups are balanced (each open brace is 
properly closed) and not nested within each other
Ignore any spaces in the input string.

Reference Solution

int main()
{
    assert(process_request(0) == 1);
    assert(process_request(1) == 1);
    assert(process_request(2) == 2);
    assert(process_request(3) == 6);
    assert(process_request(4) == 24);
    assert(process_request(10) == 6266);
    assert(process_request(10000) == 6991);
    return 0;
}

Test Cases

calculate_max_pens() {
    local yuan=$1
    local jiao=$2
    local total_jiao=$((yuan * 10 + jiao))
    local price_per_pen=19
    local max_pens=$((total_jiao / price_per_pen))
    echo "$max_pens"
}

Reference Solution

Instruction: Language CPP
Below is a explanation of CPP code and incomplete 
code implementation.

* Docstring:
Calculates the factorial of N modulo 10007.
Parameters:
- N (int): An integer representing the input value (N <= 
10000).
Returns:
int: The result after calculating the factorial of N and
taking the modulo 10007.
Examples:
process_request(1) return 1
process_request(10) return 6266

* Incomplete Code:
int process_request(int n)
{
[MASK]
[MASK]
[MASK]
     for (register int i = 2; i <= 10000; i++) {
         a[i] = (a[i - 1] * i) % 10007;
     }
[MASK]
}

Please fill the [MASK]（multiple lines of code may 
be masked out) and write the complete function.

(1) Code Generation (2) Code Explain (3) Code Completion

Figure 3: Examples of multilingual code generation, explanation, and completion.

where I(·) is the indicator function by executing the generated code with the given test cases uLk .
when the generated code aLk passes all test cases, the evaluation result r = 1, else r = 0.

Multilingual Code Explanation. To evaluate the understanding capability of code LLMs, we
adopt two-pass generation (Code-to-Natural-Language and Natural-Language-to-Code), since the
text-similar metrics (e.g. BLEU (Papineni et al., 2002) ) are hindered by the n-gram text matching and
can not produce an accurate score. We first prompt the code LLMs to generate the natural language
description tLk based on the code aLk and then we force the model to restore the original code based
on tLk . The sampled code from P (aLk |tLk ;M) is used to evaluate the understanding capability as:

r = I(P (tLk |aLk ;M)P (aLk |tLk ;M);uLk ) (2)

where I(·) is used to check the correctness of the generated code by running the code with test cases.

Multilingual Code Completion. Another important scenario is code completion, where the code
LLM produces the middle code aLk

m based on the prefix code aLk
p and suffix code snippet aLk

s . Hence,
we concatenate aLk

p , aLk
m , and aLk

s as the complete code for evaluation as:

r = I(P (aLk
m |aLk

p , aLk
s ;M);uLk ) (3)

where aLk
p , aLk

q , and aLk
m are concatenated as the complete code to be executed with test cases uLk .

3 MCODER

3.1 MCEVAL-INSTRUCT

Collection from Code Snippet. For a programming language Lk (Lk ∈ {Li}Ki=1) and K is the
number of programming languages), consider an existing code snippet c ∈ DLk

c , we prompt the
LLM to select the high-quality code and refine the code to a self-contained code snippet by using the
prompt “{Code Snippet}\nDetermine its educational value for a student whose goal is to learn basic
coding concepts.\n\nIf the answer is ‘YES’. Please refine the code with clear variable definitions,
comments, and docstring.”. Then, we can obtain the multilingual refined code snippets. (More details
can be found in Appendix A.3)

4



Published as a conference paper at ICLR 2025

Step1:Code Collection Step2: Code Selection and Refinement Step3: Code Corpora Instruction

```{Code Snippet}```
Determine its educational value for a 
student whose goal is to learn basic 
coding concepts.

If the answer is the “YES”. Please refine 
the code with clear variable definition, 
comments, and docstring.

Multilingual Instruction Corpora

Question and Answer of 
Language {src}:
{question}\n\n{content}

Please draw the inspiration from 
the given question and response 
to create the new question and 
answer of language {tgt}

Prompt
Step4: Cross-lingual Enhancement

Pascal

Prompt

Step5: Instruction Tuning

Step6: Massively Multilingual Evaluation
Code Generation

Generation

McEval

You are an expert in programming, especially in 
designing high-quality {language} question and 
answer based on the given code snippet.
### Guidelines:
* The question and answer must be completely self-
contained and clear.
* The difficulty of the code can be taken a step further 
and the docstring describes the problem description.
### Given Code snippet:
{code}
### Created Question
{{Created Question}}
### Created Solution
{{Created Solution}}

Prompt

…

C++C-sharp

Java Rust

RHTML

Python
Java

Scala

GO
Kotlin

R

C

LLM

Code Completion
Code Explain

DeepSeek-Coder

CodeQwen

CodeLlama

GPT3.5/4

print(sum([nums]))

console.log(nums.reduce((a,b)=>a+b,0));

std::cout<<std::accumulate(std::begin(nums),
std::end(nums), 0)

McCoder

Figure 4: The framework of MCODER. We first create MCEVAL-INSTRUCT covering 40 languages
from code snippets to fine-tune MCODER. 20+ existing LLMs and MCODER are then evaluated on
MCEVAL comprised of multilingual code generation, explanation, and completion.

Instruction Corpora Generation. To construct a comprehensive massively multilingual code
instruction corpora {DLi}Ki=1, we prompt the LLMs (gpt-4-1106-preview) to create a problem
description qLk and the corresponding solution aLk by drawing inspiration from the refined code
snippet cLk . We use LLM to generate instruction dataset by using the prompt “You are an expert in
programming, especially in designing high-quality language question and answer based on the given
code snippet.\n\n ### Guidelines: * The question and answer must be completely self-contained
and clear.*\n The difficulty of the code can be taken a step further and the docstring describes the
problem description.\n ### Given Code snippet: code\n ### Created Question Created Question\n
### Created Solution\n Created Solution” in Figure 4.
Cross-lingual Code Transfer. Since the created instruction samples of different programming
languages focus on different aspects of coding, we adopt the cross-lingual code transfer to min-
imize the gap among multiple languages. Given the instruction dataset DLi of language Li,
we randomly sample a pair (qLi , aLi) and force the LLM to modify them to another language
Lj with a more complex sample (qLi→Lj , aLi→Lj ). In this way, we can get the derived in-
struction corpora {DLi→Lj}(i ̸= j ∧ 1 ≤ i, j ≤ K). Finally, we combine {DLk}Kk=1 and
{DLi→Lj}(i ̸= j ∧ 1 ≤ i, j ≤ K) as the multilingual instruction corpora MCEVAL-INSTRUCT
{DLk

mc}Kk=1 covering 40 programming languages.

3.2 MULTILINGUAL CODE INSTRUCTION TUNING

The training objective Lall of the multilingual instruction fine-tuning can be described as:

Lall = −
K∑

k=1

EqLk ,aLk∼{DLk}K
k=1

[
logP (aLk |qLk ;M)

]
(4)

where qLk and aLk are the code-related question and answer from the dataset DLk of language Lk,
respectively. K is the number of programming languages.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Code LLMs. We evaluate 30 + models with sizes ranging from 7B to 236B parameters, including
general/code LLMs, open/closed-source models, and base/instruction models. For general models,
we evaluate GPT series (Brown et al., 2020; OpenAI, 2023), Qwen1.5 (Bai et al., 2023), Llama3 (AI,
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Table 3: Pass@1 (%) scores of different code LLMs for multilingual code generation tasks on
MCEVAL. “Avgall” represents the average scores of all code languages.

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4o (240513) µ 54.0 60.0 58.0 72.0 60.0 82.0 54.9 64.0 66.0 44.0 66.0 78.0 62.0 80.0 90.0 32.0 81.1 62.0 74.0 72.0
GPT-4 Turbo (231106) µ 70.0 60.0 64.0 80.0 64.0 72.0 45.1 62.0 56.0 38.0 54.0 74.0 56.0 82.0 78.0 30.0 83.0 60.0 72.0 70.0
GPT-3.5 Turbo (240125) µ 14.0 54.0 58.0 68.0 54.0 76.0 41.2 26.0 30.0 46.0 40.0 68.0 54.0 86.0 50.0 18.0 71.7 60.0 76.0 54.0
Yi-Large-Turbo µ 52.0 44.0 50.0 54.0 54.0 52.0 31.4 30.0 46.0 30.0 58.0 52.0 46.0 80.0 58.0 22.0 41.5 52.0 78.0 56.0
DeepSeekCoder-V2-Instruct 236B 62.0 60.0 66.0 72.0 74.0 80.0 43.1 52.0 62.0 32.0 80.0 76.0 56.0 84.0 72.0 30.0 77.4 64.0 74.0 70.0
Qwen1.5-Chat 72B 50.0 48.0 46.0 56.0 46.0 44.0 19.6 14.0 18.0 24.0 34.0 32.0 50.0 42.0 32.0 22.0 39.6 46.0 74.0 32.0
CodeLlama-Instruct 34B 38.0 32.0 32.0 40.0 42.0 34.0 7.8 16.0 28.0 32.0 24.0 18.0 34.0 20.0 32.0 14.0 26.4 42.0 68.0 28.0
WizardCoder-Python 34B 36.0 42.0 46.0 52.0 42.0 46.0 13.7 14.0 38.0 38.0 26.0 26.0 50.0 54.0 40.0 26.0 43.4 52.0 70.0 52.0
DeepSeekCoder-Instruct 33B 50.0 58.0 66.0 70.0 60.0 86.0 25.5 40.0 50.0 40.0 66.0 48.0 54.0 78.0 56.0 30.0 73.6 62.0 42.0 56.0
Codestral-v0.1 22B 54.0 48.0 56.0 66.0 60.0 62.0 43.1 28.0 34.0 24.0 56.0 58.0 58.0 76.0 52.0 34.0 73.6 58.0 72.0 52.0
DeepSeekCoder-V2-Lite-Instruct 16B 58.0 58.0 64.0 74.0 56.0 76.0 35.3 30.0 40.0 26.0 68.0 56.0 56.0 66.0 60.0 26.0 66.0 64.0 68.0 60.0
OCTOCODER 16B 28.0 28.0 28.0 38.0 40.0 18.0 5.9 14.0 28.0 16.0 22.0 4.0 34.0 30.0 20.0 8.0 34.0 30.0 58.0 20.0
WizardCoder-V1.0 15B 18.0 38.0 28.0 36.0 36.0 50.0 17.6 0.0 24.0 24.0 28.0 30.0 38.0 62.0 40.0 6.0 30.2 52.0 14.0 38.0
Granite-34B-code-instruct-8K 34B 48.0 38.0 54.0 50.0 60.0 64.0 19.6 16.0 36.0 36.0 50.0 40.0 52.0 64.0 44.0 28.0 37.7 54.0 66.0 48.0
Granite-20B-code-instruct-8K 20B 38.0 42.0 40.0 56.0 40.0 56.0 23.5 18.0 40.0 16.0 32.0 42.0 46.0 48.0 40.0 20.0 35.8 50.0 74.0 48.0
Granite-8B-code-instruct-4K 8B 36.0 28.0 44.0 48.0 50.0 56.0 11.8 20.0 36.0 22.0 32.0 38.0 46.0 48.0 40.0 26.0 35.8 48.0 64.0 48.0
Granite-3B-code-instruct-128K 3B 16.0 14.0 42.0 38.0 40.0 30.0 9.8 12.0 36.0 16.0 26.0 26.0 30.0 32.0 34.0 22.0 26.4 50.0 62.0 28.0
Phi-3-medium-4k-instruct 14B 52.0 46.0 40.0 52.0 34.0 42.0 13.7 14.0 16.0 8.0 30.0 32.0 42.0 42.0 42.0 20.0 39.6 52.0 68.0 48.0
CodeLlama-Instruct 13B 36.0 38.0 38.0 40.0 46.0 30.0 7.8 16.0 32.0 32.0 16.0 26.0 34.0 22.0 38.0 18.0 22.6 34.0 56.0 32.0
Llama-3-Instruct 8B 32.0 46.0 50.0 54.0 38.0 48.0 15.7 14.0 32.0 30.0 12.0 26.0 48.0 52.0 38.0 16.0 45.3 54.0 70.0 40.0
CodeQwen-2.5-Chat 7B 58.0 58.0 58.0 74.0 56.0 86.0 37.3 54.0 56.0 38.0 56.0 62.0 58.0 84.0 66.0 34.0 69.8 60.0 76.0 64.0
Codegemma-it 7B 26.0 40.0 42.0 48.0 20.0 18.0 23.5 10.0 4.0 4.0 8.0 22.0 46.0 58.0 32.0 24.0 56.6 48.0 70.0 38.0
CodeLlama-Instruct 7B 32.0 34.0 26.0 40.0 42.0 32.0 5.9 14.0 22.0 20.0 20.0 14.0 32.0 22.0 32.0 14.0 18.9 28.0 64.0 24.0
Codeshell-chat 7B 24.0 30.0 36.0 26.0 20.0 38.0 5.9 4.0 14.0 6.0 8.0 8.0 28.0 30.0 22.0 24.0 22.6 42.0 66.0 24.0
DeepSeekCoder-1.5-Instruct 7B 40.0 54.0 56.0 60.0 56.0 80.0 23.5 24.0 40.0 40.0 40.0 46.0 52.0 80.0 26.0 24.0 60.4 56.0 66.0 42.0
Magicoder-S-DS 7B 44.0 50.0 50.0 60.0 58.0 72.0 19.6 32.0 34.0 62.0 62.0 54.0 50.0 80.0 54.0 16.0 66.0 60.0 56.0 40.0
Nxcode-CQ-orpo 7B 38.0 52.0 58.0 50.0 46.0 62.0 23.5 22.0 38.0 36.0 52.0 46.0 52.0 72.0 46.0 28.0 56.6 50.0 64.0 62.0
OpenCodeInterpreter-DS 7B 38.0 54.0 52.0 68.0 44.0 78.0 17.6 30.0 42.0 48.0 52.0 54.0 48.0 72.0 40.0 28.0 66.0 46.0 72.0 34.0
CodeQwen-1.5-Chat 7B 40.0 52.0 56.0 62.0 48.0 62.0 29.4 22.0 38.0 38.0 50.0 44.0 50.0 70.0 44.0 30.0 58.5 54.0 64.0 62.0

MCODER (Our Method) 7B 40.0 44.0 52.0 62.0 46.0 66.0 21.6 30.0 44.0 52.0 56.0 44.0 48.0 70.0 32.0 34.0 54.7 54.0 66.0 56.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4o (240513) 84.0 60.0 32.0 52.0 64.0 64.0 72.0 76.0 66.0 66.0 64.0 83.0 32.0 76.0 76.0 84.0 68.0 56.0 78.0 40.0 65.2
GPT-4 Turbo (231106) 80.0 56.0 38.0 46.0 64.0 68.0 76.0 78.0 58.0 62.0 66.0 71.7 66.0 58.0 72.0 82.0 56.0 60.0 68.0 38.0 63.4
GPT-3.5 Turbo (240125) 62.0 58.0 24.0 40.0 56.0 58.0 68.0 60.0 56.0 40.0 56.0 52.8 68.0 46.0 60.0 58.0 44.0 54.0 74.0 24.0 52.6
Yi-Large-Turbo 36.0 48.0 24.0 46.0 44.0 46.0 64.0 44.0 50.0 34.0 64.0 0.0 48.0 50.0 48.0 64.0 52.0 50.0 40.0 30.0 46.6
DeepSeekCoder-V2-Instruct 80.0 58.0 36.0 54.0 54.0 68.0 78.0 64.0 64.0 66.0 64.0 84.9 76.0 74.0 70.0 74.0 68.0 50.0 72.0 40.0 64.6
Qwen1.5-Chat 20.0 50.0 22.0 36.0 40.0 36.0 40.0 32.0 22.0 26.0 44.0 34.0 30.0 30.0 34.0 40.0 26.0 44.0 30.0 28.0 35.8
CodeLlama-Instruct 24.0 30.0 10.0 28.0 40.0 24.0 38.0 32.0 18.0 26.0 30.0 26.4 28.0 20.0 20.0 42.0 24.0 38.0 36.0 22.0 29.1
WizardCoder-Python 36.0 46.0 12.0 36.0 36.0 38.0 44.0 40.0 20.0 22.0 46.0 35.8 48.0 22.0 2.0 48.0 30.0 28.0 40.0 24.0 36.5
DeepSeekCoder-Instruct 66.0 58.0 32.0 54.0 32.0 48.0 60.0 56.0 48.0 46.0 66.0 66.0 62.0 60.0 58.0 60.0 58.0 56.0 44.0 30.0 54.3
Codestral-v0.1 64.0 56.0 16.0 6.0 54.0 56.0 64.0 56.0 48.0 36.0 40.0 71.7 48.0 32.0 48.0 72.0 44.0 52.0 62.0 28.0 50.5
DeepSeekCoder-V2-Lite-Instruct 64.0 56.0 28.0 48.0 56.0 44.0 68.0 64.0 50.0 52.0 56.0 71.7 60.0 54.0 52.0 76.0 38.0 60.0 58.0 24.0 54.7
OCTOCODER 14.0 32.0 10.0 6.0 26.0 24.0 38.0 30.0 6.0 24.0 0.0 32.1 4.0 22.0 26.0 30.0 24.0 38.0 28.0 14.0 23.3
WizardCoder-V1.0 26.0 40.0 0.0 12.0 32.0 32.0 48.0 30.0 20.0 10.0 40.0 24.5 40.0 10.0 0.0 30.0 20.0 42.0 36.0 18.0 28.0
Granite-34B-code-instruct-8K 44.0 50.0 22.0 40.0 34.0 40.0 56.0 44.0 32.0 36.0 38.0 45.3 34.0 36.0 36.0 52.0 32.0 50.0 44.0 16.0 42.2
Granite-20B-code-instruct-8K 38.0 48.0 22.0 32.0 34.0 40.0 48.0 44.0 28.0 32.0 40.0 39.6 36.0 40.0 30.0 46.0 28.0 46.0 38.0 16.0 38.3
Granite-8B-code-instruct-4K 32.0 38.0 20.0 34.0 38.0 34.0 42.0 36.0 22.0 34.0 36.0 43.4 40.0 30.0 20.0 50.0 30.0 48.0 42.0 12.0 36.5
Granite-3B-code-instruct-128K 20.0 32.0 8.0 32.0 24.0 28.0 38.0 34.0 12.0 24.0 42.0 24.5 30.0 22.0 16.0 36.0 14.0 42.0 34.0 16.0 28.0
Phi-3-medium-4k-instruct 30.0 48.0 18.0 28.0 36.0 42.0 50.0 48.0 38.0 30.0 26.0 26.4 18.0 30.0 26.0 50.0 22.0 52.0 44.0 12.0 35.2
CodeLlama-Instruct 20.0 30.0 10.0 8.0 28.0 32.0 34.0 30.0 12.0 20.0 28.0 24.5 24.0 26.0 20.0 40.0 18.0 40.0 38.0 10.0 27.7
Llama-3-Instruct 34.0 40.0 14.0 32.0 36.0 38.0 40.0 42.0 30.0 22.0 34.0 41.5 38.0 32.0 26.0 48.0 24.0 50.0 42.0 16.0 36.0
CodeQwen-2.5-Chat 72.0 58.0 32.0 50.0 56.0 64.0 72.0 62.0 66.0 58.0 60.0 69.8 60.0 64.0 66.0 82.0 50.0 56.0 68.0 40.0 60.3
Codegemma-it 36.0 48.0 8.0 14.0 40.0 36.0 42.0 24.0 16.0 18.0 40.0 39.6 40.0 20.0 12.0 54.0 10.0 38.0 38.0 16.0 30.7
CodeLlama-Instruct 16.0 30.0 14.0 6.0 28.0 12.0 34.0 32.0 14.0 24.0 28.0 17.0 26.0 20.0 16.0 32.0 22.0 28.0 34.0 14.0 24.6
Codeshell-chat 28.0 34.0 14.0 10.0 22.0 28.0 32.0 30.0 16.0 14.0 34.0 30.2 18.0 8.0 12.0 18.0 12.0 42.0 26.0 12.0 23.0
DeepSeekCoder-1.5-Instruct 38.0 48.0 30.0 38.0 42.0 54.0 64.0 44.0 32.0 44.0 54.0 45.3 50.0 40.0 42.0 42.0 40.0 50.0 58.0 20.0 46.0
Magicoder-S-DS 42.0 48.0 24.0 48.0 50.0 44.0 56.0 48.0 44.0 42.0 54.0 45.3 54.0 44.0 54.0 56.0 46.0 50.0 68.0 16.0 48.8
Nxcode-CQ-orpo 42.0 46.0 18.0 42.0 38.0 40.0 44.0 44.0 36.0 42.0 46.0 47.2 44.0 40.0 42.0 66.0 30.0 48.0 60.0 18.0 44.7
OpenCodeInterpreter-DS 48.0 50.0 26.0 46.0 50.0 30.0 54.0 56.0 42.0 34.0 40.0 50.9 38.0 44.0 36.0 46.0 36.0 50.0 60.0 18.0 46.0
CodeQwen-1.5-Chat 44.0 48.0 18.0 46.0 38.0 44.0 42.0 44.0 38.0 40.0 46.0 45.3 48.0 38.0 42.0 66.0 30.0 54.0 56.0 18.0 45.5

MCODER (Our Method) 48.0 52.0 30.0 42.0 36.0 32.0 54.0 44.0 40.0 36.0 48.0 52.8 58.0 44.0 46.0 64.0 38.0 52.0 58.0 20.0 46.7

2024), Phi-3 (Abdin et al., 2024), and Yi (Young et al., 2024). For code models, we test Code-
Qwen (Hui et al., 2024), DeepSeekCoder (Guo et al., 2024), CodeLlama (Rozière et al., 2023),
OCTOCODER (Muennighoff et al., 2023), CodeShell (Xie et al., 2024), MagiCoder (Wei et al.,
2023), WizardCoder (Luo et al., 2023), Codegemma (Gemma Team, 2024) and Granite (Mishra et al.,
2024). Furthermore, we further fine-tune MCODER based on CodeQwen1.5 and DeepSeekCoder to
explore the language transfer capabilities of code LLMs.
Evaluation Metrics. We assess the models by executing the code and evaluating it using the
Pass@1 metric. Pass@1 is a widely recognized measure in machine learning, particularly for code
generation, as it gauges the model’s accuracy in producing correct solutions on the first attempt.
Instruction Corpora. The resulting dataset, MCEVAL-INSTRUCT (110K samples), is comprised
of created question-answer pairs and open-source collection (Wei et al., 2023). We apply data
decontamination before training our MCODER. Following Li et al. (2023); Wei et al. (2023), we adopt
the N-gram exact match decontamination method with MCEVAL, HumanEval(Chen et al., 2021),
MultiPL-E(Cassano et al., 2023), MBPP(Austin et al., 2021). For supervised fine-tuning (SFT), we
utilize CodeQwen-1.5 as the foundational code LLMs. Specifically, we select all Python data from
MCEVAL-INSTRUCT, comprising 50K training samples, for MCODER-Python training.
Optimization & Evaluation. Our MCODER based on CodeQwen1.5 are trained for 2 epochs with a
cosine scheduler, starting at a learning rate of 2e-5 (3% warmup steps). We use AdamW (Loshchilov
& Hutter, 2017) as the optimizer and a batch size of 512 (max length 4096). We adopt the greedy
Pass@1 (%) metric (Kulal et al., 2019; Chen et al., 2021) for evaluations. For closed-source LLMs,
the answers are generated by the official API. For code explanation, we prompt the LLM to describe
the code and then restore the descriptions to the original code. (Details can be found in Appendix
A.6).

4.2 MAIN RESULTS

Multilingual Code Generation. Table 3 shows the Pass@1 results of various models on MCEVAL
for multilingual code generation task. The results reveal a significant disparity between closed-source
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Table 4: Pass@1 (%) scores of different models for multilingual code completion tasks on MCEVAL.
“Avgall” represents the average scores of all code languages.

Single-line Completion

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4 Turbo (231106) µ 92.9 74.4 75.6 89.3 91.1 97.5 76.5 84.2 82.4 54.2 79.6 69.6 81.7 92.6 76.2 57.1 93.9 80.0 93.1 93.3
GPT-3.5 Turbo (240125) µ 14.3 32.9 20.7 41.7 53.6 68.8 28.6 44.7 19.1 6.3 14.3 37.5 67.1 76.6 11.9 21.4 40.8 35.0 4.2 76.7
DeepSeekCoder-Instruct 33B 50.0 61.0 72.0 79.8 62.5 78.8 70.4 63.2 66.2 45.8 68.4 60.7 67.1 83.0 38.1 52.4 82.7 65.0 77.8 83.3
OCTOCODER 16B 42.9 47.6 52.4 82.1 35.7 56.3 60.2 34.2 8.8 0.0 0.0 48.2 58.5 73.4 0.0 2.4 81.6 56.3 6.9 0.0
StarCoder2-instruct-V0.1 15B 28.6 74.4 81.7 86.9 71.4 7.5 82.7 68.4 75.0 62.5 76.5 64.3 82.9 88.3 47.6 0.0 91.8 83.8 16.7 83.3
WizardCoder-V1.0 15B 21.4 37.8 36.6 38.1 3.6 18.8 28.6 0.0 38.2 14.6 9.2 10.7 59.8 66.0 14.3 16.7 38.8 41.3 0.0 53.3
Qwen1.5-Chat 14B 35.7 50.0 54.9 61.9 19.6 51.3 37.8 6.6 27.9 16.7 30.6 30.4 46.3 51.1 28.6 28.6 59.2 50.0 54.2 53.3
CodeLlama-Instruct 13B 78.6 57.3 75.6 79.8 48.2 56.3 48.0 52.6 54.4 41.7 43.9 46.4 68.3 68.1 26.2 21.4 52.0 61.3 48.6 66.7
Yi-1.5-Chat 9B 35.7 63.4 65.9 84.5 39.3 61.3 66.3 38.2 48.5 27.1 68.4 35.7 59.8 85.1 38.1 21.4 77.6 58.8 69.4 75.6
CodeLlama-Instruct 7B 78.6 62.2 73.2 54.8 30.4 66.3 48.0 31.6 47.1 35.4 52.0 42.9 61.0 61.7 33.3 26.2 22.4 18.8 61.1 67.8
CodeQwen1.5-Chat 7B 35.7 68.3 63.4 76.2 67.9 47.5 78.6 35.5 72.1 45.8 57.1 60.7 73.2 69.1 31.0 42.9 90.8 68.8 69.4 88.9
Magicoder-S-DS 7B 71.4 67.1 72.0 84.5 71.4 77.5 80.6 69.7 79.4 62.5 85.7 85.7 75.6 96.8 52.4 40.5 94.9 72.5 73.6 74.4

MCODER 7B 85.7 74.4 82.9 90.5 69.6 91.3 78.6 69.7 77.9 70.8 67.3 75.0 80.5 83.0 45.2 28.6 95.9 81.3 54.2 94.4
Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4 Turbo (231106) 83.3 80.0 28.6 70.7 91.4 86.2 92.2 86.7 87.0 88.7 89.5 81.5 87.8 85.3 87.8 86.1 85.9 77.5 76.9 63.2 82.7
GPT-3.5 Turbo (240125) 64.3 58.8 21.4 20.7 52.9 20.2 65.6 84.4 23.9 41.9 47.4 27.2 50.0 39.7 54.9 63.9 57.7 46.3 28.2 80.3 43.6
DeepSeekCoder-Instruct 73.8 71.3 14.3 68.3 65.7 81.9 86.7 83.3 79.3 59.7 86.8 75.0 84.1 72.1 80.5 79.2 83.3 57.5 70.5 67.1 72.4
OCTOCODER 70.2 50.0 3.6 15.9 32.9 0.0 28.9 78.9 2.2 38.7 15.8 0.0 56.1 41.2 48.8 27.8 37.2 67.5 59.0 69.7 39.2
StarCoder2-instruct-V0.1 85.7 61.3 0.0 75.6 80.0 93.6 87.8 87.8 88.0 66.1 73.7 89.1 39.0 75.0 78.0 54.2 62.8 82.5 64.1 72.4 71.4
WizardCoder-V1.0 40.5 35.0 0.0 28.0 28.6 29.8 40.0 52.2 48.9 1.6 28.9 18.5 28.0 0.0 17.1 33.3 37.2 35.0 51.3 65.8 31.6
Qwen1.5-Chat 51.2 51.3 7.1 36.6 51.4 62.8 56.7 63.3 63.0 29.0 52.6 50.0 17.1 26.5 50.0 63.9 43.6 46.3 43.6 36.8 44.7
CodeLlama-Instruct 58.3 66.3 0.0 41.5 55.7 54.3 76.7 77.8 69.6 51.6 60.5 58.7 64.6 47.1 67.1 63.9 62.8 62.5 66.7 68.4 59.3
Yi-1.5-Chat 75.0 66.3 17.9 53.7 64.3 83.0 76.7 78.9 76.1 38.7 67.1 65.2 45.1 42.6 65.9 75.0 62.8 57.5 60.3 53.9 62.2
CodeLlama-Instruct 61.9 41.3 0.0 19.5 57.1 22.3 42.2 73.3 62.0 35.5 67.1 46.7 72.0 33.8 73.2 33.3 61.5 43.8 61.5 63.2 49.9
CodeQwen1.5-Chat 78.6 57.5 0.0 70.7 80.0 83.0 82.2 84.4 68.5 66.1 75.0 80.4 67.1 50.0 89.0 77.8 80.8 63.8 48.7 65.8 68.6
Magicoder-S-DS 82.1 77.5 7.1 75.6 91.4 90.4 90.0 87.8 84.8 66.1 85.5 78.3 89.0 79.4 91.5 86.1 83.3 70.0 76.9 39.5 78.4

MCODER 82.1 80.0 0.0 79.3 97.1 86.2 88.9 82.2 88.0 77.4 77.6 82.6 80.5 72.1 91.5 80.6 84.6 82.5 73.1 67.1 78.9

Multi-line Completion

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4 Turbo (231106) µ 78.6 69.5 69.5 83.3 71.4 96.3 68.4 77.6 75.0 54.2 67.3 64.3 64.6 92.6 64.3 33.3 84.7 71.3 90.3 83.3
GPT-3.5 Turbo (240125) µ 42.9 58.5 54.9 70.2 28.6 65.0 53.1 39.5 22.1 4.2 20.4 35.7 62.2 92.6 26.2 31.0 75.5 58.8 43.1 60.0
DeepSeekCoder-Instruct 33B 71.4 61.0 62.2 75.0 37.5 51.3 50.0 42.1 50.0 27.1 69.4 42.9 47.6 87.2 26.2 31.0 80.6 70.0 83.3 65.6
OCTOCODER 16B 35.7 35.4 45.1 61.9 23.2 30.0 30.6 7.9 5.9 0.0 0.0 25.0 37.8 60.6 0.0 0.0 71.4 47.5 6.9 1.1
StarCoder2-instruct-V0.1 15B 7.1 59.8 67.1 78.6 53.6 3.8 58.2 52.6 57.4 39.6 62.2 39.3 56.1 89.4 28.6 0.0 81.6 71.3 9.7 65.6
WizardCoder-V1.0 15B 42.9 28.0 31.7 34.5 3.6 13.8 21.4 0.0 20.6 10.4 11.2 10.7 39.0 61.7 9.5 14.3 24.5 20.0 1.4 28.9
Qwen1.5-Chat 14B 7.1 40.2 41.5 42.9 7.1 26.3 27.6 5.3 14.7 4.2 23.5 12.5 36.6 47.9 11.9 14.3 49.0 42.5 41.7 45.6
CodeLlama-Instruct 13B 50.0 39.0 50.0 63.1 25.0 40.0 31.6 13.2 22.1 18.8 16.3 23.2 35.4 50.0 19.0 7.1 41.8 45.0 54.2 45.6
Yi-1.5-Chat 9B 35.7 47.6 48.8 64.3 14.3 52.5 42.9 18.4 20.6 16.7 51.0 25.0 39.0 73.4 23.8 16.7 61.2 55.0 75.0 60.0
CodeLlama-Instruct 7B 28.6 36.6 45.1 42.9 17.9 46.3 16.3 17.1 22.1 25.0 22.4 28.6 37.8 43.6 23.8 31.0 24.5 12.5 73.6 34.4
CodeQwen1.5-Chat 7B 0.0 52.4 53.7 73.8 30.4 25.0 58.2 34.2 42.6 43.8 51.0 42.9 58.5 67.0 31.0 35.7 78.6 71.3 72.2 68.9
Magicoder-S-DS 7B 21.4 64.6 64.6 81.0 51.8 55.0 59.2 52.6 60.3 45.8 69.4 66.1 62.2 91.5 35.7 16.7 78.6 65.0 69.4 62.2

MCODER 7B 21.4 57.3 53.7 78.6 42.9 71.3 56.1 50.0 57.4 47.9 45.9 51.8 56.1 80.9 23.8 23.8 80.6 75.0 62.5 72.2

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4 Turbo (231106) 84.5 66.3 32.1 67.1 84.3 85.1 94.4 83.3 80.4 64.5 78.9 81.5 84.1 86.8 90.2 81.9 78.2 75.0 75.6 52.6 76.6
GPT-3.5 Turbo (240125) 70.2 63.8 17.9 51.2 67.1 11.7 63.3 88.9 32.6 30.6 42.1 34.8 37.8 44.1 69.5 72.2 65.4 56.3 55.1 53.9 51.6
DeepSeekCoder-Instruct 69.0 58.8 21.4 50.0 60.0 73.4 82.2 72.2 65.2 40.3 64.5 58.7 74.4 47.1 81.7 68.1 66.7 57.5 66.7 34.2 61.8
OCTOCODER 53.6 30.0 3.6 3.7 35.7 0.0 26.7 52.2 4.3 27.4 2.6 0.0 34.1 23.5 32.9 33.3 25.6 45.0 33.3 35.5 27.1
StarCoder2-instruct-V0.1 76.2 48.8 0.0 64.6 64.3 80.9 76.7 75.6 77.2 48.4 51.3 64.1 50.0 61.8 68.3 47.2 50.0 65.0 60.3 47.4 58.3
WizardCoder-V1.0 46.4 15.0 0.0 7.3 30.0 31.9 22.2 38.9 33.7 0.0 23.7 16.3 14.6 0.0 15.9 19.4 23.1 23.8 37.2 14.5 22.8
Qwen1.5-Chat 36.9 30.0 3.6 19.5 24.3 48.9 34.4 42.2 39.1 8.1 31.6 29.3 12.2 10.3 32.9 47.2 21.8 38.8 24.4 19.7 29.9
CodeLlama-Instruct 47.6 37.5 0.0 28.0 31.4 43.6 60.0 46.7 42.4 22.6 39.5 41.3 35.4 19.1 40.2 48.6 41.0 42.5 47.4 34.2 39.0
Yi-1.5-Chat 52.4 50.0 3.6 37.8 52.9 67.0 60.0 63.3 53.3 29.0 42.1 39.1 39.0 17.6 57.3 69.4 38.5 56.3 50.0 26.3 46.6
CodeLlama-Instruct 44.0 20.0 0.0 14.6 30.0 8.5 38.9 45.6 27.2 22.6 31.6 27.2 40.2 14.7 46.3 38.9 41.0 27.5 44.9 28.9 31.4
CodeQwen1.5-Chat 69.0 51.3 3.6 47.6 61.4 70.2 76.7 57.8 62.0 46.8 44.7 67.4 69.5 38.2 76.8 70.8 60.3 56.3 46.2 40.8 56.3
Magicoder-S-DS 77.4 57.5 10.7 64.6 68.6 72.3 84.4 76.7 70.7 51.6 64.5 64.1 82.9 58.8 75.6 73.6 66.7 62.5 64.1 23.7 65.4

MCODER 66.7 56.3 0.0 58.5 57.1 71.3 80.0 66.7 64.1 50.0 57.9 71.7 63.4 54.4 80.5 63.9 57.7 60.0 66.7 32.9 60.7

Span Completion

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4 Turbo (231106) µ 80.0 65.0 67.0 84.0 74.0 88.0 63.7 71.0 74.0 68.0 69.0 78.0 67.0 94.0 80.0 49.0 91.5 65.0 83.0 87.0
GPT-3.5 Turbo (240125) µ 39.0 41.0 51.0 70.0 55.0 67.0 58.8 43.0 31.0 9.0 27.0 55.0 57.0 85.0 14.0 30.0 58.5 47.0 30.0 48.0
DeepSeekCoder-Instruct 33B 52.0 55.0 59.0 70.0 58.0 57.0 48.0 45.0 57.0 58.0 65.0 61.0 48.0 86.0 53.0 42.0 70.8 54.0 61.0 68.0
OCTOCODER 16B 29.0 41.0 46.0 51.0 41.0 29.0 31.4 19.0 9.0 0.0 0.0 44.0 40.0 52.0 0.0 4.0 57.5 39.0 12.0 1.0
StarCoder2-instruct-V0.1 15B 34.0 63.0 67.0 75.0 62.0 2.0 49.0 48.0 56.0 58.0 62.0 59.0 59.0 80.0 59.0 0.0 82.1 59.0 10.0 76.0
WizardCoder-V1.0 15B 19.0 24.0 40.0 35.0 6.0 11.0 6.9 3.0 6.0 11.0 4.0 7.0 44.0 57.0 26.0 9.0 16.0 13.0 0.0 14.0
Qwen1.5-Chat 14B 27.0 43.0 47.0 43.0 21.0 10.0 26.5 12.0 25.0 31.0 22.0 25.0 37.0 38.0 39.0 17.0 26.4 43.0 23.0 43.0
CodeLlama-Instruct 13B 47.0 36.0 51.0 56.0 40.0 29.0 25.5 22.0 36.0 45.0 35.0 40.0 39.0 46.0 36.0 28.0 39.6 44.0 43.0 44.0
Yi-1.5-Chat 9B 37.0 56.0 60.0 66.0 27.0 47.0 51.0 23.0 33.0 40.0 48.0 30.0 43.0 72.0 51.0 23.0 70.8 49.0 57.0 61.0
CodeLlama-Instruct 7B 25.0 43.0 51.0 53.0 41.0 39.0 27.5 20.0 38.0 41.0 35.0 41.0 43.0 50.0 43.0 25.0 26.4 29.0 58.0 43.0

CodeQwen1.5-Chat 7B 41.0 57.0 59.0 65.0 54.0 22.0 46.1 34.0 54.0 56.0 58.0 62.0 57.0 74.0 52.0 39.0 79.2 55.0 55.0 76.0
Magicoder-S-DS 7B 48.0 59.0 67.0 74.0 63.0 63.0 57.8 50.0 64.0 72.0 79.0 79.0 57.0 94.0 60.0 40.0 81.1 59.0 55.0 64.0

MCODER 7B 43.0 64.0 66.0 77.0 62.0 76.0 52.9 44.0 61.0 71.0 70.0 69.0 55.0 84.0 65.0 25.0 83.0 59.0 54.0 83.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4 Turbo (231106) 90.0 66.0 34.0 59.0 92.0 80.0 87.0 87.0 80.0 79.0 80.0 81.1 82.0 76.0 82.0 86.0 71.0 67.0 73.0 49.0 75.0
GPT-3.5 Turbo (240125) 68.0 61.0 25.0 45.0 68.0 8.0 62.0 80.0 13.0 56.0 24.0 26.4 39.0 47.0 72.0 70.0 57.0 60.0 68.0 58.0 48.1
DeepSeekCoder-Instruct 69.0 58.0 16.0 50.0 54.0 65.0 72.0 66.0 61.0 58.0 63.0 56.6 73.0 53.0 64.0 68.0 59.0 60.0 72.0 43.0 59.5
OCTOCODER 47.0 47.0 3.0 10.0 24.0 0.0 31.0 51.0 0.0 37.0 2.0 0.0 37.0 25.0 22.0 38.0 26.0 44.0 42.0 30.0 26.6
StarCoder2-instruct-V0.1 68.0 41.0 0.0 58.0 74.0 69.0 67.0 71.0 67.0 67.0 58.0 68.9 43.0 60.0 60.0 56.0 51.0 63.0 59.0 51.0 55.4
WizardCoder-V1.0 25.0 11.0 0.0 10.0 38.0 12.0 19.0 26.0 27.0 1.0 8.0 10.4 12.0 0.0 7.0 6.0 20.0 15.0 47.0 22.0 17.0
Qwen1.5-Chat 33.0 47.0 8.0 30.0 37.0 44.0 38.0 45.0 46.0 25.0 41.0 32.1 15.0 22.0 35.0 48.0 28.0 46.0 38.0 23.0 32.0
CodeLlama-Instruct 45.0 44.0 0.0 27.0 51.0 38.0 49.0 47.0 44.0 38.0 48.0 29.2 47.0 33.0 33.0 55.0 37.0 45.0 49.0 44.0 40.5
Yi-1.5-Chat 56.0 52.0 12.0 49.0 57.0 61.0 63.0 64.0 56.0 33.0 57.0 37.7 28.0 30.0 43.0 66.0 38.0 53.0 53.0 37.0 47.3
CodeLlama-Instruct 39.0 30.0 1.0 24.0 41.0 15.0 41.0 46.0 40.0 38.0 41.0 28.3 48.0 22.0 40.0 53.0 39.0 37.0 53.0 35.0 37.5
CodeQwen1.5-Chat 70.0 52.0 15.0 49.0 76.0 62.0 59.0 66.0 62.0 58.0 64.0 70.8 57.0 48.0 70.0 72.0 59.0 58.0 44.0 45.0 56.4
Magicoder-S-DS 75.0 59.0 16.0 53.0 80.0 67.0 72.0 69.0 69.0 64.0 72.0 58.5 78.0 59.0 77.0 78.0 69.0 61.0 70.0 30.0 64.8

MCODER 67.0 63.0 0.0 58.0 73.0 65.0 69.0 67.0 64.0 63.0 68.0 72.6 56.0 61.0 71.0 79.0 63.0 64.0 70.0 43.0 62.6

Span Completion Light

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4 Turbo (231106) µ 76.0 66.0 70.0 84.0 80.0 94.0 66.7 74.0 76.0 60.0 72.0 72.0 66.0 90.0 86.0 46.0 88.7 62.0 88.0 86.0
GPT-3.5 Turbo (240125) µ 40.0 52.0 46.0 60.0 62.0 68.0 49.0 40.0 34.0 20.0 38.0 62.0 58.0 92.0 28.0 44.0 52.8 60.0 28.0 32.0
DeepSeekCoder-Instruct 33B 60.0 54.0 60.0 76.0 50.0 56.0 35.3 44.0 54.0 60.0 58.0 66.0 60.0 88.0 44.0 38.0 73.6 64.0 66.0 64.0
OCTOCODER 16B 22.0 40.0 40.0 58.0 42.0 22.0 27.5 20.0 8.0 0.0 0.0 40.0 36.0 52.0 0.0 2.0 54.7 40.0 12.0 0.0
StarCoder2-instruct-V0.1 15B 34.0 48.0 60.0 74.0 62.0 4.0 47.1 44.0 64.0 56.0 58.0 68.0 56.0 82.0 60.0 0.0 73.6 66.0 6.0 66.0
WizardCoder-V1.0 15B 24.0 20.0 30.0 36.0 10.0 14.0 9.8 2.0 4.0 10.0 6.0 2.0 44.0 48.0 24.0 8.0 28.3 14.0 0.0 22.0
Qwen1.5-Chat 14B 40.0 38.0 44.0 52.0 16.0 20.0 21.6 14.0 28.0 24.0 18.0 24.0 36.0 38.0 38.0 14.0 37.7 44.0 34.0 50.0
CodeLlama-Instruct 13B 48.0 46.0 42.0 58.0 34.0 20.0 23.5 30.0 36.0 40.0 30.0 38.0 42.0 36.0 36.0 26.0 49.1 42.0 44.0 36.0
Yi-1.5-Chat 9B 36.0 52.0 58.0 68.0 38.0 54.0 39.2 24.0 26.0 34.0 52.0 24.0 50.0 70.0 46.0 34.0 71.7 52.0 58.0 56.0
CodeLlama-Instruct 7B 30.0 38.0 46.0 44.0 40.0 32.0 19.6 28.0 34.0 38.0 32.0 42.0 50.0 34.0 36.0 20.0 32.1 38.0 50.0 38.0
CodeQwen1.5-Chat 7B 48.0 52.0 60.0 78.0 60.0 22.0 47.1 32.0 54.0 52.0 48.0 30.0 48.0 76.0 52.0 44.0 88.7 68.0 48.0 68.0
Magicoder-S-DS 7B 54.0 54.0 66.0 80.0 60.0 60.0 56.9 52.0 66.0 70.0 72.0 78.0 66.0 94.0 60.0 30.0 83.0 58.0 56.0 62.0

MCODER 7B 58.0 56.0 68.0 82.0 64.0 76.0 58.8 40.0 62.0 76.0 62.0 74.0 56.0 88.0 64.0 18.0 88.7 70.0 56.0 72.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4 Turbo (231106) 84.0 74.0 44.0 70.0 90.0 74.0 88.0 90.0 86.0 82.0 88.0 81.1 80.0 76.0 80.0 86.0 82.0 64.0 80.0 58.0 76.5
GPT-3.5 Turbo (240125) 60.0 56.0 24.0 52.0 70.0 24.0 56.0 82.0 36.0 60.0 36.0 43.4 48.0 46.0 70.0 62.0 58.0 50.0 64.0 52.0 50.4
DeepSeekCoder-Instruct 58.0 60.0 32.0 52.0 68.0 60.0 80.0 66.0 72.0 56.0 66.0 54.7 76.0 54.0 66.0 70.0 68.0 56.0 68.0 46.0 60.9
OCTOCODER 42.0 46.0 2.0 8.0 40.0 0.0 32.0 52.0 2.0 32.0 4.0 0.0 34.0 34.0 28.0 38.0 28.0 50.0 54.0 36.0 27.0
StarCoder2-instruct-V0.1 70.0 54.0 0.0 60.0 76.0 78.0 78.0 80.0 70.0 58.0 50.0 71.7 36.0 54.0 52.0 60.0 54.0 66.0 62.0 58.0 55.5
WizardCoder-V1.0 38.0 8.0 0.0 8.0 42.0 14.0 20.0 26.0 28.0 2.0 6.0 3.8 18.0 0.0 6.0 12.0 10.0 24.0 46.0 24.0 17.6
Qwen1.5-Chat 26.0 46.0 6.0 26.0 32.0 46.0 40.0 44.0 44.0 32.0 46.0 32.1 16.0 16.0 34.0 50.0 20.0 40.0 44.0 24.0 32.4
CodeLlama-Instruct 44.0 52.0 0.0 26.0 44.0 38.0 58.0 48.0 34.0 38.0 46.0 37.7 40.0 38.0 36.0 58.0 40.0 38.0 58.0 42.0 39.9
Yi-1.5-Chat 52.0 56.0 8.0 50.0 56.0 70.0 62.0 62.0 62.0 40.0 58.0 50.9 32.0 26.0 56.0 60.0 38.0 56.0 68.0 36.0 48.6
CodeLlama-Instruct 34.0 36.0 2.0 22.0 44.0 12.0 42.0 48.0 28.0 38.0 40.0 34.0 44.0 32.0 42.0 44.0 36.0 40.0 58.0 36.0 36.3
CodeQwen1.5-Chat 70.0 60.0 22.0 54.0 76.0 68.0 72.0 66.0 64.0 64.0 60.0 66.0 62.0 46.0 76.0 72.0 56.0 22.0 40.0 34.0 55.7
Magicoder-S-DS 74.0 66.0 18.0 66.0 84.0 72.0 78.0 76.0 72.0 58.0 64.0 58.5 78.0 66.0 74.0 78.0 72.0 56.0 68.0 34.0 65.4

MCODER 62.0 68.0 4.0 62.0 72.0 74.0 70.0 62.0 66.0 66.0 70.0 66.0 68.0 48.0 74.0 74.0 56.0 62.0 70.0 40.0 63.1

state-of-the-art models and open-source models across nearly all programming languages. Notably,
GPT-4o and GPT-4 Turbo lead the benchmark with substantial performance margins over other
models. The MCEVAL apart from previous benchmarks (such as HumanEval), where various open
models have achieved comparable or superior performance. The results indicate that MCODER
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Table 5: Pass@1 (%) scores of different models for multilingual code explanation tasks on MCEVAL.
“Avgall” represents the average scores of all code languages.

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4o (240513) µ 74.0 68.0 72.0 72.0 78.0 76.0 54.9 60.0 66.0 38.0 62.0 78.0 74.0 88.0 86.0 16.0 79.2 68.0 24.0 76.0
GPT-4 Turbo (231106) µ 84.0 70.0 72.0 52.0 60.0 76.0 54.9 50.0 64.0 42.0 50.0 78.0 68.0 88.0 76.0 10.0 81.1 74.0 18.0 70.0
GPT-3.5 Turbo (240125) µ 8.0 68.0 64.0 62.0 56.0 66.0 29.4 26.0 42.0 34.0 28.0 56.0 54.0 84.0 54.0 6.0 73.6 58.0 6.0 62.0
Yi-Large-Turbo µ 76.0 52.0 48.0 50.0 60.0 60.0 25.5 44.0 42.0 44.0 42.0 60.0 54.0 74.0 68.0 14.0 47.2 48.0 26.0 60.0
DeepSeekCoder-Instruct 33B 70.0 62.0 66.0 78.0 56.0 68.0 45.1 44.0 58.0 40.0 44.0 64.0 56.0 88.0 52.0 8.0 67.9 52.0 32.0 70.0
OCTOCODER 16B 32.0 32.0 32.0 26.0 48.0 4.0 5.9 22.0 32.0 34.0 22.0 16.0 52.0 42.0 34.0 2.0 37.7 36.0 8.0 28.0
Qwen1.5-Chat 14B 50.0 52.0 30.0 42.0 36.0 26.0 23.5 28.0 24.0 12.0 14.0 34.0 44.0 28.0 46.0 8.0 35.8 44.0 14.0 42.0
CodeLlama-Instruct 13B 32.0 42.0 34.0 44.0 44.0 0.0 7.8 16.0 30.0 38.0 16.0 30.0 32.0 32.0 40.0 10.0 28.3 36.0 10.0 24.0
Yi-1.5-Chat 9B 38.0 62.0 60.0 58.0 38.0 38.0 29.4 14.0 50.0 26.0 36.0 20.0 52.0 68.0 44.0 10.0 67.9 46.0 22.0 66.0
CodeLlama-Instruct 7B 34.0 34.0 32.0 42.0 34.0 8.0 11.8 22.0 28.0 24.0 14.0 26.0 40.0 22.0 36.0 0.0 34.0 22.0 8.0 14.0
CodeQwen1.5-Chat 7B 58.0 62.0 58.0 50.0 54.0 56.0 17.6 26.0 50.0 52.0 34.0 50.0 48.0 76.0 46.0 2.0 67.9 58.0 18.0 56.0
Magicoder-S-DS 7B 58.0 62.0 56.0 70.0 58.0 4.0 37.3 28.0 50.0 58.0 54.0 66.0 58.0 86.0 60.0 4.0 84.9 60.0 2.0 54.0

MCODER (Our Method) 7B 52.0 62.0 56.0 68.0 70.0 48.0 33.3 44.0 64.0 40.0 40.0 56.0 70.0 66.0 58.0 6.0 71.7 60.0 28.0 60.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4o (240513) 70.0 74.0 12.0 56.0 78.0 64.0 84.0 62.0 60.0 70.0 78.0 84.9 70.0 72.0 52.0 84.0 62.0 70.0 76.0 42.0 65.8
GPT-4 Turbo (231106) 68.0 64.0 8.0 56.0 68.0 68.0 82.0 66.0 60.0 62.0 70.0 66.0 70.0 58.0 68.0 90.0 50.0 72.0 68.0 50.0 62.6
GPT-3.5 Turbo (240125) 62.0 54.0 4.0 46.0 40.0 40.0 56.0 54.0 44.0 50.0 62.0 47.2 72.0 48.0 38.0 62.0 40.0 62.0 62.0 36.0 47.9
Yi-Large-Turbo 48.0 56.0 6.0 48.0 58.0 48.0 66.0 50.0 42.0 54.0 72.0 52.8 54.0 56.0 42.0 66.0 50.0 60.0 56.0 44.0 50.6
DeepSeekCoder-Instruct 56.0 64.0 6.0 42.0 52.0 52.0 68.0 58.0 52.0 50.0 70.0 49.1 64.0 54.0 34.0 68.0 56.0 62.0 66.0 40.0 55.8
OCTOCODER 24.0 36.0 0.0 24.0 14.0 32.0 44.0 62.0 26.0 34.0 10.0 26.4 30.0 34.0 40.0 30.0 24.0 34.0 38.0 8.0 29.4
Qwen1.5-Chat 30.0 36.0 6.0 22.0 38.0 34.0 34.0 32.0 24.0 48.0 66.0 22.6 18.0 24.0 16.0 60.0 20.0 58.0 44.0 30.0 32.4
CodeLlama-Instruct 26.0 36.0 0.0 4.0 28.0 30.0 36.0 26.0 20.0 32.0 28.0 20.8 32.0 26.0 26.0 38.0 32.0 42.0 50.0 24.0 29.3
Yi-1.5-Chat 50.0 56.0 4.0 30.0 42.0 52.0 62.0 70.0 52.0 34.0 74.0 30.2 50.0 42.0 24.0 52.0 30.0 68.0 36.0 28.0 43.3
CodeLlama-Instruct 24.0 30.0 0.0 4.0 32.0 2.0 30.0 22.0 14.0 28.0 28.0 17.0 32.0 24.0 20.0 42.0 28.0 30.0 40.0 12.0 23.8
CodeQwen1.5-Chat 48.0 46.0 4.0 50.0 44.0 40.0 44.0 50.0 38.0 40.0 58.0 47.2 52.0 44.0 40.0 70.0 46.0 62.0 64.0 28.0 46.4
Magicoder-S-DS 64.0 50.0 2.0 52.0 50.0 46.0 58.0 54.0 48.0 46.0 62.0 47.2 64.0 62.0 48.0 60.0 42.0 56.0 62.0 24.0 51.4

MCODER (Our Method) 62.0 52.0 0.0 48.0 46.0 44.0 62.0 58.0 38.0 50.0 74.0 67.9 32.0 46.0 44.0 60.0 50.0 58.0 58.0 50.0 51.4

exhibits clear improvement over the base model in nearly all the studied programming languages. It is
noteworthy that MCODER, despite being trained with very limited multilingual data, still outperforms
other large language models (LLMs) of similar or even larger sizes.

Multilingual Code Explanation. Table 5 displays the Pass@1 results for multilingual code expla-
nation tasks. The results show that GPT models still significantly outperform open-source models in
the code explanation task. For markup languages (Json and Markdown), the complexity of the code
structure makes it difficult to describe accurately in natural language, resulting in generally poorer
performance. Code LLMs need instruction-following capabilities for such complex structures.

Multilingual Code Completion. The completion tasks consist of single-line completion, multi-line
completion, span completion, and span completion (light). As shown in Table 4, the Pass@1 results
for multilingual code completion tasks indicate that GPT-4 Turbo still achieves the best performance.
Additionally, since this task is relatively easier compared to code generation, some open-source
models perform comparably to GPT-4 Turbo in certain programming languages.

5 FURTHER ANALYSIS

Programming Classification. In Figure 5, we categorize the programming languages of MCEVAL
into 5 programming paradigms and 11 application scenarios and summarize the performance of code
LLMs on the code generation task in Figure 6. It can be observed that code LLMs generally perform
better in object-oriented and multi-paradigm programming languages (high-resource languages),
while perform worse in functional and procedural programming languages (low-resource Languages).
In areas like web development and scientific computing, the gap between open-source and closed-
source models is narrowing. However, for application scenarios, there is still a substantial gap
between open-source models and the closed-source GPT-4 series in low-resource languages related to
scripting, mobile development, and educational research. MCODER performs superior over multiple
same-size models and even some larger open-source models.

Unbalance on Different Languages. We compare the results of several open-source models on
the MultiPL-E multilingual benchmark with corresponding languages on MCEVAL. We obtained
scores for 11 programming languages (including Python, Java, JavaScript, C++, PHP, Rust, Swift,
R, Lua, Racket, Julia) from the BigCode leaderboard.1 As shown in Figure 7(1), due to the sim-
plicity of Python language tasks in this dataset, many models exhibit significant score discrepancies
between the two benchmarks. Figure 7(2) highlights a majority of models within the blue circle,
indicating that the current state-of-the-art performance of most models primarily lies in high-resource
languages like Python, while their proficiency in low-resource languages awaits further exploration
and enhancement. By examining Figure 7(2) and (3), it becomes evident that all LLMs demonstrate
consistent multilingual capabilities between MultiPL-E and MCEVAL.

1https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
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Figure 5: Classification of MCEVAL. The programming languages in MCEVAL can be categorized
into 5 programming paradigms and 11 application scenarios.

(1) Performance on Programming Paradigm Categories (2) Performance on Application Scenario Categories 

Procedural

Object 
OrientedMarkup 

Language

Functional Multiple 
Paradigms

Mobile Development

Editor Scripts Cross Platform

Automation 
Scripts

Education 
Research

Content Data

General& 
System&Software

Scientific Computing

Desktop 
Application

Web 
Frontend

Web
Backend

Mcoder

Llama-3-8B-Instruct

CodeGemma-7B-it

CodeLlama-34B-
Instruct

CodeQwen-1.5-Chat

Phi-3-Instruct

DeepSeekCoder-1.5-
7B-Instruct

GPT3.5-Turbo

GPT-4o

GPT-4-Turbo

Figure 6: The performance of models in code completion tasks under different categories.

0

M
ul

tiP
L-

E 
(P

yt
ho

n)

McEval (Python)

Deepseek-Coder-6.7B

WizardCoder-15B-V1.0

CodeLlama-7B

CodeLlama-13BOctocoder-15B

CodeQwen1.5

20 40 60 80 100

25

50

75

100
Nxcode-CQ-7B-orpo

WizardCoder-Python-34B-V1.0
CodeGemma-7B-it

CodeShell-7B

CodeLlama-34B

Deepseek-Coder-33B

OpenCoderInterpreter-DS-6.7B

0

M
ul

tiP
L-

E 
(P

yt
ho

n)

McEval (Multilingual)

Deepseek-Coder-6.7B

WizardCoder-15B-V1.0

CodeLlama-7B
CodeLlama-13B
Octocoder-15B

CodeQwen1.5

20 40 60 80 100

25

50

75

100 Nxcode-CQ-7B-orpo

WizardCoder-Python-34B-V1.0

CodeGemma8B-it

CodeShell-7B
CodeLlama-34B

Deepseek-Coder-33B

OpenCoderInterpreter-DS-6.7B

0

M
ul

tiP
L-

E 
(M

ul
til

in
gu

al
)

McEval (Multilingual)

Deepseek-Coder-6.7B
WizardCoder-15B-V1.0

CodeLlama-7B

CodeLlama-13B

Octocoder-15B

CodeQwen1.5

20 40 60 80 100

25

50

75

100

Nxcode-CQ-7B-orpo

WizardCoder-Python-34B-V1.0

CodeGemma8B-it
CodeShell-7B

CodeLlama-34B

Deepseek-Coder-33B
OpenCoderInterpreter-DS-6.7B

(1) Python-Python (2) Multilingual-Python (3) Multilingual-Multilingual 

Figure 7: Unbalanced performance on different languages across MultiPL-E and our MCEVAL.

Cross-lingual Transfer. We fine-tune the CodeQwen-1.5 model using Python-only data in
MCEVAL-INSTRUCT and compare it with MCODER. In Figure 8, CodeQwen-1.5 performs well in
most high-resource languages, but CodeQwen without alignment exhibits unsatisfactory results in
some low-resource languages due to the inability to follow instructions. As such, with fine-tuning us-
ing only Python data, CodeQwen-1.5-Python improves significantly across most languages. It shows
that the CodeQwen foundation model already possesses strong coding capabilities but lacks adequate
instruction-following skills. Therefore, fine-tuning with Python-only data can still effectively transfer
instruction-following abilities to other languages, resulting in superior multilingual performance.

Difficulty of MCEVAL. Based on algorithmic complexity, we classify MCEVAL into three levels
(Easy/Medium/Hard). In Figure 9, we conduct a statistical analysis of CodeQwen-1.5-Chat’s perfor-
mance on code generation tasks across various languages. For most languages, the code LLM can
answer the majority of easy questions but struggles with medium and hard ones.

6 RELATED WORK

For the field of soft engineering, code LLMs (Feng et al., 2020; Chen et al., 2021; Scao et al., 2022;
Li et al., 2022; Allal et al., 2023; Fried et al., 2022; Wang et al., 2021; Zheng et al., 2024; Guo et al.,
2024) pre-trained on billions of code snippets, such as StarCoder (Li et al., 2023; Lozhkov et al.,
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Figure 8: Cross-lingual transferability of LLMs among different languages. We fine-tune CodeQwen-
1.5 using Python data in MCEVAL-INSTRUCT and OSS-Instruct to create CodeQwen-1.5-Python.
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Figure 9: CodeQwen-1.5-Chat performance on MCEVAL for problems of different difficulty levels.

2024), CodeLlama (Rozière et al., 2023), DeepSeekCoder (Guo et al., 2024), and Code-Qwen (Hui
et al., 2024). The development and refinement of code LLMs have been pivotal in automating
software development tasks, and supporting code generation/translation/summarization.

Many benchmarks (Yu et al., 2024; Yin et al., 2023; Khan et al., 2023; Orlanski et al., 2023; Jain
et al., 2024) have been woven to accurately assess code quality, functionality, and efficiency, such as
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), their upgraded version EvalPlus (Liu
et al., 2023b). Studies have explored a variety of approaches, ranging from static evaluation using
text matching to dynamic methods that involve code execution under a controlled environment. The
current benchmarks support code LLMs to evaluate a series of different types of tasks, such as
code understanding, function calling Zhuo et al. (2024), code repair (Lin et al., 2017; Tian et al.,
2024; Jimenez et al., 2023; Zhang et al., 2023; Prenner & Robbes, 2023; He et al., 2022), code
translation (Yan et al., 2023). Some works focus on the multilingual scenarios (Wang et al., 2023;
Athiwaratkun et al., 2023; Peng et al., 2024; Zheng et al., 2023b) by extending the Python-only
HumanEval/MBPP benchmark (e.g. MultiPL-E (Cassano et al., 2023)), which is challenged by the
number of the languages.

7 CONCLUSION

In this work, we push a significant advancement in the assessment of code LLMs by proposing the
first massively multilingual code evaluation benchmark (MCEVAL) by involving an annotation and
verification process conducted by professional developers, which spans 40 programming languages
and helps comprehensively tackle various tasks, including code generation, explanation, and comple-
tion. The multilingual SFT on created instruction corpora MCEVAL-INSTRUCT further emphasizes
the proficiency of LLMs in multiple coding languages. Systematic evaluations of existing code LLMs
on MCEVAL illuminate the performance disparities among open-source and closed-source models.
Extensive multilingual multitask assessment on MCEVAL provides a realistic and comprehensive
measurement of code LLMs, marking a leap forward for developers utilizing AI techniques to
understand and generate code effectively across a wide spectrum of programming languages.
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A APPENDIX

A.1 LIMITATIONS

Cover more languages and tasks Our work focuses on evaluating models on multilingual pro-
gramming tasks, currently supporting assessments in 40 programming languages. Many models
claim to support over 80 programming languages, so our work can continue to expand the range of
programming languages, the number of test cases, and types of tasks to provide a more comprehensive
evaluation of the models.

Research on cross-lingual transfer We do not delve deeply into the cross-lingual transfer capabili-
ties of models, leaving room for exploring a wider variety of models and models of different sizes. In
the future, we will explore the programming language transferability scaling law of the code LLMs
with different sizes.

A.2 DATA ANNOTATION

A.2.1 HUMAN ANNOTATION

To create the massively multilingual code evaluation benchmark MCEVAL, the annotation of mul-
tilingual code samples is conducted utilizing a comprehensive and systematic human annotation
procedure, underpinned by rigorously defined guidelines to ensure accuracy and consistency.

We recruited annotators with backgrounds in computer software development from universities.
During recruitment, we evaluated their programming and system operation skills to ensure they could
handle tasks like question writing, code static analysis, and unit testing. Each annotator was assigned
tasks based on their proficiency in specific programming languages.

Initially, 10 software developers in computer science are recruited as multilingual programming
annotators with proven proficiency in the respective programming languages.

Following a detailed training session on the annotation protocol, annotators are tasked with creating
problem definitions and the corresponding solution.

The guidelines for our annotation training session primarily cover the following aspects:

• Standardized Format: We provide an annotation example for 40 programming languages.
Annotators are required to adhere to this standardized format when annotating data.

• Accessibility: The reference data for our annotations is sourced from materials available
under permissive licenses, allowing unrestricted use and redistribution for research purposes.

• Difficulty Level: We provide annotators with detailed guidelines on the difficulty clas-
sification for each language. Annotators must strictly follow these guidelines to label
problems according to their respective difficulty levels based on algorithmic complexity and
functionality.

• Self-Contained: Annotators are required to thoroughly review their annotated problems
to ensure that the problem descriptions include all necessary information for solving them
without ambiguity. The provided example inputs and outputs must be correct, the reference
answers must execute correctly, and the test cases written should comprehensively evaluate
the accuracy of the functions.

A.2.2 REFERENCE DATA

We use reference data (The annotators only draw the inspiration from the reference website, and
create the question manually.) to draft questions and solutions with the help of GPT-4-Turbo. The
draft questions initially may contain numerous issues, such as self-contained errors, inconsistent
difficulty levels, overly simple unit tests, and incorrect unit tests. To address these issues, annotators
revised and tested the draft questions to ensure that all questions and code were accurate and that the
unit tests would pass. These reference data came from the following websites: For the algorithmic
types of questions, we refer to the following websites:
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• https://www.dotcpp.com/
• https://www.luogu.com.cn
• https://www.codecademy.com/
• https://www.codewars.com/

For markup language and design-type questions, we refer to the following websites:

• https://www.runoob.com/
• https://www.w3schools.com/

A.2.3 QUALITY CONTROL

We adopt a dual-pass system to ensure the quality of our benchmark MCEVAL. First, one annotator
labels the code snippets and their corresponding unit tests. Then, another annotator independently
reviews these annotations, verifying their correctness, code accuracy, and unit test integrity. Following
this, three senior annotators evaluate the overall unit test pass rate of the annotated dataset. If the
pass rate exceeds 90%, the senior annotators proceed to perform additional reviews and corrections.
Otherwise, the data is returned to the annotators for refinement. Finally, the canonical solution
(labeled by the annotator) passes all corresponding test cases to ensure the correctness of each created
problem (100% pass rate). This rigorous process ensures the creation of a high-quality, multilingual
programming benchmark that supports in-depth analysis and understanding of code examples across
diverse programming languages.

A.2.4 ANNOTATION COSTS

We paid all the annotators the equivalent of $6 per question and provided them with a comfortable
working environment, free meals, and souvenirs. We also provided the computer equipment and
GPT-4 interface required for labeling. We labeled about 2,000 questions in total and employed them
to check the quality of the questions/answers, and the total cost was about $12,000 in US dollars. The
annotators checked the derived tasks, including multilingual code explanation and code completion.

A.3 DETAILED ABOUT MCEVAL-INSTRUCT

Here we describe in detail the specific methods and processes of code sampling and quality control in
the process of constructing MCEVAL-INSTRUCT.

Code Sampling

• (1) We crawled a large amount of code data from GitHub and preprocessed the data according
to the StarCoder processing flow. Then, we can get a high-quality code dataset.

• (2) For each programming language, we randomly sampled the data to build an original
dataset containing 40 languages, where the instances of each language are sampled to the
same number of samples.

• (3) In addition, in the refined stage, we further used GPT-4 to refine the code snippets to
the clearer and more standardized code (the code with docstring, code comments, and clear
variables) and verified the refined code snippet through static code analysis and unit testing
methods to ensure the correctness and quality of the code.

Quality Control To check the correctness of the generated code from the GPT-4, we use static
analysis and unit testing to ensure the accuracy of generated data as much as possible:

• Code Correctness: We use static code analysis tools and Abstract Syntax Tree (AST) parsing
to ensure the correctness of the code.

• Automated Testing: We leverage an LLM to automatically generate unit tests, filtering out
code that fails to pass these tests.

• Harmful Content Filtering: We filter out code snippets containing harmful information using
keyword-based filters.
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A.4 EXAMPLES IN MCEVAL

Figure 10 display three examples of multilingual generation.

In Figure 11, we show three examples of multilingual explanation.

In Figure 12, we display three examples of multilingual explanation. The three examples from left
to right correspond to the span completion task, the single-line completion task, and the multi-line
completion task.

Write a Common Lisp function `(defun create-largest-number 
(numbers)` to solve the following problem:
This function takes a list of positive integers and 
rearranges them to form the largest possible number.
It does this by concatenating the integers in an order such 
that their digit-wise combination yields the maximum value.
Example:
>>> create-largest-number '(56 9 45)
"95645"
>>> create-largest-number '(5 50 56)
"56550"

(defun create-largest-number (numbers)
(let ((str-numbers (mapcar #'number-to-string numbers)))
(setf str-numbers (sort str-numbers #'larger-when-
concatenated))
(reduce (lambda (acc x) (concatenate 'string acc x)) str-
numbers :initial-value "")))
(defun number-to-string (number)
(write-to-string number))
(defun larger-when-concatenated (a b)
(string> (concatenate 'string a b) (concatenate 'string b a)))

Instruction: Language Lisp

Reference Solution

(defun test-create-largest-number ()
    (assert (string= (create-largest-number '(56 9 45)) 
"95645"))
    (assert (string= (create-largest-number '(5 50 56)) 
"56550"))
    (assert (string= (create-largest-number '(3 34 302 50)) 
"50343302"))
    (assert (string= (create-largest-number '(10 2 23)) 
"23210"))
    (assert (string= (create-largest-number '(4 42 40 400)) 
"44240400")))
(test-create-largest-number)

Test Cases

Using the awk command in Linux, complete the following task: 
In data/AWK/contribution.txt, where the data format is as 
follows:
# 'Zhang Dandan 41117397 :250:100:175
# Zhang Xiaoyu 390320151 :155:90:201
# Meng Feixue 80042789 :250:60:50
# Wu Waiwai 70271111 :250:80:75
# Liu Bingbing 41117483 :250:100:175
# Wang Xiaoai 3515064655 :50:95:135
# Zi Gege 1986787350 :250:168:200
# Li Youjiu 918391635 :175:75:300
# Lao Nanhai 918391635 :250:100:175',

# where the first column is the surname, the second column is 
the first name (concatenating the first and second columns 
gives the full name), the third column is the corresponding 
ID number, and the last three columns are three donation 
amounts. Please print the full names and ID numbers of people 
with ID numbers starting with '41'

awk -F "[ :]+" '$3~/^(41)/{print $1,$2,$3}' 
data/AWK/contribution.txt

awk_command = < Code Being Evaluated >
ref_command = " awk -F \"[ :]+\" '$3~/^(41)/{print $1,$2,$3}' 
data/AWK/contribution.txt
"
generate_result = subprocess.check_output(
                        awk_command, shell=True, text=True)
ref_result = subprocess.check_output(
                        ref_command, shell=True, text=True)
assert generate_result == reference_result

Instruction: Language AWK

Reference Solution

Test Cases

Write a R function `longest_increasing_subsequence <- 
function(sequence)` to solve the following problem:
This function longest_increasing_subsequence takes a vector 
sequence representing a sequence of integers and returns the 
length of the longest increasing subsequence within it. An 
increasing subsequence is defined as a set of numbers in the 
sequence that are in increasing order and are taken from the 
original sequence without changing their order. The length of 
the subsequence is the number of elements it contains.

Example 1:
Input: c(1, 7, 3, 5, 9, 4, 8)
Output: 4 (The longest increasing subsequence is 1, 3, 5, 8)

Instruction: Language R

longest_increasing_subsequence <- function(sequence) {
    n <- length(sequence)
    lis <- numeric(n)
    lis[1] <- 1
    for (i in 2:n) {
        max_val <- 0
        for (j in 1:(i-1)) {
            if (sequence[i] > sequence[j] && lis[j] > max_val) 
{max_val <- lis[j]    }
        }
        lis[i] <- max_val + 1
    }
    max(lis)}

main <- function() {
    stopifnot(longest_increasing_subsequence(c(1, 7, 3, 5, 9, 
4, 8)) == 4)
    stopifnot(longest_increasing_subsequence(c(10, 22, 9, 33, 
21, 50, 41, 60)) == 5)
}
main()

Test Cases

Reference Solution

Figure 10: Examples of multilingual generation. The data mainly consists of an instruction part
(including function name, function description, and function call cases), a reference solution, and
a test cases part. Left. Shows an example of the Lisp language. Middle. Shows a file processing
programming task in AWK language. During the evaluation, the corresponding file processing result
by the generated code will be compared with the reference answer. Right. Shows an example of the
R language.

fun findPrimePairs(maxNumber: Int): List<Pair<Int, Int>>
{
    fun isPrime(num: Int): Boolean {
        if (num <= 1) return false
        for (i in 2 until num) {
            if (num % i == 0) return false
        }
    return true
}

    val pairs = mutableListOf<Pair<Int, Int>>()
    for (i in 2..maxNumber - 2) {
        if (isPrime(i) && isPrime(i + 2)) {
            pairs.add(Pair(i, i + 2))
        }
    }
    return pairs
}

Provide a concise natural language description (docstring) of 
the Kotlin code in English using at most 500 characters.

Instruction: Language Kotlin

Finds all prime pairs where each prime is less than or equal 
to a given number and the pair differs by 2.
A prime pair is defined as two prime numbers where the 
difference between them is exactly 2.
Example:
>>> findPrimePairs(10)
[(3, 5), (5, 7)]
>>> findPrimePairs(100)
[(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 
61), (71, 73)]

Reference Explanation

function addDigits(num)

    while num >= 10 do

        local sum = 0

        while num > 0 do

            sum = sum + (num % 10)

            num = math.floor(num / 10)

         end

         num = sum

    end

    return num

end

Provide a concise natural language description (docstring) of 

the Lua code in English using at most 500 characters.

Instruction: Language Lua

Given a non-negative integer num, repeatedly add all its 

digits until the result has only one digit.

For example:

>>> addDigits(38)

2

Because 3 + 8 = 11, and 1 + 1 = 2. Since 2 has only one digit, 

2 is the result.

Reference Explanation

<table>
    <tr>
        <th><strong>col_1</strong></th>
        <th><strong>col_2</strong></th>
    </tr>

    <tr>
        <td>row_1; col_1</td>
        <td>row_1; col_2</td>
    </tr>

    <tr>
        <td>row_2; col_1</td>
        <td>row_2; col_2</td>
    </tr>
</table>

Provide a concise natural language description (docstring) of 
the HTML code in English using at most 500 characters.

Instruction: Language HTML

a table with two rows and two columns, with column names 

col_ 1 and col_ 2. The table content includes its 

corresponding row and column numbers, such as row_ 1; col_1，

and bold the header text

Reference Explanation

Figure 11: Examples of multilingual explanation. The data mainly consists of an instruction part
(including a complete function), a reference Explanation. Left. Shows an example of the Kotlin
language. Middle. Shows an example of the Lua language. Right. Shows an example of the HTML
language.
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Instruction: Language C++

int extraNumber(int a, int b, int c){
    if (a == b) {
        return c;
    }
    else if (a == c) {
        return b;
    }
    else {
        return a;
    }
}

Reference Solution

int main() {
    assert(extraNumber(2, 7, 2) == 7);
    assert(extraNumber(3, 2, 2) == 3);
    assert(extraNumber(5, 5, 1) == 1);
    assert(extraNumber(500000000, 3, 500000000) == 3);
    assert(extraNumber(500000000, 500000000, 3) == 3);
    return 0;
}

Test Cases

Below is a explanation of Rust code and incomplete code 
implementation.

* Docstring:
You are given a list of deposit and withdrawal 
operations on a bank account that starts with
zero balance. Your task is to detect if at any point 
the balance of account fallls below zero, and
at that point function should return True. Otherwise it 
should return False.

* Incomplete Code:
fn below_zero(operations:Vec<i32>) -> bool{
    let mut balance:i32 = 0;
    for op in operations {
[MASK]
        if balance < 0 {
            return true;}}
    return false;
}
Please fill the [MASK]（multiple lines of code may be 
masked out) and write the complete function.

Instruction: Language Rust Instruction: Language Shell

test_calculate_max_pens() {
local result
result=$(calculate_max_pens 5 5)
[[ "$result" -eq 2 ]] || { echo "Test 1 failed: Expected 
2, got $result"; exit 1; }
result=$(calculate_max_pens 20 1)
[[ "$result" -eq 10 ]] || { echo "Test 2 failed: 
Expected 10, got $result"; exit 1; }
result=$(calculate_max_pens 3 8)
[[ "$result" -eq 2 ]] || { echo "Test 3 failed: Expected 
1, got $result"; exit 1; }
result=$(calculate_max_pens 11 0)
[[ "$result" -eq 5 ]] || { echo "Test 4 failed: Expected 
5, got $result"; exit 1; }

Test Cases

Below is a explanation of CPP code and incomplete code 
implementation.

* Docstring:
You are given three integers a, b, c, where two of them are 
equal, and the third is different from the other two. Your 
task is to find the value that occurs exactly once.

Examples:
extraNumber(0, 0, 1) returns 1
extraNumber(4, 3, 4) returns 3

* Incomplete Code:
int extraNumber(int a, int b, int c){
   [MASK]a == c) {
     return b;
   }
   else {
    return a;
   }
}

Please fill the [MASK]（multiple lines of code may be 
masked out) and write the complete function.

fn below_zero(operations:Vec<i32>) -> bool{
    let mut balance:i32 = 0;
    for op in operations {
        balance = balance + op;
        if balance < 0 {
            return true;
        }
    }
    return false;
}

Reference Solution

#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_below_zero() {
assert_eq!(below_zero(vec![]), false);
assert_eq!(below_zero(vec![1, 2, -3, 1, 2, -3]), false);
assert_eq!(below_zero(vec![1, 2, -4, 5, 6]), true);
assert_eq!(below_zero(vec![1, -1, 2, -2, 5, -5, 4, -4]), 
false);
assert_eq!(below_zero(vec![1, -1, 2, -2, 5, -5, 4, -5]), 
true);
assert_eq!(below_zero(vec![1, -2, 2, -2, 5, -5, 4, -4]), 
true);
}
}

Test Cases

Below is a explanation of Shell code and incomplete 
code implementation.

* Docstring:
This function calculates the maximum number of pens 
that can be bought with a given amount of money.
The price of one pen is 1 Yuan and 9 Jiao (1.9 Yuan).
The function takes two integers, a and b, as input 
where 'a' represents the Yuan and 'b' represents the 
Jiao part of the total money available.
It returns the maximum number of pens that can be 
purchased.
For example, if a=5 and b=0, the function will return 2, 
as the total money is 5 Yuan, and two pens cost 3.8 
Yuan.

* Incomplete Code:
calculate_max_pens() {
[MASK]
[MASK]
    local total_jiao=$((yuan * 10 + jiao))
[MASK]
    local max_pens=$((total_jiao / price_per_pen))
[MASK]
Please fill the [MASK]（multiple lines of code may be 
masked out) and write the complete function.

calculate_max_pens() {
    local yuan=$1
    local jiao=$2
    local total_jiao=$((yuan * 10 + jiao))
    local price_per_pen=19
    local max_pens=$((total_jiao / price_per_pen))
    echo "$max_pens"
}

Reference Solution

Figure 12: Examples of multilingual completion. The data mainly consists of an instruction part
(including a incomplete function ), a reference complete code solution and test cases. Left. Shows an
span completion example of the C++ language. Middle. Shows an single line completion example of
the Rust language. Right. Shows an multiple line completion example of the Shell language.

{
    "sites": [
        {
            "name": "Google",
            "url": "www.google.com"
        },
        {
            "name": "Weibo",
            "url": "www.weibo.com"
        }
    ]
}

Rerference Solution

Create a JSON represents a collection of websites, each 
defined with two key details: their name and URL. The sites 
array holds two objects.
The first object represents the website "Google" with the URL 
"www.google.com".
The second object describes the website "Weibo" with its URL 
"www.weibo.com".
This structure efficiently organizes these popular websites 
by their most essential identifiers.

Instruction Language Json

{
    "sites": [
        {
            "name": "Google",
            "url": "www.google.com"
        },
        {
            "name": "Weibo",
            "url": "www.weibo.com"
        }
    ]
}

Test 

{
    "sites": [
        {
            "url": "www.google.com",
            "name": "Google"
        },
        {

 "url":"www.weibo.com",
  "name": "Weibo"

        }
    ]
}

match

match

All subcomponents match exactly, test passes！

Figure 13: Examples of Markup language (Json) generation task evaluation.

A.5 EVALUATION

For programming languages other than markup languages, we use an execution-based correctness
metric by running the code with the provided test cases. For markup languages, we use the Exact
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Table 6: Runtime environments for different programming languages.

Language Runtime Environments

AWK GNU bash, version 4.4.20(1)-release (x86_64-pc-linux-gnu)
C gcc (Ubuntu 7.5.0-3ubuntu11̃8.04) 7.5.0
C# dotnet 8.0.100
CPP g++ (Ubuntu 7.5.0-3ubuntu11̃8.04) 7.5.0
CoffeeScript CoffeeScript version 1.12.7
Common Lisp SBCL 1.4.5.debian
Dart Dart SDK version: 3.3.1 (stable)
Elixir elixir 1.3.3
Emacs Lisp GNU Emacs 25.2.2
Erlang Erlang/OTP 20 [erts-9.2]
F# dotnet 8.0.100
Fortran GNU Fortran (Ubuntu 7.5.0-3ubuntu11̃8.04) 7.5.0
Go go version go1.18.4 linux/amd64
Groovy Groovy Version: 4.0.16 JVM: 17.0.9 Vendor: Oracle Corporation OS: Linux
HTML -
Haskell The Glorious Glasgow Haskell Compilation System, version 9.4.7
Json -
Java javac 11.0.19
JavaScript Node.js v16.14.0
Julia julia v1.9.4
Kotlin kotlinc-jvm 1.9.21 (JRE 17.0.9+11-LTS-201)
Lua Lua 5.4.6 Copyright (C) 1994-2023 Lua.org, PUC-Rio
Markdown -
PHP PHP 7.2.24-0ubuntu0.18.04.17 (cli) (built: Feb 23 2023 13:29:25) ( NTS )
Pascal Free Pascal Compiler version 3.2.2 [2021/05/16] for x86_64
Perl perl 5, version 26, subversion 1 (v5.26.1) built for x86_64-linux-gnu-thread-multi
PowerShell PowerShell 7.4.0
Python Python 3.8.12
R R version 3.4.4
Racket Racket v6.11
Ruby ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-linux-gnu]
Rust rustc 1.74.0 (79e9716c9 2023-11-13)
Scala Scala code runner version 3.3.1 – Copyright 2002-2023, LAMP/EPFL
Scheme Racket v6.11
Shell GNU bash, version 4.4.20(1)-release (x86_64-pc-linux-gnu)
Swift Swift version 5.9.2 (swift-5.9.2-RELEASE)
Tcl tclsh 8.6.11
TypeScript tsc Version 5.3.3
VimScript VIM - Vi IMproved 9.0 (2022 Jun 28, compiled Dec 20 2023 18:57:50)
Visual Basic dotnet 8.0.100

Match metric for evaluation. Taking Json as an example, we parse all subcomponents in Json. If the
model result is exactly the same as the subcomponent of the reference solution, the model generation
result is considered correct. An example of Markup language (Json) is shown in Figure 13.

We adopt the greedy Pass@1 (%) metric (Kulal et al., 2019; Chen et al., 2021) for our evaluations. For
closed-source models, we generate answers through the official API service. For open-source models,
we prioritize using vLLM (Kwon et al., 2023) for faster inference if the model is supported by vLLM.
Otherwise, we perform inference with the Distributed Data Parallel (DDP) module from PyTorch. For
the code generation and code completion tasks, we extract the functional part of the code from the
model outputs and combine it with corresponding test cases to form compilable and executable code.
For the code explanation task, we adopt a two-pass generation approach (Code-to-Natural-Language
and Natural-Language-to-Code). The extraction and execution process for this task is consistent with
the previous two tasks. We conduct all evaluations in a Docker environment. Detailed information
on the code compilation and execution environment are displayed in Table 6. We have uploaded the
Docker image to docker hub to facilitate the reproduction of results and the evaluation of new models.
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1Figure 14: Pass@1 (%) scores of different code LLMs (<10B) for multilingual code generation tasks
on MCEVAL. “AVG” represents the average scores of all code languages.
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1Figure 15: Pass@1 (%) scores of different code LLMs (10B to 40B) for multilingual code generation
tasks on MCEVAL. “AVG” represents the average scores of all code languages.

A.6 OPTIMIZATION DETAILS

All MCODER models are fine-tuned using 8 NVIDIA A800-80GB GPUs. The models are trained for
2 epochs with a cosine scheduler, starting at a learning rate of 2e-5 and incorporating a 3% warmup
phase. Training a model takes about 5 hours. We used AdamW (Loshchilov & Hutter, 2017) as
the optimizer and a batch size of 512 with a sequence truncation length of 4096. We use PyTorch’s
Fully Sharded Data Parallel (FSDP) to perform distributed training of the model, and use gradient
checkpointing technology and gradient accumulation to save memory and achieve training with a
larger batch size.

A.7 EXTRA RESULTS

A.8 PROGRAMMING CLASSIFICATION

As shown in Table 7 and Table 8, we comprehensively display the code generation performance of
the models we tested across various programming paradigms and application scenarios.
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1Figure 16: Pass@1 (%) scores of different code LLMs (Closed Source & 200B+) for multilingual
code generation tasks on MCEVAL. “AVG” represents the average scores of all code languages.
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1Figure 17: Pass@1 (%) scores of different code LLMs for multilingual code explain tasks on
MCEVAL. “AVG” represents the average scores of all code languages.

A.9 MCODER RESULT

In Table 9, we show some extra MCODER Pass@1 (%) results on multilingual code generation tasks.
We evaluate the base models CodeQwen-1.5 and DeepsSeek-Coder-1.5 respectively. In addition to
CodeQwen-1.5, we also selected DeepSeek-Coder-1.5-base as the base model for fine-tuning.

A.10 PARALLEL QUESTIONS ACROSS LANGUAGES & PROGRAMMING GRAMMAR

Due to the large number of languages, it is difficult to ensure parallel problem annotation. For
most language annotations, we follow the characteristics of the language and perform independent
annotations. For example, structured languages such as Markdown and HTML need independent
annotations. For some similar languages, such as Typescript and Javascript, we use parallel annotation
on some data.

As shown in Figure 19, we analyzed the programming languages in the MCEVAL from the represen-
tation perspective. We used CodeBERT (Feng et al., 2020) to extract code representations from code
snippets in MCEVAL. These representations were visualized using t-SNE (Van der Maaten & Hinton,
2008) and hierarchical clustering (Murtagh & Contreras, 2012) methods. The figure clearly shows
that languages with similar syntax have closely related representations. For example, other functional
programming languages similar to Common Lisp, as well as C, C++, Java, and scripting languages,
exhibit high grammar similarity.
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Figure 18: Pass@1 (%) scores of different models for multilingual code completion tasks on MCEVAL.
“Avg” represents the average scores of all code languages.
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Table 7: Pass@1(%) results of code generation performance of across various programming paradigms

Method Procedural Object Oriented Multiple Paradigms Functional Markup Language

GPT-4o (240517) 58.0 79.8 65.9 67.0 46.0
GPT-4 Turbo (231106) 56.7 78.7 65.2 59.3 46.7
GPT-3.5-Turbo (240125) 38.7 66.8 57.6 44.3 39.3
Codegemma-7b-it 19.3 46.6 34.0 16.3 34.0
CodeLlama-13b-Instruct 21.3 32.0 27.0 32.3 28.0
CodeLlama-34b-Instruct 27.3 33.6 28.0 30.0 30.7
CodeLlama-7b 20.3 28.1 23.4 26.7 30.7
CodeQwen-1.5-7b-Chat 41.3 57.3 46.3 41.0 37.3
Codeshell-7b-chat 16.0 24.1 25.7 14.0 34.7
Codestral-22B-v0.1 40.0 67.6 54.1 39.7 40.7
DeepSeekCoder-33b-instruct 52.7 62.8 56.3 52.0 34.7
DeepSeekCoder-1.5-7b-instruct 39.0 51.8 48.8 41.0 40.0
Magicoder-S-DS-6.7B 45.7 58.5 49.4 49.0 32.0
Llama-3-8B-Instruct 27.3 44.7 38.0 32.0 33.3
Nxcode-CQ-7B-orpo 40.7 54.9 45.5 41.3 36.7
OCTOCODER 20.7 28.9 21.9 25.0 25.3
OpenCodeInterpreter-DS-6.7B 40.7 57.7 46.4 42.0 42.0
Phi-3-medium-4k-instruct 32.3 43.1 36.6 26.7 35.3
Qwen1.5-72B-Chat 38.3 37.2 36.2 29.3 39.3
WizardCoder-15B-V1.0 19.0 31.6 34.2 24.0 6.7
WizardCoder-Python-34B 27.7 43.9 38.2 33.7 36.0

MCODER 41.3 57.3 47.4 42.3 43.3

Table 8: Pass@1(%) results of code generation performance of across various application scenarios

Method Mobile Cross Desktop Frontend Backend Scientific General Content Education Scripts Editor

GPT-4o (230517) 84.0 68.3 75.0 66.7 64.6 71.6 57.6 46.0 72.7 65.7 52.0
GPT-4 Turbo (231106) 81.0 64.4 74.0 64.0 66.6 66.8 57.6 46.7 60.7 65.7 50.0
GPT-3.5 (240125) 60.0 56.7 71.0 63.3 57.5 55.6 50.4 39.3 45.3 50.0 25.0
Codegemma-7b-it 45.0 40.4 43.0 34.7 37.7 21.6 24.8 34.0 22.0 29.7 13.0
code-Llama-13b 30.0 15.4 39.0 34.7 28.0 23.2 34.8 28.0 24.0 27.7 13.0
CodeLlama-34b-Instruct 33.0 17.3 38.0 38.0 27.2 24.0 32.8 30.7 26.7 31.7 19.0
Code-Llama-7b-Instruct 24.0 12.5 37.0 29.3 22.7 20.8 29.2 30.7 19.3 27.0 14.0
CodeQwen-1.5-7b 55.0 44.2 59.0 56.7 48.7 47.6 46.8 37.3 42.7 40.0 20.0
Codeshell-7b-chat 23.0 14.4 26.0 40.7 26.1 17.2 21.2 34.7 13.3 22.7 8.0
Codestral-22B-v0.1 68.0 58.7 64.0 57.3 55.0 54.0 44.8 40.7 30.0 53.3 28.0
DeepSeekCoder-33b-instruct 63.0 50.0 57.0 68.0 60.6 54.8 54.0 34.7 56.7 52.7 35.0
DeepSeekCoder-1.5-7b-instruct 40.0 42.3 59.0 62.0 52.7 40.8 50.0 40.0 34.7 46.0 22.0
Magicoder-S-DS-6.7B 49.0 43.3 64.0 60.7 50.4 49.6 52.4 32.0 48.7 49.7 24.0
Llama-3-8B-Instruct 41.0 30.8 48.0 50.7 40.5 30.0 37.2 33.3 34.0 33.0 15.0
Nxcode-CQ-7B-orpo 54.0 40.4 55.0 53.3 48.4 48.0 46.8 36.7 42.7 39.7 20.0
OCTOCODER 22.0 20.2 33.0 28.7 21.8 16.4 27.2 25.3 16.0 29.0 14.0
OpenCodeInterpreter-DS-6.7B 47.0 42.3 64.0 58.0 45.9 47.6 46.4 42.0 43.3 44.0 24.0
Phi-3-medium-4k-instruct 40.0 26.9 48.0 48.7 30.3 39.2 31.6 35.3 33.3 39.0 13.0
Qwen1.5-72B-Chat 30.0 29.8 43.0 44.7 36.3 30.4 38.0 39.3 32.7 40.0 21.0
WizardCoder-15B-V1.0 28.0 24.0 36.0 48.0 37.1 29.2 27.2 6.7 20.7 26.3 9.0
WizardCoder-Python-34B 42.0 28.8 46.0 42.0 44.2 32.8 38.0 36.0 32.7 32.3 19.0

MCODER 56.0 38.5 60.0 57.3 50.4 48.0 46.0 43.3 39.3 44.3 25.0

We selected training data from several languages in MCEVAL-INSTRUCT, which exhibit significant
grammatical differences (approximately 10K samples of Python and 1K samples for other languages)
and fine-tuned the model. The results are as shown in Table 10.

When trained using only Python data, the performance on Python and AWK improved. However,
this led to the scores for TypeScript and JavaScript dropping to 0. Upon inspection, we found that the
generated code for these two languages contained syntax errors (Less data may lead to instability in
model training).

When training on a mixture of several languages, Python performance decreased slightly compared
to using only Python data, while Scheme performance improved significantly. Furthermore, the syntax
generation for TypeScript and JavaScript returned to normal (even without adding JavaScript data,
as TypeScript and JavaScript share similar syntax). However, there was no significant improvement
compared to the base model.

Thus, fine-tuning multilingual code models presents significant challenges. Similar languages can
provide mutual benefits, while languages with greater differences may negatively impact performance.
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Table 9: Additional MCODER Pass@1 (%) results on multilingual code generation tasks. “Avgall"
represents the average Pass@1 scores across all programming languages in the MCEVAL. Here,
MCODER-DS indicates that the fine-tuned base model is DeepSeekCoder-1.5-7b-base.

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

DeepSeekCoder-1.5-base 7B 30.0 36.0 38.0 40.0 40.0 58.0 0.0 18.0 2.0 14.0 50.0 44.0 48.0 26.0 2.0 4.0 49.1 32.0 16.0 34.0
CodeQwen-1.5 7B 38.0 40.0 46.0 42.0 28.0 56.0 2.0 14.0 14.0 0.0 40.0 46.0 44.0 32.0 2.0 0.0 47.2 52.0 30.0 60.0
CodeQwen-1.5-Python 7B 42.0 48.0 48.0 12.0 52.0 68.0 23.5 22.0 40.0 62.0 50.0 42.0 48.0 68.0 56.0 32.0 67.9 52.0 52.0 54.0

MCODER-DS 7B 34.0 46.0 50.0 26.0 30.0 72.0 19.6 6.0 26.0 24.0 58.0 30.0 48.0 12.0 26.0 28.0 67.9 48.0 62.0 48.0
MCODER 7B 40.0 44.0 52.0 62.0 46.0 66.0 21.6 30.0 44.0 52.0 56.0 44.0 48.0 70.0 32.0 34.0 54.7 54.0 66.0 56.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall
DeepSeekCoder-1.5-7B-base 42.0 20.0 0.0 24.0 24.0 36.0 42.0 54.0 24.0 20.0 38.0 39.6 44.0 20.0 18.0 32.0 10.0 44.0 22.0 22.0 28.9
CodeQwen-1.5 58.0 50.0 0.0 14.0 20.0 10.0 48.0 38.0 30.0 24.0 36.0 52.8 32.0 34.0 42.0 46.0 30.0 52.0 54.0 22.0 33.2
CodeQwen-1.5-Python 46.0 46.0 24.0 42.0 36.0 36.0 54.0 44.0 36.0 40.0 46.0 52.8 58.0 40.0 42.0 62.0 48.0 52.0 58.0 18.0 45.5

MCODER-DS 36.0 42.0 22.0 34.0 8.0 34.0 46.0 42.0 22.0 40.0 56.0 45.3 48.0 30.0 38.0 48.0 34.0 46.0 50.0 28.0 37.8
MCODER 48.0 52.0 30.0 42.0 36.0 32.0 54.0 44.0 40.0 36.0 48.0 52.8 58.0 44.0 46.0 64.0 38.0 52.0 58.0 20.0 46.7
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Figure 19: Analysis from the representation perspective on MCEVAL. Languages with similar syntax
have closely related representations

Table 10: Preliminary explorations on the impact of finetuning across different languages on model
performance.

Setting Python Scheme TypeScript JavaScript AWK

CodeQwen1.5-base 38.0 34.0 52.0 52.0 38.0
+ Python 48.0 12.0 0.0 0.0 40.0
+ Python&Scheme&TypeScript&AWK 44.0 38.0 50.0 48.0 42.0

A.11 DETAILED RELATED WORK

Code Large Language Model. In recent years, numerous large language models (LLMs) have
been developed specifically for code-related tasks. For the field of soft engineering, code LLMs (Feng
et al., 2020; Chen et al., 2021; Scao et al., 2022; Li et al., 2022; Allal et al., 2023; Fried et al.,
2022; Wang et al., 2021; Zheng et al., 2024; Guo et al., 2024) pre-trained on billions of code
snippets, such as StarCoder (Li et al., 2023; Lozhkov et al., 2024), CodeLlama (Rozière et al.,
2023), DeepSeekCoder (Guo et al., 2024), and Code-Qwen (Bai et al., 2023). The development and
refinement of code LLMs have been pivotal in automating software development tasks, providing
code suggestions, and supporting code generation/translation.

To improve the performance of code generation, researchers used optimized prompts (Liu et al., 2023a;
Reynolds & McDonell, 2021; Zan et al., 2023; Beurer-Kellner et al., 2023), bring test cases (Chen
et al., 2023) and collaborative roles (Dong et al., 2023). There are also some related studies on using
large language models for other code tasks, such as dynamic programming (Dagan et al., 2023),
compiler optimization (Cummins et al., 2023), multi-lingual prompts (Di et al., 2023), and Program
of Thoughts (Chen et al., 2022).
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Code Evaluation. In the domain of code evaluation, a rich tapestry of benchmarks (Zheng et al.,
2023b; Yu et al., 2024; Yin et al., 2023; Peng et al., 2024; Khan et al., 2023; Orlanski et al., 2023)
has been woven to address the challenges of accurately assessing code quality, functionality, and
efficiency, such as HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), their upgraded
version EvalPlus (Liu et al., 2023b). Studies have explored a variety of approaches, ranging from
static analysis techniques (e.g. exact match (EM) and edit similarity (ES)), which examine code
without executing it, to dynamic methods that involve code execution in controlled environments
(e.g. Pass@k). The current benchmarks support code models to evaluate a series of different types of
tasks, such as code understanding, function calling (Zhuo et al., 2024), code repair (Lin et al., 2017;
Tian et al., 2024; Jimenez et al., 2023; Zhang et al., 2023; Prenner & Robbes, 2023; He et al., 2022),
code translation (Yan et al., 2023). Recently, many works Wei et al. (2023); Zhuo et al. (2024) have
leveraged LLMs to construct large-scale evaluation datasets and instruction-tuning corpora, further
enhancing the evaluation and performance of code models. In our work, we used a similar approach to
construct an instruction dataset and proposed the Cross-lingual Code Transfer method to expand the
number of languages to 40. Some recent works pay attention to the multilingual scenarios (Cassano
et al., 2023; Wang et al., 2023; Athiwaratkun et al., 2023; Zheng et al., 2023a; Peng et al., 2024;
Zheng et al., 2023b) by extending the existing python-only HumanEval or MBPP benchmark, such as
MultiPL-E (Cassano et al., 2023) and MBXP (Athiwaratkun et al., 2023), which is challenged by the
number of the covering languages and data leaking problem (Li et al., 2023; Jain et al., 2024).
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