
Published as a conference paper at ICLR 2025

MCEVAL: MASSIVELY MULTILINGUAL CODE EVALUA-
TION

Linzheng Chai1
∗
, Shukai Liu1 *, Jian Yang1 *†, Yuwei Yin2, Ke Jin1, Jiaheng Liu1,

Tao Sun1, Ge Zhang3, Changyu Ren1, Hongcheng Guo1, Zekun Wang1, Boyang Wang1,
Xianjie Wu1, Bing Wang1, Tongliang Li4, Liqun Yang1, Sufeng Duan5, Zhoujun Li1
1CCSE, Beihang University, 2University of British Columbia, 3University of Waterloo
4Beijing Information Science and Technology University, 5Shanghai Jiao Tong University

ABSTRACT

Code large language models (LLMs) have shown remarkable advances in code
understanding, completion, and generation tasks. Programming benchmarks, com-
prised of a selection of code challenges and corresponding test cases, serve as
a standard to evaluate the capability of different LLMs in such tasks. However,
most existing benchmarks primarily focus on Python and are still restricted to
a limited number of languages, where other languages are translated from the
Python samples degrading the data diversity. To further facilitate the research
of code LLMs, we propose a massively multilingual code benchmark covering
40 programming languages (MCEVAL) with 16K test samples, which substan-
tially pushes the limits of code LLMs in multilingual scenarios. The benchmark
contains challenging code completion, understanding, and generation evaluation
tasks with finely curated massively multilingual instruction corpora MCEVAL-
INSTRUCT. In addition, we introduce an effective multilingual coder MCODER
trained on MCEVAL-INSTRUCT to support multilingual programming language
generation. Extensive experimental results on MCEVAL show that there is still a
difficult journey between open-source models and closed-source LLMs in numer-
ous languages. The instruction corpora and evaluation benchmark are available at
https://github.com/MCEVAL/McEval.

1 INTRODUCTION

C C++ C#

Java

Python

Rust Shell Power Shell

PHP GO

R

Fortran

Scala

HTML JavaScript TypeScript Perl

CoffeeScript

Erlang Swift

Pascal

Tcl

Visual Basic

F#CLIPS

MarkDownRuby

Kotlin

Julia

Groovy

Json

Elixir

Vim lang

Lua

Dart

ElispRacket

Scheme

Haskell

AWK

Multilingual Code
Generation

Multilingual
Code Completion

Multilingual
Code Explain

def find_median(nums):
nums.sort()
n = len(numbers)
if n % 2 == 1:

m = nums[n//2]
else:

[MASK]
m = (m1 + m2)/2

return m

def find_median(nums):
nums.sort()
n = len(numbers)
if n % 2 == 1:

m = nums[n//2]
else:

m1 = nums[n//2-1]
m2 = nums[n//2]
m = (m1 + m2)/2

return m

Problem: Find the median
number given list.

def find_median(nums):
nums.sort()
n = len(numbers)
if n % 2 == 1:

m = nums[n//2]
else:

m1 = nums[n//2-1]
m2 = nums[n//2]
m = (m1 + m2)/2

return m

Problem: Please fill the
[MASK] and output the
complete function.

Problem: Please describe
the function in English.

Python
Java
C++

Figure 1: MCEVAL comprised three
tasks: code generation, code completion,
and code explanation.

Large language models (LLMs) designed for code, such
as Codex (Chen et al., 2021), CodeGen (Nijkamp et al.,
2023), Code Llama (Rozière et al., 2023), DeepSeek-
Coder (Guo et al., 2024), and CodeQwen (Hui et al., 2024)
excel at code understanding, completion, and generation
tasks.

Code LLMs with a large number of parameters (e.g.
7B, 13B, or larger) are pre-trained on large-scale code
databases with self-supervised autoregressive objectives,
followed by instruction tuning (Ouyang et al., 2022) for
aligning to human preferences and downstream code-
related tasks. Most code benchmarks (Chen et al., 2021;
Austin et al., 2021; Athiwaratkun et al., 2023) are intro-
duced to evaluate the performance of code LLMs by as-
sessing their ability to generate executable code based on
the problem descriptions. The assessments aim to gauge
the capacity of the models to understand and generate
code effectively, thereby contributing to facilitating and streamlining the programming process for
developers. The execution-based method executes generated code against test cases to measure the

∗ Equal contribution.
† Corresponding Author.

1

https://github.com/MCEVAL/McEval

Published as a conference paper at ICLR 2025

success rate. Due to the difficulty of creating the problem and its corresponding solution (requiring
specialized programming staff), the development of evaluation benchmarks is limited within Python,
with a few other languages being translated from Python. Therefore, the community desperately needs
a massively multilingual programming benchmark (not from HumanEval or MBPP) comprised of
instruction corpora and evaluation set to comprehensively facilitate and evaluate the generation,
completion, and understanding capability of LLMs.

To facilitate the development of code LLMs, we introduce a complete framework that includes
the multilingual code instruction corpora, multilingual coder (MCODER), and multilingual code
evaluation benchmark. First, we propose MCEVAL, the first massively multilingual code evaluation
benchmark (from human handwriting) covering 40 languages (16K samples in total), encompassing
multilingual code generation, multilingual code explanation, and multilingual code completion
tasks. Then, we create a massively multilingual instruction corpora MCEVAL-INSTRUCT of 40
languages. We initially select and refine high-quality code snippets from various programming
languages (PLs) using an LLM. The LLM then generates clear and self-contained instructional
content, including problem descriptions and corresponding solutions, based on the refined snippets.
To ensure consistency and enhance learning across languages, we introduce cross-lingual code
transfer, adapting instructional content to different PLs while increasing sample complexity. Based
on open-source models and MCEVAL-INSTRUCT, MCODER is used as a strong baseline to explore
the transferability of LLMs among different PLs.

The contributions are summarized as follows: (1) We propose MCEVAL with enough test samples
(16K), a true massively multilingual multitask code evaluation benchmark (not from HumanEval
or MBPP) covering 40 languages, encompassing multilingual code generation, multilingual code
explanation, and multilingual code completion tasks. (2) We introduce MCEVAL-INSTRUCT, the
massively multilingual code instruction corpora covering from the multilingual code snippet from
40 languages. Based on MCEVAL-INSTRUCT, an effective multilingual coder MCODER is used as
a strong baseline for MCEVAL. (3) We systematically evaluate the understanding and generation
capabilities of 20+ models on our created MCEVAL and create a leaderboard to evaluate them on
40 programming languages dynamically. Notably, extensive experiments suggest that comprehen-
sive multilingual multitask evaluation can realistically measure the gap between open-source (e.g.
DeepSeekCoder and CodeQwen1.5) and closed-source models (e.g. GPT-3.5 and GPT-4).

2 MULTILINGUAL CODE EVALUATION: MCEVAL

2.1 DATASET STATISTICS
Table 1: MCEVAL dataset statistics.

Statistics Value
Questions
Code Generation 2, 007
Code Explanation 2, 007
Code Completion 12, 017

- Single-Line 2, 998
- Multi-Line 2, 998
- Span 4, 014
- Span(light) 2, 007

Total Test Cases 10, 086

Difficulty Level
- Easy 1, 221
- Medium 401
- Hard 385

Length
Prompt

- maximum length 793 tokens
- minimum length 16 tokens
- avg length 173.8 tokens

Solution(Output)
- maximum length 666 tokens
- minimum length 4 tokens
- avg length 120.9 tokens

The created MCEVAL is comprised of three key code-related
tasks covering 40 programming languages, including multi-
lingual code generation, multilingual code explanation, and
multilingual code completion tasks. The multilingual code
generation and explanation tasks separately contain 2K sam-
ples, where each language has nearly 50 samples. The code
completion task can be decomposed intomulti-line comple-
tion (3K samples), single-line completion (3K samples), span
completion (4K samples), and span completion (light) (2K
samples) (Bavarian et al., 2022).

In Table 1, we display the number of questions, test cases, and
difficulty levels corresponding to the three tasks in MCEVAL
and the number of questions in the four sub-tasks of the
completion task. Moreover, we counted the token length
of the prompt and solutions. (The tokens are calculated
based on the Llama-3 tokenizer.) Among these tasks, the
span completion (light) task is similar in form to the span
completion task. However, in the span completion (light)
task, each problem is paired with all the corresponding code,
making it a balanced version of the span completion task
(fewer samples for fast inference and the same test size of

2

Published as a conference paper at ICLR 2025

AW
K C# C

Co
ffe

eS
cr

ip
t

Co
m

m
on

 L
ispCP

P
Da

rt
El

ix
ir

Em
ac

s L
isp

Er
lan

g F#
Fo

rtr
an Go

Gr
oo

vy
Ha

sk
ell

HT
M

L
Ja

va
Ja

va
Sc

rip
t

JS
ON Ju
lia

Ko
tli

n
Lu

a
M

ar
kd

ow
n

Pa
sc

al
Pe

rl
PH

P
Po

we
rS

he
ll

Py
th

on R
Ra

ck
et

Ru
by

Ru
st

Sc
ala

Sc
he

m
e

Sh
ell

Sw
ift Tc

l
Ty

pe
Sc

rip
t

Vi
m

Sc
rip

t
Vi

su
al

Ba
sic

0

1

2

3

4

5

6

7

8

9

50
x

to
ke

ns
 /

ca
se

s

Prompt Length (50x tokens)
Output Length (50x tokens)
Test Cases

Figure 2: Data statistics of the MCEVAL benchmark involving 40 programming languages.

each programming language). The results of span completion (light) can better reflect the differences
in model performance across different languages.

Figure 2 plots the length of the prompt, solution(output), and the number of test cases of each
programming language. In Table 2, We compared MCEVAL with other multilingual benchmarks. It
is noteworthy that our benchmark provides a significant supplement to current benchmarks in terms
of both the variety of programming languages and the number of questions.

Table 2: Comparison between MCEVAL and other multilingual code benchmarks. ♢The number of
each of the three tasks (Generation, Explanation, and Completion).

Benchmark Multi-Task #Languages Data source #Questions

MuliPL-E (Cassano et al., 2023) ✗ 18 Translate ~3,000
MBXP Athiwaratkun et al. (2023) ✓ 10 Translate 12,425
HumanEval-X Zheng et al. (2023b) ✓ 5 Hand-Written 820
HumanEval-XL Peng et al. (2024) ✗ 12 Hand-Written 22,080

MCEVAL ✓ 40 Hand-Written 16,031 (2007/2007/12017)♢

2.2 HUMAN ANNOTATION & QUALITY CONTROL

To create the massively multilingual code evaluation benchmark MCEVAL, the annotation of mul-
tilingual code samples is conducted utilizing a comprehensive and systematic human annotation
procedure, underpinned by rigorously defined guidelines to ensure accuracy and consistency. Initially,
10 software developers in computer science are recruited as multilingual programming annotators with
proven proficiency in the respective programming languages. Following a detailed training session
on the annotation protocol, which emphasizes the importance of context, syntactical correctness,
and semantic fidelity across languages, annotators are tasked with creating problem definitions and
the corresponding solution. The annotators should follow: (1) Provide a clear and self-contained
problem definition, answer the question with any tools, and design the test cases to evaluate the
correctness of the code. (2) Classify them into multiple difficulties (Easy/Middle/Hard), based on
algorithmic complexity and functionality. Each sample is independently annotated by at least two
annotators to minimize subjective bias and errors. Discrepancies between annotators are resolved
through consensus or adjudication by a senior annotator. Finally, three volunteers are employed to
evaluate the correctness of the benchmark (> 90% accuracy) and correct the errors. (See Appendix
A.2 for more details).

2.3 EVALUATION TASKS

Multilingual Code Generation. Given the k-th programming language Lk ∈ {Li}Ki=1, where
K = 40 is the number of programming languages, we provide the problem description qLk and
examples test cases eLk as the input for code LLMs M to generate the corresponding code aLk . We
obtain the sampled code result from the code generation distribution P (aLk |qLk , eLk ;M) from code
LLM M, and then feed the test cases into the generated code, where the generated outputs by code
should equal the expected outputs. The process can be described as:

rLk = I(P (aLk |qLk , eLk ;M);uLk) (1)

3

Published as a conference paper at ICLR 2025

Instruction: Language Python

def find_min_n_greater_than_k(k: int) -> int:
Initialize variables
 n = 1
 S_n = 0

Calculate the minimum n for which S_n > k
 while S_n <= k:
 S_n += 1 / n
 n += 1
 return n - 1

Reference Solution

def test_find_min_n_greater_than_k():
 assert find_min_n_greater_than_k(1) == 2, "Test case 1
failed."
 assert find_min_n_greater_than_k(3) == 11, "Test case 2
failed."
 assert find_min_n_greater_than_k(5) == 83, "Test case 3
failed."
 print("All test cases passed.")

Run the test function
test_find_min_n_greater_than_k()

Test Cases

fn separate_paren_groups(paren_string: String) ->
Vec<String>{

 let mut result:Vec<String> = vec![];
 let mut current_string:String = String::new();
 let mut current_depth:u32 = 0;

 for c in paren_string.chars(){
 if c == '('{
 current_depth += 1;
 current_string.push(c);
 }
 else if c == ')' {
 current_depth -= 1;
 current_string.push(c);

 if current_depth == 0{
 result.push(current_string.clone());
 current_string.clear()
 }
 }
 }
 return result;
}

Provide a concise natural language description
(docstring) of the Rust code in English using at
most 500 characters.

Instruction: Language Rust

Write a Python function ‘def
find_min_n_greater_than_k(k: int) -> int:’ to
solve the following problem:
Calculate the smallest positive integer n such that the
sum of the harmonic series up to 1/n is greater than a
given positive integer k.

The harmonic series is defined as S_n = 1 + 1/2 + 1/3
+ ... + 1/n.

Args:
- k (int): A positive integer representing the threshold
value the harmonic series sum must exceed.

Returns:
- int: The smallest integer n for which the harmonic
series sum S_n exceeds the threshold k.

Examples:
>>> find_min_n_greater_than_k(1)
2
>>> find_min_n_greater_than_k(3)
11

Input to this function is a string containing
multiple groups of nested parentheses. Your goal
is to separate those group into separate strings
and return the list of those.
Separate groups are balanced (each open brace is
properly closed) and not nested within each other
Ignore any spaces in the input string.

Reference Solution

int main()
{
 assert(process_request(0) == 1);
 assert(process_request(1) == 1);
 assert(process_request(2) == 2);
 assert(process_request(3) == 6);
 assert(process_request(4) == 24);
 assert(process_request(10) == 6266);
 assert(process_request(10000) == 6991);
 return 0;
}

Test Cases

calculate_max_pens() {
 local yuan=$1
 local jiao=$2
 local total_jiao=$((yuan * 10 + jiao))
 local price_per_pen=19
 local max_pens=$((total_jiao / price_per_pen))
 echo "$max_pens"
}

Reference Solution

Instruction: Language CPP
Below is a explanation of CPP code and incomplete
code implementation.

* Docstring:
Calculates the factorial of N modulo 10007.
Parameters:
- N (int): An integer representing the input value (N <=
10000).
Returns:
int: The result after calculating the factorial of N and
taking the modulo 10007.
Examples:
process_request(1) return 1
process_request(10) return 6266

* Incomplete Code:
int process_request(int n)
{
[MASK]
[MASK]
[MASK]
 for (register int i = 2; i <= 10000; i++) {
 a[i] = (a[i - 1] * i) % 10007;
 }
[MASK]
}

Please fill the [MASK]（multiple lines of code may
be masked out) and write the complete function.

(1) Code Generation (2) Code Explain (3) Code Completion

Figure 3: Examples of multilingual code generation, explanation, and completion.

where I(·) is the indicator function by executing the generated code with the given test cases uLk .
when the generated code aLk passes all test cases, the evaluation result r = 1, else r = 0.

Multilingual Code Explanation. To evaluate the understanding capability of code LLMs, we
adopt two-pass generation (Code-to-Natural-Language and Natural-Language-to-Code), since the
text-similar metrics (e.g. BLEU (Papineni et al., 2002)) are hindered by the n-gram text matching and
can not produce an accurate score. We first prompt the code LLMs to generate the natural language
description tLk based on the code aLk and then we force the model to restore the original code based
on tLk . The sampled code from P (aLk |tLk ;M) is used to evaluate the understanding capability as:

r = I(P (tLk |aLk ;M)P (aLk |tLk ;M);uLk) (2)

where I(·) is used to check the correctness of the generated code by running the code with test cases.

Multilingual Code Completion. Another important scenario is code completion, where the code
LLM produces the middle code aLk

m based on the prefix code aLk
p and suffix code snippet aLk

s . Hence,
we concatenate aLk

p , aLk
m , and aLk

s as the complete code for evaluation as:

r = I(P (aLk
m |aLk

p , aLk
s ;M);uLk) (3)

where aLk
p , aLk

q , and aLk
m are concatenated as the complete code to be executed with test cases uLk .

3 MCODER

3.1 MCEVAL-INSTRUCT

Collection from Code Snippet. For a programming language Lk (Lk ∈ {Li}Ki=1) and K is the
number of programming languages), consider an existing code snippet c ∈ DLk

c , we prompt the
LLM to select the high-quality code and refine the code to a self-contained code snippet by using the
prompt “{Code Snippet}\nDetermine its educational value for a student whose goal is to learn basic
coding concepts.\n\nIf the answer is ‘YES’. Please refine the code with clear variable definitions,
comments, and docstring.”. Then, we can obtain the multilingual refined code snippets. (More details
can be found in Appendix A.3)

4

Published as a conference paper at ICLR 2025

Step1:Code Collection Step2: Code Selection and Refinement Step3: Code Corpora Instruction

```{Code Snippet}```
Determine its educational value for a 
student whose goal is to learn basic 
coding concepts.

If the answer is the “YES”. Please refine 
the code with clear variable definition, 
comments, and docstring.

Multilingual Instruction Corpora

Question and Answer of 
Language {src}:
{question}\n\n{content}

Please draw the inspiration from 
the given question and response 
to create the new question and 
answer of language {tgt}

Prompt
Step4: Cross-lingual Enhancement

Pascal

Prompt

Step5: Instruction Tuning

Step6: Massively Multilingual Evaluation
Code Generation

Generation

McEval

You are an expert in programming, especially in 
designing high-quality {language} question and 
answer based on the given code snippet.
### Guidelines:
* The question and answer must be completely self-
contained and clear.
* The difficulty of the code can be taken a step further 
and the docstring describes the problem description.
### Given Code snippet:
{code}
### Created Question
{{Created Question}}
### Created Solution
{{Created Solution}}

Prompt

…

C++C-sharp

Java Rust

RHTML

Python
Java

Scala

GO
Kotlin

R

C

LLM

Code Completion
Code Explain

DeepSeek-Coder

CodeQwen

CodeLlama

GPT3.5/4

print(sum([nums]))

console.log(nums.reduce((a,b)=>a+b,0));

std::cout<<std::accumulate(std::begin(nums),
std::end(nums), 0)

McCoder

Figure 4: The framework of MCODER. We first create MCEVAL-INSTRUCT covering 40 languages
from code snippets to fine-tune MCODER. 20+ existing LLMs and MCODER are then evaluated on
MCEVAL comprised of multilingual code generation, explanation, and completion.

Instruction Corpora Generation. To construct a comprehensive massively multilingual code
instruction corpora {DLi}Ki=1, we prompt the LLMs (gpt-4-1106-preview) to create a problem
description qLk and the corresponding solution aLk by drawing inspiration from the refined code
snippet cLk . We use LLM to generate instruction dataset by using the prompt “You are an expert in
programming, especially in designing high-quality language question and answer based on the given
code snippet.\n\n ### Guidelines: * The question and answer must be completely self-contained
and clear.*\n The difficulty of the code can be taken a step further and the docstring describes the
problem description.\n ### Given Code snippet: code\n ### Created Question Created Question\n
### Created Solution\n Created Solution” in Figure 4.
Cross-lingual Code Transfer. Since the created instruction samples of different programming
languages focus on different aspects of coding, we adopt the cross-lingual code transfer to min-
imize the gap among multiple languages. Given the instruction dataset DLi of language Li,
we randomly sample a pair (qLi , aLi) and force the LLM to modify them to another language
Lj with a more complex sample (qLi→Lj , aLi→Lj ). In this way, we can get the derived in-
struction corpora {DLi→Lj}(i ̸= j ∧ 1 ≤ i, j ≤ K). Finally, we combine {DLk}Kk=1 and
{DLi→Lj}(i ̸= j ∧ 1 ≤ i, j ≤ K) as the multilingual instruction corpora MCEVAL-INSTRUCT
{DLk

mc}Kk=1 covering 40 programming languages.

3.2 MULTILINGUAL CODE INSTRUCTION TUNING

The training objective Lall of the multilingual instruction fine-tuning can be described as:

Lall = −
K∑

k=1

EqLk ,aLk∼{DLk}K
k=1

[
logP (aLk |qLk ;M)

]
(4)

where qLk and aLk are the code-related question and answer from the dataset DLk of language Lk,
respectively. K is the number of programming languages.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Code LLMs. We evaluate 30 + models with sizes ranging from 7B to 236B parameters, including
general/code LLMs, open/closed-source models, and base/instruction models. For general models,
we evaluate GPT series (Brown et al., 2020; OpenAI, 2023), Qwen1.5 (Bai et al., 2023), Llama3 (AI,

5



Published as a conference paper at ICLR 2025

Table 3: Pass@1 (%) scores of different code LLMs for multilingual code generation tasks on
MCEVAL. “Avgall” represents the average scores of all code languages.

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4o (240513) µ 54.0 60.0 58.0 72.0 60.0 82.0 54.9 64.0 66.0 44.0 66.0 78.0 62.0 80.0 90.0 32.0 81.1 62.0 74.0 72.0
GPT-4 Turbo (231106) µ 70.0 60.0 64.0 80.0 64.0 72.0 45.1 62.0 56.0 38.0 54.0 74.0 56.0 82.0 78.0 30.0 83.0 60.0 72.0 70.0
GPT-3.5 Turbo (240125) µ 14.0 54.0 58.0 68.0 54.0 76.0 41.2 26.0 30.0 46.0 40.0 68.0 54.0 86.0 50.0 18.0 71.7 60.0 76.0 54.0
Yi-Large-Turbo µ 52.0 44.0 50.0 54.0 54.0 52.0 31.4 30.0 46.0 30.0 58.0 52.0 46.0 80.0 58.0 22.0 41.5 52.0 78.0 56.0
DeepSeekCoder-V2-Instruct 236B 62.0 60.0 66.0 72.0 74.0 80.0 43.1 52.0 62.0 32.0 80.0 76.0 56.0 84.0 72.0 30.0 77.4 64.0 74.0 70.0
Qwen1.5-Chat 72B 50.0 48.0 46.0 56.0 46.0 44.0 19.6 14.0 18.0 24.0 34.0 32.0 50.0 42.0 32.0 22.0 39.6 46.0 74.0 32.0
CodeLlama-Instruct 34B 38.0 32.0 32.0 40.0 42.0 34.0 7.8 16.0 28.0 32.0 24.0 18.0 34.0 20.0 32.0 14.0 26.4 42.0 68.0 28.0
WizardCoder-Python 34B 36.0 42.0 46.0 52.0 42.0 46.0 13.7 14.0 38.0 38.0 26.0 26.0 50.0 54.0 40.0 26.0 43.4 52.0 70.0 52.0
DeepSeekCoder-Instruct 33B 50.0 58.0 66.0 70.0 60.0 86.0 25.5 40.0 50.0 40.0 66.0 48.0 54.0 78.0 56.0 30.0 73.6 62.0 42.0 56.0
Codestral-v0.1 22B 54.0 48.0 56.0 66.0 60.0 62.0 43.1 28.0 34.0 24.0 56.0 58.0 58.0 76.0 52.0 34.0 73.6 58.0 72.0 52.0
DeepSeekCoder-V2-Lite-Instruct 16B 58.0 58.0 64.0 74.0 56.0 76.0 35.3 30.0 40.0 26.0 68.0 56.0 56.0 66.0 60.0 26.0 66.0 64.0 68.0 60.0
OCTOCODER 16B 28.0 28.0 28.0 38.0 40.0 18.0 5.9 14.0 28.0 16.0 22.0 4.0 34.0 30.0 20.0 8.0 34.0 30.0 58.0 20.0
WizardCoder-V1.0 15B 18.0 38.0 28.0 36.0 36.0 50.0 17.6 0.0 24.0 24.0 28.0 30.0 38.0 62.0 40.0 6.0 30.2 52.0 14.0 38.0
Granite-34B-code-instruct-8K 34B 48.0 38.0 54.0 50.0 60.0 64.0 19.6 16.0 36.0 36.0 50.0 40.0 52.0 64.0 44.0 28.0 37.7 54.0 66.0 48.0
Granite-20B-code-instruct-8K 20B 38.0 42.0 40.0 56.0 40.0 56.0 23.5 18.0 40.0 16.0 32.0 42.0 46.0 48.0 40.0 20.0 35.8 50.0 74.0 48.0
Granite-8B-code-instruct-4K 8B 36.0 28.0 44.0 48.0 50.0 56.0 11.8 20.0 36.0 22.0 32.0 38.0 46.0 48.0 40.0 26.0 35.8 48.0 64.0 48.0
Granite-3B-code-instruct-128K 3B 16.0 14.0 42.0 38.0 40.0 30.0 9.8 12.0 36.0 16.0 26.0 26.0 30.0 32.0 34.0 22.0 26.4 50.0 62.0 28.0
Phi-3-medium-4k-instruct 14B 52.0 46.0 40.0 52.0 34.0 42.0 13.7 14.0 16.0 8.0 30.0 32.0 42.0 42.0 42.0 20.0 39.6 52.0 68.0 48.0
CodeLlama-Instruct 13B 36.0 38.0 38.0 40.0 46.0 30.0 7.8 16.0 32.0 32.0 16.0 26.0 34.0 22.0 38.0 18.0 22.6 34.0 56.0 32.0
Llama-3-Instruct 8B 32.0 46.0 50.0 54.0 38.0 48.0 15.7 14.0 32.0 30.0 12.0 26.0 48.0 52.0 38.0 16.0 45.3 54.0 70.0 40.0
CodeQwen-2.5-Chat 7B 58.0 58.0 58.0 74.0 56.0 86.0 37.3 54.0 56.0 38.0 56.0 62.0 58.0 84.0 66.0 34.0 69.8 60.0 76.0 64.0
Codegemma-it 7B 26.0 40.0 42.0 48.0 20.0 18.0 23.5 10.0 4.0 4.0 8.0 22.0 46.0 58.0 32.0 24.0 56.6 48.0 70.0 38.0
CodeLlama-Instruct 7B 32.0 34.0 26.0 40.0 42.0 32.0 5.9 14.0 22.0 20.0 20.0 14.0 32.0 22.0 32.0 14.0 18.9 28.0 64.0 24.0
Codeshell-chat 7B 24.0 30.0 36.0 26.0 20.0 38.0 5.9 4.0 14.0 6.0 8.0 8.0 28.0 30.0 22.0 24.0 22.6 42.0 66.0 24.0
DeepSeekCoder-1.5-Instruct 7B 40.0 54.0 56.0 60.0 56.0 80.0 23.5 24.0 40.0 40.0 40.0 46.0 52.0 80.0 26.0 24.0 60.4 56.0 66.0 42.0
Magicoder-S-DS 7B 44.0 50.0 50.0 60.0 58.0 72.0 19.6 32.0 34.0 62.0 62.0 54.0 50.0 80.0 54.0 16.0 66.0 60.0 56.0 40.0
Nxcode-CQ-orpo 7B 38.0 52.0 58.0 50.0 46.0 62.0 23.5 22.0 38.0 36.0 52.0 46.0 52.0 72.0 46.0 28.0 56.6 50.0 64.0 62.0
OpenCodeInterpreter-DS 7B 38.0 54.0 52.0 68.0 44.0 78.0 17.6 30.0 42.0 48.0 52.0 54.0 48.0 72.0 40.0 28.0 66.0 46.0 72.0 34.0
CodeQwen-1.5-Chat 7B 40.0 52.0 56.0 62.0 48.0 62.0 29.4 22.0 38.0 38.0 50.0 44.0 50.0 70.0 44.0 30.0 58.5 54.0 64.0 62.0

MCODER (Our Method) 7B 40.0 44.0 52.0 62.0 46.0 66.0 21.6 30.0 44.0 52.0 56.0 44.0 48.0 70.0 32.0 34.0 54.7 54.0 66.0 56.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4o (240513) 84.0 60.0 32.0 52.0 64.0 64.0 72.0 76.0 66.0 66.0 64.0 83.0 32.0 76.0 76.0 84.0 68.0 56.0 78.0 40.0 65.2
GPT-4 Turbo (231106) 80.0 56.0 38.0 46.0 64.0 68.0 76.0 78.0 58.0 62.0 66.0 71.7 66.0 58.0 72.0 82.0 56.0 60.0 68.0 38.0 63.4
GPT-3.5 Turbo (240125) 62.0 58.0 24.0 40.0 56.0 58.0 68.0 60.0 56.0 40.0 56.0 52.8 68.0 46.0 60.0 58.0 44.0 54.0 74.0 24.0 52.6
Yi-Large-Turbo 36.0 48.0 24.0 46.0 44.0 46.0 64.0 44.0 50.0 34.0 64.0 0.0 48.0 50.0 48.0 64.0 52.0 50.0 40.0 30.0 46.6
DeepSeekCoder-V2-Instruct 80.0 58.0 36.0 54.0 54.0 68.0 78.0 64.0 64.0 66.0 64.0 84.9 76.0 74.0 70.0 74.0 68.0 50.0 72.0 40.0 64.6
Qwen1.5-Chat 20.0 50.0 22.0 36.0 40.0 36.0 40.0 32.0 22.0 26.0 44.0 34.0 30.0 30.0 34.0 40.0 26.0 44.0 30.0 28.0 35.8
CodeLlama-Instruct 24.0 30.0 10.0 28.0 40.0 24.0 38.0 32.0 18.0 26.0 30.0 26.4 28.0 20.0 20.0 42.0 24.0 38.0 36.0 22.0 29.1
WizardCoder-Python 36.0 46.0 12.0 36.0 36.0 38.0 44.0 40.0 20.0 22.0 46.0 35.8 48.0 22.0 2.0 48.0 30.0 28.0 40.0 24.0 36.5
DeepSeekCoder-Instruct 66.0 58.0 32.0 54.0 32.0 48.0 60.0 56.0 48.0 46.0 66.0 66.0 62.0 60.0 58.0 60.0 58.0 56.0 44.0 30.0 54.3
Codestral-v0.1 64.0 56.0 16.0 6.0 54.0 56.0 64.0 56.0 48.0 36.0 40.0 71.7 48.0 32.0 48.0 72.0 44.0 52.0 62.0 28.0 50.5
DeepSeekCoder-V2-Lite-Instruct 64.0 56.0 28.0 48.0 56.0 44.0 68.0 64.0 50.0 52.0 56.0 71.7 60.0 54.0 52.0 76.0 38.0 60.0 58.0 24.0 54.7
OCTOCODER 14.0 32.0 10.0 6.0 26.0 24.0 38.0 30.0 6.0 24.0 0.0 32.1 4.0 22.0 26.0 30.0 24.0 38.0 28.0 14.0 23.3
WizardCoder-V1.0 26.0 40.0 0.0 12.0 32.0 32.0 48.0 30.0 20.0 10.0 40.0 24.5 40.0 10.0 0.0 30.0 20.0 42.0 36.0 18.0 28.0
Granite-34B-code-instruct-8K 44.0 50.0 22.0 40.0 34.0 40.0 56.0 44.0 32.0 36.0 38.0 45.3 34.0 36.0 36.0 52.0 32.0 50.0 44.0 16.0 42.2
Granite-20B-code-instruct-8K 38.0 48.0 22.0 32.0 34.0 40.0 48.0 44.0 28.0 32.0 40.0 39.6 36.0 40.0 30.0 46.0 28.0 46.0 38.0 16.0 38.3
Granite-8B-code-instruct-4K 32.0 38.0 20.0 34.0 38.0 34.0 42.0 36.0 22.0 34.0 36.0 43.4 40.0 30.0 20.0 50.0 30.0 48.0 42.0 12.0 36.5
Granite-3B-code-instruct-128K 20.0 32.0 8.0 32.0 24.0 28.0 38.0 34.0 12.0 24.0 42.0 24.5 30.0 22.0 16.0 36.0 14.0 42.0 34.0 16.0 28.0
Phi-3-medium-4k-instruct 30.0 48.0 18.0 28.0 36.0 42.0 50.0 48.0 38.0 30.0 26.0 26.4 18.0 30.0 26.0 50.0 22.0 52.0 44.0 12.0 35.2
CodeLlama-Instruct 20.0 30.0 10.0 8.0 28.0 32.0 34.0 30.0 12.0 20.0 28.0 24.5 24.0 26.0 20.0 40.0 18.0 40.0 38.0 10.0 27.7
Llama-3-Instruct 34.0 40.0 14.0 32.0 36.0 38.0 40.0 42.0 30.0 22.0 34.0 41.5 38.0 32.0 26.0 48.0 24.0 50.0 42.0 16.0 36.0
CodeQwen-2.5-Chat 72.0 58.0 32.0 50.0 56.0 64.0 72.0 62.0 66.0 58.0 60.0 69.8 60.0 64.0 66.0 82.0 50.0 56.0 68.0 40.0 60.3
Codegemma-it 36.0 48.0 8.0 14.0 40.0 36.0 42.0 24.0 16.0 18.0 40.0 39.6 40.0 20.0 12.0 54.0 10.0 38.0 38.0 16.0 30.7
CodeLlama-Instruct 16.0 30.0 14.0 6.0 28.0 12.0 34.0 32.0 14.0 24.0 28.0 17.0 26.0 20.0 16.0 32.0 22.0 28.0 34.0 14.0 24.6
Codeshell-chat 28.0 34.0 14.0 10.0 22.0 28.0 32.0 30.0 16.0 14.0 34.0 30.2 18.0 8.0 12.0 18.0 12.0 42.0 26.0 12.0 23.0
DeepSeekCoder-1.5-Instruct 38.0 48.0 30.0 38.0 42.0 54.0 64.0 44.0 32.0 44.0 54.0 45.3 50.0 40.0 42.0 42.0 40.0 50.0 58.0 20.0 46.0
Magicoder-S-DS 42.0 48.0 24.0 48.0 50.0 44.0 56.0 48.0 44.0 42.0 54.0 45.3 54.0 44.0 54.0 56.0 46.0 50.0 68.0 16.0 48.8
Nxcode-CQ-orpo 42.0 46.0 18.0 42.0 38.0 40.0 44.0 44.0 36.0 42.0 46.0 47.2 44.0 40.0 42.0 66.0 30.0 48.0 60.0 18.0 44.7
OpenCodeInterpreter-DS 48.0 50.0 26.0 46.0 50.0 30.0 54.0 56.0 42.0 34.0 40.0 50.9 38.0 44.0 36.0 46.0 36.0 50.0 60.0 18.0 46.0
CodeQwen-1.5-Chat 44.0 48.0 18.0 46.0 38.0 44.0 42.0 44.0 38.0 40.0 46.0 45.3 48.0 38.0 42.0 66.0 30.0 54.0 56.0 18.0 45.5

MCODER (Our Method) 48.0 52.0 30.0 42.0 36.0 32.0 54.0 44.0 40.0 36.0 48.0 52.8 58.0 44.0 46.0 64.0 38.0 52.0 58.0 20.0 46.7

2024), Phi-3 (Abdin et al., 2024), and Yi (Young et al., 2024). For code models, we test Code-
Qwen (Hui et al., 2024), DeepSeekCoder (Guo et al., 2024), CodeLlama (Rozière et al., 2023),
OCTOCODER (Muennighoff et al., 2023), CodeShell (Xie et al., 2024), MagiCoder (Wei et al.,
2023), WizardCoder (Luo et al., 2023), Codegemma (Gemma Team, 2024) and Granite (Mishra et al.,
2024). Furthermore, we further fine-tune MCODER based on CodeQwen1.5 and DeepSeekCoder to
explore the language transfer capabilities of code LLMs.
Evaluation Metrics. We assess the models by executing the code and evaluating it using the
Pass@1 metric. Pass@1 is a widely recognized measure in machine learning, particularly for code
generation, as it gauges the model’s accuracy in producing correct solutions on the first attempt.
Instruction Corpora. The resulting dataset, MCEVAL-INSTRUCT (110K samples), is comprised
of created question-answer pairs and open-source collection (Wei et al., 2023). We apply data
decontamination before training our MCODER. Following Li et al. (2023); Wei et al. (2023), we adopt
the N-gram exact match decontamination method with MCEVAL, HumanEval(Chen et al., 2021),
MultiPL-E(Cassano et al., 2023), MBPP(Austin et al., 2021). For supervised fine-tuning (SFT), we
utilize CodeQwen-1.5 as the foundational code LLMs. Specifically, we select all Python data from
MCEVAL-INSTRUCT, comprising 50K training samples, for MCODER-Python training.
Optimization & Evaluation. Our MCODER based on CodeQwen1.5 are trained for 2 epochs with a
cosine scheduler, starting at a learning rate of 2e-5 (3% warmup steps). We use AdamW (Loshchilov
& Hutter, 2017) as the optimizer and a batch size of 512 (max length 4096). We adopt the greedy
Pass@1 (%) metric (Kulal et al., 2019; Chen et al., 2021) for evaluations. For closed-source LLMs,
the answers are generated by the official API. For code explanation, we prompt the LLM to describe
the code and then restore the descriptions to the original code. (Details can be found in Appendix
A.6).

4.2 MAIN RESULTS

Multilingual Code Generation. Table 3 shows the Pass@1 results of various models on MCEVAL
for multilingual code generation task. The results reveal a significant disparity between closed-source

6



Published as a conference paper at ICLR 2025

Table 4: Pass@1 (%) scores of different models for multilingual code completion tasks on MCEVAL.
“Avgall” represents the average scores of all code languages.

Single-line Completion

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4 Turbo (231106) µ 92.9 74.4 75.6 89.3 91.1 97.5 76.5 84.2 82.4 54.2 79.6 69.6 81.7 92.6 76.2 57.1 93.9 80.0 93.1 93.3
GPT-3.5 Turbo (240125) µ 14.3 32.9 20.7 41.7 53.6 68.8 28.6 44.7 19.1 6.3 14.3 37.5 67.1 76.6 11.9 21.4 40.8 35.0 4.2 76.7
DeepSeekCoder-Instruct 33B 50.0 61.0 72.0 79.8 62.5 78.8 70.4 63.2 66.2 45.8 68.4 60.7 67.1 83.0 38.1 52.4 82.7 65.0 77.8 83.3
OCTOCODER 16B 42.9 47.6 52.4 82.1 35.7 56.3 60.2 34.2 8.8 0.0 0.0 48.2 58.5 73.4 0.0 2.4 81.6 56.3 6.9 0.0
StarCoder2-instruct-V0.1 15B 28.6 74.4 81.7 86.9 71.4 7.5 82.7 68.4 75.0 62.5 76.5 64.3 82.9 88.3 47.6 0.0 91.8 83.8 16.7 83.3
WizardCoder-V1.0 15B 21.4 37.8 36.6 38.1 3.6 18.8 28.6 0.0 38.2 14.6 9.2 10.7 59.8 66.0 14.3 16.7 38.8 41.3 0.0 53.3
Qwen1.5-Chat 14B 35.7 50.0 54.9 61.9 19.6 51.3 37.8 6.6 27.9 16.7 30.6 30.4 46.3 51.1 28.6 28.6 59.2 50.0 54.2 53.3
CodeLlama-Instruct 13B 78.6 57.3 75.6 79.8 48.2 56.3 48.0 52.6 54.4 41.7 43.9 46.4 68.3 68.1 26.2 21.4 52.0 61.3 48.6 66.7
Yi-1.5-Chat 9B 35.7 63.4 65.9 84.5 39.3 61.3 66.3 38.2 48.5 27.1 68.4 35.7 59.8 85.1 38.1 21.4 77.6 58.8 69.4 75.6
CodeLlama-Instruct 7B 78.6 62.2 73.2 54.8 30.4 66.3 48.0 31.6 47.1 35.4 52.0 42.9 61.0 61.7 33.3 26.2 22.4 18.8 61.1 67.8
CodeQwen1.5-Chat 7B 35.7 68.3 63.4 76.2 67.9 47.5 78.6 35.5 72.1 45.8 57.1 60.7 73.2 69.1 31.0 42.9 90.8 68.8 69.4 88.9
Magicoder-S-DS 7B 71.4 67.1 72.0 84.5 71.4 77.5 80.6 69.7 79.4 62.5 85.7 85.7 75.6 96.8 52.4 40.5 94.9 72.5 73.6 74.4

MCODER 7B 85.7 74.4 82.9 90.5 69.6 91.3 78.6 69.7 77.9 70.8 67.3 75.0 80.5 83.0 45.2 28.6 95.9 81.3 54.2 94.4
Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4 Turbo (231106) 83.3 80.0 28.6 70.7 91.4 86.2 92.2 86.7 87.0 88.7 89.5 81.5 87.8 85.3 87.8 86.1 85.9 77.5 76.9 63.2 82.7
GPT-3.5 Turbo (240125) 64.3 58.8 21.4 20.7 52.9 20.2 65.6 84.4 23.9 41.9 47.4 27.2 50.0 39.7 54.9 63.9 57.7 46.3 28.2 80.3 43.6
DeepSeekCoder-Instruct 73.8 71.3 14.3 68.3 65.7 81.9 86.7 83.3 79.3 59.7 86.8 75.0 84.1 72.1 80.5 79.2 83.3 57.5 70.5 67.1 72.4
OCTOCODER 70.2 50.0 3.6 15.9 32.9 0.0 28.9 78.9 2.2 38.7 15.8 0.0 56.1 41.2 48.8 27.8 37.2 67.5 59.0 69.7 39.2
StarCoder2-instruct-V0.1 85.7 61.3 0.0 75.6 80.0 93.6 87.8 87.8 88.0 66.1 73.7 89.1 39.0 75.0 78.0 54.2 62.8 82.5 64.1 72.4 71.4
WizardCoder-V1.0 40.5 35.0 0.0 28.0 28.6 29.8 40.0 52.2 48.9 1.6 28.9 18.5 28.0 0.0 17.1 33.3 37.2 35.0 51.3 65.8 31.6
Qwen1.5-Chat 51.2 51.3 7.1 36.6 51.4 62.8 56.7 63.3 63.0 29.0 52.6 50.0 17.1 26.5 50.0 63.9 43.6 46.3 43.6 36.8 44.7
CodeLlama-Instruct 58.3 66.3 0.0 41.5 55.7 54.3 76.7 77.8 69.6 51.6 60.5 58.7 64.6 47.1 67.1 63.9 62.8 62.5 66.7 68.4 59.3
Yi-1.5-Chat 75.0 66.3 17.9 53.7 64.3 83.0 76.7 78.9 76.1 38.7 67.1 65.2 45.1 42.6 65.9 75.0 62.8 57.5 60.3 53.9 62.2
CodeLlama-Instruct 61.9 41.3 0.0 19.5 57.1 22.3 42.2 73.3 62.0 35.5 67.1 46.7 72.0 33.8 73.2 33.3 61.5 43.8 61.5 63.2 49.9
CodeQwen1.5-Chat 78.6 57.5 0.0 70.7 80.0 83.0 82.2 84.4 68.5 66.1 75.0 80.4 67.1 50.0 89.0 77.8 80.8 63.8 48.7 65.8 68.6
Magicoder-S-DS 82.1 77.5 7.1 75.6 91.4 90.4 90.0 87.8 84.8 66.1 85.5 78.3 89.0 79.4 91.5 86.1 83.3 70.0 76.9 39.5 78.4

MCODER 82.1 80.0 0.0 79.3 97.1 86.2 88.9 82.2 88.0 77.4 77.6 82.6 80.5 72.1 91.5 80.6 84.6 82.5 73.1 67.1 78.9

Multi-line Completion

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4 Turbo (231106) µ 78.6 69.5 69.5 83.3 71.4 96.3 68.4 77.6 75.0 54.2 67.3 64.3 64.6 92.6 64.3 33.3 84.7 71.3 90.3 83.3
GPT-3.5 Turbo (240125) µ 42.9 58.5 54.9 70.2 28.6 65.0 53.1 39.5 22.1 4.2 20.4 35.7 62.2 92.6 26.2 31.0 75.5 58.8 43.1 60.0
DeepSeekCoder-Instruct 33B 71.4 61.0 62.2 75.0 37.5 51.3 50.0 42.1 50.0 27.1 69.4 42.9 47.6 87.2 26.2 31.0 80.6 70.0 83.3 65.6
OCTOCODER 16B 35.7 35.4 45.1 61.9 23.2 30.0 30.6 7.9 5.9 0.0 0.0 25.0 37.8 60.6 0.0 0.0 71.4 47.5 6.9 1.1
StarCoder2-instruct-V0.1 15B 7.1 59.8 67.1 78.6 53.6 3.8 58.2 52.6 57.4 39.6 62.2 39.3 56.1 89.4 28.6 0.0 81.6 71.3 9.7 65.6
WizardCoder-V1.0 15B 42.9 28.0 31.7 34.5 3.6 13.8 21.4 0.0 20.6 10.4 11.2 10.7 39.0 61.7 9.5 14.3 24.5 20.0 1.4 28.9
Qwen1.5-Chat 14B 7.1 40.2 41.5 42.9 7.1 26.3 27.6 5.3 14.7 4.2 23.5 12.5 36.6 47.9 11.9 14.3 49.0 42.5 41.7 45.6
CodeLlama-Instruct 13B 50.0 39.0 50.0 63.1 25.0 40.0 31.6 13.2 22.1 18.8 16.3 23.2 35.4 50.0 19.0 7.1 41.8 45.0 54.2 45.6
Yi-1.5-Chat 9B 35.7 47.6 48.8 64.3 14.3 52.5 42.9 18.4 20.6 16.7 51.0 25.0 39.0 73.4 23.8 16.7 61.2 55.0 75.0 60.0
CodeLlama-Instruct 7B 28.6 36.6 45.1 42.9 17.9 46.3 16.3 17.1 22.1 25.0 22.4 28.6 37.8 43.6 23.8 31.0 24.5 12.5 73.6 34.4
CodeQwen1.5-Chat 7B 0.0 52.4 53.7 73.8 30.4 25.0 58.2 34.2 42.6 43.8 51.0 42.9 58.5 67.0 31.0 35.7 78.6 71.3 72.2 68.9
Magicoder-S-DS 7B 21.4 64.6 64.6 81.0 51.8 55.0 59.2 52.6 60.3 45.8 69.4 66.1 62.2 91.5 35.7 16.7 78.6 65.0 69.4 62.2

MCODER 7B 21.4 57.3 53.7 78.6 42.9 71.3 56.1 50.0 57.4 47.9 45.9 51.8 56.1 80.9 23.8 23.8 80.6 75.0 62.5 72.2

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4 Turbo (231106) 84.5 66.3 32.1 67.1 84.3 85.1 94.4 83.3 80.4 64.5 78.9 81.5 84.1 86.8 90.2 81.9 78.2 75.0 75.6 52.6 76.6
GPT-3.5 Turbo (240125) 70.2 63.8 17.9 51.2 67.1 11.7 63.3 88.9 32.6 30.6 42.1 34.8 37.8 44.1 69.5 72.2 65.4 56.3 55.1 53.9 51.6
DeepSeekCoder-Instruct 69.0 58.8 21.4 50.0 60.0 73.4 82.2 72.2 65.2 40.3 64.5 58.7 74.4 47.1 81.7 68.1 66.7 57.5 66.7 34.2 61.8
OCTOCODER 53.6 30.0 3.6 3.7 35.7 0.0 26.7 52.2 4.3 27.4 2.6 0.0 34.1 23.5 32.9 33.3 25.6 45.0 33.3 35.5 27.1
StarCoder2-instruct-V0.1 76.2 48.8 0.0 64.6 64.3 80.9 76.7 75.6 77.2 48.4 51.3 64.1 50.0 61.8 68.3 47.2 50.0 65.0 60.3 47.4 58.3
WizardCoder-V1.0 46.4 15.0 0.0 7.3 30.0 31.9 22.2 38.9 33.7 0.0 23.7 16.3 14.6 0.0 15.9 19.4 23.1 23.8 37.2 14.5 22.8
Qwen1.5-Chat 36.9 30.0 3.6 19.5 24.3 48.9 34.4 42.2 39.1 8.1 31.6 29.3 12.2 10.3 32.9 47.2 21.8 38.8 24.4 19.7 29.9
CodeLlama-Instruct 47.6 37.5 0.0 28.0 31.4 43.6 60.0 46.7 42.4 22.6 39.5 41.3 35.4 19.1 40.2 48.6 41.0 42.5 47.4 34.2 39.0
Yi-1.5-Chat 52.4 50.0 3.6 37.8 52.9 67.0 60.0 63.3 53.3 29.0 42.1 39.1 39.0 17.6 57.3 69.4 38.5 56.3 50.0 26.3 46.6
CodeLlama-Instruct 44.0 20.0 0.0 14.6 30.0 8.5 38.9 45.6 27.2 22.6 31.6 27.2 40.2 14.7 46.3 38.9 41.0 27.5 44.9 28.9 31.4
CodeQwen1.5-Chat 69.0 51.3 3.6 47.6 61.4 70.2 76.7 57.8 62.0 46.8 44.7 67.4 69.5 38.2 76.8 70.8 60.3 56.3 46.2 40.8 56.3
Magicoder-S-DS 77.4 57.5 10.7 64.6 68.6 72.3 84.4 76.7 70.7 51.6 64.5 64.1 82.9 58.8 75.6 73.6 66.7 62.5 64.1 23.7 65.4

MCODER 66.7 56.3 0.0 58.5 57.1 71.3 80.0 66.7 64.1 50.0 57.9 71.7 63.4 54.4 80.5 63.9 57.7 60.0 66.7 32.9 60.7

Span Completion

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4 Turbo (231106) µ 80.0 65.0 67.0 84.0 74.0 88.0 63.7 71.0 74.0 68.0 69.0 78.0 67.0 94.0 80.0 49.0 91.5 65.0 83.0 87.0
GPT-3.5 Turbo (240125) µ 39.0 41.0 51.0 70.0 55.0 67.0 58.8 43.0 31.0 9.0 27.0 55.0 57.0 85.0 14.0 30.0 58.5 47.0 30.0 48.0
DeepSeekCoder-Instruct 33B 52.0 55.0 59.0 70.0 58.0 57.0 48.0 45.0 57.0 58.0 65.0 61.0 48.0 86.0 53.0 42.0 70.8 54.0 61.0 68.0
OCTOCODER 16B 29.0 41.0 46.0 51.0 41.0 29.0 31.4 19.0 9.0 0.0 0.0 44.0 40.0 52.0 0.0 4.0 57.5 39.0 12.0 1.0
StarCoder2-instruct-V0.1 15B 34.0 63.0 67.0 75.0 62.0 2.0 49.0 48.0 56.0 58.0 62.0 59.0 59.0 80.0 59.0 0.0 82.1 59.0 10.0 76.0
WizardCoder-V1.0 15B 19.0 24.0 40.0 35.0 6.0 11.0 6.9 3.0 6.0 11.0 4.0 7.0 44.0 57.0 26.0 9.0 16.0 13.0 0.0 14.0
Qwen1.5-Chat 14B 27.0 43.0 47.0 43.0 21.0 10.0 26.5 12.0 25.0 31.0 22.0 25.0 37.0 38.0 39.0 17.0 26.4 43.0 23.0 43.0
CodeLlama-Instruct 13B 47.0 36.0 51.0 56.0 40.0 29.0 25.5 22.0 36.0 45.0 35.0 40.0 39.0 46.0 36.0 28.0 39.6 44.0 43.0 44.0
Yi-1.5-Chat 9B 37.0 56.0 60.0 66.0 27.0 47.0 51.0 23.0 33.0 40.0 48.0 30.0 43.0 72.0 51.0 23.0 70.8 49.0 57.0 61.0
CodeLlama-Instruct 7B 25.0 43.0 51.0 53.0 41.0 39.0 27.5 20.0 38.0 41.0 35.0 41.0 43.0 50.0 43.0 25.0 26.4 29.0 58.0 43.0

CodeQwen1.5-Chat 7B 41.0 57.0 59.0 65.0 54.0 22.0 46.1 34.0 54.0 56.0 58.0 62.0 57.0 74.0 52.0 39.0 79.2 55.0 55.0 76.0
Magicoder-S-DS 7B 48.0 59.0 67.0 74.0 63.0 63.0 57.8 50.0 64.0 72.0 79.0 79.0 57.0 94.0 60.0 40.0 81.1 59.0 55.0 64.0

MCODER 7B 43.0 64.0 66.0 77.0 62.0 76.0 52.9 44.0 61.0 71.0 70.0 69.0 55.0 84.0 65.0 25.0 83.0 59.0 54.0 83.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4 Turbo (231106) 90.0 66.0 34.0 59.0 92.0 80.0 87.0 87.0 80.0 79.0 80.0 81.1 82.0 76.0 82.0 86.0 71.0 67.0 73.0 49.0 75.0
GPT-3.5 Turbo (240125) 68.0 61.0 25.0 45.0 68.0 8.0 62.0 80.0 13.0 56.0 24.0 26.4 39.0 47.0 72.0 70.0 57.0 60.0 68.0 58.0 48.1
DeepSeekCoder-Instruct 69.0 58.0 16.0 50.0 54.0 65.0 72.0 66.0 61.0 58.0 63.0 56.6 73.0 53.0 64.0 68.0 59.0 60.0 72.0 43.0 59.5
OCTOCODER 47.0 47.0 3.0 10.0 24.0 0.0 31.0 51.0 0.0 37.0 2.0 0.0 37.0 25.0 22.0 38.0 26.0 44.0 42.0 30.0 26.6
StarCoder2-instruct-V0.1 68.0 41.0 0.0 58.0 74.0 69.0 67.0 71.0 67.0 67.0 58.0 68.9 43.0 60.0 60.0 56.0 51.0 63.0 59.0 51.0 55.4
WizardCoder-V1.0 25.0 11.0 0.0 10.0 38.0 12.0 19.0 26.0 27.0 1.0 8.0 10.4 12.0 0.0 7.0 6.0 20.0 15.0 47.0 22.0 17.0
Qwen1.5-Chat 33.0 47.0 8.0 30.0 37.0 44.0 38.0 45.0 46.0 25.0 41.0 32.1 15.0 22.0 35.0 48.0 28.0 46.0 38.0 23.0 32.0
CodeLlama-Instruct 45.0 44.0 0.0 27.0 51.0 38.0 49.0 47.0 44.0 38.0 48.0 29.2 47.0 33.0 33.0 55.0 37.0 45.0 49.0 44.0 40.5
Yi-1.5-Chat 56.0 52.0 12.0 49.0 57.0 61.0 63.0 64.0 56.0 33.0 57.0 37.7 28.0 30.0 43.0 66.0 38.0 53.0 53.0 37.0 47.3
CodeLlama-Instruct 39.0 30.0 1.0 24.0 41.0 15.0 41.0 46.0 40.0 38.0 41.0 28.3 48.0 22.0 40.0 53.0 39.0 37.0 53.0 35.0 37.5
CodeQwen1.5-Chat 70.0 52.0 15.0 49.0 76.0 62.0 59.0 66.0 62.0 58.0 64.0 70.8 57.0 48.0 70.0 72.0 59.0 58.0 44.0 45.0 56.4
Magicoder-S-DS 75.0 59.0 16.0 53.0 80.0 67.0 72.0 69.0 69.0 64.0 72.0 58.5 78.0 59.0 77.0 78.0 69.0 61.0 70.0 30.0 64.8

MCODER 67.0 63.0 0.0 58.0 73.0 65.0 69.0 67.0 64.0 63.0 68.0 72.6 56.0 61.0 71.0 79.0 63.0 64.0 70.0 43.0 62.6

Span Completion Light

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4 Turbo (231106) µ 76.0 66.0 70.0 84.0 80.0 94.0 66.7 74.0 76.0 60.0 72.0 72.0 66.0 90.0 86.0 46.0 88.7 62.0 88.0 86.0
GPT-3.5 Turbo (240125) µ 40.0 52.0 46.0 60.0 62.0 68.0 49.0 40.0 34.0 20.0 38.0 62.0 58.0 92.0 28.0 44.0 52.8 60.0 28.0 32.0
DeepSeekCoder-Instruct 33B 60.0 54.0 60.0 76.0 50.0 56.0 35.3 44.0 54.0 60.0 58.0 66.0 60.0 88.0 44.0 38.0 73.6 64.0 66.0 64.0
OCTOCODER 16B 22.0 40.0 40.0 58.0 42.0 22.0 27.5 20.0 8.0 0.0 0.0 40.0 36.0 52.0 0.0 2.0 54.7 40.0 12.0 0.0
StarCoder2-instruct-V0.1 15B 34.0 48.0 60.0 74.0 62.0 4.0 47.1 44.0 64.0 56.0 58.0 68.0 56.0 82.0 60.0 0.0 73.6 66.0 6.0 66.0
WizardCoder-V1.0 15B 24.0 20.0 30.0 36.0 10.0 14.0 9.8 2.0 4.0 10.0 6.0 2.0 44.0 48.0 24.0 8.0 28.3 14.0 0.0 22.0
Qwen1.5-Chat 14B 40.0 38.0 44.0 52.0 16.0 20.0 21.6 14.0 28.0 24.0 18.0 24.0 36.0 38.0 38.0 14.0 37.7 44.0 34.0 50.0
CodeLlama-Instruct 13B 48.0 46.0 42.0 58.0 34.0 20.0 23.5 30.0 36.0 40.0 30.0 38.0 42.0 36.0 36.0 26.0 49.1 42.0 44.0 36.0
Yi-1.5-Chat 9B 36.0 52.0 58.0 68.0 38.0 54.0 39.2 24.0 26.0 34.0 52.0 24.0 50.0 70.0 46.0 34.0 71.7 52.0 58.0 56.0
CodeLlama-Instruct 7B 30.0 38.0 46.0 44.0 40.0 32.0 19.6 28.0 34.0 38.0 32.0 42.0 50.0 34.0 36.0 20.0 32.1 38.0 50.0 38.0
CodeQwen1.5-Chat 7B 48.0 52.0 60.0 78.0 60.0 22.0 47.1 32.0 54.0 52.0 48.0 30.0 48.0 76.0 52.0 44.0 88.7 68.0 48.0 68.0
Magicoder-S-DS 7B 54.0 54.0 66.0 80.0 60.0 60.0 56.9 52.0 66.0 70.0 72.0 78.0 66.0 94.0 60.0 30.0 83.0 58.0 56.0 62.0

MCODER 7B 58.0 56.0 68.0 82.0 64.0 76.0 58.8 40.0 62.0 76.0 62.0 74.0 56.0 88.0 64.0 18.0 88.7 70.0 56.0 72.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4 Turbo (231106) 84.0 74.0 44.0 70.0 90.0 74.0 88.0 90.0 86.0 82.0 88.0 81.1 80.0 76.0 80.0 86.0 82.0 64.0 80.0 58.0 76.5
GPT-3.5 Turbo (240125) 60.0 56.0 24.0 52.0 70.0 24.0 56.0 82.0 36.0 60.0 36.0 43.4 48.0 46.0 70.0 62.0 58.0 50.0 64.0 52.0 50.4
DeepSeekCoder-Instruct 58.0 60.0 32.0 52.0 68.0 60.0 80.0 66.0 72.0 56.0 66.0 54.7 76.0 54.0 66.0 70.0 68.0 56.0 68.0 46.0 60.9
OCTOCODER 42.0 46.0 2.0 8.0 40.0 0.0 32.0 52.0 2.0 32.0 4.0 0.0 34.0 34.0 28.0 38.0 28.0 50.0 54.0 36.0 27.0
StarCoder2-instruct-V0.1 70.0 54.0 0.0 60.0 76.0 78.0 78.0 80.0 70.0 58.0 50.0 71.7 36.0 54.0 52.0 60.0 54.0 66.0 62.0 58.0 55.5
WizardCoder-V1.0 38.0 8.0 0.0 8.0 42.0 14.0 20.0 26.0 28.0 2.0 6.0 3.8 18.0 0.0 6.0 12.0 10.0 24.0 46.0 24.0 17.6
Qwen1.5-Chat 26.0 46.0 6.0 26.0 32.0 46.0 40.0 44.0 44.0 32.0 46.0 32.1 16.0 16.0 34.0 50.0 20.0 40.0 44.0 24.0 32.4
CodeLlama-Instruct 44.0 52.0 0.0 26.0 44.0 38.0 58.0 48.0 34.0 38.0 46.0 37.7 40.0 38.0 36.0 58.0 40.0 38.0 58.0 42.0 39.9
Yi-1.5-Chat 52.0 56.0 8.0 50.0 56.0 70.0 62.0 62.0 62.0 40.0 58.0 50.9 32.0 26.0 56.0 60.0 38.0 56.0 68.0 36.0 48.6
CodeLlama-Instruct 34.0 36.0 2.0 22.0 44.0 12.0 42.0 48.0 28.0 38.0 40.0 34.0 44.0 32.0 42.0 44.0 36.0 40.0 58.0 36.0 36.3
CodeQwen1.5-Chat 70.0 60.0 22.0 54.0 76.0 68.0 72.0 66.0 64.0 64.0 60.0 66.0 62.0 46.0 76.0 72.0 56.0 22.0 40.0 34.0 55.7
Magicoder-S-DS 74.0 66.0 18.0 66.0 84.0 72.0 78.0 76.0 72.0 58.0 64.0 58.5 78.0 66.0 74.0 78.0 72.0 56.0 68.0 34.0 65.4

MCODER 62.0 68.0 4.0 62.0 72.0 74.0 70.0 62.0 66.0 66.0 70.0 66.0 68.0 48.0 74.0 74.0 56.0 62.0 70.0 40.0 63.1

state-of-the-art models and open-source models across nearly all programming languages. Notably,
GPT-4o and GPT-4 Turbo lead the benchmark with substantial performance margins over other
models. The MCEVAL apart from previous benchmarks (such as HumanEval), where various open
models have achieved comparable or superior performance. The results indicate that MCODER

7



Published as a conference paper at ICLR 2025

Table 5: Pass@1 (%) scores of different models for multilingual code explanation tasks on MCEVAL.
“Avgall” represents the average scores of all code languages.

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

GPT-4o (240513) µ 74.0 68.0 72.0 72.0 78.0 76.0 54.9 60.0 66.0 38.0 62.0 78.0 74.0 88.0 86.0 16.0 79.2 68.0 24.0 76.0
GPT-4 Turbo (231106) µ 84.0 70.0 72.0 52.0 60.0 76.0 54.9 50.0 64.0 42.0 50.0 78.0 68.0 88.0 76.0 10.0 81.1 74.0 18.0 70.0
GPT-3.5 Turbo (240125) µ 8.0 68.0 64.0 62.0 56.0 66.0 29.4 26.0 42.0 34.0 28.0 56.0 54.0 84.0 54.0 6.0 73.6 58.0 6.0 62.0
Yi-Large-Turbo µ 76.0 52.0 48.0 50.0 60.0 60.0 25.5 44.0 42.0 44.0 42.0 60.0 54.0 74.0 68.0 14.0 47.2 48.0 26.0 60.0
DeepSeekCoder-Instruct 33B 70.0 62.0 66.0 78.0 56.0 68.0 45.1 44.0 58.0 40.0 44.0 64.0 56.0 88.0 52.0 8.0 67.9 52.0 32.0 70.0
OCTOCODER 16B 32.0 32.0 32.0 26.0 48.0 4.0 5.9 22.0 32.0 34.0 22.0 16.0 52.0 42.0 34.0 2.0 37.7 36.0 8.0 28.0
Qwen1.5-Chat 14B 50.0 52.0 30.0 42.0 36.0 26.0 23.5 28.0 24.0 12.0 14.0 34.0 44.0 28.0 46.0 8.0 35.8 44.0 14.0 42.0
CodeLlama-Instruct 13B 32.0 42.0 34.0 44.0 44.0 0.0 7.8 16.0 30.0 38.0 16.0 30.0 32.0 32.0 40.0 10.0 28.3 36.0 10.0 24.0
Yi-1.5-Chat 9B 38.0 62.0 60.0 58.0 38.0 38.0 29.4 14.0 50.0 26.0 36.0 20.0 52.0 68.0 44.0 10.0 67.9 46.0 22.0 66.0
CodeLlama-Instruct 7B 34.0 34.0 32.0 42.0 34.0 8.0 11.8 22.0 28.0 24.0 14.0 26.0 40.0 22.0 36.0 0.0 34.0 22.0 8.0 14.0
CodeQwen1.5-Chat 7B 58.0 62.0 58.0 50.0 54.0 56.0 17.6 26.0 50.0 52.0 34.0 50.0 48.0 76.0 46.0 2.0 67.9 58.0 18.0 56.0
Magicoder-S-DS 7B 58.0 62.0 56.0 70.0 58.0 4.0 37.3 28.0 50.0 58.0 54.0 66.0 58.0 86.0 60.0 4.0 84.9 60.0 2.0 54.0

MCODER (Our Method) 7B 52.0 62.0 56.0 68.0 70.0 48.0 33.3 44.0 64.0 40.0 40.0 56.0 70.0 66.0 58.0 6.0 71.7 60.0 28.0 60.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall

GPT-4o (240513) 70.0 74.0 12.0 56.0 78.0 64.0 84.0 62.0 60.0 70.0 78.0 84.9 70.0 72.0 52.0 84.0 62.0 70.0 76.0 42.0 65.8
GPT-4 Turbo (231106) 68.0 64.0 8.0 56.0 68.0 68.0 82.0 66.0 60.0 62.0 70.0 66.0 70.0 58.0 68.0 90.0 50.0 72.0 68.0 50.0 62.6
GPT-3.5 Turbo (240125) 62.0 54.0 4.0 46.0 40.0 40.0 56.0 54.0 44.0 50.0 62.0 47.2 72.0 48.0 38.0 62.0 40.0 62.0 62.0 36.0 47.9
Yi-Large-Turbo 48.0 56.0 6.0 48.0 58.0 48.0 66.0 50.0 42.0 54.0 72.0 52.8 54.0 56.0 42.0 66.0 50.0 60.0 56.0 44.0 50.6
DeepSeekCoder-Instruct 56.0 64.0 6.0 42.0 52.0 52.0 68.0 58.0 52.0 50.0 70.0 49.1 64.0 54.0 34.0 68.0 56.0 62.0 66.0 40.0 55.8
OCTOCODER 24.0 36.0 0.0 24.0 14.0 32.0 44.0 62.0 26.0 34.0 10.0 26.4 30.0 34.0 40.0 30.0 24.0 34.0 38.0 8.0 29.4
Qwen1.5-Chat 30.0 36.0 6.0 22.0 38.0 34.0 34.0 32.0 24.0 48.0 66.0 22.6 18.0 24.0 16.0 60.0 20.0 58.0 44.0 30.0 32.4
CodeLlama-Instruct 26.0 36.0 0.0 4.0 28.0 30.0 36.0 26.0 20.0 32.0 28.0 20.8 32.0 26.0 26.0 38.0 32.0 42.0 50.0 24.0 29.3
Yi-1.5-Chat 50.0 56.0 4.0 30.0 42.0 52.0 62.0 70.0 52.0 34.0 74.0 30.2 50.0 42.0 24.0 52.0 30.0 68.0 36.0 28.0 43.3
CodeLlama-Instruct 24.0 30.0 0.0 4.0 32.0 2.0 30.0 22.0 14.0 28.0 28.0 17.0 32.0 24.0 20.0 42.0 28.0 30.0 40.0 12.0 23.8
CodeQwen1.5-Chat 48.0 46.0 4.0 50.0 44.0 40.0 44.0 50.0 38.0 40.0 58.0 47.2 52.0 44.0 40.0 70.0 46.0 62.0 64.0 28.0 46.4
Magicoder-S-DS 64.0 50.0 2.0 52.0 50.0 46.0 58.0 54.0 48.0 46.0 62.0 47.2 64.0 62.0 48.0 60.0 42.0 56.0 62.0 24.0 51.4

MCODER (Our Method) 62.0 52.0 0.0 48.0 46.0 44.0 62.0 58.0 38.0 50.0 74.0 67.9 32.0 46.0 44.0 60.0 50.0 58.0 58.0 50.0 51.4

exhibits clear improvement over the base model in nearly all the studied programming languages. It is
noteworthy that MCODER, despite being trained with very limited multilingual data, still outperforms
other large language models (LLMs) of similar or even larger sizes.

Multilingual Code Explanation. Table 5 displays the Pass@1 results for multilingual code expla-
nation tasks. The results show that GPT models still significantly outperform open-source models in
the code explanation task. For markup languages (Json and Markdown), the complexity of the code
structure makes it difficult to describe accurately in natural language, resulting in generally poorer
performance. Code LLMs need instruction-following capabilities for such complex structures.

Multilingual Code Completion. The completion tasks consist of single-line completion, multi-line
completion, span completion, and span completion (light). As shown in Table 4, the Pass@1 results
for multilingual code completion tasks indicate that GPT-4 Turbo still achieves the best performance.
Additionally, since this task is relatively easier compared to code generation, some open-source
models perform comparably to GPT-4 Turbo in certain programming languages.

5 FURTHER ANALYSIS

Programming Classification. In Figure 5, we categorize the programming languages of MCEVAL
into 5 programming paradigms and 11 application scenarios and summarize the performance of code
LLMs on the code generation task in Figure 6. It can be observed that code LLMs generally perform
better in object-oriented and multi-paradigm programming languages (high-resource languages),
while perform worse in functional and procedural programming languages (low-resource Languages).
In areas like web development and scientific computing, the gap between open-source and closed-
source models is narrowing. However, for application scenarios, there is still a substantial gap
between open-source models and the closed-source GPT-4 series in low-resource languages related to
scripting, mobile development, and educational research. MCODER performs superior over multiple
same-size models and even some larger open-source models.

Unbalance on Different Languages. We compare the results of several open-source models on
the MultiPL-E multilingual benchmark with corresponding languages on MCEVAL. We obtained
scores for 11 programming languages (including Python, Java, JavaScript, C++, PHP, Rust, Swift,
R, Lua, Racket, Julia) from the BigCode leaderboard.1 As shown in Figure 7(1), due to the sim-
plicity of Python language tasks in this dataset, many models exhibit significant score discrepancies
between the two benchmarks. Figure 7(2) highlights a majority of models within the blue circle,
indicating that the current state-of-the-art performance of most models primarily lies in high-resource
languages like Python, while their proficiency in low-resource languages awaits further exploration
and enhancement. By examining Figure 7(2) and (3), it becomes evident that all LLMs demonstrate
consistent multilingual capabilities between MultiPL-E and MCEVAL.

1https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

8

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard


Published as a conference paper at ICLR 2025

AWK
C

Fortran

Pascal

Shell

VimL

C#JavaKotlin

C
PP

D
art

Go
Groovy

JS

Julia

Lua

Perl

PHP
Power

Python
R

RubyRust

TS

F#TC
L

CLisp

Elix
ir

Er
lan

g
H

as
ke

ll
Ra

ck
et

Sc
he

m
e

H
TM

L

JSO
NM
D

Procedural

Object 
Oriented

Swift
VB

Multiple 
Paradigms

Elisp

Sc
alaCo

ffe
e

Fu
nc

tio
na

l

M
arkup 

Language

M
obile

K
otlin   

Sw
ift   

Cross 

Platform
D

art   

Java  
Desktop 

Application

C#   VB

Web 
Frontend

JS
TS

Coffee

W
eb

 
Ba

ck
en

d

PHP   Ruby   Go  
 

Gro
ov

y  
 

Sc
al

a  

Ru
st 

  

El
ix

ir 
  

Sc
ie

nt
ifi

c 
C

om
pu

tin
g

Py
th

on
  

R 
  

Ju
lia

Fortran   
F#   

General & 

System & 

Software
C  

CPP  
CLisp   

Racket   

Erlang  

Content & 

DataHTML 

JSON

MD Edu
ca

tio
n &

 

Rese
arc

h

Pasc
al  

Hask
ell

 
Sc

he
m

e  
 

Automation 
Scripts

Shell   

Perl

Power 
AWK  
Tcl   

Lua  
Editor Scripts

VimL
ELisp

(1) Programming Paradigm (2) Application Scenario

Figure 5: Classification of MCEVAL. The programming languages in MCEVAL can be categorized
into 5 programming paradigms and 11 application scenarios.

(1) Performance on Programming Paradigm Categories (2) Performance on Application Scenario Categories 

Procedural

Object 
OrientedMarkup 

Language

Functional Multiple 
Paradigms

Mobile Development

Editor Scripts Cross Platform

Automation 
Scripts

Education 
Research

Content Data

General& 
System&Software

Scientific Computing

Desktop 
Application

Web 
Frontend

Web
Backend

Mcoder

Llama-3-8B-Instruct

CodeGemma-7B-it

CodeLlama-34B-
Instruct

CodeQwen-1.5-Chat

Phi-3-Instruct

DeepSeekCoder-1.5-
7B-Instruct

GPT3.5-Turbo

GPT-4o

GPT-4-Turbo

Figure 6: The performance of models in code completion tasks under different categories.

0

M
ul

tiP
L-

E 
(P

yt
ho

n)

McEval (Python)

Deepseek-Coder-6.7B

WizardCoder-15B-V1.0

CodeLlama-7B

CodeLlama-13BOctocoder-15B

CodeQwen1.5

20 40 60 80 100

25

50

75

100
Nxcode-CQ-7B-orpo

WizardCoder-Python-34B-V1.0
CodeGemma-7B-it

CodeShell-7B

CodeLlama-34B

Deepseek-Coder-33B

OpenCoderInterpreter-DS-6.7B

0

M
ul

tiP
L-

E 
(P

yt
ho

n)

McEval (Multilingual)

Deepseek-Coder-6.7B

WizardCoder-15B-V1.0

CodeLlama-7B
CodeLlama-13B
Octocoder-15B

CodeQwen1.5

20 40 60 80 100

25

50

75

100 Nxcode-CQ-7B-orpo

WizardCoder-Python-34B-V1.0

CodeGemma8B-it

CodeShell-7B
CodeLlama-34B

Deepseek-Coder-33B

OpenCoderInterpreter-DS-6.7B

0

M
ul

tiP
L-

E 
(M

ul
til

in
gu

al
)

McEval (Multilingual)

Deepseek-Coder-6.7B
WizardCoder-15B-V1.0

CodeLlama-7B

CodeLlama-13B

Octocoder-15B

CodeQwen1.5

20 40 60 80 100

25

50

75

100

Nxcode-CQ-7B-orpo

WizardCoder-Python-34B-V1.0

CodeGemma8B-it
CodeShell-7B

CodeLlama-34B

Deepseek-Coder-33B
OpenCoderInterpreter-DS-6.7B

(1) Python-Python (2) Multilingual-Python (3) Multilingual-Multilingual 

Figure 7: Unbalanced performance on different languages across MultiPL-E and our MCEVAL.

Cross-lingual Transfer. We fine-tune the CodeQwen-1.5 model using Python-only data in
MCEVAL-INSTRUCT and compare it with MCODER. In Figure 8, CodeQwen-1.5 performs well in
most high-resource languages, but CodeQwen without alignment exhibits unsatisfactory results in
some low-resource languages due to the inability to follow instructions. As such, with fine-tuning us-
ing only Python data, CodeQwen-1.5-Python improves significantly across most languages. It shows
that the CodeQwen foundation model already possesses strong coding capabilities but lacks adequate
instruction-following skills. Therefore, fine-tuning with Python-only data can still effectively transfer
instruction-following abilities to other languages, resulting in superior multilingual performance.

Difficulty of MCEVAL. Based on algorithmic complexity, we classify MCEVAL into three levels
(Easy/Medium/Hard). In Figure 9, we conduct a statistical analysis of CodeQwen-1.5-Chat’s perfor-
mance on code generation tasks across various languages. For most languages, the code LLM can
answer the majority of easy questions but struggles with medium and hard ones.

6 RELATED WORK

For the field of soft engineering, code LLMs (Feng et al., 2020; Chen et al., 2021; Scao et al., 2022;
Li et al., 2022; Allal et al., 2023; Fried et al., 2022; Wang et al., 2021; Zheng et al., 2024; Guo et al.,
2024) pre-trained on billions of code snippets, such as StarCoder (Li et al., 2023; Lozhkov et al.,

9



Published as a conference paper at ICLR 2025

Figure 8: Cross-lingual transferability of LLMs among different languages. We fine-tune CodeQwen-
1.5 using Python data in MCEVAL-INSTRUCT and OSS-Instruct to create CodeQwen-1.5-Python.

Po
we

rS
he

ll
El

ix
ir

Pe
rl

Co
m

m
on

 L
ispDa
rt

Sh
ell

Ko
tli

n
Er

lan
g

HT
M

L
Fo

rtr
an

Sw
ift

Ru
st C

Sc
ala CP

P
Ju

lia Lu
a

Vi
su

al 
Ba

sic C#
Pa

sc
al

Vi
m

Sc
rip

t
PH

P
M

ar
kd

ow
n

AW
K

JS
ON Ru
by

Ha
sk

ell R F#
Co

ffe
eS

cr
ip

t
Py

th
on Tc

l
Ja

va
Sc

rip
t

Ja
va

Ra
ck

et
Sc

he
m

e
Em

ac
s L

isp Go
Gr

oo
vy

Ty
pe

Sc
rip

t

0.0

0.5

1.0

1.5

2.0

pa
ss
@
1

easy
middle
hard

Figure 9: CodeQwen-1.5-Chat performance on MCEVAL for problems of different difficulty levels.

2024), CodeLlama (Rozière et al., 2023), DeepSeekCoder (Guo et al., 2024), and Code-Qwen (Hui
et al., 2024). The development and refinement of code LLMs have been pivotal in automating
software development tasks, and supporting code generation/translation/summarization.

Many benchmarks (Yu et al., 2024; Yin et al., 2023; Khan et al., 2023; Orlanski et al., 2023; Jain
et al., 2024) have been woven to accurately assess code quality, functionality, and efficiency, such as
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), their upgraded version EvalPlus (Liu
et al., 2023b). Studies have explored a variety of approaches, ranging from static evaluation using
text matching to dynamic methods that involve code execution under a controlled environment. The
current benchmarks support code LLMs to evaluate a series of different types of tasks, such as
code understanding, function calling Zhuo et al. (2024), code repair (Lin et al., 2017; Tian et al.,
2024; Jimenez et al., 2023; Zhang et al., 2023; Prenner & Robbes, 2023; He et al., 2022), code
translation (Yan et al., 2023). Some works focus on the multilingual scenarios (Wang et al., 2023;
Athiwaratkun et al., 2023; Peng et al., 2024; Zheng et al., 2023b) by extending the Python-only
HumanEval/MBPP benchmark (e.g. MultiPL-E (Cassano et al., 2023)), which is challenged by the
number of the languages.

7 CONCLUSION

In this work, we push a significant advancement in the assessment of code LLMs by proposing the
first massively multilingual code evaluation benchmark (MCEVAL) by involving an annotation and
verification process conducted by professional developers, which spans 40 programming languages
and helps comprehensively tackle various tasks, including code generation, explanation, and comple-
tion. The multilingual SFT on created instruction corpora MCEVAL-INSTRUCT further emphasizes
the proficiency of LLMs in multiple coding languages. Systematic evaluations of existing code LLMs
on MCEVAL illuminate the performance disparities among open-source and closed-source models.
Extensive multilingual multitask assessment on MCEVAL provides a realistic and comprehensive
measurement of code LLMs, marking a leap forward for developers utilizing AI techniques to
understand and generate code effectively across a wide spectrum of programming languages.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China (Grant Nos.
62276017, 62406033, U1636211, 61672081), and the State Key Laboratory of Complex & Critical
Software Environment (Grant No. SKLCCSE-2024ZX-18).

10



Published as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.
URL https://arxiv.org/abs/2404.14219.

Meta AI. Introducing meta llama 3: The most capable openly available llm to date. https:
//ai.meta.com/blog/meta-llama-3/, apr 2024.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. SantaCoder: Don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023. URL https://arxiv.org/
abs/2301.03988.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, and Ramesh Nallapati. Multi-lingual evaluation of code
generation models. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/forum?id=Bo7eeXm6An8.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021. URL https://arxiv.org/abs/2108.
07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
abs/2309.16609, 2023. URL https://arxiv.org/abs/2309.16609.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv preprint
arXiv:2207.14255, 2022. URL https://arxiv.org/abs/2207.14255.

Luca Beurer-Kellner, Marc Fischer, and Martin T. Vechev. Prompting is programming: A query
language for large language models. Proc. ACM Program. Lang., 7(PLDI):1946–1969, 2023. doi:
10.1145/3591300. URL https://doi.org/10.1145/3591300.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:
1877–1901, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
A scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions
on Software Engineering, 2023. URL https://ieeexplore.ieee.org/abstract/
document/10103177.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=ktrw68Cmu9c.

11

https://arxiv.org/abs/2404.14219
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://openreview.net/forum?id=Bo7eeXm6An8
https://openreview.net/forum?id=Bo7eeXm6An8
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2207.14255
https://doi.org/10.1145/3591300
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://ieeexplore.ieee.org/abstract/document/10103177
https://ieeexplore.ieee.org/abstract/document/10103177
https://openreview.net/pdf?id=ktrw68Cmu9c


Published as a conference paper at ICLR 2025

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, abs/2211.12588, 2022. doi: 10.48550/ARXIV.2211.12588. URL https:
//doi.org/10.48550/arXiv.2211.12588.

Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste Rozière,
Jonas Gehring, Fabian Gloeckle, Kim M. Hazelwood, Gabriel Synnaeve, and Hugh Leather. Large
language models for compiler optimization. arXiv preprint arXiv:2309.07062, abs/2309.07062,
2023. doi: 10.48550/ARXIV.2309.07062. URL https://doi.org/10.48550/arXiv.
2309.07062.

Gautier Dagan, Frank Keller, and Alex Lascarides. Dynamic planning with a LLM. arXiv preprint
arXiv:2308.06391, abs/2308.06391, 2023. doi: 10.48550/ARXIV.2308.06391. URL https:
//doi.org/10.48550/arXiv.2308.06391.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen,
Hongwei Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong, Wen Hu, Tingting Guo, Zhichao Lei,
Ting Li, Zheng Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen Liu, Zhiwei Liu, Shaojun
Lu, Min Shen, Guangpei Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Jiawei Yang, Qing Ye,
Gehao Zhang, Yu Zhang, Zelin Zhao, Xunjin Zheng, Hailian Zhou, Lifu Zhu, and Xianying
Zhu. Codefuse-13b: A pretrained multi-lingual code large language model. arXiv preprint
arXiv:2310.06266, abs/2310.06266, 2023. doi: 10.48550/ARXIV.2310.06266. URL https:
//doi.org/10.48550/arXiv.2310.06266.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. arXiv
preprint arXiv:2304.07590, abs/2304.07590, 2023.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 1536–1547, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139. URL https://
aclanthology.org/2020.findings-emnlp.139.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I. Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, abs/2204.05999, 2022. URL https://arxiv.
org/abs/2204.05999.

Google Gemma Team. Gemma: Open models based on gemini research and technology. arXiv
preprint arXiv:2403.08295, 2024. URL https://arxiv.org/abs/2403.08295.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming –
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024. URL https://arxiv.
org/abs/2401.14196.

Jingxuan He, Luca Beurer-Kellner, and Martin Vechev. On distribution shift in learning-based bug
detectors. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and

12

https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2211.12588
https://doi.org/10.48550/arXiv.2309.07062
https://doi.org/10.48550/arXiv.2309.07062
https://doi.org/10.48550/arXiv.2308.06391
https://doi.org/10.48550/arXiv.2308.06391
https://doi.org/10.48550/arXiv.2310.06266
https://doi.org/10.48550/arXiv.2310.06266
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196


Published as a conference paper at ICLR 2025

Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 8559–8580. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/he22a.html.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024. URL
https://arxiv.org/abs/2403.07974.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023. URL https://arxiv.org/abs/2310.06770.

Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan
Parvez, and Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code
understanding, generation, translation and retrieval. arXiv preprint arXiv:2303.03004, 2023. URL
https://arxiv.org/abs/2303.03004.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. Advances in Neural Information Processing
Systems, 32, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
7298332f04ac004a0ca44cc69ecf6f6b-Abstract.html.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023. URL https://dl.acm.org/doi/abs/10.1145/3600006.
3613165.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder:
may the source be with you! arXiv preprint arXiv:2305.06161, abs/2305.06161, 2023. doi:
10.48550/arXiv.2305.06161. URL https://arxiv.org/abs/2305.06161.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. arXiv preprint arXiv:2203.07814, abs/2203.07814, 2022. URL
https://arxiv.org/abs/2203.07814.

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: a multi-lingual
program repair benchmark set based on the quixey challenge. In Proceedings Companion of
the 2017 ACM SIGPLAN international conference on systems, programming, languages, and
applications: software for humanity, pp. 55–56, 2017. URL https://dl.acm.org/doi/
abs/10.1145/3135932.3135941.

13

https://proceedings.mlr.press/v162/he22a.html
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2303.03004
https://proceedings.neurips.cc/paper/2019/hash/7298332f04ac004a0ca44cc69ecf6f6b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7298332f04ac004a0ca44cc69ecf6f6b-Abstract.html
https://dl.acm.org/doi/abs/10.1145/3600006.3613165
https://dl.acm.org/doi/abs/10.1145/3600006.3613165
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2203.07814
https://dl.acm.org/doi/abs/10.1145/3135932.3135941
https://dl.acm.org/doi/abs/10.1145/3135932.3135941


Published as a conference paper at ICLR 2025

Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong Zhang, and Meng Yan.
Improving chatgpt prompt for code generation. arXiv preprint arXiv:2305.08360, abs/2305.08360,
2023a. URL https://arxiv.org/abs/2305.08360.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, abs/2305.01210, 2023b. URL https://arxiv.org/abs/2305.
01210.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017. URL https://arxiv.org/abs/1711.05101.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024. URL https://arxiv.org/abs/
2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. WizardCoder: Empowering code large language models
with evol-instruct. arXiv preprint arXiv:2306.08568, 2023. URL https://arxiv.org/abs/
2306.08568.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, et al. Gran-
ite code models: A family of open foundation models for code intelligence. arXiv preprint
arXiv:2405.04324, 2024.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. OctoPack: Instruction tuning
code large language models. arXiv preprint arXiv:2308.07124, abs/2308.07124, 2023. URL
https://arxiv.org/abs/2308.07124.

Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012. doi:
10.1002/WIDM.53. URL https://doi.org/10.1002/widm.53.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. CodeGen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=iaYcJKpY2B_.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey Hui, Joshua Howland, Jonathan Malmaud, Jacob
Austin, Rishabh Singh, and Michele Catasta. Measuring the impact of programming language
distribution. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 26619–26645. PMLR, 23–
29 Jul 2023. URL https://proceedings.mlr.press/v202/orlanski23a.html.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

14

https://arxiv.org/abs/2305.08360
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2308.07124
https://doi.org/10.1002/widm.53
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://proceedings.mlr.press/v202/orlanski23a.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html


Published as a conference paper at ICLR 2025

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pp. 311–318. ACL, 2002.
doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation benchmark
for cross-lingual natural language generalization. arXiv preprint arXiv:2402.16694, 2024. URL
https://arxiv.org/abs/2402.16694.

Julian Aron Prenner and Romain Robbes. Runbugrun – an executable dataset for automated program
repair. arXiv preprint arXiv:2304.01102, 2023. URL https://arxiv.org/abs/2304.
01102.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In CHI ’21: CHI Conference on Human Factors in Computing Systems, Virtual
Event / Yokohama Japan, May 8-13, 2021, Extended Abstracts, pp. 314:1–314:7. ACM, 2021. doi:
10.1145/3411763.3451760. URL https://doi.org/10.1145/3411763.3451760.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023. URL https://arxiv.org/abs/2308.12950.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022. URL
https://arxiv.org/abs/2211.05100.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Zhiyuan Liu, and Maosong Sun.
Debugbench: Evaluating debugging capability of large language models. arXiv preprint
arXiv:2401.04621, 2024. URL https://arxiv.org/abs/2401.04621.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(11), 2008. URL https://www.jmlr.org/papers/volume9/
vandermaaten08a/vandermaaten08a.pdf.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859,
2021. URL https://arxiv.org/abs/2109.00859.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for
open-domain code generation. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1271–1290, 2023. URL https://arxiv.org/abs/2212.10481.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120, abs/2312.02120, 2023. doi: 10.48550/ARXIV.
2312.02120. URL https://arxiv.org/abs/2312.02120.

Rui Xie, Zhengran Zeng, Zhuohao Yu, Chang Gao, Shikun Zhang, and Wei Ye. Codeshell technical
report. arXiv preprint arXiv:2403.15747, 2024. URL https://arxiv.org/abs/2403.
15747.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and Wen Wang. CodeTransOcean: A
comprehensive multilingual benchmark for code translation. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 5067–5089, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.337. URL https://aclanthology.org/2023.
findings-emnlp.337.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, and Charles
Sutton. Natural language to code generation in interactive data science notebooks. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 126–173, Toronto,

15

https://aclanthology.org/P02-1040/
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2304.01102
https://arxiv.org/abs/2304.01102
https://doi.org/10.1145/3411763.3451760
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2401.04621
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2212.10481
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2403.15747
https://arxiv.org/abs/2403.15747
https://aclanthology.org/2023.findings-emnlp.337
https://aclanthology.org/2023.findings-emnlp.337


Published as a conference paper at ICLR 2025

Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.9.
URL https://aclanthology.org/2023.acl-long.9.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01.ai. arXiv preprint
arXiv:2403.04652, 2024. URL https://arxiv.org/abs/2403.04652.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxi-
ang Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative
pre-trained models. In Proceedings of the 46th IEEE/ACM International Conference on Soft-
ware Engineering, pp. 1–12, 2024. URL https://dl.acm.org/doi/abs/10.1145/
3597503.3623316.

Daoguang Zan, Ailun Yu, Bo Shen, Jiaxin Zhang, Taihong Chen, Bing Geng, Bei Chen, Jichuan
Ji, Yafen Yao, Yongji Wang, and Qianxiang Wang. Can programming languages boost each
other via instruction tuning? arXiv preprint arXiv:2308.16824, abs/2308.16824, 2023. URL
https://arxiv.org/abs/2308.16824.

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong Sun, and Zhenyu
Chen. A critical review of large language model on software engineering: An example from
chatgpt and automated program repair. arXiv preprint arXiv:2310.08879, 2023. URL https:
//arxiv.org/abs/2310.08879.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x. arXiv preprint arXiv:2303.17568,
abs/2303.17568, 2023a. doi: 10.48550/ARXIV.2303.17568. URL https://doi.org/10.
48550/arXiv.2303.17568.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual
evaluations on humaneval-x. arXiv preprint arXiv:2303.17568, 2023b. URL https://arxiv.
org/abs/2303.17568.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement. arXiv
preprint arXiv:2402.14658, 2024. URL https://arxiv.org/abs/2402.14658.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

16

https://aclanthology.org/2023.acl-long.9
https://arxiv.org/abs/2403.04652
https://dl.acm.org/doi/abs/10.1145/3597503.3623316
https://dl.acm.org/doi/abs/10.1145/3597503.3623316
https://arxiv.org/abs/2308.16824
https://arxiv.org/abs/2310.08879
https://arxiv.org/abs/2310.08879
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2402.14658


Published as a conference paper at ICLR 2025

A APPENDIX

A.1 LIMITATIONS

Cover more languages and tasks Our work focuses on evaluating models on multilingual pro-
gramming tasks, currently supporting assessments in 40 programming languages. Many models
claim to support over 80 programming languages, so our work can continue to expand the range of
programming languages, the number of test cases, and types of tasks to provide a more comprehensive
evaluation of the models.

Research on cross-lingual transfer We do not delve deeply into the cross-lingual transfer capabili-
ties of models, leaving room for exploring a wider variety of models and models of different sizes. In
the future, we will explore the programming language transferability scaling law of the code LLMs
with different sizes.

A.2 DATA ANNOTATION

A.2.1 HUMAN ANNOTATION

To create the massively multilingual code evaluation benchmark MCEVAL, the annotation of mul-
tilingual code samples is conducted utilizing a comprehensive and systematic human annotation
procedure, underpinned by rigorously defined guidelines to ensure accuracy and consistency.

We recruited annotators with backgrounds in computer software development from universities.
During recruitment, we evaluated their programming and system operation skills to ensure they could
handle tasks like question writing, code static analysis, and unit testing. Each annotator was assigned
tasks based on their proficiency in specific programming languages.

Initially, 10 software developers in computer science are recruited as multilingual programming
annotators with proven proficiency in the respective programming languages.

Following a detailed training session on the annotation protocol, annotators are tasked with creating
problem definitions and the corresponding solution.

The guidelines for our annotation training session primarily cover the following aspects:

• Standardized Format: We provide an annotation example for 40 programming languages.
Annotators are required to adhere to this standardized format when annotating data.

• Accessibility: The reference data for our annotations is sourced from materials available
under permissive licenses, allowing unrestricted use and redistribution for research purposes.

• Difficulty Level: We provide annotators with detailed guidelines on the difficulty clas-
sification for each language. Annotators must strictly follow these guidelines to label
problems according to their respective difficulty levels based on algorithmic complexity and
functionality.

• Self-Contained: Annotators are required to thoroughly review their annotated problems
to ensure that the problem descriptions include all necessary information for solving them
without ambiguity. The provided example inputs and outputs must be correct, the reference
answers must execute correctly, and the test cases written should comprehensively evaluate
the accuracy of the functions.

A.2.2 REFERENCE DATA

We use reference data (The annotators only draw the inspiration from the reference website, and
create the question manually.) to draft questions and solutions with the help of GPT-4-Turbo. The
draft questions initially may contain numerous issues, such as self-contained errors, inconsistent
difficulty levels, overly simple unit tests, and incorrect unit tests. To address these issues, annotators
revised and tested the draft questions to ensure that all questions and code were accurate and that the
unit tests would pass. These reference data came from the following websites: For the algorithmic
types of questions, we refer to the following websites:

17



Published as a conference paper at ICLR 2025

• https://www.dotcpp.com/
• https://www.luogu.com.cn
• https://www.codecademy.com/
• https://www.codewars.com/

For markup language and design-type questions, we refer to the following websites:

• https://www.runoob.com/
• https://www.w3schools.com/

A.2.3 QUALITY CONTROL

We adopt a dual-pass system to ensure the quality of our benchmark MCEVAL. First, one annotator
labels the code snippets and their corresponding unit tests. Then, another annotator independently
reviews these annotations, verifying their correctness, code accuracy, and unit test integrity. Following
this, three senior annotators evaluate the overall unit test pass rate of the annotated dataset. If the
pass rate exceeds 90%, the senior annotators proceed to perform additional reviews and corrections.
Otherwise, the data is returned to the annotators for refinement. Finally, the canonical solution
(labeled by the annotator) passes all corresponding test cases to ensure the correctness of each created
problem (100% pass rate). This rigorous process ensures the creation of a high-quality, multilingual
programming benchmark that supports in-depth analysis and understanding of code examples across
diverse programming languages.

A.2.4 ANNOTATION COSTS

We paid all the annotators the equivalent of $6 per question and provided them with a comfortable
working environment, free meals, and souvenirs. We also provided the computer equipment and
GPT-4 interface required for labeling. We labeled about 2,000 questions in total and employed them
to check the quality of the questions/answers, and the total cost was about $12,000 in US dollars. The
annotators checked the derived tasks, including multilingual code explanation and code completion.

A.3 DETAILED ABOUT MCEVAL-INSTRUCT

Here we describe in detail the specific methods and processes of code sampling and quality control in
the process of constructing MCEVAL-INSTRUCT.

Code Sampling

• (1) We crawled a large amount of code data from GitHub and preprocessed the data according
to the StarCoder processing flow. Then, we can get a high-quality code dataset.

• (2) For each programming language, we randomly sampled the data to build an original
dataset containing 40 languages, where the instances of each language are sampled to the
same number of samples.

• (3) In addition, in the refined stage, we further used GPT-4 to refine the code snippets to
the clearer and more standardized code (the code with docstring, code comments, and clear
variables) and verified the refined code snippet through static code analysis and unit testing
methods to ensure the correctness and quality of the code.

Quality Control To check the correctness of the generated code from the GPT-4, we use static
analysis and unit testing to ensure the accuracy of generated data as much as possible:

• Code Correctness: We use static code analysis tools and Abstract Syntax Tree (AST) parsing
to ensure the correctness of the code.

• Automated Testing: We leverage an LLM to automatically generate unit tests, filtering out
code that fails to pass these tests.

• Harmful Content Filtering: We filter out code snippets containing harmful information using
keyword-based filters.

18



Published as a conference paper at ICLR 2025

A.4 EXAMPLES IN MCEVAL

Figure 10 display three examples of multilingual generation.

In Figure 11, we show three examples of multilingual explanation.

In Figure 12, we display three examples of multilingual explanation. The three examples from left
to right correspond to the span completion task, the single-line completion task, and the multi-line
completion task.

Write a Common Lisp function `(defun create-largest-number 
(numbers)` to solve the following problem:
This function takes a list of positive integers and 
rearranges them to form the largest possible number.
It does this by concatenating the integers in an order such 
that their digit-wise combination yields the maximum value.
Example:
>>> create-largest-number '(56 9 45)
"95645"
>>> create-largest-number '(5 50 56)
"56550"

(defun create-largest-number (numbers)
(let ((str-numbers (mapcar #'number-to-string numbers)))
(setf str-numbers (sort str-numbers #'larger-when-
concatenated))
(reduce (lambda (acc x) (concatenate 'string acc x)) str-
numbers :initial-value "")))
(defun number-to-string (number)
(write-to-string number))
(defun larger-when-concatenated (a b)
(string> (concatenate 'string a b) (concatenate 'string b a)))

Instruction: Language Lisp

Reference Solution

(defun test-create-largest-number ()
    (assert (string= (create-largest-number '(56 9 45)) 
"95645"))
    (assert (string= (create-largest-number '(5 50 56)) 
"56550"))
    (assert (string= (create-largest-number '(3 34 302 50)) 
"50343302"))
    (assert (string= (create-largest-number '(10 2 23)) 
"23210"))
    (assert (string= (create-largest-number '(4 42 40 400)) 
"44240400")))
(test-create-largest-number)

Test Cases

Using the awk command in Linux, complete the following task: 
In data/AWK/contribution.txt, where the data format is as 
follows:
# 'Zhang Dandan 41117397 :250:100:175
# Zhang Xiaoyu 390320151 :155:90:201
# Meng Feixue 80042789 :250:60:50
# Wu Waiwai 70271111 :250:80:75
# Liu Bingbing 41117483 :250:100:175
# Wang Xiaoai 3515064655 :50:95:135
# Zi Gege 1986787350 :250:168:200
# Li Youjiu 918391635 :175:75:300
# Lao Nanhai 918391635 :250:100:175',

# where the first column is the surname, the second column is 
the first name (concatenating the first and second columns 
gives the full name), the third column is the corresponding 
ID number, and the last three columns are three donation 
amounts. Please print the full names and ID numbers of people 
with ID numbers starting with '41'

awk -F "[ :]+" '$3~/^(41)/{print $1,$2,$3}' 
data/AWK/contribution.txt

awk_command = < Code Being Evaluated >
ref_command = " awk -F \"[ :]+\" '$3~/^(41)/{print $1,$2,$3}' 
data/AWK/contribution.txt
"
generate_result = subprocess.check_output(
                        awk_command, shell=True, text=True)
ref_result = subprocess.check_output(
                        ref_command, shell=True, text=True)
assert generate_result == reference_result

Instruction: Language AWK

Reference Solution

Test Cases

Write a R function `longest_increasing_subsequence <- 
function(sequence)` to solve the following problem:
This function longest_increasing_subsequence takes a vector 
sequence representing a sequence of integers and returns the 
length of the longest increasing subsequence within it. An 
increasing subsequence is defined as a set of numbers in the 
sequence that are in increasing order and are taken from the 
original sequence without changing their order. The length of 
the subsequence is the number of elements it contains.

Example 1:
Input: c(1, 7, 3, 5, 9, 4, 8)
Output: 4 (The longest increasing subsequence is 1, 3, 5, 8)

Instruction: Language R

longest_increasing_subsequence <- function(sequence) {
    n <- length(sequence)
    lis <- numeric(n)
    lis[1] <- 1
    for (i in 2:n) {
        max_val <- 0
        for (j in 1:(i-1)) {
            if (sequence[i] > sequence[j] && lis[j] > max_val) 
{max_val <- lis[j]    }
        }
        lis[i] <- max_val + 1
    }
    max(lis)}

main <- function() {
    stopifnot(longest_increasing_subsequence(c(1, 7, 3, 5, 9, 
4, 8)) == 4)
    stopifnot(longest_increasing_subsequence(c(10, 22, 9, 33, 
21, 50, 41, 60)) == 5)
}
main()

Test Cases

Reference Solution

Figure 10: Examples of multilingual generation. The data mainly consists of an instruction part
(including function name, function description, and function call cases), a reference solution, and
a test cases part. Left. Shows an example of the Lisp language. Middle. Shows a file processing
programming task in AWK language. During the evaluation, the corresponding file processing result
by the generated code will be compared with the reference answer. Right. Shows an example of the
R language.

fun findPrimePairs(maxNumber: Int): List<Pair<Int, Int>>
{
    fun isPrime(num: Int): Boolean {
        if (num <= 1) return false
        for (i in 2 until num) {
            if (num % i == 0) return false
        }
    return true
}

    val pairs = mutableListOf<Pair<Int, Int>>()
    for (i in 2..maxNumber - 2) {
        if (isPrime(i) && isPrime(i + 2)) {
            pairs.add(Pair(i, i + 2))
        }
    }
    return pairs
}

Provide a concise natural language description (docstring) of 
the Kotlin code in English using at most 500 characters.

Instruction: Language Kotlin

Finds all prime pairs where each prime is less than or equal 
to a given number and the pair differs by 2.
A prime pair is defined as two prime numbers where the 
difference between them is exactly 2.
Example:
>>> findPrimePairs(10)
[(3, 5), (5, 7)]
>>> findPrimePairs(100)
[(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 
61), (71, 73)]

Reference Explanation

function addDigits(num)

    while num >= 10 do

        local sum = 0

        while num > 0 do

            sum = sum + (num % 10)

            num = math.floor(num / 10)

         end

         num = sum

    end

    return num

end

Provide a concise natural language description (docstring) of 

the Lua code in English using at most 500 characters.

Instruction: Language Lua

Given a non-negative integer num, repeatedly add all its 

digits until the result has only one digit.

For example:

>>> addDigits(38)

2

Because 3 + 8 = 11, and 1 + 1 = 2. Since 2 has only one digit, 

2 is the result.

Reference Explanation

<table>
    <tr>
        <th><strong>col_1</strong></th>
        <th><strong>col_2</strong></th>
    </tr>

    <tr>
        <td>row_1; col_1</td>
        <td>row_1; col_2</td>
    </tr>

    <tr>
        <td>row_2; col_1</td>
        <td>row_2; col_2</td>
    </tr>
</table>

Provide a concise natural language description (docstring) of 
the HTML code in English using at most 500 characters.

Instruction: Language HTML

a table with two rows and two columns, with column names 

col_ 1 and col_ 2. The table content includes its 

corresponding row and column numbers, such as row_ 1; col_1，

and bold the header text

Reference Explanation

Figure 11: Examples of multilingual explanation. The data mainly consists of an instruction part
(including a complete function), a reference Explanation. Left. Shows an example of the Kotlin
language. Middle. Shows an example of the Lua language. Right. Shows an example of the HTML
language.

19



Published as a conference paper at ICLR 2025

Instruction: Language C++

int extraNumber(int a, int b, int c){
    if (a == b) {
        return c;
    }
    else if (a == c) {
        return b;
    }
    else {
        return a;
    }
}

Reference Solution

int main() {
    assert(extraNumber(2, 7, 2) == 7);
    assert(extraNumber(3, 2, 2) == 3);
    assert(extraNumber(5, 5, 1) == 1);
    assert(extraNumber(500000000, 3, 500000000) == 3);
    assert(extraNumber(500000000, 500000000, 3) == 3);
    return 0;
}

Test Cases

Below is a explanation of Rust code and incomplete code 
implementation.

* Docstring:
You are given a list of deposit and withdrawal 
operations on a bank account that starts with
zero balance. Your task is to detect if at any point 
the balance of account fallls below zero, and
at that point function should return True. Otherwise it 
should return False.

* Incomplete Code:
fn below_zero(operations:Vec<i32>) -> bool{
    let mut balance:i32 = 0;
    for op in operations {
[MASK]
        if balance < 0 {
            return true;}}
    return false;
}
Please fill the [MASK]（multiple lines of code may be 
masked out) and write the complete function.

Instruction: Language Rust Instruction: Language Shell

test_calculate_max_pens() {
local result
result=$(calculate_max_pens 5 5)
[[ "$result" -eq 2 ]] || { echo "Test 1 failed: Expected 
2, got $result"; exit 1; }
result=$(calculate_max_pens 20 1)
[[ "$result" -eq 10 ]] || { echo "Test 2 failed: 
Expected 10, got $result"; exit 1; }
result=$(calculate_max_pens 3 8)
[[ "$result" -eq 2 ]] || { echo "Test 3 failed: Expected 
1, got $result"; exit 1; }
result=$(calculate_max_pens 11 0)
[[ "$result" -eq 5 ]] || { echo "Test 4 failed: Expected 
5, got $result"; exit 1; }

Test Cases

Below is a explanation of CPP code and incomplete code 
implementation.

* Docstring:
You are given three integers a, b, c, where two of them are 
equal, and the third is different from the other two. Your 
task is to find the value that occurs exactly once.

Examples:
extraNumber(0, 0, 1) returns 1
extraNumber(4, 3, 4) returns 3

* Incomplete Code:
int extraNumber(int a, int b, int c){
   [MASK]a == c) {
     return b;
   }
   else {
    return a;
   }
}

Please fill the [MASK]（multiple lines of code may be 
masked out) and write the complete function.

fn below_zero(operations:Vec<i32>) -> bool{
    let mut balance:i32 = 0;
    for op in operations {
        balance = balance + op;
        if balance < 0 {
            return true;
        }
    }
    return false;
}

Reference Solution

#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_below_zero() {
assert_eq!(below_zero(vec![]), false);
assert_eq!(below_zero(vec![1, 2, -3, 1, 2, -3]), false);
assert_eq!(below_zero(vec![1, 2, -4, 5, 6]), true);
assert_eq!(below_zero(vec![1, -1, 2, -2, 5, -5, 4, -4]), 
false);
assert_eq!(below_zero(vec![1, -1, 2, -2, 5, -5, 4, -5]), 
true);
assert_eq!(below_zero(vec![1, -2, 2, -2, 5, -5, 4, -4]), 
true);
}
}

Test Cases

Below is a explanation of Shell code and incomplete 
code implementation.

* Docstring:
This function calculates the maximum number of pens 
that can be bought with a given amount of money.
The price of one pen is 1 Yuan and 9 Jiao (1.9 Yuan).
The function takes two integers, a and b, as input 
where 'a' represents the Yuan and 'b' represents the 
Jiao part of the total money available.
It returns the maximum number of pens that can be 
purchased.
For example, if a=5 and b=0, the function will return 2, 
as the total money is 5 Yuan, and two pens cost 3.8 
Yuan.

* Incomplete Code:
calculate_max_pens() {
[MASK]
[MASK]
    local total_jiao=$((yuan * 10 + jiao))
[MASK]
    local max_pens=$((total_jiao / price_per_pen))
[MASK]
Please fill the [MASK]（multiple lines of code may be 
masked out) and write the complete function.

calculate_max_pens() {
    local yuan=$1
    local jiao=$2
    local total_jiao=$((yuan * 10 + jiao))
    local price_per_pen=19
    local max_pens=$((total_jiao / price_per_pen))
    echo "$max_pens"
}

Reference Solution

Figure 12: Examples of multilingual completion. The data mainly consists of an instruction part
(including a incomplete function ), a reference complete code solution and test cases. Left. Shows an
span completion example of the C++ language. Middle. Shows an single line completion example of
the Rust language. Right. Shows an multiple line completion example of the Shell language.

{
    "sites": [
        {
            "name": "Google",
            "url": "www.google.com"
        },
        {
            "name": "Weibo",
            "url": "www.weibo.com"
        }
    ]
}

Rerference Solution

Create a JSON represents a collection of websites, each 
defined with two key details: their name and URL. The sites 
array holds two objects.
The first object represents the website "Google" with the URL 
"www.google.com".
The second object describes the website "Weibo" with its URL 
"www.weibo.com".
This structure efficiently organizes these popular websites 
by their most essential identifiers.

Instruction Language Json

{
    "sites": [
        {
            "name": "Google",
            "url": "www.google.com"
        },
        {
            "name": "Weibo",
            "url": "www.weibo.com"
        }
    ]
}

Test 

{
    "sites": [
        {
            "url": "www.google.com",
            "name": "Google"
        },
        {

 "url":"www.weibo.com",
  "name": "Weibo"

        }
    ]
}

match

match

All subcomponents match exactly, test passes！

Figure 13: Examples of Markup language (Json) generation task evaluation.

A.5 EVALUATION

For programming languages other than markup languages, we use an execution-based correctness
metric by running the code with the provided test cases. For markup languages, we use the Exact

20



Published as a conference paper at ICLR 2025

Table 6: Runtime environments for different programming languages.

Language Runtime Environments

AWK GNU bash, version 4.4.20(1)-release (x86_64-pc-linux-gnu)
C gcc (Ubuntu 7.5.0-3ubuntu11̃8.04) 7.5.0
C# dotnet 8.0.100
CPP g++ (Ubuntu 7.5.0-3ubuntu11̃8.04) 7.5.0
CoffeeScript CoffeeScript version 1.12.7
Common Lisp SBCL 1.4.5.debian
Dart Dart SDK version: 3.3.1 (stable)
Elixir elixir 1.3.3
Emacs Lisp GNU Emacs 25.2.2
Erlang Erlang/OTP 20 [erts-9.2]
F# dotnet 8.0.100
Fortran GNU Fortran (Ubuntu 7.5.0-3ubuntu11̃8.04) 7.5.0
Go go version go1.18.4 linux/amd64
Groovy Groovy Version: 4.0.16 JVM: 17.0.9 Vendor: Oracle Corporation OS: Linux
HTML -
Haskell The Glorious Glasgow Haskell Compilation System, version 9.4.7
Json -
Java javac 11.0.19
JavaScript Node.js v16.14.0
Julia julia v1.9.4
Kotlin kotlinc-jvm 1.9.21 (JRE 17.0.9+11-LTS-201)
Lua Lua 5.4.6 Copyright (C) 1994-2023 Lua.org, PUC-Rio
Markdown -
PHP PHP 7.2.24-0ubuntu0.18.04.17 (cli) (built: Feb 23 2023 13:29:25) ( NTS )
Pascal Free Pascal Compiler version 3.2.2 [2021/05/16] for x86_64
Perl perl 5, version 26, subversion 1 (v5.26.1) built for x86_64-linux-gnu-thread-multi
PowerShell PowerShell 7.4.0
Python Python 3.8.12
R R version 3.4.4
Racket Racket v6.11
Ruby ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-linux-gnu]
Rust rustc 1.74.0 (79e9716c9 2023-11-13)
Scala Scala code runner version 3.3.1 – Copyright 2002-2023, LAMP/EPFL
Scheme Racket v6.11
Shell GNU bash, version 4.4.20(1)-release (x86_64-pc-linux-gnu)
Swift Swift version 5.9.2 (swift-5.9.2-RELEASE)
Tcl tclsh 8.6.11
TypeScript tsc Version 5.3.3
VimScript VIM - Vi IMproved 9.0 (2022 Jun 28, compiled Dec 20 2023 18:57:50)
Visual Basic dotnet 8.0.100

Match metric for evaluation. Taking Json as an example, we parse all subcomponents in Json. If the
model result is exactly the same as the subcomponent of the reference solution, the model generation
result is considered correct. An example of Markup language (Json) is shown in Figure 13.

We adopt the greedy Pass@1 (%) metric (Kulal et al., 2019; Chen et al., 2021) for our evaluations. For
closed-source models, we generate answers through the official API service. For open-source models,
we prioritize using vLLM (Kwon et al., 2023) for faster inference if the model is supported by vLLM.
Otherwise, we perform inference with the Distributed Data Parallel (DDP) module from PyTorch. For
the code generation and code completion tasks, we extract the functional part of the code from the
model outputs and combine it with corresponding test cases to form compilable and executable code.
For the code explanation task, we adopt a two-pass generation approach (Code-to-Natural-Language
and Natural-Language-to-Code). The extraction and execution process for this task is consistent with
the previous two tasks. We conduct all evaluations in a Docker environment. Detailed information
on the code compilation and execution environment are displayed in Table 6. We have uploaded the
Docker image to docker hub to facilitate the reproduction of results and the evaluation of new models.

21



Published as a conference paper at ICLR 2025

Average AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang F# Fortran Go
0

50

Qwen2.5-Coder-7B-Instruct

OpenCoder-8B-Instruct

Magicoder-S-DS-6.7B

DS-Coder-V1-6.7B-Instruct

mCoder-7B (Our)

CodeQwen1.5-7B-Chat

CodeGemma-7B-It

CodeLlama-7B-Instruct

Groovy Haskell Html JS Java Json Julia Kotlin Lua PHP Pascal Perl Power Python
0

50

R Racket Ruby Rust Scala Scheme Shell Swift TS Tcl VB VimL MD
0

50

1Figure 14: Pass@1 (%) scores of different code LLMs (<10B) for multilingual code generation tasks
on MCEVAL. “AVG” represents the average scores of all code languages.

Average AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang F# Fortran Go
0

50

Qwen2.5-Coder-32B-Instruct

DS-Coder-V2-Lite-Instruct

Codestral-22B-v0.1

DS-Coder-V1-33B-Instruct

WizardCoder-Python-34B CodeLlama-34B-Instruct

Groovy Haskell Html JS Java Json Julia Kotlin Lua PHP Pascal Perl Power Python
0

50

R Racket Ruby Rust Scala Scheme Shell Swift TS Tcl VB VimL MD
0

50

1Figure 15: Pass@1 (%) scores of different code LLMs (10B to 40B) for multilingual code generation
tasks on MCEVAL. “AVG” represents the average scores of all code languages.

A.6 OPTIMIZATION DETAILS

All MCODER models are fine-tuned using 8 NVIDIA A800-80GB GPUs. The models are trained for
2 epochs with a cosine scheduler, starting at a learning rate of 2e-5 and incorporating a 3% warmup
phase. Training a model takes about 5 hours. We used AdamW (Loshchilov & Hutter, 2017) as
the optimizer and a batch size of 512 with a sequence truncation length of 4096. We use PyTorch’s
Fully Sharded Data Parallel (FSDP) to perform distributed training of the model, and use gradient
checkpointing technology and gradient accumulation to save memory and achieve training with a
larger batch size.

A.7 EXTRA RESULTS

A.8 PROGRAMMING CLASSIFICATION

As shown in Table 7 and Table 8, we comprehensively display the code generation performance of
the models we tested across various programming paradigms and application scenarios.

22



Published as a conference paper at ICLR 2025

Average AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang F# Fortran Go
0

50

o1-preview

claude-3-5-sonnet-20240620

claude-3-5-sonnet-20241022

gpt-4o-2024-08-06

DS-Coder-V2-Instruct

gpt-4o-mini-2024-07-18

o1-mini

Groovy Haskell Html JS Java Json Julia Kotlin Lua PHP Pascal Perl Power Python
0

50

R Racket Ruby Rust Scala Scheme Shell Swift TS Tcl VB VimL MD
0

50

1Figure 16: Pass@1 (%) scores of different code LLMs (Closed Source & 200B+) for multilingual
code generation tasks on MCEVAL. “AVG” represents the average scores of all code languages.

Average AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang F# Fortran Go
0

50

gpt-4o-2024-05-13

gpt-4-turbo-231106

gpt-3.5-turbo-240125

DS-Coder-V1-6.7B-Instruct

Magicoder-S-DS-6.7B

CodeQwen1.5-7B-Chat

mCoder (Our)

CodeLlama-13B-Instruct

Groovy Haskell Html JS Java Json Julia Kotlin Lua PHP Pascal Perl Power Python
0

50

R Racket Ruby Rust Scala Scheme Shell Swift TS Tcl VB VimL MD
0

50

1Figure 17: Pass@1 (%) scores of different code LLMs for multilingual code explain tasks on
MCEVAL. “AVG” represents the average scores of all code languages.

A.9 MCODER RESULT

In Table 9, we show some extra MCODER Pass@1 (%) results on multilingual code generation tasks.
We evaluate the base models CodeQwen-1.5 and DeepsSeek-Coder-1.5 respectively. In addition to
CodeQwen-1.5, we also selected DeepSeek-Coder-1.5-base as the base model for fine-tuning.

A.10 PARALLEL QUESTIONS ACROSS LANGUAGES & PROGRAMMING GRAMMAR

Due to the large number of languages, it is difficult to ensure parallel problem annotation. For
most language annotations, we follow the characteristics of the language and perform independent
annotations. For example, structured languages such as Markdown and HTML need independent
annotations. For some similar languages, such as Typescript and Javascript, we use parallel annotation
on some data.

As shown in Figure 19, we analyzed the programming languages in the MCEVAL from the represen-
tation perspective. We used CodeBERT (Feng et al., 2020) to extract code representations from code
snippets in MCEVAL. These representations were visualized using t-SNE (Van der Maaten & Hinton,
2008) and hierarchical clustering (Murtagh & Contreras, 2012) methods. The figure clearly shows
that languages with similar syntax have closely related representations. For example, other functional
programming languages similar to Common Lisp, as well as C, C++, Java, and scripting languages,
exhibit high grammar similarity.

23



Published as a conference paper at ICLR 2025

Average AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang F# Fortran Go
0

100

gpt-4-turbo-231106

Magicoder-S-DS-6.7B

DS-Coder-V1-6.7B-Instruct

CodeQwen1.5-7B-Chat

mCoder (Our)

CodeLlama-Instruct-13B

CodeLlama-Instruct-7B

WizardCoder-V1.0-15B

Groovy Haskell Html JS Java Json Julia Kotlin Lua PHP Pascal Perl Power Python
0

100

R Racket Ruby Rust Scala Scheme Shell Swift TS Tcl VB VimL MD
0

50

1
(a) Single-line Completion

Average AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang F# Fortran Go
0

100

gpt-4-turbo-231106

Magicoder-S-DS-6.7B

DS-Coder-V1-6.7B-Instruct

CodeQwen1.5-7B-Chat

mCoder (Our)

CodeLlama-Instruct-13B

CodeLlama-Instruct-7B

WizardCoder-V1.0-15B

Groovy Haskell Html JS Java Json Julia Kotlin Lua PHP Pascal Perl Power Python
0

50

R Racket Ruby Rust Scala Scheme Shell Swift TS Tcl VB VimL MD
0

50

1(b) Multi-line Completion

Average AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang F# Fortran Go
0

50

gpt-4-turbo-231106

Magicoder-S-DS-6.7B

DS-Coder-V1-6.7B-Instruct

CodeQwen1.5-7B-Chat

mCoder (Our)

CodeLlama-Instruct-13B

CodeLlama-Instruct-7B

WizardCoder-V1.0-15B

Groovy Haskell Html JS Java Json Julia Kotlin Lua PHP Pascal Perl Power Python
0

50

R Racket Ruby Rust Scala Scheme Shell Swift TS Tcl VB VimL MD
0

50

1
(c) Span Completion

Average AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang F# Fortran Go
0

50

gpt-4-turbo-231106

Magicoder-S-DS-6.7B

DS-Coder-V1-6.7B-Instruct

CodeQwen1.5-7B-Chat

mCoder (Our)

CodeLlama-Instruct-13B

CodeLlama-Instruct-7B

WizardCoder-V1.0-15B

Groovy Haskell Html JS Java Json Julia Kotlin Lua PHP Pascal Perl Power Python
0

50

R Racket Ruby Rust Scala Scheme Shell Swift TS Tcl VB VimL MD
0

50

1(d) Span Completion Light

Figure 18: Pass@1 (%) scores of different models for multilingual code completion tasks on MCEVAL.
“Avg” represents the average scores of all code languages.

24



Published as a conference paper at ICLR 2025

Table 7: Pass@1(%) results of code generation performance of across various programming paradigms

Method Procedural Object Oriented Multiple Paradigms Functional Markup Language

GPT-4o (240517) 58.0 79.8 65.9 67.0 46.0
GPT-4 Turbo (231106) 56.7 78.7 65.2 59.3 46.7
GPT-3.5-Turbo (240125) 38.7 66.8 57.6 44.3 39.3
Codegemma-7b-it 19.3 46.6 34.0 16.3 34.0
CodeLlama-13b-Instruct 21.3 32.0 27.0 32.3 28.0
CodeLlama-34b-Instruct 27.3 33.6 28.0 30.0 30.7
CodeLlama-7b 20.3 28.1 23.4 26.7 30.7
CodeQwen-1.5-7b-Chat 41.3 57.3 46.3 41.0 37.3
Codeshell-7b-chat 16.0 24.1 25.7 14.0 34.7
Codestral-22B-v0.1 40.0 67.6 54.1 39.7 40.7
DeepSeekCoder-33b-instruct 52.7 62.8 56.3 52.0 34.7
DeepSeekCoder-1.5-7b-instruct 39.0 51.8 48.8 41.0 40.0
Magicoder-S-DS-6.7B 45.7 58.5 49.4 49.0 32.0
Llama-3-8B-Instruct 27.3 44.7 38.0 32.0 33.3
Nxcode-CQ-7B-orpo 40.7 54.9 45.5 41.3 36.7
OCTOCODER 20.7 28.9 21.9 25.0 25.3
OpenCodeInterpreter-DS-6.7B 40.7 57.7 46.4 42.0 42.0
Phi-3-medium-4k-instruct 32.3 43.1 36.6 26.7 35.3
Qwen1.5-72B-Chat 38.3 37.2 36.2 29.3 39.3
WizardCoder-15B-V1.0 19.0 31.6 34.2 24.0 6.7
WizardCoder-Python-34B 27.7 43.9 38.2 33.7 36.0

MCODER 41.3 57.3 47.4 42.3 43.3

Table 8: Pass@1(%) results of code generation performance of across various application scenarios

Method Mobile Cross Desktop Frontend Backend Scientific General Content Education Scripts Editor

GPT-4o (230517) 84.0 68.3 75.0 66.7 64.6 71.6 57.6 46.0 72.7 65.7 52.0
GPT-4 Turbo (231106) 81.0 64.4 74.0 64.0 66.6 66.8 57.6 46.7 60.7 65.7 50.0
GPT-3.5 (240125) 60.0 56.7 71.0 63.3 57.5 55.6 50.4 39.3 45.3 50.0 25.0
Codegemma-7b-it 45.0 40.4 43.0 34.7 37.7 21.6 24.8 34.0 22.0 29.7 13.0
code-Llama-13b 30.0 15.4 39.0 34.7 28.0 23.2 34.8 28.0 24.0 27.7 13.0
CodeLlama-34b-Instruct 33.0 17.3 38.0 38.0 27.2 24.0 32.8 30.7 26.7 31.7 19.0
Code-Llama-7b-Instruct 24.0 12.5 37.0 29.3 22.7 20.8 29.2 30.7 19.3 27.0 14.0
CodeQwen-1.5-7b 55.0 44.2 59.0 56.7 48.7 47.6 46.8 37.3 42.7 40.0 20.0
Codeshell-7b-chat 23.0 14.4 26.0 40.7 26.1 17.2 21.2 34.7 13.3 22.7 8.0
Codestral-22B-v0.1 68.0 58.7 64.0 57.3 55.0 54.0 44.8 40.7 30.0 53.3 28.0
DeepSeekCoder-33b-instruct 63.0 50.0 57.0 68.0 60.6 54.8 54.0 34.7 56.7 52.7 35.0
DeepSeekCoder-1.5-7b-instruct 40.0 42.3 59.0 62.0 52.7 40.8 50.0 40.0 34.7 46.0 22.0
Magicoder-S-DS-6.7B 49.0 43.3 64.0 60.7 50.4 49.6 52.4 32.0 48.7 49.7 24.0
Llama-3-8B-Instruct 41.0 30.8 48.0 50.7 40.5 30.0 37.2 33.3 34.0 33.0 15.0
Nxcode-CQ-7B-orpo 54.0 40.4 55.0 53.3 48.4 48.0 46.8 36.7 42.7 39.7 20.0
OCTOCODER 22.0 20.2 33.0 28.7 21.8 16.4 27.2 25.3 16.0 29.0 14.0
OpenCodeInterpreter-DS-6.7B 47.0 42.3 64.0 58.0 45.9 47.6 46.4 42.0 43.3 44.0 24.0
Phi-3-medium-4k-instruct 40.0 26.9 48.0 48.7 30.3 39.2 31.6 35.3 33.3 39.0 13.0
Qwen1.5-72B-Chat 30.0 29.8 43.0 44.7 36.3 30.4 38.0 39.3 32.7 40.0 21.0
WizardCoder-15B-V1.0 28.0 24.0 36.0 48.0 37.1 29.2 27.2 6.7 20.7 26.3 9.0
WizardCoder-Python-34B 42.0 28.8 46.0 42.0 44.2 32.8 38.0 36.0 32.7 32.3 19.0

MCODER 56.0 38.5 60.0 57.3 50.4 48.0 46.0 43.3 39.3 44.3 25.0

We selected training data from several languages in MCEVAL-INSTRUCT, which exhibit significant
grammatical differences (approximately 10K samples of Python and 1K samples for other languages)
and fine-tuned the model. The results are as shown in Table 10.

When trained using only Python data, the performance on Python and AWK improved. However,
this led to the scores for TypeScript and JavaScript dropping to 0. Upon inspection, we found that the
generated code for these two languages contained syntax errors (Less data may lead to instability in
model training).

When training on a mixture of several languages, Python performance decreased slightly compared
to using only Python data, while Scheme performance improved significantly. Furthermore, the syntax
generation for TypeScript and JavaScript returned to normal (even without adding JavaScript data,
as TypeScript and JavaScript share similar syntax). However, there was no significant improvement
compared to the base model.

Thus, fine-tuning multilingual code models presents significant challenges. Similar languages can
provide mutual benefits, while languages with greater differences may negatively impact performance.

25



Published as a conference paper at ICLR 2025

Table 9: Additional MCODER Pass@1 (%) results on multilingual code generation tasks. “Avgall"
represents the average Pass@1 scores across all programming languages in the MCEVAL. Here,
MCODER-DS indicates that the fine-tuned base model is DeepSeekCoder-1.5-7b-base.

Method Size AWK C C++ C# Clisp Coffee Dart Elisp Elixir Erlang Fortran F# Go Groovy Haskell Html Java JS Json Julia

DeepSeekCoder-1.5-base 7B 30.0 36.0 38.0 40.0 40.0 58.0 0.0 18.0 2.0 14.0 50.0 44.0 48.0 26.0 2.0 4.0 49.1 32.0 16.0 34.0
CodeQwen-1.5 7B 38.0 40.0 46.0 42.0 28.0 56.0 2.0 14.0 14.0 0.0 40.0 46.0 44.0 32.0 2.0 0.0 47.2 52.0 30.0 60.0
CodeQwen-1.5-Python 7B 42.0 48.0 48.0 12.0 52.0 68.0 23.5 22.0 40.0 62.0 50.0 42.0 48.0 68.0 56.0 32.0 67.9 52.0 52.0 54.0

MCODER-DS 7B 34.0 46.0 50.0 26.0 30.0 72.0 19.6 6.0 26.0 24.0 58.0 30.0 48.0 12.0 26.0 28.0 67.9 48.0 62.0 48.0
MCODER 7B 40.0 44.0 52.0 62.0 46.0 66.0 21.6 30.0 44.0 52.0 56.0 44.0 48.0 70.0 32.0 34.0 54.7 54.0 66.0 56.0

Method Kotlin Lua MD Pascal Perl PHP Power Python R Racket Ruby Rust Scala Scheme Shell Swift Tcl TS VB VimL Avgall
DeepSeekCoder-1.5-7B-base 42.0 20.0 0.0 24.0 24.0 36.0 42.0 54.0 24.0 20.0 38.0 39.6 44.0 20.0 18.0 32.0 10.0 44.0 22.0 22.0 28.9
CodeQwen-1.5 58.0 50.0 0.0 14.0 20.0 10.0 48.0 38.0 30.0 24.0 36.0 52.8 32.0 34.0 42.0 46.0 30.0 52.0 54.0 22.0 33.2
CodeQwen-1.5-Python 46.0 46.0 24.0 42.0 36.0 36.0 54.0 44.0 36.0 40.0 46.0 52.8 58.0 40.0 42.0 62.0 48.0 52.0 58.0 18.0 45.5

MCODER-DS 36.0 42.0 22.0 34.0 8.0 34.0 46.0 42.0 22.0 40.0 56.0 45.3 48.0 30.0 38.0 48.0 34.0 46.0 50.0 28.0 37.8
MCODER 48.0 52.0 30.0 42.0 36.0 32.0 54.0 44.0 40.0 36.0 48.0 52.8 58.0 44.0 46.0 64.0 38.0 52.0 58.0 20.0 46.7

AWK
C
C#
CPP
CoffeeScript
Common Lisp
Dart
Elixir
Emacs Lisp
Erlang

F#
Fortran
Go
Groovy
HTML
Haskell
JAVA
JSON
JavaScript
Julia

Kotlin
Lua
Markdown
PHP
Pascal
Perl
PowerShell
Python
R
Racket

Ruby
Rust
Scala
Scheme
Shell
Swift
Tcl
TypeScript
VimScript
Visual Basic

AWK
Kotlin
Rust

Scala
C

CPP
Groovy

C#
JAVA

Python
PHP

JavaScript
TypeScript

Common Lisp
Scheme

Emacs Lisp
Racket

Go
Swift
Elixir
Julia

Ruby
Fortran
Haskell

F#
Pascal

Visual Basic
PowerShell

Tcl
Perl

Shell
Erlang

Dart
CoffeeScript

VimScript
Lua

R
JSON
HTML

Markdown

Emacs Lisp
Common Lisp
Racket
Scheme

TypeScript
JavaScript

CPP
C
C#
Java
Groovy

Shell
Tcl
Perl
Power
Shell

(1) Representation visualization based on t-SNE (2) Representation visualization based on Hierarchical Cluster

Figure 19: Analysis from the representation perspective on MCEVAL. Languages with similar syntax
have closely related representations

Table 10: Preliminary explorations on the impact of finetuning across different languages on model
performance.

Setting Python Scheme TypeScript JavaScript AWK

CodeQwen1.5-base 38.0 34.0 52.0 52.0 38.0
+ Python 48.0 12.0 0.0 0.0 40.0
+ Python&Scheme&TypeScript&AWK 44.0 38.0 50.0 48.0 42.0

A.11 DETAILED RELATED WORK

Code Large Language Model. In recent years, numerous large language models (LLMs) have
been developed specifically for code-related tasks. For the field of soft engineering, code LLMs (Feng
et al., 2020; Chen et al., 2021; Scao et al., 2022; Li et al., 2022; Allal et al., 2023; Fried et al.,
2022; Wang et al., 2021; Zheng et al., 2024; Guo et al., 2024) pre-trained on billions of code
snippets, such as StarCoder (Li et al., 2023; Lozhkov et al., 2024), CodeLlama (Rozière et al.,
2023), DeepSeekCoder (Guo et al., 2024), and Code-Qwen (Bai et al., 2023). The development and
refinement of code LLMs have been pivotal in automating software development tasks, providing
code suggestions, and supporting code generation/translation.

To improve the performance of code generation, researchers used optimized prompts (Liu et al., 2023a;
Reynolds & McDonell, 2021; Zan et al., 2023; Beurer-Kellner et al., 2023), bring test cases (Chen
et al., 2023) and collaborative roles (Dong et al., 2023). There are also some related studies on using
large language models for other code tasks, such as dynamic programming (Dagan et al., 2023),
compiler optimization (Cummins et al., 2023), multi-lingual prompts (Di et al., 2023), and Program
of Thoughts (Chen et al., 2022).

26



Published as a conference paper at ICLR 2025

Code Evaluation. In the domain of code evaluation, a rich tapestry of benchmarks (Zheng et al.,
2023b; Yu et al., 2024; Yin et al., 2023; Peng et al., 2024; Khan et al., 2023; Orlanski et al., 2023)
has been woven to address the challenges of accurately assessing code quality, functionality, and
efficiency, such as HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), their upgraded
version EvalPlus (Liu et al., 2023b). Studies have explored a variety of approaches, ranging from
static analysis techniques (e.g. exact match (EM) and edit similarity (ES)), which examine code
without executing it, to dynamic methods that involve code execution in controlled environments
(e.g. Pass@k). The current benchmarks support code models to evaluate a series of different types of
tasks, such as code understanding, function calling (Zhuo et al., 2024), code repair (Lin et al., 2017;
Tian et al., 2024; Jimenez et al., 2023; Zhang et al., 2023; Prenner & Robbes, 2023; He et al., 2022),
code translation (Yan et al., 2023). Recently, many works Wei et al. (2023); Zhuo et al. (2024) have
leveraged LLMs to construct large-scale evaluation datasets and instruction-tuning corpora, further
enhancing the evaluation and performance of code models. In our work, we used a similar approach to
construct an instruction dataset and proposed the Cross-lingual Code Transfer method to expand the
number of languages to 40. Some recent works pay attention to the multilingual scenarios (Cassano
et al., 2023; Wang et al., 2023; Athiwaratkun et al., 2023; Zheng et al., 2023a; Peng et al., 2024;
Zheng et al., 2023b) by extending the existing python-only HumanEval or MBPP benchmark, such as
MultiPL-E (Cassano et al., 2023) and MBXP (Athiwaratkun et al., 2023), which is challenged by the
number of the covering languages and data leaking problem (Li et al., 2023; Jain et al., 2024).

27


	Introduction
	Multilingual Code Evaluation: McEval
	Dataset Statistics
	Human Annotation & Quality Control
	Evaluation Tasks

	mCoder
	McEval-Instruct
	Multilingual Code Instruction Tuning

	Experiments
	Experiment Setup
	Main Results

	Further Analysis
	Related Work
	Conclusion
	Appendix
	Limitations
	Data Annotation
	Human Annotation
	Reference Data
	Quality Control
	Annotation Costs

	Detailed about McEval-Instruct
	Examples in McEval
	Evaluation
	Optimization Details
	Extra Results
	Programming Classification
	mCoder Result
	Parallel Questions Across Languages & Programming Grammar
	Detailed Related Work


