
Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 DATASETS

For the bulk of our experiments in Sections 5 and 4 we use the MNIST (LeCun et al., 1998), EM-
NIST (Cohen et al., 2017) and CelebFaces Attributes (CelebA) (Liu et al., 2015) datasets. Few
examples from each dataset and corresponding concepts are presented in Figure 5

MNIST. MNIST is a handwritten digits classification dataset with 10 digits. There are 60,000
training examples and 10,000 testing examples. It is a subset of a larger set from National Institute
of Standards and Technology (NIST) where each image is size-normalized and centered in a fixed-
size image. We introduce concept of rotation to these images by rotating 75% (unless otherwise
specified) of images by one of 4 possible values {90, 180, 270}. Concept of color is added to
images by multiplying each image channel with corresponding [R,G,B] values drawn from a uniform
distribution.

EMNIST. EMNIST is a set of handwritten characters derived from NIST Special Database 19. For
our experiments we use the EMNIST Letters dataset, which is a 26 class classification of english
letters. There are 88,800 training examples and 14,800 testing examples. We introduce concept
of rotation to these images by rotating 75% (unless otherwise specified) of images by one of 4
possible values {90, 180, 270}. Concept of color is added to images by multiplying each image
channel with corresponding [R,G,B] values drawn from a uniform distribution.

CelebFaces Attributes. CelebA is a large-scale face attributes prediction dataset with more than
200,000 images. Each image has 40 different attribute annotations. There are 162,770 training
examples, 19962 test examples and 19867 validation examples. For our experiments, in Sec-
tions 5 we use concepts of {Eyeglasses,No Beard, Smiling} and for experiments in 4 we use
{Smiling,Wearing Lipstick,Heavy Makeup,High Cheekbones}.

A.2 MODELS

To describe the architecture used in our experiments, we use the following notation:

• Conv2d(cin, cout, k, s, p): A two dimensional convolution operation that takes cin input channels
and produce cout output channels. A square kernel of size k is used. s is the stride and p is the
padding.

• ConvT2d(cin, cout, k, s, p): A two dimensional transposed convolution operation that takes cin
input channels and produce cout output channels. A square kernel of size k is used. s is the stride
and p is the padding.

• Linear(cin, cout): A linear layer that maps an input vector v1 ∈ Rcin to an output vector v2 ∈
Rcout .

Autoencoder Architecture

The architecture for our Autoencoder experiment presented in 5 is based on Lucic et al. (2018). Sim-
ilar to Esser et al. (2020), we replace the batch normalization Ioffe & Szegedy (2015) by activation
normalization Kingma & Dhariwal (2018). Details regarding the architecture can be found in Table
3.

Table 3: Architecture of autoencoder model. Input images have size of h × w × c and are quadratic in nature
h = w

Encoder Decoder
Conv2d(3, 64, 4, 2, 1), ActNorm, LeakyReLU(0.2) ConvT2d(z, 512, h/16, 1, 0), ActNorm, LeakyReLU(0.2)
Conv2d(64, 128, 4, 2, 1), ActNorm, LeakyReLU(0.2) ConvT2d(512, 256, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(128, 256, 4, 2, 1), ActNorm, LeakyReLU(0.2) ConvT2d(256, 128, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(256, 512, 4, 2, 1), ActNorm, LeakyReLU(0.2) ConvT2d(128, 64, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(512, 2 · z, h/16, 1, 0) ConvT2d(64, 3, 4, 2, 1), Tanh

Classifier Architecture

14

Under review as a conference paper at ICLR 2023

Figure 5: Example images for rotated-colored-MNIST, rotated-colored-EMNIST and CelebFaces Attributes.

We use two different architectures for our transfer learning setup. A larger 6 layer network for
source model which is the same as the encoder block of autoencoder presented in Table 3 with a
fully connected layer as classifier attached at the end (see Table 4). A smaller 3 layer network for
target model (see Table 5).

Table 4: Architecture of source model

Encoder Classification Head
Conv2d(3, 64, 4, 2, 1), ActNorm, LeakyReLU(0.2) Linear(zs, nclasses)
Conv2d(64, 128, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(128, 256, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(256, 512, 4, 2, 1), ActNorm, LeakyReLU(0.2)
Conv2d(512, zs, h/16, 1, 0)

Table 5: Architecture of source model

Encoder Classification Head
Conv2d(3, 64, 4, 2, 1), ActNorm, LeakyReLU(0.2) Linear(zt, nclasses)
Conv2d(64, zt, h/16, 1, 0)

Invertible Neural Network

As described in Section 3.1, we use the Invertible Neural Network proposed in (Esser et al., 2020)
- Invertible Interpretable Network. In this implementation, the network consists of three invertible

15

Under review as a conference paper at ICLR 2023

layers stacked one on to of another to create an invertible block: coupling blocks (Dinh et al., 2016),
actnorm (Kingma & Dhariwal, 2018) blocks and shuffling blocks. After the input representation
zs is passed through several invertible blocks, the output is split into K factors (z̃sk)

K
k=0. We refer

readers to (Esser et al., 2020) for further details.

Algorithm for training IIN

Algorithm 2 TRAIN-IIN: Train Invertible Interpretable Network

1: Inputs: IIN training dataset DI ; IIN loss LI(·); Seed weight parameters: WI [0]; Source pre-
trained network fs; Number of Epochs E, Layer L, Concepts K to factorize.

2: Randomly shuffle DI .
3: for epoch ∈ [1 : E] do
4: for batch ∈ DI do
5: (xa, xb|concept)← DI [batch]. Where (xa, xb) are pairs of samples encoding concept.
6: (zsa, z

s
b)← (fs

L(xa), f
s
L(xb)).

7: WI [batch]←WI [batch− 1]− ηbatch∇WI
LI((z

s
a, z

s
b)|concept)

8: end for
9: end for

10: Output: Trained model I with last iterate ofWI

Statistics Network

For mutual information based experiments in Section 5, we adapt a statistics network proposed
in Belghazi et al. (2018). We use a custom sequence of 4 layer network that takes intermediate
representation Z and concept vector C to estimate the mutual information between them. Details
about the architecture is presented in Table 6.

Table 6: Architecture of statistics network for mutual information estimation.

Statistics Network
ConcatLayer(Z,C)
Linear(|Z|+ |C|, 100), ReLU()
Linear(100, 100), ReLU()
Linear(100, 1), ReLU()

A.3 EXPERIMENTAL DETAILS

For our experimental analysis in the main paper, we set the number of epochs for training to E = 50
for all models. We train all models using a batch size of 25 and a learning rate of 10−4 for the Adam
optimizer (Kingma & Ba, 2014). All models were randomly initialized before training. While
training source classifier, IIN, target classifier, we use different samples to ensure that each model
is trained with non-overlapping samples. For example, we train the source network in CelebA
experiments with the standard training dataset, IIN and target classifier with a split of validation
samples. Testing is done on the standard test dataset. Statistics network is trained by querying
pre-trained source model with standard validation dataset and testing on standard test dataset. For
creating prototypes for concepts, we use 100 samples.

The models were trained in parallel with the specifications shown in Table 7.

Resource Setting
CPU IBM Power 9 CPU @ 3.15GHz
Memory 512GB
GPUs 1 x NVIDIA Tesla V100 16 GB
Disk 1.2 TB
OS RedHat8

Table 7: Resources used for training

16

Under review as a conference paper at ICLR 2023

Figure 6: Visualization of color concept blocking using prototypes created by different aggregation operators
in colored-MNIST images. We find that median and mean performs the best.

Figure 7: Visualization of Eyeglasses concept blocking using prototypes created by different aggregation
operators in CelebA images. We find that median and mean performs the best.

A.4 ADDITIONAL EXPERIMENTS

Choosing the operation for creating prototypes

In order to to create prototypes for each concept, we first query the pre-trained source model and
IIN with 100 images that don’t have a concept, and aggregate the corresponding concept factor in
IIN output. To choose the right aggregation factors, we experimented with simple operations such
as mean, median, mode and setting the factor to zero. In order to visualize how effective each
aggregation is at blocking a concept, we visualize a few images reconstructed by using auto-encoder
based source network as detailed in Section 5.1. We present these results for colored-MNIST images
with color concept blocked in 6 and CelebA images with Eyglasses concept blocked in 7. We find
the mean and median performs the best and we chose mean for rest of the experiments presented
in Sections 5 and 4.

Autoencoder based concept removal images

17

Under review as a conference paper at ICLR 2023

Figure 8: Visualization of concept blocking using an autoencoder as source network. For CelebA dataset, we
consider randomly drawn samples with Beard & Smiling attributes and proceed to block them individually.
These results are presented in (a) and (b) respectively

18

	Appendix
	Datasets
	Models
	Experimental details
	Additional experiments

