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A Simple Examples of G-Compatible Functions

Compatible functions naturally arise when performing inference on probabilistic graphical models.

Probabilistic Graphical Models. The joint probability distribution of a probabilistic graphical
model, on an undirected graph G, is given by

p(X | G) =
∏

C∈C(G)

ψC(xC), (A1)

where C (G) is the collection of maximal cliques in G and ψC are some functions, often referred to as
clique potentials [4, 6]. This can be written as

p(X | G) = exp{f(X)}, (A2)

where f(X) is a G-compatible function according to (3), in the main paper, with θC(xC) =
logψC(xC). Thus, the ability to approximate any G-compatible function is equivalent to the ability
to approximate any distribution function of a probabilistic graphical model, on graph G.

We now provide two examples where we have to learn graph compatible functions to compute
maximum likelihood estimates over graphs.

Graph Classification. Given a graph G and its label y ∈ L, suppose that the node features X are
distributed according to a probabilistic graphical model on the undirected graph G. This induces a
natural correlation between the observed node features, which is dictated by the graph G. Then, the
conditional probability density p(X|y,G) of the node features X , given label y and graph G, is given
by

p (X|y,G) =
∏

C∈C(G)

ψC(xC , y), (A3)

where C (G) is the set of all maximal cliques in graph G and ψC are the clique potentials. A maximum
likelihood estimator for the graph labels will predict:

ŷ = arg max
y∈L

log p (X|y,G) = arg max
y∈L

∑
C∈C(G)

logψC(xC , y), (A4)

whose objective is a G-compatible function. In practice, we do not know the functions ψC or the
conditional distribution p(X|y,G), and will have to learn from the data to make predictions given
in (A4) feasible.

Node Classification. Given a graph G and node labels y = {yv}v∈V(G), suppose the node features
X be distributed according to a probabilistic graphical model on graph G. We, therefore, have

p(X|y,G) =
∏

C∈C(G)

ψC(xC ,y). (A5)

A maximum likelihood estimator that estimates node labels y by observing the node features will
predict:

ŷ = arg max
yv∈L

log p(X|y,G) = arg max
yv∈L

∑
C∈C(G)

logψC(xC ,y), (A6)

whose objective is a G-compatible function.

Remark 1 (Applying to directed graphs) The proposed model can be used to approximate infer-
ence on the directed graphical models as well. Note that the joint distribution on a directed graphical
model can also be described as a product of clique potentials [4, 6]. However, we would first convert
the directed model into an undirected graphical model using the technique of moralization [4, 6].
The H-tree can then be constructed on this undirected, moralized graph.
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B Junction Tree Decomposition

This section reviews the junction tree algorithm, proposed in [3]. We denote by (T ,B) =
junction-tree(G) the algorithm that takes an arbitrary graph G and returns a junction tree
decomposition (T ,B) as described below.

In order to obtain a junction tree decomposition of a given undirected graph G, the graph G is first
triangulated. Triangulation is done by adding a chord between any two nodes in every cycle of
length 4 or more. This eliminates all the cycles of length 4 or more in the graph G to produce a
chordal graph Gc. The collection of bags B = {Bτ}τ in the junction tree is chosen as the set of
all maximal cliques in the chordal graph Gc. Then, an intersection graph I on B is built, which
has a node for every bag in B and an edge between two bags Bτ and Bµ if they have a non-empty
intersection, i.e., |Bτ ∩Bµ| ≥ 1. The weight of every link {τ, µ} in the intersection graph I is set to
|Bτ ∩Bµ|. Finally, the desired junction tree is obtained by extracting a maximum weight spanning
tree on the weighted intersection graph I. It is know that this extracted tree T , with the bag B, is a
valid tree-decomposition of G that satisifes the connectedness and covering property.

The junction tree decomposition of a graph and its subgraphs is shown in Fig. 1.
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C Invariant and Equivariant Function Approximation

In this section, we prove Theorem 2. We first recall the definitions of G-invariant and G-equivariant
functions. Let Xσ to denote the tuple (xσ(v))v∈V , where σ is a permutation of nodes V in graph G.
Define Eσ = {(σ(u), σ(v)) | (u, v) ∈ E}, for edges E in graph G, and note that Gσ = (V, Eσ) is a
permutation of graph G.

Definition 2 (G-invariant function) A function h : (X,G)→ R is invariant with respect to graph
G or G-invariant if

h(Xσ,Gσ) = h(X,G), (A7)
for all permutations σ on V(G).

Definition 3 (G-equivariant function) A function h : (X,G) → Rn is equivariant with respect to
graph G or G-equivariant if

h(Xσ,Gσ) = h(X,G)σ, (A8)
for all permutations σ on V(G), where for a z ∈ Rn, zσ ∈ Rn is such that zσi = zσ(i) for all i ∈ [n].

Theorem 2 can restated, in more detail, as follows:

Theorem 4 The following statements hold true.

1. For any continuous G-invariant function h and a scalar ε > 0 there exists an integer M ≥ 1
and a collection of M continuous G-compatible functions {f i}Mi=1 such that

sup
X∈X

∣∣∣∣∣h(X,G)−
M∑
i=1

φ
(
f i(X,G)

)∣∣∣∣∣ < ε, (A9)

where φ : R→ R is some function.

2. For any continuous G-equivariant function h and a scalar ε > 0 there exists a set of integers
Ml ≥ 1, for l ∈ [n], and G-compatible functions {f l,i}Ml

i=1 such that

sup
X∈X

∣∣∣∣∣hl(X,G)−
Ml∑
i=1

φ
(
f l,i(X,G)

)∣∣∣∣∣ < ε, (A10)

for all l ∈ [n], where hl(X,G) ∈ R denotes the lth component of h and φ : R→ R is some
function.

Proof: The proof is based on a result presented in [8]. Let W denote a n× n adjacency matrix for
graph G (i.e., w(u, v) = 0 if the link (u, v) /∈ E(G)) and w(u, v) denotes the (u, v)th element in
W . Let W denote the space of all such adjacency matrices W (for graph G) such that ||W ||∞ ≤ 1,
i.e., |w(u, v)| ≤ 1 for all u, v ∈ [n]. Let G denote the set of all simple graph, i.e., graphs with no
self-loops or multi-edges.

For a W ∈W and a graphH ∈ G define the function:

hom (H,W ) =
∑

π∈M(H,G)

∏
u∈V(H)

w(π(u), π(u))
∏

(u,v)∈E(H)

w(π(u), π(v)). (A11)

where M(H,G) denotes the set of all maps π from V(H) to V(G). Further, letA denote the following
class of functions:

A =

{
W →

∑
H∈H

αHhom (H,W + 2I)

∣∣∣∣∣ αH ∈ R
H ⊂ G

H is finite

}
,

where I denotes the n×n identity matrix. For a W ∈W, graphH ∈ G, and a node s ∈ V(G) define
the function HOM (H,W ) ∈ Rn such that its sth (s ∈ V(G)) component is given by

HOMs (H,W ) =
∑

π∈M(H,G),
π(1)=s

∏
u∈V(H)

w(π(u), π(u))
∏

(u,v)∈E(H)

w(π(u), π(v)). (A12)
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Define the function space:

Ā =

{
W →

∑
H∈H

αHHOM (H,W + 2I)

∣∣∣∣∣ αH ∈ R
H ⊂ G

H is finite

}
.

We have the following result from [8].

Theorem 5 ([8]) The following statements are true:

1. A is dense in the space of continuous G-invariant functions.

2. Ā is dense in the space of continuous G-equivariant functions.

Proof: The only difference between the spaces A, Ā in [8] and defined here is that here we fix the
input graph G and restrict the space W to be the set of all weighted adjacency matrices of G (with
bounded weights). However, the exact same arguments presented in [8] hold in this case towards
establishing the statements in Theorem 5. �

We now show how Theorem 5 can be translated to establish Theorem 4. We only present the
arguments here for the G-invariant case in Theorem 4, and the G-equivariance case can be deduced
using the same line of arguments.

Firstly, note that any hom (H,W ) (in (A11)) can be written as:

hom (H,X) =
∑

π∈I(H,G)

∏
u∈V(H)

θπ(u)(xπ(u))
∏

(u,v)∈E(H)

θπ(u),π(v)(xπ(u),xπ(v)), (A13)

for some input node features X = (xv)v∈V(G) and functions θu, θu,v for all u ∈ V(G) and (u, v) ∈
E(G) such that ||θu||∞ ≤ 1 and ||θu,v|| ≤ 1 (This follows from ||W ||∞ ≤ 1). Furthermore, the
reverse is also true, i.e.,, for every hom (H,X) defined in (A13) there exists a weighted adjacency
matrix X , with ||W ||∞ ≤ 1, such that hom (H,X) = hom (H,W ) (define w(u, u) = θu(xu) and
w(u, v) = θu,v(xu,xv) to get the required W ).

This observation, in conjunction with Theorem 5, shows that the set of functions

B =

X →
∑
H∈H

αH hom (H,X)

∣∣∣∣∣∣∣
αH ∈ R, H ⊂finite G

θu = θ
′

u + 2,
||θu||∞ ≤ 1, and
||θu,v||∞ ≤ 1

 ,

is also dense in the space of continuous G-invariant functions. We now show that every function in B
can be written as a finite sum of G-compatible functions composed with a non-linear function.

Lemma 6 For every g ∈ B there exists a finite set of G-compatible functions {f i}Mi=1 and a non-
linear function φ : R→ R such that

g(X) =

M∑
i=1

φ
(
f i(X)

)
. (A14)

Furthermore, φ are independent of g ∈ B.

Proof: A function g ∈ B is given by

g(X) =
∑
H∈H

∑
π∈M(H,G)

αH
∏

u∈V(H)

θπ(u)(xπ(u))
∏

(u,v)∈E(H)

θπ(u),π(v)(xπ(u),xπ(v)), (A15)

for some αH, θu, and θu,vs. Note that the expression∏
u∈V(H)

θπ(u)(xπ(u))
∏

(u,v)∈E(H)

θπ(u),π(v)(xπ(u),xπ(v)), (A16)

can be written as φ(fH,π(X)) with φ(x) = exp{x} and fH,π(X) a G-compatible function given by

fH,π(X) =
∑

u∈V(G)

log θπ(u)(xπ(u)) +
∑

(u,v)∈E(G)

log θπ(u),π(v)(xπ(u),xπ(v)). (A17)
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Thus, we have
g(X) =

∑
H∈H

∑
π∈M(H,G)

φ
(
fH,π(X)

)
, (A18)

where we have modified fH,π to incorporate the constant αH. Since H and M(H,G) are finite sets,
we have the result. �

The result in Theorem 4 follows from Lemma 6 and the observation that B is dense in the space of
continuous G-invariant functions.

�
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D Proof of Theorem 7

The proof is divided into four sub-sections. Here is a brief outline:

1. In Section D.1, we first prove an aggregation lemma. It (roughly) states the following: If the
representation vectors at the root nodes of the H-tree JG are {hr}r∈R, at some iteration t, then in
finitely many more message passing iterations it is possible to output a label yv0 =

∑
r∈R hr.

2. In Section D.2, we then prove that any G-compatible function f can be written as a sum f(X) =∑
r∈R γr of component functions γr.

3. In Section D.3, we establish that the component functions γr have a compositional structure that
matches with the sub-tree Tr of the H-tree JG formed by the root node r and its descendants. This
helps in efficient computation of the component function γr on the sub-tree Tr.
4. The goal is to first estimate each component γr, by message passing on Tr, and then aggregate
by applying the aggregation lemma. In Section D.4, we put it all together to argue that it is indeed
possible to approximate any (adequately smooth and bounded) compatibility function f , to arbitrary
precision ε, by the message passing described in (8). We obtain a bound on the number of parameters
N required to approximate any such function in Section D.4.

D.1 Aggregation

Let the COMB function be a simple average function:

yv0 = COMB
(
{hTl | l leaf node in JG s.t. κ(l) = v0}

)
,

1

|{l | κ(l) = v0}|
∑

l:κ(l)=v0

hTl , (A19)

for some T , where index l is over the set of leaf nodes in JG . We first prove the following lemma.

Lemma 7 (Aggregation) Let htr denote the representation vectors of root nodes r ∈ R at some
iteration t. If htr ∈ [0, 1] for all r ∈ R and

∑
r∈R htr ∈ [0, 1], then there exists t0 message passing

iterations such that
yv0 =

∑
r∈R

htr, (A20)

for T = t+ t0. Further, the parameters used in this message passing and the number of iterations t0
do not depend on {htr}r∈R.

Proof: We first make a few assertions about the message passing described in (8), in the paper. The
proof of the lemma directly follows from them. The assertions are self-evident and we only give a
one line descriptive proof following its statement.

Assertion 1. Let (v, u) be an edge in the H-tree JG . If ht−1
v ∈ [0, 1] then there exists parameters Nu,

aku,t, b
k
u,t, and wk

u,t in (8) such that

htu = AGGt
(
ht−1
u , {ht−1

w | w ∈ NJG (u)}
)

= ReLU

(
Nu∑
k=1

aku,t〈wk
u,t,h

t−1
N̄ (u)
〉+ bku,t

)
,

= ReLU
(
ht−1
v

)
= ht−1

v . (A21)

The last equality holds only because ht−1
v ∈ [0, 1].

Assertion 2. Let (v, u) be an edge in JG . If ht−1
u + ht−1

v ∈ [0, 1] then there exists parameters Nu,
aku,t, b

k
u,t, and wk

u,t in (8) such that

htu = AGGt
(
ht−1
u , {ht−1

w | w ∈ NJG (u)}
)

= ReLU

(
Nu∑
k=1

aku,t〈wk
u,t,h

t−1
N̄ (u)
〉+ bku,t

)
,

= ReLU
(
ht−1
u + ht−1

v

)
= ht−1

u + ht−1
v . (A22)

The last equality holds only because ht−1
u + ht−1

v ∈ [0, 1].
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Assertion 3. Let htr denote representation vectors at root nodes r ∈ R on the H-tree JG at some
iteration t. If htr ∈ [0, 1] and

∑
r∈R htr ∈ [0, 1] then for any r0 ∈ R there exists t0 message passing

iterations, for some t0 > 0, on the root nodes in JG such that ht+t0r0 =
∑
r∈R htr. Further, the

parameters used in this message passing are independent of {htr}r∈R.

This can be established by looking at T = JG [R] as a tree rooted at r0 and performing message
aggregation from the leaf nodes of T to the root node r0 using Assertion 2.

Assertion 4. If htr ∈ [0, 1] for some r ∈ R, then there exists t0 message passing iterations from the
root node r to all the leaf nodes l in H-tree JG such that ht+t0l = htr, for all leaf nodes l.

This can be done by using Assertion 1 and successively passing the representation vector htr from r
to all the leaf nodes l in JG .

From Assertions 3 and 4 it is clear that, given {htr}r∈R at some t (bounded in [0, 1] as described in
the statement of the lemma), there exists t0 message passing iterations such that ht+t0l =

∑
r∈R htr

at all the leaf nodes l in JG . Since the COMB operation computes a simple average (see (A19)) we
have the result. �

D.2 Factorization

Next, we show that any compatibility function

f(X) =
∑

C∈C(G)

θC(xC), (A23)

can be broken down into component functions {γr}r∈R such that

f(X) =
∑
r∈R

γr, (A24)

where
γr =

∑
C∈Cr

θC(xC), (A25)

for all r ∈ R,1 Cr are subsets of C (G) which form its partition, and R is the set of root nodes in the
H-tree JG .

Lemma 8 (Factorization) Let f be a graph compatible function given in (A23) with its clique
functions θC . Then, for every r ∈ R there exists a subset Cr ⊂ C (G) such that

γr =
∑
C∈Cr

θC(xC), (A26)

and f(X) =
∑
r∈R γr. Further, the collection of subsets {Cr}r∈R forms a partition of C (G), i.e.,

Cr ∩ Cr′ = ∅ whenever r 6= r′ and ∪r∈RCr = C (G).

Proof: Let f be a graph compatible function given in (A23) with its clique functions θC and

(T ,B) = tree-decomposition(G), (A27)

be the tree decomposition of graph G. Note that the set of root nodes R, in the H-tree JG , is in fact all
the nodes in T , namely R = V(T ). Further, for every r ∈ R, Br ∈ B is a bag of nodes Br ⊂ V(G)
associated with r.

It is known that for any clique C in graph G, i.e., C ∈ C (G), there exists an r ∈ R such that all nodes
in C are in the bag Br, i.e., V(C) ⊂ Br [1]. However, it is possible that two bags Br and Br′ , for
r 6= r′, may contain all the nodes of the same clique C.

Ideally, we would define
Cr , {C ∈ C (G) | V(C) ⊂ Br} , (A28)

1We omit the explicit dependence of the function γr on X to ease the notation.
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Figure A1: Shows the H-tree JG and the directed H-tree ~JG of a graph. Computation of a compatible
function f is shown on the H-tree.

which is the set of all cliques C in G such that all its nodes are in the bag Br, and the functions γr to
be

γr =
∑
C∈Cr

θC(xC), (A29)

for all r ∈ R. However, this can lead the
∑
r∈R γr to overestimate the function f . This is because

two bags Br and Br′ may contain all the nodes of the same clique C.

In order to avoid double counting of clique functions, we order the nodes in R as R =
{r1, r2, . . . r|R|}. We then iterate over these ordered R nodes in the tree-decomposition to generate
Crk and γrk (for k = 1, 2, . . . |R|) as follows. InitializeM1 = ∅ and iterate over k = 1, 2, . . . |R|:

Crk = {C ∈ C (G) \Mk | V(C) ⊂ Brk} and Mk+1 =Mk ∪ Crk , (A30)

and set
γrk =

∑
C∈Crk

θC(xC), (A31)

for k = 1, 2, . . . |R|. This procedure ensures that we do not overestimate f and have f(X) =∑
r∈R γr.

Furthermore, {Cr}r∈R by its very construction (in (A30)) is pairwise disjoint and spans the entire
C (G), thereby forming its partition. �

D.3 Compositional Structure

Fig. A1 illustrates computation of a compatible function on the H-tree. We see how the computation
of f splits as f = γr1 +γr2 +γr3 , where γr1 = θ12 +θ13, γr2 = θ24, and γr3 = θ345. It is interesting
to note that the functions γr, further, have a compositional structure that matches with the sub-tree
induced by the root nodes r, and its descendants. For example, the compositional structure of γr1
matches with the sub-tree formed by the root node r1 and its descendants in the H-tree JG . This turns
out to be true in general for any compatible function f , and its factorization {γr}r∈R (in Lemma 8).
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In order to make this precise, we introduce a few definitions that are inspired by [10, 9]. Let ~D be a
directed acyclic graph (DAG) with a single root node α, i.e. all the directed paths in ~D end at α. We
will use the term DAG to refer to a single-root DAG in this section.

Definition 9 A function f : X = (xi)i∈[n] → f(X) ∈ R is said to have a compositional structure
that matches with a DAG ~D, with root node α, if the following holds:

1. Each leaf node l of ~D embeds one component of the input feature, i.e., hl = xi for some i ∈ [n].

2. For every non-leaf node u there exists some functionHu such that

hu = Hu ({hw | w ∈ Nin(u)}) , (A32)

where Nin(u) denotes the set of all incoming neighbors to node u.

3. f(X) = hα, where α is the single-root node of ~D.

Let Tr denote the sub-tree of JG induced by the root r ∈ R and its descendants in JG . Further, let ~Tr
denote a directed version of Tr in which every edge e in Tr is turned into a directed edge, pointing in
the direction of the root node r. Note that ~Tr is a DAG with node r functioning as the single root
node.

We now show that the components {γr}r∈R of the compatible function f in Lemma 8 have a
compositional structure that matches with ~Tr.

Lemma 10 (Compositional Structure) The function γr, in Lemma 8, has a compositional structure
that matches with the directed sub-tree ~Tr, for all r ∈ R.

Proof: In Lemma 8, the function γr is given by

γr =
∑
C∈Cr

θC(xC), (A33)

were Cr is given by
Cr = {C ∈ C (G) \M | V(C) ⊂ Br} , (A34)

for some setM⊂ C (G). The set Cr can be thought of as a collection of cliques in the subgraph of G
induced by the bag Br, namely G[Br]. Therefore, the function γr is a compatible function on G[Br].

Note that, in Lemma 8, we showed that a graph G compatible function can be factored as a sum of R
functions, call them {γr}r∈R, where R is the set of nodes in the tree-decomposition (T ,B). We have
now argued that the functions γr are compatible function on the subgraphs G[Br].

Note that the set of all children of node r in the sub-tree Tr (of the H-tree JG) form a tree decom-
position of G[Br]. This indicates that the function γr should also split as a sum of functions, one
corresponding to each node in the tree decomposition of G[Br], by Lemma 8.

Thus, by successively applying Lemma 8, we can see that the compositional structure of γr matches
with the directed sub-tree ~Tr, constructed out of the H-tree JG . �

D.4 Approximation

Lemmas 7 and 8 suggest that in order to approximate a compatible function f(X) =∑
C∈C(G) θC(xC), with f and θC bounded between [0, 1], it suffices to generate representation

vectors
htr ≈ γr =

∑
C∈Cr

θC(xC), (A35)

at each root node r ∈ R of the H-tree JG , for some t. The approximation in (A35) must be such that∣∣∣∣∣∑
r∈R

htr −
∑
r∈R

γr

∣∣∣∣∣ =

∣∣∣∣∣∑
r∈R

htr − f(X)

∣∣∣∣∣ < ε. (A36)

Once such representation vectors htr are generated at the root nodes of the H-tree, by Lemma 7, it’s
sum can be propagated to generate the node label yv0 =

∑
r∈R htr, with message passing that is

independent of the function being approximated.

10



Next, we show that the message passing defined in (8) in the main paper can indeed produce an
approximation, give in (A36). The number of parameters required to attain this approximation will
be an upper-bound on N .

To prove this, we consider a directed version of the H-tree JG , where each edge in JG is turned into
a directed edge pointing in the direction that leads to the root nodes R ∈ JG . We also remove the
edges between the root nodes R, and add another final node that aggregates information from all the
root nodes. We call the final node the aggregator and call it α. We call this directed graph ~JG . A
directed H-tree graph is illustrated in Figure A1. The red colored edges between root nodes show the
deleted edges between the root nodes R in JG to get ~JG .

We assume that the messages propagate only in one direction, i.e. from the leaf nodes, where the
input node features are embedded, to the aggregator node α. We implement a shallow neural network
at every non leaf node in ~JG , which takes in input from all its incoming edges, and propagates its
output through its single outgoing edge, directed towards the root nodes.

This can be implemented in the original message passing (8) by setting the weight (i.e., parameter
wku,t) component corresponding to the parent node, in the directed JG , to zero. This final aggregation
layer in ~JG is only for mathematical purpose so that we can prove an ε approximation result, as
in (A36).

With this, in the new message passing architecture on ~JG , each non-leaf node u in ~JG implements
the following shallow neural network given by

hu = ReLU

(
Nu∑
k=1

aku〈wk
u,hNin(u)〉+ bku

)
, (A37)

where hNin(u) , (hu′ | u′ ∈ Nin(u)) denotes the vector formed by concatenating all the representa-
tion vectors hu′ of nodes u′ that have an incoming edge to u in ~JG . Here, aku and bku are constants
and wk

u is a vector of size du − 1, which is the total number of incoming links to node u in ~JG and
du is the total number of links that node u has in JG . Thus, for every non-leaf node u ∈ ~JG we have
(du − 1)×Nu parameters that model the shallow network. The aggregator node generates the output
by simply summing the representation vectors at the root nodes.

Note that, in (A37), hu depends on the input node features X . We omit this dependence in the
notation for ease of presentation. We now define the space of functions that the above message
passing on ~JG produces:

F(G, N) =

{
X →

∑
u∈R

hu

∣∣∣ hu given in (A37)

}
, (A38)

where N =
∑
u(du − 1)Nu is the sum of all the parameters used in (A37).

In the following, we will restrict ourselves to the DAG ~JG and argue that any (smooth enough)
function f that has a compositional structure that matches with ~JG can be approximated by a
g ∈ F(G, N) (see (A38)) with an arbitrary precision.

We now show that for any (smooth enough) function f , which has a compositional structure that
matches with the directed H-tree ~JG , can be approximated by a g ∈ F(G, N) (see (A38)) with an
arbitrary precision.

Theorem 11 Let f : [0, 1]n → [0, 1] be a function that has a compositional structure that matches
with the DAG ~JG . Let every constituent function Hu of f (see Definition 9) be Lu-Lipschitz with
respect to the infinity norm. Then, for every ε > 0 there exists a neural network g ∈ F(G, N) such
that ||f − g||∞ < ε and the number of parameters N is bounded by

N = O

 ∑
u∈V( ~JG)\{α}

(du − 1)

(
ε

Lu

)−(du−1)
 , (A39)

where du denotes the degree (counting incoming and outgoing edges) for node u in ~JG
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Proof: The proof of this result follows directly from the arguments presented for Theorem 3, Theorem
4, and Proposition 6 in [10, 9]. The first modification we make is the constant factor term (du − 1)
for each node u in the summation in (A39). This appears here, but not in [10, 9], because in [10, 9]
the node degree was considered as a constant. Here, the degree relates to the treewidth of the graph,
and is an important parameter to track scalability of the architecture. The second modification is
that we allow for different Lipschitz constants Lu for different constituent function. However, the
arguments in [10, 9] work for this case as well. �

We now apply Theorem 11 to the function f given in the statement of Theorem 7. In it, f is
compatible with respect to G. Thus, using Lemma 8 and Lemma 10, we can deduce that f also
has a compositional structure that matches with the directed H-tree ~JG . In Figure A1, we illustrate
this for a simple example. Thus we can apply Theorem 11 on f in order to seek an approximation
g ∈ F(G, N).

In applying Theorem 11, we see that the functions θC are 1-Lipschitz. Thus, all the nodes u ∈ ~JG at
which we compute θC , Lu = 1 ≤ du − 1. The remaining functions that are to be approximated on
the ~JG are the addition functions (see Figure A1 to know how they arise in computing a compatible
function). In order to derive our result, it suffices to argue that a simple sum of k variables, taking
values in the unit cube [0, 1]k, is k-Lipschitz with respect to the sup norm. This is indeed true and can
be verified by simple arguments in analysis. Thus, for all the nodes u on which we have to compute
the addition, we have Lu = du − 1, where du is the degree of node u (counting both incoming and
outgoing edges).

Putting all this together and applying Theorem 11 we obtain the result.
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E Proof of Corollary 8

We first obtain upper-bounds on the number of nodes |V(JG)| in the H-tree JG and the node degree
du for u ∈ V(JG). We prove the desired result by substituting these bounds in Theorem 7.

First, note that the subgraph of the H-treeJG induced by the set of root nodesR is a tree decomposition
(T = JG [R],B) of G, by construction; see Algorithm 1 (lines 1-3). Let tw [JG ] denote the treewidth
of the tree decomposition (T = JG [R],B). Then the size of each bag Bτ ∈ B is bounded by the
treewidth tw [JG ] + 1 (see (5)). Let Tτ denote the sub-tree in JG that is formed by all the descendants
of, and including, the node τ in T = JG [R]. Then, the number of nodes in JG is given by

|V(JG)| =
∑
τ∈R
|V(Tτ )|. (A40)

Note that the size of each sub-tree |V(Tτ )| is bounded by

|V(Tτ )| ≤ 1 + (tw [JG ] + 1)
tw[JG ]+1

. (A41)

This is because the depth of the tree Tτ is bounded by the bag size |Bτ |, which is upper-bounded
by tw [JG ] + 1. Further, no node in Tτ has a bag size larger than |Bτ | and therefore the number
of children at each non-leaf node in Tτ is bounded by tw [JG ] + 1. The additional “+1” in (A41)
accounts for the root node τ in Tτ .

Finally, the number of nodes in the tree decomposition T = JG [R] (or equivalently, the number of
root nodes R) is upper-bounded by n, the total number of nodes in graph G. This, along with (A40)-
(A41), imply

|V(JG)| ≤ n+ n (tw [JG ] + 1)
tw[JG ]+1 (A42)

Note that the degree minus 1, du − 1, is the size of the bag in a tree decomposition of some subgraph
of G. Since the size of the largest bag in the tree decomposition of the entire graph is bounded by
tw [JG ] + 1, we have

du − 1 ≤ tw [JG ] + 1, (A43)
for all u ∈ V(JG).

Substituting (A43)-(A42) in (10) of Theorem 7 we obtain the result.
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F Addendum to 3D Scene Graph Experiments

We provide more details on the (i) approaches and setup, (ii) the compute, train and test time
requirements, (iii) the methods we use for tuning of our hyper-parameters, and (iv) the list of semantic
labels in the dataset.

Approaches and Setup. We implement the neural tree architecture with four different aggregation
functions AGGt specified in: GCN [5], GraphSAGE [7], GAT [12], GIN [13]. We randomly select
10% of the nodes for validation and 20% for testing. The hyper-parameters of the two approaches
are separately tuned based on the best validation accuracy, while using all 70% of the remaining
nodes for training. The READ function for the standard GNN (see (2)) is implemented as a single
linear layer followed by a softmax. On the other hand, the COMB function (see (7)) for neural trees
is implemented as a mean pooling operation, followed by a single linear layer and a softmax. We use
different READ (resp. COMB) functions for the room nodes and the object nodes. We use the ReLU
activation function and also implement dropout at each iteration. We train the architectures using the
standard cross entropy loss function. The experiments are implemented using the PyTorch Geometric
library.

Time Requirements. We study the time required for computing, training, and testing our model over
the 3D scene graph dataset. It takes about 2.08 sec to compute H-trees for all the 482 room-object
scene graphs.

Table A1: Time Requirements: Train, and Test
Model Training (per epoch) Testing

GCN 0.072 s 0.048 s
NT + GCN 0.305 s 0.058 s
GraphSAGE 0.068 s 0.042 s
NT + GraphSAGE 0.311 s 0.060 s
GAT 0.089 s 0.049 s
NT + GAT 0.872 s 0.107 s
GIN 0.079 s 0.043 s
NT + GIN 0.348 s 0.059 s

In Table A1, we report the train and test
time for the standard GNN architectures
– GCN, GraphSAGE, GAT, GIN – and
the corresponding neural trees. We ob-
serve that the neural tree takes about 4x-
10x more time to train compared to the
corresponding standard GNN. This is ex-
pected because the H-tree is much larger
than the input graph, and as a conse-
quence, the neural tree architecture needs
to train more weights than a standard
GNN. The testing time for the neural
trees, on the other hand, remains comparable to the standard GNN architectures. This makes
the more accurate neural trees architecture amenable for real-time deployment. The reported times
are measured when implementing the respective models on an Nvidia Quadro P4000 GPU processor.

Hyper-parameter Tuning. We tune the hyper-parameters in the following order, as recommended
by [11]:

• Iterations: [1, 2, 3, 4, 5, 6]

• Hidden dimension: [16, 32, 64, 128, 256]

• Learning rate: [0.0005, 0.001, 0.005, 0.01]

• Dropout probability: [0.25, 0.5, 0.75]

• L2 regularization strength: [0, 1e-4, 1e-3, 1e-2]

We first tune the number of iterations, hidden dimension, and learning rate using a grid search,
while keeping dropout and L2 regularization to the lowest value. For both standard GNN and neural
tree, a single choice of the triplet: number of iterations, hidden dimension, and learning rate, yields
significantly higher accuracy than the others. With this triplet fixed, we then tune the dropout and L2

regularization using another grid search.

In training, we notice that the batch size does not have a noticeable impact on the training and test
accuracy. After having experimented with various batch sizes between 32 to 512, we recommend and
use a batch size of 128 in our experiments.

Table 1 (in Section 7 of the main paper) reported the test accuracies for various standard GNNs
and neural tree models. The tuned hyper-parameters for these models are given in Table A2. These
hyper-parameters were tuned using the procedure described in the previous paragraph. A dropout
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ratio of 0.25 turns out to be the optimal choice in all cases. The optimization is run for no more than
1000 epochs of SGD (using the Adam optimizer) to achieve reasonable convergence during training.

Table A2: Tuned Hyper-parameters for Various Models
Model hidden dim. iter. regularization learning rate

GCN 64 3 0.0 0.01
NN + GCN 128 4 0.0 0.01
GraphSAGE 128 3 1e-3 0.005
NN + GraphSAGE 128 4 1e-3 0.005
GAT 128 2 1e-4 0.001
NN + GAT 128 4 1e-4 0.0005
GIN 64 3 1e-3 0.005
NN + GIN 128 4 1e-3 0.005

Apart from the four
listed hyper-parameters
(hidden dimension,
number of iterations, L2

regularization, learning
rate), some of the im-
plemented architectures
(GAT, GraphSAGE,
GIN) have their specific
design choices and
hyper-parameters. In
the case of GAT, for
example, we use 6
attention heads and ELU activation function (instead of ReLU) to be consistent with the original
paper. For GraphSAGE (in Table A2), we use the GraphSAGE-mean from the original paper, which
does mean pooling after each convolution operation. In the case of GIN, we use the more general
GIN-ε and train ε for better performance.

Semantic Labels in the Dataset. In the 482 room-object scene graphs we used for testing, the
room labels are: bathroom, bedroom, corridor, dining_room, home_office, kitchen, living_room,
storage_room, utility_room, lobby, playroom, staircase, closet, gym, garage. The object labels are:
bottle, toilet, sink, plant, vase, chair, bed, tv, skateboard, couch, dining_table, handbag, keyboard,
book, clock, microwave, oven, cup, bowl, refrigerator, cell_phone, laptop, bench, sports_ball,
backpack, tie, suitcase, wine_glass, toaster, apple, knife, teddy_bear, remote, orange, bicycle.
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(a) NT+GCN on PubMed (b) NT+GCN on CiteSeer (c) NT+GCN on Cora
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Figure A2: Accuracy vs training nodes (per label).

G Addendum to Citation Network Experiments

The goal of this section is two fold: (i) demonstrate the applicability of the neural tree architecture to
large networks with high treewidth and (ii) show that the improved expressivity of the neural tree
architecture becomes evident with increasing amount of training data.

Table A3: Citation network dataset statistics.
PubMed CiteSeer Cora

Nodes 19,717 3,327 2,708
Edges 44,338 4,732 5,429
Classes 3 6 7

Datasets We use three popular citation network
datasets —PubMed, CiteSeer, and Cora [14]— where
nodes are documents and undirected edges are cita-
tions. Each node has a class label representing the
subject of the document. Table A3 outlines statis-
tics about the dataset. The input citation network
graphs have high treewidth, and therefore, are first
sub-sampled (see Remark 6 in Section 5) using the
bounded treewidth graph sub-sampling algorithm in [15], with a treewidth bound of k. The neural
tree is then constructed from the sub-sampled graph.

Approaches, Setup, and Hyper-parameters. We implement the neural tree architecture with the
aggregation function AGGt specified in: GCN [5] and GAT [12]. The READ function (see (2)) is
implemented as a softmax, same as in [5, 12], and the COMB function (see (7)) is implemented as a
mean pooling operation, followed by a softmax.

We use the same hyper-parameters (hidden dimension, number iterations, number of attention heads)
for the neural trees as reported in the original GCN and GAT papers, except the learning rate, L2

regularization, and dropout. These hyper-parameters pertain to the optimization algorithm used for
training and are tuned to achieve the best results, i.e., highest validation accuracy while not over-fitting.
Better performance can be achieved using a specifically tailored message passing function for the
neural trees, but the goal here is to understand when message passing on H-tree, i.e., neural tree,
performs better than message passing on the input graph, i.e., standard GNN.

For each dataset, we randomly select 500 nodes for validation and 1000 nodes for testing. We vary
the training data from 20 nodes per label, to all the remaining nodes (not used for validation and
testing) in the network. We report the accuracy (and its variance) over 10 runs. The experiments are
performed using PyTorch Geometric.
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Results. Figure A2 plots test accuracy as a function of training data for all the three datasets. The test
accuracy, for both standard GNNs and neural trees, increase with increasing number of training nodes.
However, the increase tends to be much sharper for neural trees. Also note that, on the PubMed
dataset, the test accuracy for the neural trees settles, after the sharp increase, to a value that is above
the corresponding GNN architecture ((a) and (d) in Fig. A2). However, on the CiteSeer and Cora
dataset, the test accuracy never really crosses the standard GNN architecture.

This is because the number of available training nodes (per label) is much less in the CiteSeer and
Cora dataset, than it is in the PubMed dataset. In particular, CiteSeer and Cora has at most of 300
and 170 nodes for training (per label), respectively, while in PubMed we use at most 4000 nodes for
training (per label) in our experiments. We see that neural trees perform better on PubMed, while the
accuracy on CiteSeer is better than on Cora.

All this indicates that the performance of neural trees is directly proportional to the amount of
available training data. While the standard GNNs can be expected to perform well when there is
less available training data, the neural trees will most likely perform better in the high training data
regime. We attribute this to the higher expressive power of the neural tree architecture. The neural
tree architecture is able to seep in more data to yield higher prediction accuracy.
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Figure A3: Average accuracy as a function of treewidth bound k for
NT+GCN.

Another noticeable element in
Figure A2 is the variation (or
lack of it) in prediction accu-
racy in the treewidth bound
k. Recall that the input graph
is first sub-sampled using the
bounded treewidth graph sub-
sampling algorithm from [15]
(see Remark 6 in Section 5).
On the PubMed and CiteSeer
dataset, we observe that the
treewidth bound k used for
graph sub-sampling does not
have much of an effect on the
prediction accuracy. However,
on Cora dataset, the performance can be improved by increasing the treewidth bound k. In Figure A3
we plot the average test accuracy as a function of treewidth bound k, for NT+GCN, on PubMed and
Cora. In it, we use 3, 000 and 170 nodes per label for training on the PubMed and Cora, respectively.
While the prediction accuracy remains nearly the same on PubMed, there is a noticeable increase on
Cora.
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Figure A4: Compute time (H-tree and
graph sub-sampling) as a function of
treewidth bound k.

This indicates that in some datasets (e.g., PubMed, Cite-
Seer) it is possible to retain the best possible perfor-
mance, even after sub-sampling the input graph with a
very low treewidth bound; say k = 1. This is very sig-
nificant as it means that even if we disregard many of the
existing edges in the network dataset, the performance
does not degrade much. In the case of other datasets
(e.g., Cora), choosing a low treewidth bound k serves as
a good approximate solution. Note that the test accuracy
gap between k = 6 and k = 1 is only about 2 percentage
points, in Cora (see Figure A3).

These results show that the neural tree architecture is
a scalable architecture and can be applied to large net-
works with high treewidth. The choice of the treewidth
bound k will have to be tailored to the dataset in ques-
tion. However, in order to achieve the full expressive
power of neural trees, more training data is required.

Time Requirements. We study the time required to compute, train, and test our model over these
large citation network datasets. The reported times are measured when implementing the respective
models on an Nvidia Quadro P4000 GPU processor.
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Figure A4 plots the time required (in minutes) for graph sub-sampling and H-tree construction. We
see that while the time required for graph sub-sampling remains nearly the same, the time required for
H-tree construction increases in the treewidth bound k. This is expected, as for larger k, the H-tree
construction requires constructing tree-decompositions of many subgraphs of size at most k. The
absolute numbers reported in Figure A4 can be improved as our current implementation uses the
popular NetworkX library [2], which does not produce the time efficient implementation of many of
the routines we use. However, we expect the trend observed in Figure A4 to hold true.

The increasing compute time with k poses a trade-off between runtime and accuracy, especially for
datasets like Cora, where increasing treewidth bound k leads to increase in prediction accuracy.
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