
Under review as a conference paper at ICLR 2021

A GRAPHLOG

A.1 EXTENDED TERMINOLOGY

In this section, we extend the terminology introduced in Section 3 to introduce the term descriptor. A
descriptor of a query graph g is computed by concatenating the relations occurring on the shortest
path from the source and sink in the query (u, v). For example, if a query graph is described in
the form of a list of edges such as g → (0, 1, r1), (1, 2, r2), (1, 3, r3), (2, 4, r4), where ri are the
relations, then the descriptor of this graph given the query (0, 4) would be Dg = r1, r2, r4. In all
our train, validation and test splits, we split graphs based on the unique set of descriptors, such as to
maintain inductive reasoning aspect of the task.

A.2 DATASET GENERATION

This section follows up on the discussion in Section 3.1. We describe all the steps involved in the
dataset generation process.

Rule Generation. In Algorithm 1, we describe the complete process of generating rules in GraphLog
. We require the set of K relations, which we use to sample the rule setR. Then, we iterate through
all possible combinations of relations in DataLog format to sample possible candidate rules. We
impose two constraints on the candidate rule: (i) No two rules in R can have the same body. This
ensures consistency between the rules. (ii) Candidate rules cannot have common relations among
the head and body. This ensures absence of cycles. We also add the inverse rule of our sampled
candidate rule and check the same consistencies again. We employ two types of unary Horn clauses
to perform the closure of the available rules and to check the consistency of the different rules inR.
Using this process, we ensure that all generated rules are sound and consistent with respect toR.

World Sampling. From the set of rules in R, we partition rules into buckets for different worlds
(Algorithm 2). We use a simple policy of bucketing via a sliding window of width w with stride s, to
classify rules pertaining to each world. For example, two such consecutive worlds can be generated
as Rt = [Ri . . .Ri+w] and Rt+1 = [Ri+s . . .Ri+w+s]. (Algorithm 2) We randomly permute R
before bucketing in-order.

Graph Generation. This is a two-step process where first we sample a world graph (Algorithm 3)
and then we sample individual graphs from the world graph (Algorithm 4). Given a set of rulesRS ,
in the first step, we recursively sample and apply rules inRS to generate a relation graph called world
graph. This sampling procedure enables us to create a diverse set of world graphs by considering only
certain subsets (ofR) during sampling. By controlling the extent of overlap between the subsets of
R (in terms of the number of rules that are common across the subsets), we can precisely control the
similarity between the different world graphs. By selecting subsets which have higher dissimilarity
between each other, we introduce more diversity in terms of logical rules.

In the second step (Algorithm 4), the world graph is used to sample a set of query graphs GS
W =

{g1, · · · gN}. A query graph gi is sampled from GW by sampling a pair of nodes (u, v) from GW

and then by sampling a resolution path pu,vGW
. The edge ri(u, v) provides the target relation that the

learning model has to predict. Since the relation for the edge ri(u, v) can be resolved by composing
the relations along the resolution path, the relation prediction task tests for the compositional
generalization abilities of the models. We first sample all possible resolution paths and get their
individual descriptors Dgi , which we split in training, validation and test splits. We then construct
the training, validation and testing graphs by first adding all edges of an individual Dgi to the
corresponding query graph gi, and then sampling neighbors of pgi . Concretely, we use Breadth First
Search (BFS) to sample the neighboring subgraph of each node u ∈ pgi with a decaying selection
probability γ. This allows us to create diverse input graphs while having precise control over its
resolution by its descriptor Dgi . Splitting the dataset over these descriptor paths ensures inductive
generalization.

A.3 COMPUTING SIMILARITY

GraphLog provides precise control for categorizing the similarity between different worlds by
computing the overlap of the underlying rules. Concretely, the similarity between two worlds W i and

13

Under review as a conference paper at ICLR 2021

(a)

121110987654321
Degree

0

5000

10000

15000

20000

25000

30000

Co
un

t

Degree Histogram, W: GraphLog

(b)

Figure 7: Figure 7(a) represents graphs drawn at random from different worlds available in GraphLog
. Nodes in red denote the query nodes, and the nodes in blue denote the shortest path among the query
nodes. Figure 7(b) represents the degree distribution of all graphs from all worlds in GraphLog .

Algorithm 1 Rule Generator

Input: Set of K relations {ri}K ,K > 0
Define an empty rule setR
for all ri ∈ {ri}K do

for all rj ∈ {ri}K do
for all rk ∈ {ri}K do

Define candidate rule t : [ri, rj] =⇒ rk
if Cyclical rule, i.e. ri == rk OR rj == rk then

Reject rule
end if
if t[body] 6∈ R then

Add t toR
end if

end for
end for

end for
Check and remove any further cyclical rules.

W j is defined as Sim(W i,W j) = |Ri∩Rj |, where Wi and Wj are the graph worlds andRi andRj

are the set of rules associated with them. Thus GraphLog enables various training scenarios - training
on highly similar worlds or training on a mix of similar and dissimilar worlds. This fine grained
control allows GraphLog to mimic both in-distribution and out-of-distribution scenarios - during
training and testing. It also enables us to precisely categorize the effect of multi-task pre-training
when the model needs to adapt to novel worlds.

Algorithm 2 Partition rules into overlapping sets

Require: Rule SetRS
Require: Number of worlds nw > 0
Require: Number of rules per world w > 0
Require: Overlapping increment stride s > 0

for i = 0; i < |RS | − w; do
Ri = RS [i; i+ w]
i = i+ s

end for

14

Under review as a conference paper at ICLR 2021

Algorithm 3 World Graph Generator

Require: Set of relations {ri}K ,K > 0
Require: Set of rules derived from {ri}K , |R| > 0
Require: Set rule selection probability gamma γ = 0.8

Set rule selection probability P [R[i]] = 1,∀i ∈ |R|
Require: Maximum number of expansions s ≥ 2
Require: Set of available nodes N , s.t. |N | ≥ 0
Require: Number of cycles of generation c ≥ 0

Set WorldGraph set of edges Gm = ∅
while |N | > 0 or c > 0 do

Randomly choose an expansion number for this cycle: steps = rand(2, s)
Set added edges for this cycle Ec = ∅
for all step in steps do

if step = 0 then
With uniform probability, either:
Sample rt fromRS [head] and sample u, v ∈ N without replacement, OR
Sample an edge (u, rt, v) from Gm

Add (u, rt, v) to Ec and Gm

else
Sample an edge (u, rt, v) from Ec

end if
Sample a ruleR[i] fromR following P s.t. [ri, rj] =⇒ rt
P [R[i]] = P [R[i]] ∗ γ
Sample a new node y ∈ N without replacement
Add edge (u, ri, y) to Ec and Gm

Add edge (y, rj , v) t Ec and Gm

end for
if All rules inR is used atleast once then

Increment c by 1
Reset rule selection probability P [R[i]] = 1,∀i ∈ |R|

end if
end while

A.4 COMPUTING DIFFICULTY

Recent research in multitask learning has shown evidence that models prioritize selection of difficult
tasks over easy tasks while learning to boost the overall performance (Guo et al., 2018). Thus,
GraphLog also provides a method to examine how pretraining on tasks of different difficulty level
affects the adaptation performance. Due to the stochastic effect of partitioning of the rules, GraphLog
consists of datasets with varying range of difficulty. We use the supervised learning scores (Table 6)
as a proxy to determine the the relative difficulty of different datasets. We cluster the datasets such
that tasks with prediction accuracy greater than or above 70% are labeled as easy difficulty, 50-70%
are labeled as medium difficulty and below 50% are labeled as hard difficulty dataset. We find that
the labels obtained by this criteria are consistent across the different models (Figure 3).

Graph properties affecting difficulty. While we compute difficulty based on the proxy of super-
vised learning scores, we observe that the relative difficulty of the tasks are highly correlated with the
number of descriptors (Section A.1) available for each task. We can control the distribution of the
dataset by explicitly requiring diversity in the descriptors. Worlds having less number of descriptors
are prone to be more difficult for the task. This is due to the fact that will less available descriptors
with respect to the budget of data samples, our generation module samples the same set of descriptors
while adding variable noise. Thus, datasets with low descriptor count ends up with more relative
noise. This shows that for a learner, a dataset with enough variety among the resolution paths of the
graphs with less noise is relatively easier to learn compared to the datasets which has less variation
and more noise.

15

Under review as a conference paper at ICLR 2021

Algorithm 4 Graph Sampler

Require: Rule SetRS
Require: World Graph Gm = (Vm, Em)
Require: Maximum Expansion length e > 2

Set Descriptor set S = ∅
for all u, v ∈ Em do

Get all walks Y(u,v) ∈ Gm such that |Y(u,v)| ≤ e
Get all descriptors DY(u,v)

for all walks Y(u,v)
Add DY(u,v)

to S
end for
Set train graph set Gtrain = ∅
Set test graph set Gtest = ∅
Split descriptors in train and test split, Strain and Stest

for all Di ∈ Strain or Stest do
Set source node us = Di[0] and sink node vs = Di[−1]
Set prediction target t = Em[us][vs]
Set graph edges gi = ∅
Add all edges from Di to gi
for all u, v ∈ Di do

Sample Breadth First Search connected nodes from u and v with decaying probability γ
Add the sampled edges to gi

end for
Remove edges in gi which create shorter paths between us and vs
Add (gi, us, vs, t) to either Gtrain or Gtest

end for

B SUPERVISED LEARNING ON GRAPHLOG

We perform extensive experiments over all the datasets available in GraphLog (statistics given in
Table 6). We observe that in general, for the entire set of 57 worlds, the GAT E-GAT model performs
the best.

C MULTITASK LEARNING

C.1 MULTITASK LEARNING ON DIFFERENT DATA SPLITS BY DIFFICULTY

Easy Medium Difficult
fr fc Accuracy Accuracy Accuracy
GAT E-GAT 0.729 ±0.05 0.586 ±0.05 0.414 ±0.07
Param E-GAT 0.728 ±0.05 0.574 ±0.06 0.379 ±0.06
GCN E-GAT 0.713 ±0.05 0.55 ±0.06 0.396 ±0.05
GAT RGCN 0.695 ±0.04 0.53 ±0.03 0.421 ±0.06
Param RGCN 0.551 ±0.08 0.457 ±0.05 0.362 ±0.05
GCN RGCN 0.673 ±0.05 0.514 ±0.04 0.396 ±0.06

Table 4: Inductive performance on data splits marked by difficulty

In Section A.4 we introduced the notion of difficulty among the tasks available in GraphLog . Here,
we consider a set of experiments where we perform multitask training and inductive testing on
the worlds bucketized by their relative difficulty (Table 4). We sample equal number of worlds
from each difficulty bucket, and separately perform multitask training and testing. We evaluate the
average prediction accuracy on the datasets within each bucket. We observe that the average multitask
performance also mimics the relative task difficulty distribution. We find GAT-E-GAT model
outperforms other baselines in Easy and Medium setup, but is outperformed by GAT-RGCN model
in the Difficult setup. For each model, we used the same architecture and hyperparameter settings
across the buckets. Optimizing individually for each bucket may improve the relative performance.

16

Under review as a conference paper at ICLR 2021

0 5 10 15 20
Gradient updates

0.2

0.4

Ac
cu

ra
cy

group = 0.0

0 5 10 15 20
Gradient updates

group = 1.0

GAT_E-GAT
GAT_RGCN

GCN_E-GAT
GCN_RGCN

Param_E-GAT
Param_RGCN

Figure 8: We perform fine-grained analysis of few shot adaptation capabilities in Multitask setting.
Group 0.0 and 1.0 corresponds to 0% and 100% similarity respectively.

Easy Medium Difficult
fr fc Accuracy Accuracy Accuracy
GAT E-GAT 0.531 ±0.03 0.569 ±0.01 0.555 ±0.04
Param E-GAT 0.520 ±0.02 0.548 ±0.01 0.540 ±0.01
GCN E-GAT 0.555 ±0.01 0.561 ±0.02 0.558 ±0.01
GAT RGCN 0.502 ±0.02 0.532 ±0.01 0.532 ±0.01
Param RGCN 0.535 ±0.01 0.506 ±0.04 0.539 ±0.04
GCN RGCN 0.481 ±0.02 0.516 ±0.02 0.520 ±0.01

Mean 0.521 0.540 0.539

Table 5: Convergence performance on 3 held out datasets when pre-trained on easy, medium and
hard training datasets

C.2 MULTITASK PRE-TRAINING BY TASK SIMILARITY

In the main paper (Section 5.2) we introduce the setup of performing multitask pre-training on
GraphLog datasets and adaptation on the datasets based on relative similarity. Here, we perform
fine-grained analysis of few-shot adapatation capabilities of the models. We analyze the adaptation
performance in two settings - when the adaptation dataset has complete overlap of rules with the
training datasets (group=1.0) and when the adaptation dataset has zero overlap with the training
datasets (group=0.0). We find RGCN family of models with a graph based representation function
has faster adaptation on the dissimilar dataset, with GCN-RGCN showing the fastest improvement.
However on the similar dataset the models follow the ranking of the supervised learning experiments,
with GAT-EGAT model adapting comparitively better.

C.3 MULTITASK PRE-TRAINING BY TASK DIFFICULTY

Using the notion of difficulty introduced in Section A.4, we perform the suite of experiments to
evaluate the effect of pre-training on Easy, Medium and Difficult datasets. Interestingly, we find the
performance on convergence is better on Medium and Hard datasets on pre-training, compared to the
Easy dataset (Table 5). This behaviour is also mirrored in k-shot adaptation performance (Figure ??),
where pre-training on Hard dataset provides faster adaptation performance on 4/6 models.

D CONTINUAL LEARNING

A natural question arises following our continual learning experiments in Section 5.3 : does the order
of difficulty of the worlds matter? Thus, we perform an experiment following Curriculum Learning
(Bengio et al., 2009) setup, where the order of the worlds being trained is determined by their relative
difficulty (which is determined by the performance of models in supervised learning setup, Table 6,
i.e., we order the worlds from easier worlds to harder worlds). We observe that while the current task
accuracy follows the trend of the difficulty of the worlds (Figure 10(a)), the mean of past accuracy is
significantly worse. This suggests that a curriculum learning strategy might not be optimal to learn
graph representations in a continual learning setting. We also performed the same experiment with
sharing only the composition and representation functions (Figure 10(b)), and observe similar trends
where sharing the representation function reduces the effect of catastrophic forgetting.

17

Under review as a conference paper at ICLR 2021

World ID NC ND Split ARL AN AE D M1 M2 M3 M4 M5 M6

rule 0 17 286 train 4.49 15.487 19.295 Hard 0.481 0.500 0.494 0.486 0.462 0.462
rule 1 15 239 train 4.10 11.565 13.615 Hard 0.432 0.411 0.428 0.406 0.400 0.408
rule 2 17 157 train 3.21 9.809 11.165 Hard 0.412 0.357 0.373 0.347 0.347 0.319
rule 3 16 189 train 3.63 11.137 13.273 Hard 0.429 0.404 0.473 0.373 0.401 0.451
rule 4 16 189 train 3.94 12.622 15.501 Medium 0.624 0.606 0.619 0.475 0.481 0.595
rule 5 14 275 train 4.41 14.545 18.872 Hard 0.526 0.539 0.548 0.429 0.461 0.455
rule 6 16 249 train 5.06 16.257 20.164 Hard 0.528 0.514 0.536 0.498 0.495 0.476
rule 7 17 288 train 4.47 13.161 16.333 Medium 0.613 0.558 0.598 0.487 0.486 0.537
rule 8 15 404 train 5.43 15.997 19.134 Medium 0.627 0.643 0.629 0.523 0.563 0.569
rule 9 19 1011 train 7.22 24.151 32.668 Easy 0.758 0.744 0.739 0.683 0.651 0.623
rule 10 18 524 train 5.87 18.011 22.202 Medium 0.656 0.654 0.663 0.596 0.563 0.605
rule 11 17 194 train 4.29 11.459 13.037 Medium 0.552 0.525 0.533 0.445 0.456 0.419
rule 12 15 306 train 4.14 11.238 12.919 Easy 0.771 0.726 0.603 0.511 0.561 0.523
rule 13 16 149 train 3.58 11.238 13.549 Hard 0.453 0.402 0.419 0.347 0.298 0.344
rule 14 16 224 train 4.14 11.371 13.403 Hard 0.448 0.457 0.401 0.314 0.318 0.332
rule 15 14 224 train 3.82 12.661 15.105 Hard 0.494 0.423 0.501 0.402 0.397 0.435
rule 16 16 205 train 3.59 11.345 13.293 Hard 0.318 0.332 0.292 0.328 0.306 0.291
rule 17 17 147 train 3.16 8.163 8.894 Hard 0.347 0.308 0.274 0.164 0.161 0.181
rule 18 18 923 train 6.63 25.035 33.080 Easy 0.700 0.680 0.713 0.650 0.641 0.618
rule 19 16 416 train 6.10 17.180 20.818 Easy 0.790 0.774 0.777 0.731 0.729 0.702
rule 20 20 2024 train 8.63 34.059 45.985 Easy 0.830 0.799 0.854 0.756 0.741 0.750
rule 21 13 272 train 4.58 10.559 11.754 Medium 0.621 0.610 0.632 0.531 0.516 0.580
rule 22 17 422 train 5.21 16.540 20.681 Medium 0.586 0.593 0.628 0.530 0.506 0.573
rule 23 15 383 train 4.97 17.067 21.111 Hard 0.508 0.522 0.493 0.455 0.473 0.476
rule 24 18 879 train 6.33 21.402 26.152 Easy 0.706 0.704 0.743 0.656 0.641 0.638
rule 25 15 278 train 3.84 11.093 12.775 Hard 0.424 0.419 0.382 0.358 0.345 0.412
rule 26 15 352 train 4.71 14.157 17.115 Medium 0.565 0.534 0.532 0.466 0.461 0.499
rule 27 16 393 train 4.98 14.296 16.499 Easy 0.713 0.714 0.722 0.632 0.604 0.647
rule 28 16 391 train 4.82 17.551 21.897 Medium 0.575 0.564 0.571 0.503 0.499 0.552
rule 29 16 144 train 3.87 10.193 11.774 Hard 0.468 0.445 0.475 0.325 0.336 0.389
rule 30 17 177 train 3.51 10.270 11.764 Hard 0.381 0.426 0.382 0.357 0.316 0.336
rule 31 19 916 train 5.90 20.147 26.562 Easy 0.788 0.789 0.770 0.669 0.674 0.641
rule 32 16 287 train 4.66 16.270 20.929 Medium 0.674 0.671 0.700 0.621 0.594 0.615
rule 33 18 312 train 4.50 14.738 18.266 Medium 0.695 0.660 0.709 0.710 0.679 0.668
rule 34 18 504 train 5.00 15.345 18.614 Easy 0.908 0.888 0.906 0.768 0.762 0.811
rule 35 19 979 train 6.23 21.867 28.266 Easy 0.831 0.750 0.782 0.680 0.700 0.662
rule 36 19 252 train 4.66 13.900 16.613 Easy 0.742 0.698 0.698 0.659 0.627 0.651
rule 37 17 260 train 4.00 11.956 14.010 Easy 0.843 0.826 0.826 0.673 0.698 0.716
rule 38 17 568 train 5.21 15.305 20.075 Easy 0.748 0.762 0.733 0.644 0.630 0.719
rule 39 15 182 train 3.98 12.552 14.800 Easy 0.737 0.642 0.635 0.592 0.603 0.587
rule 40 17 181 train 3.69 11.556 14.437 Medium 0.552 0.584 0.575 0.525 0.472 0.479
rule 41 15 113 train 3.58 10.162 11.553 Medium 0.619 0.601 0.626 0.490 0.468 0.470
rule 42 14 95 train 2.96 8.939 9.751 Hard 0.511 0.472 0.483 0.386 0.393 0.395
rule 43 16 162 train 3.36 11.077 13.337 Medium 0.622 0.567 0.579 0.473 0.482 0.437
rule 44 18 705 train 4.75 15.310 18.172 Hard 0.538 0.561 0.603 0.498 0.519 0.450
rule 45 15 151 train 3.39 9.127 10.001 Medium 0.569 0.580 0.592 0.535 0.524 0.524
rule 46 19 2704 train 7.94 31.458 43.489 Easy 0.850 0.820 0.828 0.773 0.762 0.749
rule 47 18 647 train 6.66 22.139 27.789 Easy 0.723 0.667 0.708 0.620 0.649 0.611
rule 48 16 978 train 6.15 17.802 21.674 Easy 0.812 0.798 0.812 0.772 0.763 0.753
rule 49 14 169 train 3.41 9.983 11.177 Easy 0.714 0.734 0.700 0.511 0.491 0.615
rule 50 16 286 train 3.99 12.274 16.117 Medium 0.651 0.653 0.656 0.555 0.583 0.570
rule 51 16 332 valid 4.44 16.384 21.817 Easy 0.746 0.742 0.738 0.667 0.657 0.689
rule 52 17 351 valid 4.81 16.231 20.613 Medium 0.697 0.716 0.754 0.653 0.655 0.670
rule 53 15 165 valid 3.65 10.838 12.378 Hard 0.458 0.464 0.525 0.334 0.364 0.373
rule 54 13 303 test 5.25 13.503 15.567 Medium 0.638 0.623 0.603 0.587 0.586 0.555
rule 55 16 293 test 4.83 16.444 20.944 Medium 0.625 0.582 0.578 0.561 0.528 0.571
rule 56 15 241 test 4.40 14.010 16.702 Medium 0.653 0.681 0.692 0.522 0.513 0.550

AGG 16.33 428.94 4.70 14.89 18.37 0.618 / 26 0.603 / 10 0.611 / 20 0.530 / 1 0.526 / 0 0.539 / 0

Table 6: Results on Single-task supervised setup for all datasets in GraphLog. Abbreviations: NC:
Number of Classes, ND: Number of Descriptors, ARL: Average Resolution Length, AN: Average
number of nodes, AE: Average number of edges

, D: Difficulty, AGG: Aggregate Statistics. List of models considered : M1: GAT-EGAT, M2:
GCN-E-GAT, M3: Param-E-GAT, M4: GAT-RGCN, M5: GCN-RGCN and M6: Param-RGCN.

Difficulty is calculated by taking the scores of the model (M1) and partitioning the worlds according
to their accuracy (≥ 0.7 = Easy, ≥ 0.54 and < 0.7 = Medium, and < 0.54 = Hard). We provide both

the mean of the raw accuracy scores for all models, as well as the number of times the model is
ranked first in all the tasks.

18

Under review as a conference paper at ICLR 2021

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

GAT-E-GAT Param-E-GAT

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

GCN-E-GAT GAT-RGCN

0 10 20 30 40
Gradient updates

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Param-RGCN

0 10 20 30 40
Gradient updates

GCN-RGCN

train_world easy medium hard

Figure 9: We evaluate the effect of k-shot adaptation on held out datasets when pre-trained on easy,
medium and hard training datasets, among the different model architectures. Here, k ranges from 0
to 40.

E HYPERPARAMETERS AND EXPERIMENTAL SETUP

In this section, we provide detailed hyperparameter settings for both models and dataset generation
for the purposes of reproducibility. The codebase and dataset used in the experiments are attached
with the Supplementary materials, and will be made public on acceptance.

E.1 DATASET HYPERPARAMS

We generate GraphLog with 20 relations or classes (K), which results in 76 rules in RS after
consistency checks. For unary rules, we specify half of the relations to be symmetric and other half to
have their invertible relations. To split the rules for individual worlds, we choose the number of rules
for each world w = 20 and stride s = 1, and end up with 57 worldsR0 . . .R56. For each worldRi,
we generate 5000 training, 1000 testing and 1000 validation graphs.

E.2 MODEL HYPERPARAMS

For all models, we perform hyper-parameter sweep (grid search) to find the optimal values based on
the validation accuracy. For all models, we use the relation embedding and node embedding to be
200 dimensions. Since the nodes in GraphLog does not have any features or attributes, we randomly
initialize the embeddings in the GNN message passing layers for each epoch for all experiments.
We train all models with Adam optimizer with learning rate 0.001 and weight decay of 0.0001. For
supervised setting, we train all models for 500 epochs, and we add a scheduler for learning rate
to decay it by 0.8 whenever the validation loss is stagnant for 10 epochs. In multitask setting, we
sample a new task every epoch from the list of available tasks. Here, we run all models for 2000
epochs when we have the number of tasks ≤ 10. For larger number of tasks (Figure 4), we train by
proportionally increasing the number of epochs compared to the number of tasks. (2k epochs for
10 tasks, 4k epochs for 20 tasks, 6k epochs for 30 tasks, 8k epochs for 40 tasks and 10k epochs for

19

Under review as a conference paper at ICLR 2021

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GAT-E-GAT Param-E-GAT

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

GCN-E-GAT GAT-RGCN

0 20 40
Worlds

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Param-RGCN

0 20 40
Worlds

GCN-RGCN

Current Accuracy
Mean past accuracy

(a)

0.2

0.4

0.6

Ac
cu

ra
cy

GAT-E-GAT Param-E-GAT

0.2

0.4

0.6

Ac
cu

ra
cy

GCN-E-GAT GAT-RGCN

0 20 40
Worlds

0.2

0.4

0.6

Ac
cu

ra
cy

Param-RGCN

0 20 40
Worlds

GCN-RGCN

Shared Composition and Representation
Shared Representation Unique Composition
Shared Composition Unique Representation

(b)

Figure 10: Curriculum Learning strategy in Continual Learning setup of GraphLog. Figure 10(a)
presents the current task accuracy (blue) and mean of all previous task accuracy (orange). Figure
10(b) presents the mean of previous task accuracy when either the composition function or the
representation function is shared for all worlds.

20

Under review as a conference paper at ICLR 2021

50 tasks). For continual learning experiment, we train each task for 100 epochs for all models. No
learning rate scheduling is used for either multitask or continual learning experiments. Individual
model hyper-parameters are as follows:

• Representation functions :
– GAT : Number of layers = 2, Number of attention heads = 2, Dropout = 0.4
– GCN : Number of layers = 2, with symmetric normalization and bias, no dropout

• Composition functions:
– E-GAT: Number of layers = 6, Number of attention heads = 2, Dropout = 0.4
– RGCN: Number of layers = 2, no dropout, with bias.

21

