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Figure 1: DreamGaussian aims at accelerating the optimization process of both image- and text-to-
3D tasks. We are able to generate a high quality textured mesh in several minutes.

ABSTRACT

Recent advances in 3D content creation mostly leverage optimization-based 3D
generation via score distillation sampling (SDS). Though promising results have
been exhibited, these methods often suffer from slow per-sample optimization,
limiting their practical usage. In this paper, we propose DreamGaussian, a novel
3D content generation framework that achieves both efficiency and quality simul-
taneously. Our key insight is to design a generative 3D Gaussian Splatting model
with companioned mesh extraction and texture refinement in UV space. In con-
trast to the occupancy pruning used in Neural Radiance Fields, we demonstrate
that the progressive densification of 3D Gaussians converges significantly faster
for 3D generative tasks. To further enhance the texture quality and facilitate down-
stream applications, we introduce an efficient algorithm to convert 3D Gaussians
into textured meshes and apply a fine-tuning stage to refine the details. Exten-
sive experiments demonstrate the superior efficiency and competitive generation
quality of our proposed approach. Notably, DreamGaussian produces high-quality
textured meshes in just 2 minutes from a single-view image, achieving approxi-
mately 10 times acceleration compared to existing methods.

*This work was partly done when interning with Baidu Inc. and visiting NTU S-Lab.
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1 INTRODUCTION

Automatic 3D digital content creation finds applications across various domains, including digital
games, advertising, films, and the MetaVerse. The core techniques, including image-to-3D and
text-to-3D, offer substantial advantages by significantly reducing the need for manual labor among
professional artists and empowering non-professional users to engage in 3D asset creation. Drawing
inspiration from recent breakthroughs in 2D content generation ( , ), the field
of 3D content creation has experienced rapid advancements. Recent studies in 3D creation can be
classified into two principal categories: inference-only 3D native methods and optimization- based
2D lifting methods. Theoretically, 3D native methods ( ,

, ) exhibit the potential to generate 3D-consistent assets w1th1n seconds, albelt at the
cost of requiring extensive training on large-scale 3D datasets. The creation of such datasets demand
substantial human effort, and even with these efforts, they continue to grapple with issues related to
limited diversity and realism ( s ja; ,

On the other hand, Dreamfusion ( , ) proposes Score Distillation Sampling (SDS) to
address the 3D data limitation by distilling 3D geometry and appearance from powerful 2D diffusion
models ( , ), which inspires the development of recent 2D [ifting methods ( ,
; , ). In order to cope with the inconsistency and ambiguity
caused by the SDS superv1510n Neural Radiance Fields (NeRF) ( s ) are usually
adopted for their capability in modeling rich 3D information. Although the generation quality has
been increasingly improved, these approaches are notorious for hours-long optimization time due to
the costly NeRF rendering, which restricts them from being deployed to real-world applications at
scale. We argue that the occupancy pruning technique used to accelerate NeRF ( , ;
, ) is ineffective in generative settings when supervised

by the ambiguous SDS loss as opposed to reconstruction settings.

In this work, we introduce the DreamGaussian framework, which greatly improves the 3D con-
tent generation efficiency by refining the design choices in an optimization-based pipeline. Photo-
realistic 3D assets with explicit mesh and texture maps can be generated from a single-view image
within only 2 minutes using our method. Our core design is to adapt 3D Gaussian Splatting (

, ) into the generative setting with companioned meshes extraction and texture refinement.
Compared to previous methods with the NeRF representation, which find difficulties in effectively
pruning empty space, our generative Gaussian splatting significantly simplifies the optimization
landscape. Specifically, we demonstrate the progressive densification of Gaussian splatting, which
is in accordance with the optimization progress of generative settings, greatly improves the genera-
tion efficiency. As illustrated in Figure 1, our image-to-3D pipeline swiftly produces a coarse shape
within seconds and converges efficiently in around 500 steps on a single GPU.

Due to the ambiguity in SDS supervision and spatial densification, the directly generated results
from 3D Gaussians tend to be blurry. To address the issue, we identify that the texture needs to be
refined explicitly, which requires delicate textured polygonal mesh extraction from the generated 3D
Gaussians. While this task has not been explored before, we design an efficient algorithm for mesh
extraction from 3D Gaussians by local density querying. Then a generative UV-space refinement
stage is proposed to enhance the texture details. Given the observation that directly applying the
latent space SDS loss as in the first stage results in over-saturated blocky artifacts on the UV map,
we take the inspiration from diffusion-based image editing methods ( , ) and perform
image space supervision. Compared to previous texture refinement approaches, our refinement stage
achieves better fidelity while keeping high efficiency.

In summary, our contributions are:

1. We adapt 3D Gaussian splatting into generative settings for 3D content creation, signifi-
cantly reducing the generation time of optimization-based 2D lifting methods.

2. We design an efficient mesh extraction algorithm from 3D Gaussians and a UV-space tex-
ture refinement stage to further enhance the generation quality.

3. Extensive experiments on both Image-to-3D and Text-to-3D tasks demonstrate that our
method effectively balances optimization time and generation fidelity, unlocking new pos-
sibilities for real-world deployment of 3D content generation.
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2 RELATED WORK

2.1 3D REPRESENTATIONS

Various 3D representations have been proposed for different 3D tasks. Neural Radiance Fields

(NeRF) ( , ) employs a volumetric rendering and has been popular for enabling
3D optimization with only 2D supervision. Although NeRF has become widely used in both 3D
reconstruction ( , ; s ; , , ) and
generatlon ( ; ; , ), optlmrzrng NeRF can be time-

consuming. Various attempts have been made to accelerate the training of NeRF ( , ;
, ), but these works mostly focus on the reconstruction
setting. The common technique of spatial pruning fails to accelerate the generation setting. Recently,
3D Gaussian splatting ( , ) has been proposed as an alternative 3D representation to
NeRF, which has demonstrated impressive quality and speed in 3D reconstruction ( ,
). The efficient differentiable rendering implementation and model design enables fast training
without relying on spatial pruning. In this work, we for the first time adapt 3D Gaussian splatting
into generation tasks to unlock the potential of optimization-based methods.

2.2 TEXT-TO-3D GENERATION

Text-to-3D generation aims at generating 3D assets from a text prompt. Recently, data- drrven 2D
diffusion models have achieved notable success in text-to-image generation (

; , ). However, transferring it to 3D generation is non- tr1v1a1 due to
the challenge of curatlng large-scale 3D datasets. Existing 3D native diffusion models usually work
on a s1ngle object category and suffer from hmrted diversity ( , ; ,

, ; ) To achieve open- vocabulary 3D
generat1on several methods propose to lift 2D image models for 3D generation (

, , , , ). Such 2D
lifting methods optlmlze a3D representatron to achieve a high hkehhood in pretrained 2D diffusion
models when rendered from different viewpoints, such that both 3D consistency and realisticity can
be ensured. Following works continue to enhance various aspects such as generation fidelity and
training stab1l1ty ( s ; s ; s ; , ;

, ), and explore further apphcatlons (

, ). However, these optimization-based 2D lifting approaches usually suffer from long
per-case optimization time. Particularly, employing NeRF as the 3D representation leads to expen-
sive computations during both forward and backward. In this work, we choose 3D Gaussians as the
differentiable 3D representation and empirically show that it has a simpler optimization landscape.

2.3 IMAGE-TO-3D GENERATION

Image-to-3D generation targets generating 3D assets from a reference image. The problem can also
be formulated as single-view 3D reconstruction ( s ; ;

, ), but such reconstruction settings usually produce blurry results due to the lack of un-

certamty modeling. Text-to-3D methods can also be adapted for image-to-3D generation ( ,

; , ) using image captioning models ( , ;

). Recently, Zero-l-to-3 ( , ) explicitly models the camera transformation into

2D diffusion models and enable zero-shot image-conditioned novel view synthesis. It achieves high

3D generatlon quality when combined with SDS, but still suffers from long optimization time ( ,

s ). One-2-3-45 ( , ) trains a multi-view reconstruction model

for acceleratron at the cost of the generation quality. With an efficiency-optimized framework, our
work shortens the image-to-3D optimization time to 2 minutes with little sacrifice on quality.

3  OUR APPROACH

In this section, we introduce our two-stage framework for efficient 3D content generation for both
Image-to-3D and Text-to-3D tasks as illustrated in Figure 2. Firstly, we adapt 3D Gaussian splat-
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Figure 2: DreamGaussian Framework. 3D Gaussians are used for efficient initialization of ge-
ometry and appearance using single-step SDS loss. We then extract a textured mesh and refine the
texture image with a multi-step MSE loss.

ting (Kerbl et al., 2023) into generation tasks for efficient initialization through SDS (Poole et al,,
2022) (Section 3.1). Next, we propose an algorithm to extract a textured mesh from 3D Gaussians
(Section 3.2). This texture is then fine-tuned by differentiable rendering (Laine et al., 2020) through
a UV-space refinement stage (Section 3.3) for final exportation.

3.1 GENERATIVE GAUSSIAN SPLATTING

Gaussian splatting (Kerbl et al., 2023) represents 3D information with a set of 3D Gaussians. It
has been proven effective in reconstruction settings (Kerbl et al., 2023; Luiten et al., 2023) with
high inference speed and reconstruction quality under similar modeling time with NeRF. However,
its usage in a generative manner has not been explored. We identify that the 3D Gaussians can be
efficient for 3D generation tasks too.

Specifically, the location of each Gaussian can be described with a center x € R3, a scaling factor
s € R3, and a rotation quaternion q € R*. We also store an opacity value € R and a color
feature ¢ € R3 for volumetric rendering. Spherical harmonics are disabled since we only want
to model simple diffuse color. All the above optimizable parameters is presented by ©, where
0, = {x;, 8, qi, @, ¢; } is the parameter for the i-th Gaussian. To render a set of 3D Gaussians, we
need to project them onto the image plane as 2D Gaussians. Volumetric rendering is then performed
for each pixel in front-to-back depth order to evaluate the final color and alpha. In this work, we use
the highly optimized renderer implementation from Kerbl et al. (2023) to optimize ©.

We initialize the 3D Gaussians with random positions sampled inside a sphere, with unit scaling and
no rotation. These 3D Gaussians are periodically densified during optimization. Different from the
reconstruction pipeline, we start from fewer Gaussians but densify it more frequently to align with
the generation progress. We follow the recommended practices from previous works (Poole et al.,
2022; Huang et al., 2023; Lin et al., 2023) and use SDS to optimize the 3D Gaussians (Please refer to
Section A.1 for more details on SDS loss). At each step, we sample a random camera pose p orbiting
the object center, and render the RGB image I} and transparency I} of the current view. Similar
to Dreamtime (Huang et al., 2023), we decrease the timestep ¢ linearly during training, which is
used to weight the random noise € added to the rendered RGB image. Then, different 2D diffusion
priors ¢ can be used to optimize the underlying 3D Gaussians through SDS.

Image-to-3D. For the image-to-3D task, an image I rap and a foreground mask I A are given as input.
Zero-1-to-3 XL (Liu et al., 2023b; Deitke et al., 2023b) is adopted as the 2D diffusion prior. The
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SDS loss can be formulated as:

oIk
VeoLsps = Eipe |w(t)(eg(Irgpsts IRGB» Ap) —€) 812;3
where w(t) is a weighting function, €4(-) is the predicted noise by the 2D diffusion prior ¢, and
Ap is the relative camera pose change from the reference camera r. Additionally, we optimize the
reference view image Iz and transparency I, to align with the input:

Lret = Mol Tige — Thaell3 + AallIk — 1413 )

where A\rgp and A are the weights which are linearly increased during training. The final loss is
the weighted sum of the above three losses.

(D

Text-to-3D. The input for text-to-3D is a single text prompt. Following previous works, Stable-

diffusion ( s ) is used for the text-to-3D task. The SDS loss can be formulated
as:

P Olgcp

VeoLsps = Eipe |w(t)(es(Irgpstse) — 6)@

where e is the CLIP embeddings of the input text description.

3)

Discussion. We observe that the generated Gaussians often look blurry and lack details even with
longer SDS training iterations. This could be explained by the ambiguity of SDS loss. Since each
optimization step may provide inconsistent 3D guidance, it’s hard for the algorithm to correctly
densify the under-reconstruction regions or prune over-reconstruction regions as in reconstruction.
This observation leads us to the following mesh extraction and texture refinement designs.

3.2 EFFICIENT MESH EXTRACTION

Polygonal mesh is a widely used 3D representatlon particularly in industrial apphcatlons Many
previous works ( s , )
export the NeRF representation 1nt0 a mesh- based representatlon for hlgh resolutlon fine-tuning.
We also seek to convert the generated 3D Gaussians into meshes and further refine the texture.

To the best of our knowledge, the polygonal mesh extraction from 3D Gaussians is still an unex-
plored problem. Since the spatial density is described by a large number of 3D Gaussians, brute-
force querying of a dense 3D density grid can be slow and inefficient. It’s also unclear how to extract
the appearance in 3D, as the color blending is only defined with projected 2D Gaussians ( ,

). Here, we propose an efficient algorithm to extract a textured mesh based on block-wise local
density query and back-projected color.

Local Density Query. To extract the mesh geometry, a dense density grid is needed to apply the
Marching Cubes ( , ) algorithm. An important feature of the Gaussian splat-
ting algorithm is that over-sized Gaussians will be split or pruned during optimization. This is the
foundation of the tile-based culling technique for efficient rasterization ( , ). We also
leverage this feature to perform block-wise density queries.

We first divide the 3D space of (—1,1)? into 16> overlapping blocks, then cull the Gaussians whose
centers are located outside each local block. This effectively reduces the total number of Gaussians
to query in each block. We then query a 8 dense grid inside each block, which leads to a final 1283
dense grid. For each query at grid position x, we sum up the weighted opacity of each remained 3D
Gaussian:

Z a;exp(—=(x — xl)TE (x —x3)) 4

where YJ; is the covariance matrix bullt from scaling s; and rotation q;. An empirical threshold is
then used to extract the mesh surface through Marching Cubes. Decimation and remeshing (
, ) are applied to post-process the extracted mesh to make it smoother and more compact.

Color Back-projection. Since we have acquired the mesh geometry, we can back-project the ren-
dered RGB image to the mesh surface and bake it as the texture. We first unwrap the mesh’s UV
coordinates ( , ) (detailed in Section A.1) and initialize an empty texture image. Then,
we uniformly choose 8 azimuths and 3 elevations, plus the top and bottom views to render the cor-
responding RGB image. Each pixel from these RGB images can be back-projected to the texture
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Figure 3: Different Texture Fine-tuning Objectives. We show that SDS loss produces artifacts for
UV space texture optimization, while the proposed MSE loss avoids this.

image based on its UV coordinate. Following Richardson et al. (2023), we exclude the pixels with
a small camera space z-direction normal to avoid unstable projection at mesh boundaries. This
back-projected texture image serves as an initialization for the next texture fine-tuning stage.

3.3 UV-SPACE TEXTURE REFINEMENT

We further use a second stage to refine the extracted coarse texture. Different from texture gen-
eration (Richardson et al., 2023; Chen et al., 2023a; Cao et al.,, 2023), we hope to enhance the
details given a coarse texture. However, fine-tuning the UV-space directly with SDS loss leads to
artifacts as shown in Figure 3, which is also observed in previous works (Liao et al., 2023). This
is due to the mipmap texture sampling technique used in differentiable rasterization (Laine et al.,
2020). With ambiguous guidance like SDS, the gradient propagated to each mipmap level results in
over-saturated color blocks. Therefore, we seek more definite guidance to fine-tune a blurry texture.

We draw inspiration from the image-to-image synthesis of SDEdit (Meng et al., 2021) and the re-
construction settings. Since we already have an initialization texture, we can render a blurry image
I%rse from an arbitrary camera view p. Then, we perturb the image with random noise and apply a
multi-step denoising process f,(-) using the 2D diffusion prior to obtaining a refined image:

Iffne = f¢ (Ig)arse + e(tstart)§ tstart C) 5)

where €(tyr) is @ random noise at timestep tyar, ¢ is Ap for image-to-3D and e for text-to-3D
respectively. The starting timestep ¢y is carefully chosen to limit the noise strength, so the refined
image can enhance details without breaking the original content. This refined image is then used to
optimize the texture through a pixel-wise MSE loss:

EMSE = ||Ifzi)ne - Ifoarse”% (6)

For image-to-3D tasks, we still apply the reference view RGBA loss in Equation 2. We find that only
about 50 steps can lead to good details for most cases, while more iterations can further enhance the
details of the texture.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We train 500 steps for the first stage and 50 steps for the second stage. The 3D Gaussians are
initialized to 0.1 opacity and grey color inside a sphere of radius 0.5. The rendering resolution
is increased from 64 to 512 for Gaussian splatting, and randomly sampled from 128 to 1024 for
mesh. The loss weights for RGB and transperency are linearly increased from 0 to 10* and 103
during training. We sample random camera poses at a fixed radius of 2 for image-to-3D and 2.5
for text-to-3D, y-axis FOV of 49 degree, with the azimuth in [—180, 180] degree and elevation in
[—30, 30] degree. The background is rendered randomly as white or black for Gaussian splatting.
For image-to-3D task, the two stages each take around 1 minute. We preprocess the input image by
background removal (Qin et al., 2020) and recentering of the foreground object. The 3D Gaussians
are initialized with 5000 random particles and densified for each 100 steps. For text-to-3D task, due
to the larger resolution of 512 x 512 used by Stable Diffusion (Rombach et al., 2022) model, each
stage takes around 2 minutes to finish. We initialize the 3D Gaussians with 1000 random particles
and densify them for each 50 steps. For mesh extraction, we use an empirical threshold of 1 for
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Figure 4: Comparisons on Image-to-3D. Our method achieves a better balance between generation
speed and mesh quality on various images.

Marching Cubes. All experiments are performed and measured with an NVIDIA V100 (16GB)
GPU, while our method requires less than 8 GB GPU memory. Please check the supplementary
materials for more details.

4.2 QUALITATIVE COMPARISONS

We first provide qualitative comparisons on image-to-3D in Figure 4. We primarily compare with
three baselines from both optimization-based methods (Liu et al., 2023b) and inference-only meth-
ods (Liu et al., 2023a; Jun & Nichol, 2023). For all compared methods, we export the generated
models as polygonal meshes with vertex color or texture images, and render them under ambient
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Figure 5: Comparisons on Text-to-3D. For Dreamfusion, we use the implementation from Guo
et al. (2023) which also uses Stable-Diffusion as the 2D prior.

Type CLIP-Similarity 1 | Generation Time |

One-2-3-45 (Liu et al., 2023a) Inference-only 0.594 45 seconds
Point-E (Nichol et al., 2022) Inference-only 0.587 78 seconds
Shap-E (Jun & Nichol, 2023) Inference-only 0.591 27 seconds
Zero-1-to-3 (Liu et al., 2023b) | Optimization-based 0.647 20 minutes
Zero-1-to-3* (Liu et al., 2023b) | Optimization-based 0.778 30 minutes
Ours (Stage 1 Only) Optimization-based 0.678 1 minute

Ours Optimization-based 0.738 2 minutes

Table 1: Quantitative Comparisons on generation quality and speed for image-to-3D tasks. For
Zero-1-to-3*, a mesh fine-tuning stage is used to further improve quality (Tang, 2022).

lighting. In terms of generation speed, our approach exhibits a noteworthy acceleration compared
to other optimization-based methods. Regarding the quality of generated models, our method out-
performs inference-only methods especially with respect to the fidelity of 3D geometry and vi-
sual appearance. In general, our method achieves a better balance between generation quality and
speed, reaching comparable quality as optimization-based methods while only marginally slower
than inference-only methods. In Figure 5, we compare the results on text-to-3D. Consistent with our
findings in image-to-3D tasks, our method achieves better quality than inference-based methods and
faster speed than other optimization-based methods. Furthermore, we highlight the quality of our
exported meshes in Figure 6. These meshes exhibit uniform triangulation, smooth surface normals,
and clear texture images, rendering them well-suited for seamless integration into downstream ap-
plications. For instance, leveraging software such as Blender (Community, 2018), we can readily
employ these meshes for rigging and animation purposes.

4.3 QUANTITATIVE COMPARISONS

In Table 1, we report the CLIP-similarity (Radford et al., 2021; Qian et al., 2023; Liu et al., 2023a)
and average generation time of different image-to-3D methods on a collection of images from pre-
vious works (Melas-Kyriazi et al., 2023; Liu et al., 2023a; Tang et al., 2023b) and Internet. We also
conduct an user study on the generation quality detailed in Table 2. This study centers on the assess-
ment of reference view consistency and overall generation quality, which are two critical aspects in
the context of image-to-3D tasks. Our two-stage results achieve better view consistency and gener-
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Figure 6: Mesh Exportation. We export high quality textured mesh from 3D Gaussians, which can
be seamlessly used in downstream applications like rigged animation.

L
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Figure 7: Ablation Study. We ablate the design choices in stage 1 training.

Zero-1-to-3 One-2-3-45 Shap-E Ours
Ref. View Consistency 1 3.48 2.34 1.80 4.31
Overall Model Quality 1 3.11 1.91 1.57 3.92

Table 2: User Study on image-to-3D tasks. The rating is of scale 1-5, the higher the better.

ation quality compared to inference-only methods. Although our mesh quality falls slightly behind
that of other optimization-based methods, we reach a significant acceleration of over 10 times.

4.4 ABLATION STUDY

We carry out ablation studies on the design of our methods in Figure 7. We are mainly interested
in the generative Gaussian splatting training, given that mesh fine-tuning has been well explored in
previous methods (Tang et al., 2023a; Lin et al., 2023). Specifically, we perform ablation on three
aspects of our method: 1) Periodical densification of 3D Gaussians. 2) Linear annealing of timestep
t for SDS loss. 3) Effect of the reference view loss Lrer. Our findings reveal that omission of
any design elements results in a degradation of the generated model quality. Specifically, the final
Gaussians exhibit increased blurriness and inaccuracies, which further affects the second fine-tuning
stage.

5 LIMITATIONS AND CONCLUSION

In this work, we present DreamGausssion, a 3D content generation framework that significantly
improves the efficiency of 3D content creation. We design an efficient generative Gaussian splatting
pipeline, and propose a mesh extraction algorithm from Gaussians. With our texture fine-tuning
stage, we can produce ready-to-use 3D assets with high-quality polygonal meshes from either a
single image or text description within a few minutes.

Limitations. We share common problems with previous works: Multi-face Janus problem, over-
saturated texture, and baked lighting. It’s promising to address these problems with recent advances
in score debiasing (Armandpour et al., 2023; Hong et al., 2023), camera-conditioned 2D diffusion
models (Shi et al., 2023; Liu et al., 2023¢; Zhao et al., 2023; Li et al., 2023b), and BRDF auto-
encoder (Xu et al., 2023b). Besides, the back-view texture generated in our image-to-3D results
may look blurry, which can be alleviated with longer stage 2 training.
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A APPENDIX

A.1 PRELIMINARY

Score Distillation Sampling (SDS). SDS was initially introduced by Dreamfusion ( ,

), providing a framework that leverages pretrained 2D diffusion models as priors to optimize
a parametric image generator. A representative example involves employing a differentiable 3D
representation, such as NeRF ( , ), as the image generator:

x = go(p) )

where x represents the rendered 2D image from the camera pose p, and ge (+) denotes the differen-
tiable rendering function with optimizable NeRF parameters ©. The SDS formulation is expressed
as:
) 0x
00
where ¢t ~ 14(0.02,0.98) is a randomly sampled timestep, p is a randomly sampled camera pose
orbiting the object center, ¢ ~ A(0,1) is a random Gaussian noise, w(t) = o7 is a weighting
function from DDPM ( , ), €4(-) is the noise predicting function with a pretrained
parameters ¢, and e is the text embedding. By optimizing this objective, the denoising gradient
(€4(x;t, €) — €) that contains the guidance information is back-propagated to the rendered image x,
which will be further back-propagated to the underlying NeRF parameters © through differentiable
rendering ( , ). Therefore, the NeRF can be optimized to form a 3D shape
corresponding to the text description.

VeoLsps = Eipe |w(t)(eg(x;t,e) — € (®)

UV Mapping. UV Mapping is used to project a 2D texture image onto the surface of a 3D polygonal
mesh. This requires to map each mesh vertex to a position on the image plane, which is stored as the
UV coordinates for each vertex. UV unwrapping ( , ) is employed to automatically com-
pute these UV coordinates given a mesh. Retrieving the texture value at any surface point on a trian-
gle involves barycentric interpolation to calculate the UV coordinate. We utilize NVdiffrast (

, ) for texture mapping and differentiable rendering, facilitating the optimization of the
texture image through rendered images.

A.2 MORE IMPLEMENTATION DETAILS

Learning Rate. For the learning rate of Gaussian splatting, we set different values for different
parameters. The learning rate for position is decayed from 1 x 1073 to 2 x 1075 in 500 steps, for
feature is set to 0.01, for opacity is 0.05, for scaling and rotation is 5 x 1073. For mesh texture
fine-tuning, the learning rate for texture image is set to 0.2. We use the Adam ( , )
optimizer for both stages.

Densification and Pruning. Following ( ), the densification in image-to-3D is
applied for Gaussians with accumulated gradient larger than 0.5 and max scaling smaller than 0.05.
In text-to-3D, we set the gradient threshold to 0.01 to encourage densification. We also prune the
Gaussians with an opacity less than 0.01 or max scaling larger than 0.05.

Mesh Extraction. After extracting the mesh using Marching Cubes ( , ), we
apply isotropic remeshing and quadric edge collapse decimation ( , ) to control the
mesh complexity. Specifically, we first remesh the mesh to an average edge length of 0.015, and
then decimate the number of faces to 10°.

Evaluatlon Settings. We adopt the CLIP-similarity metric (

, ) to evaluate the i 1rnage -to-3D quality. A dataset of 30 i 1mages collected from
prevrous works ( )
and Internet covering various objects is used We then render 8 views w1th uniformly sampled
azimuth angles [0, 45, 90, 135, 180, 225, 270, 315] and zero elevation angle. These rendered images
are used to calculate the CLIP similarities with the reference view, and we average the different
views for the final metric. We use the laion/CLIP-ViT-bigG-14-laion2B-39B-b160k!
checkpoint to calculate CLIP similarity. For the user study, we render 360 degree rotating videos

"https://huggingface.co/laion/CLIP-ViT-bigG-14-1laion2B-39B-b160k

15


https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k

Published as a conference paper at ICLR 2024

“ared fox” “an astronaut, full body” “an eagle” “a cool bike”

Figure 8: Text-to-3D results with MVDream (Shi et al., 2023) as the guidance model.

w/ annealing wo/ annealing w/ annealing wo/ annealing

Figure 9: Ablation on timestep annealing for text-to-3D. We use MVDream (Shi et al., 2023) as
the guidance model.

of 3D models generated from a collection of 15 images. There are in total 60 videos for 4 methods
(Zero-1-to-3 (Liu et al., 2023b), One-2-3-45 Liu et al. (20232), Shap-E Jun & Nichol (2023), and our
method) to evaluate. Each volunteer is shown 15 samples containing the input image and a rendered
video from a random method, and ask them to rate in two aspects: reference view consistency and
overall model quality. We collect results from 60 volunteers and get 900 valid scores in total.

A.3 MORE RESULTS

Image-to-3D. In Figure 10, we show more visualization results of our method. Specially, we com-
pare the mesh output before and after our texture fine-tuning stage. We also compare against a
SDS-based mesh fine-tuning method for Zero-1-to-3 (Liu et al., 2023b) noted as Zero-1-to-3* (Tang,
2022). Both stages of our method are faster than previous two-stage image-to-3D methods, while
still reaching comparable generation quality. Our method also support images with non-zero ele-
vations. As illustrated in Figure 11, our method can perform image-to-3D correctly with an extra
estimated elevation angle as input. We make sure the random elevation sampling covers the input
elevation and at least [—30, 30] degree.

Text-to-image-to-3D. In Figure 13, we demostrate the text-to-image-to-3D pipeline (Liu et al.,
2023a; Qian et al., 2023). We first apply text-to-image diffusion models (Rombach et al., 2022)
to synthesize an image given a text prompt, then perform image-to-3D using our model. This usu-
ally gives better results compared to directly performing text-to-3D pipeline, and takes less time to
generate. We show more animation results from our exported meshes in Figure 12.

Text-to-3D with MVDream. In Figure 8, we show text-to-3D results using the multi-view diffusion
model MVDream (Shi et al., 2023) as the guidance. The multi-face Janus problem can be signifi-
cantly mitigated by incorporating camera information to the 2D guidance model. However, it still
suffers from over-saturation and unsmooth geometry. We further perform an ablation study on the
linear timestep annealing in Figure 9. With the timestep annealing, we find the model converges to
a more reasonable shape with the same amount of trianing iterations.

Limitations. We also illustrate the limitations of our method in Figure 14. Our image-to-3D pipeline
may produce blurry back-view image and cannot generate fine details, which looks unmatched to
the front reference view. With longer training of stage 2, the blurry problem of back view can be
alleviated. For text-to-3D, we share common problems with previous methods, including the multi-
face Janus problem and baked lighting in texture images.
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Figure 10: More Qualitative Comparisons. We compare the results from two training stages of
our method and Zero-1-to-3 (Liu et al., 2023b).

Input Generated 3D Model Mesh

Figure 11: Results on images with different elevations. Our method supports input images with a
non-zero elevation angle.

PE 44

Figure 12: Results on mesh animation. Our exported meshes are ready-to-use for downstream
applications like rigged animation.
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“a nendoroid of
a cute boy”

“a nendoroid of
a cute girl”

“a penguin”

“a potted
cactus plant”

“a 3D model
of a fox”

“a 3D model of
a soldier”

Prompt Image Generated 3D Model Mesh

Figure 13: Text-to-image-to-3D. We first synthesize an image given a text prompt, then perform
image-to-3D generation.

Front View (50 iters) Back View (50 iters) Back View (500 iters)
Image-to-3D Text-to-3D

Multi-face Baked Lighting

Figure 14: Limitations. Visualization of the limitations of our method.



