
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

BCSCN:Reducing Domain Gap through Bézier Curve basis-based
Sparse Coding Network for Single-Image Super-Resolution

Anonymous Authors

ABSTRACT
Single Image Super-Resolution (SISR) is a pivotal challenge in com-
puter vision, aiming to restore high-resolution (HR) images from
their low-resolution (LR) counterparts. The presence of diverse
degradation kernels creates a significant domain gap, limiting the
effective generalization of models in real-world scenarios. This
study introduces the Bézier Curve basis-based Sparse Coding Net-
work (BCSCN), a preprocessing network designed to mitigate input
distribution discrepancies between the training and testing phases
of super-resolution networks. BCSCN achieves this by removing
visual defects associated with the degradation kernel in LR images,
such as artifacts, residual structures, and noise. Additionally, we
propose a set of rewards to guide the search for basis coefficients in
BCSCN, enhancing the preservation of main content while eliminat-
ing information related to degradation. The experimental results
highlight the importance of BCSCN, showcasing its capacity to
effectively reduce domain gaps and enhance the generalization of
super-resolution networks. Upon acceptance, we will make our
code and models publicly available.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
Super-Resolution, Sparse Coding, Reinforcement Learning

1 INTRODUCTION
Single Image Super-Resolution (SISR) is a fundamental problem in
computer vision, with the goal of reconstructing high-resolution
(HR) images from their corresponding low-resolution (LR) coun-
terparts. In response to the surge in deep learning, approaches
leveraging deep neural networks have garnered significant atten-
tion for addressing image super-resolution (SR) tasks. These meth-
ods typically rely on collected HR-LR image pairs for training
[3, 12, 15, 17, 23, 24, 34, 43]. However, obtaining such pairs in real-
world scenarios can be arduous, often requiring the generation of
LR images from HR originals. Most SR techniques resort to sim-
plistic bicubic downsampling to create synthetic HR-LR pairs, but
this methodology introduces a significant challenge: the domain
gap emerges due to the disparity in the distribution of LR images
between the training and testing phases, stemming from the use
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LR Image “Clean” ImageSparse Coding

Figure 1: The figure illustrates a schematic representation
of the reconstruction process for transforming a severely
degraded LR image into a “clean” image using Bézier curve
basis functions. Different colors distinguish various Bézier
curve bases, all of which have coefficients set to one. This re-
construction process effectively eliminates the blurred edges
of the image while simultaneously addressing artifacts and
chromatic aberrations introduced by degradation.

of distinct degradation kernels [21, 32, 37]. This domain gap hin-
ders the models’ capacity to generalize effectively, impacting their
practical utility in real-world applications where the degradation
kernels are intricate and unknown, differing from those applied in
LR image generation during training.

In most cases, three distinct visual defects emerge during the
degradation process of an image: Artifacts: These are isolated arti-
facts generated during image compression or processing that are
unrelated to the image content. Residual structures: These are
isolated structures that form due to the severe loss of semantic con-
textual information during the image degradation process. Noise:
This includes common Gaussian noise models and non-Gaussian
noise caused by camera sensors. However, for different degradation
kernels, such as the real degradation processused in LR image gen-
eration, these visual defects may manifest differently. This variation
is the root cause of the domain gap.

This raises the question of whether there exists an image prepro-
cessing operation, independent of the degradation kernel, capable
of eliminating visual effects associated with the degradation kernel.
These effects include artifacts, residual structures, and noise, while
concurrently preserving content to alleviate the domain gap. The
objective is to attain a “clean” image through this operation, one
that is imperceptible in terms of degradation, yet retains abundant
content and detail. Subsequent to this preprocessing step, a SR
network with superior generalization performance can be trained
using these “clean” images, effectively learning the mapping from
“clean” images to HR images.

In this paper, to achieve this goal, we present a preprocessing
neural network, the Bézier Curve basis-based Sparse Coding Net-
work (BCSCN), designed to generate the “clean” image. BCSCN
integrates an over-complete Bézier curve basis space, representing
degraded LR images through linear combinations of sparse Bézier
curve basis functions. To determine the basis coefficients for a given
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LR image, BCSCN employs a basis coefficients search agent. The
ultimate “clean” image with sharp edges is reconstructed based on
the LR image’s bases and coefficients using a differentiable neural
renderer within BCSCN.

The key innovation lies in utilizing a well-designed and re-
stricted/sparse set of Bezier curve basis functions. This choice
allows for the exclusion of details associated with the degrada-
tion kernel, such as artifacts, residual structures, and noise. Conse-
quently, the final reconstruction not only preserves the essential
image content but also effectively eliminates information related
to the degradation, as illustrated in Figure 1.

Importantly, BCSCN is independent of the degradation kernel.
It can be trained on samples generated by a single, simple degra-
dation kernel (such as bicubic degradation kernels) and applied to
LR images generated by other degradation kernels to obtain their
corresponding “clean” images.

In summary, the primary contributions of this article can be
outlined as follows:

• We introduce BCSCN, a preprocessing network based on
the Bézier curve basis. BCSCN effectively minimizes in-
put distribution discrepancies between training and testing
phases of the subsequent SR network, thereby addressing
domain gap challenge.

• We present a set of rewards designed to guide the basis
coefficients search agent in capturing main content and
eliminating information associated with degradation.

• BCSCN-ESRGAN and BCSCN-PASD𝑏 , achieved by integrat-
ing BCSCN into GAN-based and diffusion-based SR net-
works, have significantly improved the naturalness perfor-
mance on real-world datasets with unknown degradation
kernels, compared to their respective base models. Addi-
tionally, BCSCN-PASD𝑏 has achieved results competitive to
state-of-the-art (SOTA) blind SR methods while requiring
fewer samples and lower training resources.

2 RELATEDWORK
2.1 Single Image Super-Resolution
SRCNN [5] introduced a three-layer neural network and standed
as a pioneer in SISR. Since then, researchers turned to focus on
developing larger and deeper networks using residual architec-
tures. For example, a 20-layer deep neural network was used by
VDSR [12] based on residual learning. EDSR [17] took a step fur-
ther, featuring a remarkably deep and wide network with modified
residual blocks for SR tasks. RCAN [43] introduced channel atten-
tion and further designed a network with 1000 layers. However,
convolutional sliding window mechanism limits the ability of a
network to harness global contextual information. Hence, HAN
[24] incorporated layer-wise, channel-wise, and spatial attention
modules, capturing hierarchical features by considering inter-layer
correlations. Recently, new methods have been developed to cap-
ture long-range relationships between pixels in images. This allows
them to have larger receptive fields and achieve better PSNR perfor-
mance [3, 15, 23]. Nevertheless, these methods exhibit sensitivity
to distribution discrepancies in LR images, resulting in artifacts
when inference distribution deviates from the training distribution,
thereby severely constraining their real-world applicability.

2.2 Learning Degradation Process
In an effort to narrow the domain gap between training and real data
samples, some researchers have explored the degradation process of
images to align training data distribution with real-world test data
distribution. Some have achieved this by adjusting camera focal
lengths, directly capturing paired data under real-world conditions
[1, 36]. Other researchers have used methods that rely on pre-
defined degradation kernels. These methods synthesize degraded
images by artificially creating complex degradation kernels that
aim to cover the distribution of datasets from various real-world
scenarios [18, 21, 31, 33, 40, 41]. To generate LR images that closely
match specific real test image domains, some approaches [22, 32, 37]
have opted for adaptive learning of degradation, leveraging GANs
to explicitly or implicitly learn the degradation process from real
target distributions during training, thus bringing training samples
closer to specific target real data distributions.

we leverage the robustness of sparse coding against the impact
of degradation factors, effectively addressing distribution discrepan-
cies between synthetic and real data, all without the need for prior
knowledge of the specific degradation distribution. Our approach,
trained solely on data synthesized using simple bicubic downsam-
pling, significantly enhances model generalization performance.

2.3 Image Sparse Coding
Sparse coding has been extensively explored as a conventional
approach in the field of computer vision. Previous methods [6,
14, 38, 39] typically involved learning an overcomplete dictionary,
from a set of training images. During the reconstruction phase,
the optimization process focuses on finding a set of coefficients
that correspond to the atoms of the dictionary. These coefficients
aim to yield the best linear combination to reconstruct the test
images. However, due to the challenge of learning a sufficiently
overcomplete dictionary, its reconstructive capabilities are limited
when applied to natural images. In this paper, we define a sparse
dictionary as a continuous basis space composed of second-order
Bézier curves. We employ a reinforcement learning agent to ex-
plore sparse basis coefficients, enabling accurate reconstruction of
LR images while alleviating degradation factors such as residual
structures, noise, and artifacts.

3 METHOD
By introducing our proposed BCSCN, the super-resolution (SR)
process is divided into two stages: the initial BCSCN preprocessing
stage and the subsequent SR network stage, as illustrated in Figure
2(a). The BCSCN incrementally reconstructs the LR image 𝐼 into
a “clean” image 𝐼𝑇 by searching for the optimal basis coefficients
within a predefined basis space. Subsequently, the resultant “clean”
image 𝐼𝑇 is fed into the SR network to produce the output HR image.

3.1 Definition of Basis Space
Given over-complete bases {𝜙𝑖 (·) |𝑖 = 1, · · · , 𝑁 }, a degraded LR
image 𝐼 can be represented by:

𝐼 =
∑︁
𝑖

𝛼𝑖𝜙𝑖 , (1)

where 𝛼 is the coefficient of the basis functions.
2
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Figure 2: Illustrating our proposed BCSCN-based super-resolution framework. a) The operational sequence of the BCSCN.
BCSCN starts from 𝐼0, generating the next reconstruction image 𝐼𝑡+1 based on the current reconstruction image 𝐼𝑡 and LR image
𝐼 . Through 𝑇 iterations, the “clean” image 𝐼𝑇 is obtained, which is then fed into the SR network to produce a high-resolution
output. b) Depicting the architecture of BCSCN, consisting of a coefficient-searching agent, differentiable neural renderer
(DNR), and reward system. Guided by the reward system, the agent generates basis function parameters based on the current
reconstruction image 𝐼𝑡 and 𝐼 . These parameters are overlaid with 𝐼𝑡 through DNR to generate 𝐼𝑡+1.

In this paper, we opt for a space of Bézier curve bases with diverse
attributes, including shape, width, and color, as the foundations.
And a basis of this space is defined as:

𝜙𝑖 = {B𝑖 ,𝑤𝑖 ,𝐶𝑖 }, (2)
whereB𝑖 denotes the shape, defining as a second-order Bézier curve
that is controlled by a set of specified control points 𝑃𝑖0, 𝑃

𝑖
1, 𝑃

𝑖
2:

B𝑖 (𝑃𝑖
0, 𝑃

𝑖
1, 𝑃

𝑖
2 ) = (1 − 𝑡 )2𝑃𝑖

0 + 2(1 − 𝑡 )𝑡𝑃𝑖
1 + 𝑡2𝑃𝑖

2, 𝑡 ∈ [0, 1] (3)

By flexibly adjusting the positions of these control points, various
natural image elements such as points, lines, and curves with sharp
edges can be formed.

And in Eq. 2, 𝑤𝑖 signifies the curve’s width, and 𝐶𝑖 is a three-
element tuple representing its color attributes (𝑟, 𝑔, 𝑏). This en-
hancement amplifies the expressive capacity of the Bézier curve,
allowing for a better fit to natural shapes.

As discussed in Section 1, our approach involves employing a
carefully designed and sparse set of bases, which proves effective
in preserving edge details while eliminating defects introduced by
degradations. The utilization of sparse codes for image representa-
tion, with a significant portion of coefficients 𝛼𝑖 being zero, allows
the model to focus on crucial features in the input image, thereby
effectively removing defects associated with degradation.

To extract the main content from the image, a small number of
bases are selected from the entire set to reconstruct a LR image.
Sparsity control operates on two aspects: the area of the curves
and the number of curve bases. By managing these aspects, the
decomposed bases can effectively capture the main content of the
image.

3.2 Basis Coefficients Search
In this paper, we enforce constraints on the basis coefficients to be
either one or zero, preventing the combination of multiple bases
from forming a transparent element — an unusual occurrence in
real images. This transformation shifts the decomposition process

from calculating basis coefficients to a basis selection procedure,
significantly reducing the complexity of our proposedmethod. How-
ever, it is important to note that this remains an NP-hard problem,
and we address this challenge by utilizing reinforcement learning
methods.

Furthermore, we model the base selection procedure as a sequen-
tial decision-making procedure, utilizing a base coefficient search
agent to minimize the reconstruction error between the “clean” im-
age and the LR image. The objective is to identify the optimal Bézier
curve base representation within a fixed number of bases. Learning-
ToPaint [10] has already confirmed the effectiveness of this method
in efficiently reconstructing realistic and natural images in complex
environments.

As depicted in Figure 2(b), given the LR image 𝐼 and the cur-
rent reconstruction result 𝐼𝑡 , the agent’s objective is to predict the
parameters of the next basis 𝑎𝑡 based on 𝐼𝑡 and 𝐼 .

Next, we will delineate the state space and action space for the
basis coefficient search agent, as well as the reward function.

3.2.1 State & Action. The state space is composed of three compo-
nents: the LR image 𝐼 , the current reconstruction image 𝐼𝑡 , and the
current step 𝑡 . It is represented as a triplet: 𝑠𝑡 = {𝐼 , 𝐼𝑡 , 𝑡}.

Bézier curve bases are determined by a set of parameters, and the
action space of the agent consists of these parameters, as depicted
below:

𝑎𝑡 = {𝑃𝑡0, 𝑃
𝑡
1, 𝑃

𝑡
2,𝑤

𝑡 , 𝑟𝑡 , 𝑔𝑡 , 𝑏𝑡 }, (4)

where {𝑃𝑡0, 𝑃
𝑡
1, 𝑃

𝑡
2} represent the control points of the shape of 𝜙𝑡 ,

𝑤𝑡 is the width of the second-order Bézier curve, and (𝑟𝑡 , 𝑔𝑡 , 𝑏𝑡 )
signifies the color attributes of the basis. We employ a pre-trained
differentiable neural renderer [10], which takes the bases param-
eters 𝑎𝑡 as input and produces the pixel-space Bézier curve basis
𝜙𝑡 as output. Subsequently, 𝜙𝑡 is superimposed onto 𝐼𝑡 to yield the
next reconstructed image 𝐼𝑡+1, resulting in the next state 𝑠𝑡+1 =

{𝐼 , 𝐼𝑡+1, 𝑡 + 1}.
3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.2.2 Reward. The agent’s objective is to maximize cumulative
rewards, aiming to ensure that each step’s reconstruction operation
is closer to 𝐼 . To achieve this, we devised a tiered reward mechanism
expressed as follows:

𝑅(𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡+1) − 𝑟 (𝑠𝑡 ), (5)

where 𝑅(𝑠𝑡 , 𝑎𝑡 ) represents the reward function at step 𝑡 , and 𝑟 (𝑠𝑡 )
is defined as the reward measure of the operation results 𝐼𝑡 at step
𝑡 in relation to 𝐼 .

Inspired by [10], we employed the WGAN with gradient penalty
(WGAN-GP) [7] as the reconstruction distancemeasure between the
current reconstruction image 𝐼𝑡 and the target image 𝐼 , specifically
defined as:

𝑟𝑤 (𝑠𝑡 ) = 𝐷 (𝐼𝑡 , 𝐼 ), (6)
where 𝐷 (·) is the discriminator.

Additionally, to encourage the agent to choose a basis which rep-
resents a larger curve area, ensuring sparsity, capturing prominent
image features, and effectively mitigating degradation factors in
image reconstruction, we introduced a curve area reward:

𝑟𝑠 (𝑠𝑡 ) = S(𝜙𝑡 ), (7)

where S(·) is used to compute the area occupied by the curve
represented by basis 𝜙𝑡 in the reconstructed image.

However, the experimental findings reveal that when 𝐼 is exclu-
sively reconstructed using bases that represent large curves, it can
lead to over-smoothing. This results in the preservation of only
the main structures while fine details are sacrificed. Therefore, we
further introduced high-frequency response reward to encourage
agents to use bases with smaller curve in the areas with rich details,
to preserve more details in the reconstruction results. This reward
can be expressed as:

𝑟𝑙 (𝑠𝑡 ) = Laplace(𝐼𝑡 ), (8)

where Laplace(·) denotes the Laplace operator used to extract the
second-order gradient of the image, enhancing the response to fine
image details.

Ultimately, the rewardmeasure 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is defined as theweighted
sum of all rewards:

𝑟 = 𝜆1𝑟𝑤 + 𝜆2𝑟𝑠 + 𝜆3𝑟𝑙 , (9)
where, the weights 𝜆1, 𝜆2, and 𝜆3 are chosen empirically to maintain
a balanced scale across the three rewards.

3.3 Network Structure and Training Strategy
The architectural configuration of the BCSCN is illustrated in Fig-
ure 2, employing an Actor-Critic framework comprising the Actor
network, Critic network, and neural renderer. The specific structure
is detailed as follows: Both the Actor and Critic networks adopt a
residual structure similar to ResNet-18 [8]. The Actor network is
responsible for generating basis function parameters based on the
current state 𝑠𝑡 , while the Critic network provides an evaluation
score based on the current state 𝑠𝑡 , the current reconstructed image
𝐼𝑡 , and the next-step reconstructed image 𝐼𝑡+1. The differentiable
neural renderer employs a 4-layer fully connected network and
two layers of convolutional networks to map the parameters of the
basis functions to rasterized curve basis, which are then overlaid
with 𝐼𝑡 , to generate the next-step reconstructed image 𝐼𝑡+1. During

the training of the BCSCN, the Deep Deterministic Policy Gradi-
ent (DDPG) [16] training strategy is employed. The parameters of
the differentiable neural renderer are fixed, while the remaining
components undergo joint training.

In addition, due to the rich structural information in natural
images, accurately reconstructing images at arbitrary scales poses
a significant challenge. Leveraging non-local priors inherent in
natural image, local patches from different positions exhibit repeti-
tive patterns. Similar to most SR methods which divide the entire
image to small patches for training, in our BCSCN training and in-
ference processes, we decompose the input image into consecutive
small patches for individual reconstruction, thereby mitigating the
difficulty of basis search and achieving more precise reconstruction.

4 EXPERIMENTS
To assess the impact of our proposed approach on improving the
generalization of SR networks, we integrated BCSCN with SR net-
work, resulting in a new SR network called BCSCN-SR. The training
of BCSCN-SR was conducted in multiple stages. Initially, BCSCN
underwent training using the reward function specified in Eq 9.
Once this stage was completed, the subsequent SR network could
be trained based on the preprocessed data.

Three experiments were devised to assess the effectiveness of
the proposed method: 1) assessing the impact of BCSCN on domain
gap narrowing, and 2) validating the generalization of BCSCN-SR,
and 3) to compare it with blind super-resolution approaches.

4.1 Dataset
Training Set: We utilized the DIV2K dataset [28] to train BCSCN,
which comprises 900 HR images. Among these, 800 images were
allocated for training, and 100 for validation. The training set was
composed of LR images generated by performing bicubic down-
sampling on the 800 HR images from the DIV2K dataset.

Testing Set:We employed four Real World Super-Resolution
Challenge (RWSRC) datasets provided by NTIRE and AIM to as-
sess our method. These datasets, namely Ntire2018 Track2 [30],
Ntire2018 Track4 [30], Aim2019 Track2 [20], and Ntire2020 Track1
[19], were obtained by downsampling (×4) the HR images from the
DIV2K validation set using four distinct methods. The degradation
operators used for downsampling are diverse and undisclosed to
simulate real-world degradation scenarios, as detailed in the respec-
tive papers. Additionally, we incorporated the RealSRSet dataset by
Kai et al. [41], featuring 20 real LR images without HR counterparts.

4.2 Training Details
To train BCSCN, We randomly cropped patches of size 16×16 from
LR samples. The training batch size was set to 96. The agent’s
replay buffer size was configured as 16,000, allowing a maximum
prediction of 20 time steps. The learning rate was initialized to
1 × 10−4. After BCSCN training, we utilized it to preprocess LR
images, producing “clean” images for subsequent SR training.

4.3 Metrics
For the BCSCN preprocessing network, we utilized SIFID [27] to
assess its capability in narrowing the distribution discrepancies of
degraded images. SIFID has been proven sensitive to variations in

4
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Table 1: Examining BCSCN’s impact on LR image distribution
discrepancies between training and testing sets.

Ntire2018
Track2

Ntire2018
Track4

Aim2019
Track2

Ntire2020
Track1

w/o BCSCN 7.9097 11.9371 4.2665 1.6521
w BCSCN 2.6822 5.9295 1.9743 0.0765

Original (Train) Original (Test) “clean” (Train) “clean” (Test)

Figure 3: Illustrates two LR images from the training and
testing sets, both with and without the application of BCSCN.
The term “clean” denotes images processed through BCSCN.

degradation kernels [25]. To evaluate the performance of BCSCN-
SR, we employed PSNR and SSIM [35] evaluation metrics on the
Y-channel. Additionally, we incorporated perceptual metrics, in-
cluding LPIPS [42] based on the AlexNet [13] to gauge the percep-
tual similarity on the RGB channels, and FID [9] was employed to
quantify the distance of distributions between the original and the
reconstructed images. For RealSRSet, where the ground truth is
not available, we employed no-reference image quality measures
oriented towards perceptual evaluation, specifically NIQE [42] and
MUSIQ [11] for evaluation. Human perception plays a pivotal role
in assessing the effectiveness of super-resolution techniques. In line
with previous studies [2, 32, 33], we prioritize perceptual metrics,
regarding PSNR and SSIM metrics solely as references.

4.4 Experiments of Domain Gap Narrowing
To assess BCSCN’s capability in narrowing domain gaps, we mea-
sured the disparities in LR image distributions between the training
and testing sets, both with and without the application of BCSCN.
Specifically, we quantified the dissimilarity in the LR image distri-
bution between the training set and each testing set. Additional, we
examined distribution disparities between “clean” images from the
training set and each test set. These images undergo preprocessing
by BCSCN before being input into SR network of BCSCN-SR.

Table 1 presents the differences in SIFID with and without the
BCSCN. In comparison to the disparity observed without BCSCN
processing, the distributional gap of “clean” images has significantly
diminished, resulting in lower SIFID scores. Figure 3 presents quali-
tative outcomes, showcasing that the reconstructed “clean” images
not only retain essential content and intricate details but also effec-
tively eliminate residual structures, noise, and compression artifacts.
These findings show BCSCN significantly reduces the distributional
disparities between training and testing images.

4.5 Experiments of Generalization
To assess the effectiveness of our method, we introduce two distinct
implementations of the BCSCN-SR: BCSCN-ESRGAN and BCSCN-
PASD𝑏 . BCSCN-ESRGAN combines BCSCNwith the classical GAN-
based SR method ESRGAN [34]. Considering the potent generative
capabilities of diffusion models, we also present a version utilizing
diffusion techniques in the hope of achieving enhanced perfor-
mance. BCSCN-PASD𝑏 integrates BCSCN with the Pixel-Aware
Stable Diffusion (PASD) model [40], an SR approach based on stable
diffusion (SD) [26]. We solely adopted its network architecture,
omitting the degradation supervision component, and fine-tuned
the model starting from SD. For training the SR network, we kept
the parameters of BCSCN fixed and used a paired LR-HR dataset
synthesized through bicubic degradation from 3,000 HR images in
the DF2K (DIV2K[28] + Flickr2K [29]) dataset as the training set.

To validate the BCSCN’s ability to enhance the generalization
performance of SISR models, we carried out comparative assess-
ments against the following SOTA SR methods that similarly were
trained using bicubic downsampling: EDSR [17], RCAN [43], NLSA
[23] and SwinIR [15]. EDSR represents a classical residual learning-
based approach. RCAN, NLSA, and SwinIR employ techniques based
on channel attention, non-local attention, and the Swin Trans-
former, respectively. We also included the ESRGAN and PASD
models trained on bicubic downsampling as our baseline models.
Except for PASD’s bicubic version, PASD𝑏 , which required addi-
tional training, all baselinemodels utilized their provided pretrained
weights. All methods were trained solely on a training set with a
bicubic degradation kernel and then directly applied to test sets
with unknown degradation kernels.

4.5.1 Results on Real-World Super-Resolution Challenge Datasets.
Table 2 presents the quantitative evaluation results, demonstrating
that the BCSCN preprocessing network significantly enhances the
generalization performance of both ESRGAN and PASD𝑏 . Specif-
ically, (1) BCSCN-ESRGAN outperforms ESRGAN in LPIPS and
FID metrics by 38.0% and 30.5% respectively, while BCSCN-PASD𝑏

surpasses PASD𝑏 by 32.2% and 29.4% in the same metrics, affirm-
ing the efficacy of BCSCN in boosting the generalizability of SR
models. (2) BCSCN-PASD𝑏 exhibits further advancements in gen-
eralization performance compared to BCSCN-ESRGAN, with im-
provements of 7.2% in LPIPS and 17.8% in FID. This improvement
can be attributed to the rich natural image priors within the sta-
ble diffusion model, which provide extensive texture details, albeit
at the cost of a slight reduction in pixel consistency compared to
BCSCN-ESRGAN. (3) Both BCSCN-PASD𝑏 and BCSCN-ESRGAN
significantly outperform other baseline methods in terms of overall
performance, achieving superior perceptual quality. Furthermore,
within the AIM2019Track2 and NTire2020Track1, PSNR and SSIM
are not as advantageous, primarily because GAN or diffusion-based
approaches can generate more realistic details, albeit with a com-
promise on pixel consistency.

Figure 4 showcases the qualitative results. The image ‘0821’ from
Ntire2018Track2 suffers from severe blurring and noise, making it
a challenging task for most baseline methods to effectively restore
such images. This is particularly true for ESRGAN, which tends
to exacerbate noise, leading to severe artifacts. In contrast, our
approach, whether BCSCN-ESRGAN or BCSCN-PASD𝑏 , produces
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Table 2: The comparisons between different methods. Best and second best results are highlighted in red and blue, respectively.

Dataset Metrics EDSR RCAN NLSA SwinIR ESRGAN PASD𝑏
BCSCN- BCSCN-
ESRGAN PASD𝑏

NTIRE2018
Track2

PSNR↑ 20.4184 20.4266 20.4195 20.4240 19.6370 20.3295 20.5004 19.6371
SSIM↑ 0.5039 0.5043 0.5038 0.5038 0.3834 0.4879 0.5388 0.4613
LPIPS↓ 0.7746 0.7786 0.7800 0.7770 0.7178 0.6569 0.5154 0.4361
FID↓ 93.1343 92.2650 91.2088 92.2883 101.9349 88.4089 74.6498 57.4734

NTIRE2018
Track4

PSNR↑ 20.0604 20.0624 20.0617 20.0649 19.2322 20.0245 20.2135 19.7570
SSIM↑ 0.4762 0.4758 0.4757 0.4758 0.3381 0.4683 0.5172 0.4575
LPIPS↓ 0.7812 0.7847 0.7862 0.7837 0.7510 0.6756 0.5526 0.4714
FID↓ 106.3097 105.5669 104.2503 105.7234 114.9969 102.2008 89.1935 66.4804

AIM2019
Track2

PSNR↑ 24.1765 24.1362 24.1984 24.1645 23.1585 23.1956 23.4788 22.2986
SSIM↑ 0.6759 0.6749 0.6773 0.6751 0.6180 0.6233 0.6606 0.6014
LPIPS↓ 0.6117 0.6749 0.6134 0.6176 0.5465 0.5044 0.3486 0.3609
FID↓ 85.2881 84.6636 83.4817 85.7457 101.3222 76.0358 56.5406 51.2990

NTIRE2020
Track1

PSNR↑ 27.8163 27.8621 27.7437 27.9115 21.1277 25.8015 25.6632 23.9412
SSIM↑ 0.7341 0.7388 0.7319 0.7390 0.3116 0.6443 0.6950 0.6257
LPIPS↓ 0.5863 0.5833 0.5920 0.5723 0.7588 0.4234 0.3029 0.3282
FID↓ 55.9301 54.3719 54.6026 53.7646 69.8056 56.0860 49.4735 46.4809

RealSRSet NIQE ↓ 5.5256 5.6101 5.7030 5.4998 4.5883 4.4952 3.6746 3.6240
MUSIQ ↑ 45.3460 46.0816 44.9063 45.3077 48.9332 49.5852 57.7467 64.5600

GT

SwinIR

LR Zoom

ESRGAN

EDSR

PASD𝑏

RCAN

BCSCN-ESRGAN

NLSA

BCSCN-PASD𝑏

GT

SwinIR

LR Zoom

ESRGAN

EDSR

PASD𝑏

RCAN

BCSCN-ESRGAN

NLSA

BCSCN-PASD𝑏

Figure 4: Visualization results of Real-Word Super-Resolution Challenge Datasets. The first line originates from the ‘0821’ of
Ntire2018Track2, and the second line is derived from the ‘0803’ of Ntire2020Track1. More results can be found in the Appendix.

images with clear and sharp edges. Moreover, while baseline meth-
ods can partially restore the edges of the slightly degraded image
‘0803’, they inevitably introduce intolerable artifacts. However, our
methods are capable of generating clean and sharp images, with
BCSCN-PASD𝑏 being notably effective in restoring the edges of
petals and generating surprisingly realistic details.

4.5.2 Results on RealSRSet Dataset. Similar to the real-world super-
resolution challenge datasets, as illustrated in Table 2, our method
achieved the highest NIQE and MUSIQ scores on the RealSRSet,

with BCSCN-PASD𝑏 surpassing the top-ranked baseline method,
PASD𝑏 , by 19.4% and 30.2% in NIQE and MUSIQ, respectively. Qual-
itatively, as shown in Figure 5, unlike baseline methods introduce
significant high-frequency artifacts, our method maintains robust-
ness against real degradation, restoring clear and clean edges.

4.6 Compared with Blind SR Method
In addressing the real-world SR task, besides the method proposed
in this paper, there is another popular category of methods known
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Figure 5: Visualization results of RealSRSet datasets.

LR Zoom RealESRGAN StableSR DiffBIR PASD BCSCN-PASD𝑏

Figure 6: Qualitative comparisons of various blind super-resolution methods using example from the RealSRSet dataset. More
results can be found in the Appendix.

as blind SR methods. Among these methods, many of the best-
performing ones commonly adopt second-order degradation ker-
nels. The term second-order refers to the image degradation process
being divided into two consecutive stages. In each stage, a classic
degradation model with adjustable parameters is randomly selected
to degrade the image. This type of degradation model aims to cover
a wide range of degradation scenarios encountered in real-world
applications by extensively sampling various combinations of vari-
ous types and parameters of classic degradation models as much
as possible. While these methods, such as RealESRGAN [33], and
diffusion-based methods like StableSR [31], DiffBIR [18], and PASD
[40], exhibit excellent super-resolution capabilities on artificially
degraded data, their performance tends to diminish when applied
to real-world scenes where human knowledge of the degradation
kernel is lacking. This can be observed from Table 3, where their
performance leads on the artificially synthesized datasets RWSRC,
but on the real-world dataset RealSRSet, their performance is not
as outstanding. The quantitative results of RWSRC in the table are
the average across the four RWSRC datasets.

Compared to SOTA blind SR methods, the approach presented
in this paper strives to minimize distribution discrepancies and
enhance the generalization capability of subsequent SR networks.
This is achieved through the proposed preprocessing network BC-
SCN, which is trained solely on a single, simple bicubic kernel
without incorporating any additional degradation. This makes the
method less sensitive to changes in the degradation model, and it
achieves satisfactory results on both artificially synthesized datasets
RWSRC and real-world dataset RealSRSet. Notably, on the Real-
SRSet, BCSCN-PASD𝑏 achieves first rank in NIQE and second in
MUSIQ, as evidenced by Figure 6, where its ability to recover clear
frog legs and branches alongside realistic textures results.

Furthermore, it should be pointed out that, compared to these
leading blind super-resolutionmethods, BCSCN-PASD𝑏 has a higher
sample utilization rate and requires fewer resources during training.

For training, RealESRGAN, StableSR, and PASD utilized between
13K to 25K HR images from various datasets, whereas DiffBIR was

Table 3: The comparisons between blind SR methods.

Dataset Metrics Real- StableSR DiffBIR PASD BCSCN-
ESRGAN PASD𝑏

Degradation Type Second-Order Second-Order Second-Order Second-Order Bicubic

RWSRC

PSNR↑ 21.900 23.1798 22.1162 22.0582 21.4085
SSIM↑ 0.6311 0.6517 0.5234 0.5812 0.5365
LPIPS↓ 0.3384 0.3547 0.4442 0.3417 0.3991
FID↓ 50.2091 42.3528 57.1798 43.8248 55.4334

RealSRSet NIQE ↓ 4.2103 4.5333 3.9272 3.7101 3.6240
MUSIQ ↑ 63.0281 59.4793 55.2776 69.6276 64.5600

trained on even larger scale samples from the ImageNet [4]. In
contrast, BCSCN-PASD𝑏 required only 3K HR images from the
DF2K dataset, demonstrating superior sample efficiency.

Moreover, for BCSCN-PASD𝑏 , the amount of data in one training
epoch is equivalent to the size of the training dataset. In contrast,
methods based on second-order degradation kernels process an
amount of data per epoch that is equal to the training dataset size
multiplied by the number of degradation kernels. This implies that
blind SR methods enumerating degradation kernels often require
lengthy training periods to converge. Specifically, BCSCN-PASD𝑏

required only 3K HR images and a bicubic degradation model for
dataset synthesis. It was trained on four A6000 GPUs for 16 hours,
starting from SD pretrained weights, which is only about 10% of
the training duration required for PASD.

4.7 Ablation
To evaluate the impact of various components of BCSCN on the per-
formance of BCSCN-SR, we build upon the foundation of BCSCN-
ESRGAN to conduct a comprehensive analysis across four dimen-
sions: patch size, number of bases, bézier curve basis order, and
reward functionality. The overall performance was assessed using
average metrics computed across four RWSRC datasets.

4.7.1 Patch Size and Sparsity Analysis. Table 4 illustrates the im-
pact of reconstructed patch size on SR outcomes. Adopting a rela-
tively redundant configuration, each scale’s patch is systematically
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Table 4: Ablation experiment of patch size.

Patch Size PSNR↑ SSIM↑ LPIPS↓ FID↓

8×8 22.57 0.6016 0.4406 68.02
16×16 22.53 0.6013 0.4228 67.29
32×32 22.06 0.5824 0.4407 72.88
64×64 20.87 0.5440 0.5035 107.31

Table 5: Ablation experiment of basis number.

Basis Number PSNR↑ SSIM↑ LPIPS↓ FID↓

5 21.72 0.5788 0.4563 83.98
10 22.15 0.5915 0.4315 71.46
20 22.46 0.6029 0.4299 67.46
30 22.51 0.6013 0.4231 67.32
50 22.53 0.6013 0.4228 67.29

LR

32 × 32

8 × 8

64 × 64

16 × 16

HR

LR

20 bases

5 bases

30 bases

10 bases

50 bases

Figure 7: Comparison of the impact of patch size and number
of basis on super-resolution results.

decomposed into 50 bases. Results reveal a diminishing trend in in-
dicators with increasing patch size. Figure 7 visually demonstrates
that larger patch sizes amplify image complexity, challenging the
agent in reconstructing intricate details and resulting in smoother
SR outcomes. Performance convergence is observed when the patch
size falls below 16, with nuances in detail becoming less conspicu-
ous.

Table 5 elucidates the influence of the number of bases on SR
results. Maintaining a fixed patch size decomposition at 16 × 16,
we conduct a comparative analysis for four distinct base quantities,
ranging from low to high. Quantitative metrics show swift improve-
ment when the base quantity is below 20, plateauing beyond 20
bases. Figure 7 qualitatively supports this observation, with incre-
mental basis enhancing window pattern intricacies. The transition
from 5 to 20 bases manifests a notable escalation in detail, while
minimal variation is observed from 20 to 30 bases. The detailed
process of decomposing LR images is available in the Appendix.

4.7.2 Bézier Curve Basis Order Analysis. Table 6 demonstrates the
impact of utilizing Bézier curve bases of different orders on perfor-
mance. As the order of the bases increases, there is no significant
change in model performance, indicating that due to the lower com-
plexity of structures within small image patches, a second-order
Bézier curve is sufficient for reconstructing the LR images.

4.7.3 Reward Analysis. Table 7 displays the impact of different
reward functions on the model’s generalization performance. As
the number of reward functions increases, LPIPS and FID scores

Table 6: Ablation experiment of bézier curve basis order.

Basis Order PSNR↑ SSIM↑ LPIPS↓ FID↓

2 22.46 0.6029 0.4299 67.46
3 22.42 0.6013 0.4275 69.21
4 22.30 0.5963 0.4192 67.59

improve, affirming each function’s effectiveness. Figure 8 shows
that when guiding the sparse encoding agent solely with theWGAN
reward, clean edge structures are restored but introduce artifacts.
As the regional reward is enhanced, these artifacts diminish, albeit
with a reduction in image texture details. However, by introducing
additional Laplace rewards, lost details are effectively recovered,
resulting in a high-quality SR output that is both clean and sharp.

Table 7: Ablation experiment of reward function.

𝑟𝑤 𝑟𝑠 𝑟𝑙 PSNR↑ SSIM↑ LPIPS↓ FID↓

✓ 22.50 0.5791 0.4605 72.31
✓ ✓ 22.28 0.5980 0.4345 70.47
✓ ✓ ✓ 22.46 0.6029 0.4299 67.46

LR 𝑟𝑤 𝑟𝑤 + 𝑟𝑠 𝑟𝑤 + 𝑟𝑠 + 𝑟𝑙 HR

Figure 8: Visualization results of reward ablation experiment.

5 CONCLUSION
In this study, we improve the generalization of SISR by narrow-
ing the domain gap between training and testing sets. We propose
BCSCN, a Bézier curve basis-based sparse coding preprocessing
network that effectively addresses distribution disparities in both
training and testing phases. BCSCN preserves image content while
eliminating degradation-related defects, producing “clean” images
for subsequent SR networks. With minimal training on LR im-
ages created by bicubic degradation, BCSCN can effectively reduce
the distribution distance between varying degradation data, sig-
nificantly boosting the generalization capability of foundational
SR networks and surpassing SISR methods trained with identical
degradation kernels. Compared to SOTA blind SR methods, BCSCN-
PASD𝑏 is trained on simple degradations, utilizing fewer samples
and training resources, yet achieves competitive performance on
RWSC datasets and securing the highest NIQE and the second-
highest MUSIQ scores on the RealSRSet. These results demonstrate
BCSCN’s significant role in improving the generalization perfor-
mance of base SISR models, affirming its effective application in
real-world scenarios.
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