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A. Sensitivity analysis on loss coefficients λp and λC

As defined in Eqn.(8), the overall training loss of PDG consists of the shape loss Lshape, part loss
Lpart, shape-level contrastive loss LC

shape, and part-level contrastive loss LC
part, where the coefficients

λp and λC control the weighting factors between these loss functions. We conduct experiments on
M → S⋆ task to examine how λp and λC could affect the performance. For the experiments on λp,
we fix λC to 0.01. And for the experiments on λC , λp is fixed to 0.05. As shown in Fig. S-1 (a), the
performance of PDG is not sensitive to λp in the range of [0.01, 0.09], where the standard deviation
of nine results is 0.71. And in Fig. S-1 (b), the standard deviation of nine classification results is 0.66,
demonstrating that our PDG is also not sensitive to λC in the range of [0.006, 0.05].
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Figure S-1: Sensitivity analysis about λp and λC on M → S⋆ task. (a) λp is set in the range of [0.01,
0.09] and λC is fixed to 0.01. (b) λC is set in the range of [0.006, 0.05] and λp is fixed to 0.05.

B. Test error curves and training losses

We show the test error curves of PointNet, MetaSets (PointNet), and PDG (PointNet) in target domain
data on task M → S⋆ as shown in Fig. S-2 (a). We can observe that PointNet achieves relatively
high test error and MetaSets (PointNet) could not sufficiently decrease the test errors. Compared
with them, the test error of our proposed PDG (PointNet) decreases to a low value. Figure S-2 (b)
shows all training losses of PDG (PointNet) including shape loss Lshape, part loss Lpart, shape-level
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(a) Target test errors.
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(b) Source training losses.

Figure S-2: Test error curves of different methods and training losses of PDG on M → S⋆ task.
(a) Test error curves of PointNet, MetaSets (PointNet), and PDG (PointNet) in target domain
during network training. (b) Training losses of PDG (PointNet) in source domain during network
optimization.

contrastive loss LC
shape, and part-level contrastive loss LC

part. All these losses are optimized stably
during network training.

C. Time and space complexity

Table S-1 summaries the comparisons of time and space cost of PointNet, PDG (PointNet) and
MetaSets (PointNet). All experiments are conducted on a single Tesla V100 GPU with batch-size
32. We can observe that PDG (PointNet) achieves the best balance on performance and computation
cost. Compared with MetaSets (PointNet), our proposed PDG (PointNet) improves its classification
accuracy by 7.3% while taking only respectively 3.6% and 86.7% time and space cost of MetaSets
(PointNet).

Table S-1: Time and memory cost of different models.

PointNet MetaSets (PointNet) PDG (PointNet)

Time per epoch (s) 2.94 238.64 8.76
Total training time (m) 7.67 763.46 24.15
GPU memory (MB) 2953 5097 4423
Accuracy (%) 59.8 60.3 67.6

D. A comparison of typical shapes from different domains

In Sect. 5, we evaluate different methods on 3DDG benchmarks consisting of three domains: Model-
Net, ShapeNet, and ScanObjectNN. We show some typical shapes in each class from three datasets in
Fig. S-3. It is obvious that CAD shapes from synthetic datasets (ModelNet and ShapeNet) are cleaner,
while shapes from real scanned dataset (ScanobjectNN) suffer from the background occurrence,
object partiality, and various deformation variants. These geometry variances cause the domain gap
and degrade the performance of 3D classification models when generalizing to an unseen domain.

E. Visualization of part-template features

As discussed in Sect. 3.2, we construct a part-template feature space H and each part-template feature
could encode part-level geometry. We illustrate some learned part-template features in Fig. S-4 and
Fig. S-5. We train a PDG (DGCNN) on ModelNet dataset and extract part-level features from source
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domain (ModelNet dataset) and target domain (ScanObjectNN dataset). Given a part-template feature
as a query, part-level features from source and target domains are retrieved respectively. In each row
of Fig. S-4, we display 8 parts from source domain (in blue box), and 8 parts from target domain (in
red box) whose features are most similar to the same part-template feature in respective domain. As
shown in Fig. S-4 and Fig. S-5, part-template features could encode various local geometric structures
in source domain and provide references for target domain.
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Figure S-3: Samples from ModelNet dataset, ShapeNet dataset, and ScanObjectNN dataset. ModelNet
and ScanObjectNN have 11 shared classes while ShapeNet and ScanObjetNN have 9 shared classes.
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Figure S-4: Visualization of part-template features. In each row we display 8 parts retrieved from
source domain (in blue box) and 8 parts from target domain (in red box) whose part-level features are
most similar to the same part-template feature in respective domain.
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Figure S-5: Examples of part-template features. For each part-template feature, we display 8 parts
retrieved from source domain whose part-level feature are most similar to the part-template features
in each row.
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