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Abstract
Deploying machine learning models in safety-
critical domains poses a key challenge: ensur-
ing reliable model performance on downstream
user data without access to ground truth labels
for direct validation. We propose the suitabil-
ity filter, a novel framework designed to detect
performance deterioration by utilizing suitabil-
ity signals—model output features that are sen-
sitive to covariate shifts and indicative of poten-
tial prediction errors. The suitability filter evalu-
ates whether classifier accuracy on unlabeled user
data shows significant degradation compared to
the accuracy measured on the labeled test dataset.
Specifically, it ensures that this degradation does
not exceed a pre-specified margin, which repre-
sents the maximum acceptable drop in accuracy.
To achieve reliable performance evaluation, we
aggregate suitability signals for both test and user
data and compare these empirical distributions
using statistical hypothesis testing, thus providing
insights into decision uncertainty. Our modular
method adapts to various models and domains.
Empirical evaluations across different classifica-
tion tasks demonstrate that the suitability filter
reliably detects performance deviations due to co-
variate shift. This enables proactive mitigation of
potential failures in high-stakes applications.

1. Introduction
Machine learning (ML) models often operate in dynamic,
uncertain environments. After a model is tested on a holdout
set, a satisfactory evaluation result typically leads to produc-
tion deployment. However, if test and deployment covariate
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Figure 1. A model M is suitable for use on Du if its accuracy
does not fall below the accuracy on Dtest by more than a pre-
defined margin m. The suitability filter calculates per-sample pre-
diction correctness probabilities for both test and user datasets and
compares the two distributions through statistical non-inferiority
testing. The dashed vertical lines represent the mean values of the
distributions corresponding to the estimated accuracies.

distributions differ, performance can drop and cause harm.
For example, credit risk models trained on limited historical
data may fail in new contexts, disproportionately harming
underserved communities through unfair denials or higher
interest rates (Kozodoi et al., 2022). Ideally, deployed pre-
dictions could be compared directly to ground truth for real-
time performance monitoring. However, ground truth may
be unavailable (e.g., limited expert labeling (Culverhouse
et al., 2003)), unobservable (e.g., counterfactual outcomes in
healthcare (Tal, 2023)), or only available much later (e.g., re-
cidivism in law enforcement (Travaini et al., 2022)), thereby
causing significant monitoring challenges in deployment.

In this work, we tackle the challenge of determining whether
classification accuracy on unlabeled user data degrades sig-
nificantly compared to a labeled holdout dataset—an issue
not directly addressed by existing methods. Our approach
combines insights from distribution shift detection, unsuper-
vised accuracy estimation, selective prediction, and dataset
inference into a novel performance deterioration detector.

Central to our solution is the suitability filter, an auxil-
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iary function fs : X → {SUITABLE, INCONCLUSIVE}.
Given an unlabeled user dataset Du ∼ Dtarget sampled from
the target deployment domain, and a labeled test dataset
Dtest ∼ Dsource sampled from the original training domain,
the filter assesses whether classifier accuracy on Du falls
below that on Dtest by more than a predefined margin m.
Our work proposes both (i) a framework for the suitability
filter; as well as (ii) a well-performing default instantiation
of the filter using domain-agnostic suitability signals that
are broadly applicable across classifiers, independent of the
model architecture or the training algorithm.

To arrive at its decision, the suitability filter relies on suit-
ability signals (model output features such as maximum
logit/softmax or predictive entropy). These signals are sensi-
tive to covariate shifts and can indicate potential prediction
errors. In particular, we design a per-sample prediction cor-
rectness estimator leveraging these suitability signals. This
allows us to assess consistency in the model’s predictive
behavior on both Du and Dtest by aggregating sample-level
suitability signals. As a result, we are able to detect subtle
shifts indicative of changes in model performance. As il-
lustrated in Figure 1, we then compare the means of these
distributions (i.e., the estimated accuracies) to arrive at a
suitability decision. Our decisions rely on statistical test-
ing to assess whether the estimated difference in means is
significant, thus offering a measure of predictive uncertainty.

To ensure the reliability of suitability decisions, we study the
statistical guarantees for the suitability filter. Specifically,
we identify the theoretical conditions that ensure a bounded
false positive rate for end-to-end suitability decisions. We
also consider the practical scenarios where such condition
may not hold and provide a relaxation of this theoretical
condition. This allows model providers to ensure reliability
of suitability decisions in spite of theoretical limitations.

Building on these theoretical insights, we empirically show
that the filter consistently detects performance deviations
arising from various covariate shifts, including temporal, ge-
ographical, and subpopulation shifts. Specifically, we assess
the effectiveness of our approach using real-world datasets
from the WILDS benchmark (Koh et al., 2021). These in-
clude FMoW-WILDS for land use classification (Christie
et al., 2018), CivilComments-WILDS for text toxicity
classification (Borkan et al., 2019), and RxRx1-WILDS
for genetic perturbation classification (Taylor et al., 2019).
Furthermore, we explore how accuracy differences between
user and test datasets impact the filter’s sensitivity, analyze
calibration techniques to control false positives, and con-
duct ablations on suitability signals, sample sizes, margins,
significance levels, and classifier options.

In summary, our key contributions are the following:

1. We introduce suitability filters as a principled way of de-

tecting model performance deterioration during deploy-
ment. Our filters detect covariate shift via an unlabeled
representative dataset provided by the model user.

2. We propose a statistical testing framework to build suit-
ability filters that aggregate various signals and output a
suitability decision. Leveraging formal hypothesis test-
ing, our approach enables control of the false positive
rate via a user-interpretable significance level.

3. We theoretically analyze the end-to-end false positive
rates of our suitability filters and provide sufficient condi-
tions for bounded false positive rates. We then consider
a practical relaxation of this condition, and suggest an
adjustment to the prediction margin that maintains our
end-to-end bounded false error guarantees.

4. We demonstrate the practical applicability of suitability
filters across 29k experiments on realistic data shift sce-
narios from the WILDS benchmark. On FMoW-WILDS,
for example, we are able to detect performance deterio-
ration of more than 3% with 100% accuracy as can be
seen in Figure 4.

2. Related Work
Our work builds on insights from distribution shifts, accu-
racy estimation, selective prediction, and dataset inference.

Distribution Shift Detection. Distribution shift detec-
tion methods aim to identify changes between training
and deployment data distributions (Quiñonero-Candela
et al., 2022), generally requiring access to ground truth
labels. Early research emphasizes detecting shifts in high-
dimensional data using approaches such as statistical testing
on model confidence distributions (Rabanser et al., 2019)
or leveraging model ensembles (Ovadia et al., 2019; Arpit
et al., 2022). Recent efforts increasingly prioritize inter-
preting shifts (Kulinski & Inouye, 2023; Koh et al., 2021;
Gulrajani & Lopez-Paz, 2021) and mitigating their impact
on model performance (Cha et al., 2022; Zhou et al., 2021;
Wiles et al., 2021; Zhou et al., 2022; Wang et al., 2022).
Some works argue that while small shifts are unavoidable,
the focus should be on harmful shifts that lead to signifi-
cant performance degradation (Podkopaev & Ramdas, 2021;
Ginsberg et al., 2022). These approaches aim to detect
covariate shifts and subsequently assess their impact on per-
formance. To do so, they rely on ground truth labels or
model ensembles to evaluate harmfulness. This assumption
makes these techniques unsuitable for our setting where we
aim to detect performance degradation without label access.

Unsupervised Accuracy Estimation. Unsupervised ac-
curacy estimation, also known as AutoEval (Automatic
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Model Evaluation (Deng & Zheng, 2021)), aims to esti-
mate a model’s classification accuracy (a continuous met-
ric) on unseen data without relying on ground truth labels.
Early approaches in this field primarily centered on model
confidence, calculated as the maximum value of the soft-
max output applied to the classifier’s logits, and related
metrics which we demonstrate to be valuable suitability
signals (Hendrycks & Gimpel, 2016; Garg et al., 2022;
Kivimäki et al., 2024; Bialek et al., 2024; Guillory et al.,
2021; Lu et al., 2023; Wang et al., 2023; Hendrycks & Di-
etterich, 2018; Deng et al., 2023). Our work differs from
these approaches in three key ways: we focus on reliably
detecting performance deterioration (a binary decision) in
relation to a labeled test dataset using statistical testing.

Selective Classification. Selective classification tech-
niques aim to detect and reject inputs a model would likely
misclassify, while maintaining high coverage and accepting
as many samples as possible (Chow, 1957; El-Yaniv et al.,
2010). In contrast to selective classification, we do not re-
ject or accept individual input data samples. Instead, we
leverage sample-level signals and aggregate them to provide
a statistically grounded suitability decision for the entire
dataset. Initial selective classification methods for neural
networks base the rejection mechanism on the model pre-
diction confidence (Hendrycks & Gimpel, 2016; Geifman &
El-Yaniv, 2017), a signal that we also leverage in our work.

Dataset Inference. Our approach is inspired by dataset
inference (Maini et al., 2021), a technique used to deter-
mine whether a model was trained on a particular dataset.
Similarly to dataset inference, we compare suitability dis-
tributions between two different data samples through sta-
tistical hypothesis testing. However, in contrast to dataset
inference, we focus only on evaluation and aim to detect
possible performance deterioration, essentially reversing the
null and alternative hypotheses. Moreover, dataset inference
relies on representative data from both sample domains—
the original source and the deployed target domain—to train
a confidence regressor. Instead, we assume that label access
is only available in data sampled from the source domain.

3. Problem Formulation
Our suitability filter framework distinguishes between the
model provider, who trains and tests the classifier on the
source distribution, and the model user, who applies the
model to (possibly distributionally shifted) target data.

Model Provider. Let Y = {1, . . . , k} denote the label
space, representing the set of all possible output labels for a
classification problem with k classes. We define our predic-
tor as a model M : X → Y mapping inputs from a covariate
space X to classification decisions. A model provider trains

such a model M on labeled data sampled from a source dis-
tribution Dsource over domain X . Specifically, the provider
usually partitions the data into two disjoint subsets: a train-
ing dataset Dtrain ∼ Dsource, which is used to optimize the
parameters of M and a test dataset Dtest ∼ Dsource, which is
reserved to evaluate the performance of M on unseen data.
To ensure an unbiased evaluation of model performance,
these two datasets are disjoint, i.e., Dtrain ∩Dtest = ∅.

Model User. A model user interested in deploying model
M on their data provides an unlabeled, representative data
sample Du ∼ Dtarget. In most scenarios of practical interest,
Dtarget differs from Dsource, i.e., Dtarget ̸= Dsource. Note that
if Du were to be drawn from the same distribution as Dtest,
the model’s performance on both datasets would be identical
in expectation, eliminating the need for the suitability filter.
The user might be a third party looking to use the model, or
the model provider and user could be the same party.

Suitability Filter. The suitability filter assesses whether
the performance of classifier M on unlabeled user data Du

degrades relative to the known performance on the labeled
test dataset Dtest. In our work, we focus on model accuracy
as the performance metric. We define suitability as follows:

Definition 3.1 (Suitability). Given a classifier M : X →
Y , a test data sample Dtest ∼ Dsource, a user data sample
Du ∼ Dtarget, and a performance deviation margin m ∈ R,
we define M as suitable for use on Du if and only if the
estimated accuracy of M on Du deviates at most by m from
the accuracy on Dtest. Formally:

1

|Du|
∑
x∈Du

I{M(x) = O(x)} ≥

1

|Dtest|
∑

(x,y)∈Dtest

I{M(x) = y} −m.
(1)

Here, I{·} is the indicator function and O(x) represents an
oracle that provides the true label y for any input x (the
ground truth label is unavailable for samples x ∈ Du).

Definition 3.2 (Suitability Filter). Given a model M , a test
dataset Dtest, a user dataset Du, a performance metric g and
a performance margin m as in Definition 3.1, we define a
suitability filter to be a function fs : X → {SUITABLE,
INCONCLUSIVE} that outputs SUITABLE if and only if
M is suitable for use on Du according to Definition 3.1 with
high probability and INCONCLUSIVE otherwise.

4. Method
The suitability filter is introduced as a statistical hypothesis
test designed to assess if the performance of a model on
user data Du deviates from its performance on a test dataset
Dtest by more than a specified margin m. By aggregating
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Figure 2. Schematic overview of the suitability filter. The suitability filter assesses whether model performance on a user sample Du

deviates from its performance on the test dataset Dtest. This is achieved by combining different suitability signals {s1, . . . , ss} to estimate
per-sample prediction correctness and comparing the distribution of these estimates between the two datasets using a statistical test.

a diverse set of suitability signals predictive of classifier
correctness, the test compares predicted accuracy between
Du and Dtest using a non-inferiority test to ensure the mean
performance difference does not exceed the performance
margin m (Wellek, 2002; Walker & Nowacki, 2011). We
present an schematic overview of our approach in Figure 2.

4.1. Suitability Signals

The first step in constructing the suitability filter is to select a
set of signals {s1, . . . , sS} that are predictive of per-sample
classifier prediction correctness. These signals are inher-
ently dependent on the model M and capture information
about its predictions and confidence levels. As discussed
in Section 2, a variety of signals have been proposed in the
literature on unsupervised accuracy estimation, selective
classification, and uncertainty quantification. Such signals
include but are not limited to the maximum logit/softmax
scores, the energy of the logits, or the predictive entropy.
The exact signals used in this work have been selected to
ensure the broad applicability of the suitability filter across
diverse settings as outlined in more detail in our experiments
(Section 5) and in Appendix A.4.2 and A.4.3. We note that
any signal that can be computed for an individual sample
and is predictive of prediction correctness can be incorpo-
rated into our framework, allowing for flexible extension
based on the specific task, dataset, or model M .

4.2. Per-Sample Prediction Correctness Estimator

To learn a per-sample prediction correctness estimator, we
require the model provider to have a separate, labeled hold-
out dataset Dsf ∼ Dsource. While ultimately the goal is to
assess performance on the unlabeled Du ∼ Dtarget provided
by the user, the hold-out dataset Dsf serves as a proxy to

train the parameters of the prediction correctness estimator.
This dataset is essential because it enables the suitability
filter to learn the relationship between different signals and
classifier prediction correctness. Dsf has to be separate from
both Dtrain and Dtest to avoid overfitting to these samples.

For each sample x ∈ Dsf, the selected signals {s1, . . . , sS},
which are functions of both the sample and the model M , are
evaluated, normalized, and aggregated into a single feature
vector s(x;M) = [s1(x;M), s2(x;M), . . . , sS(x;M)] ∈
RS . The suitability filter framework leverages this feature
vector s(x;M) to predict whether the model M correctly
classifies the input x. This is achieved by training a pre-
diction correctness classifier C : RS → {0, 1} that es-
timates the per-sample probability of prediction correct-
ness pc(x) on the hold-out dataset Dsf. In particular, we
want to minimize the binary cross-entropy loss between
the true correctness label c = I{M(x) = y} and pc(x) for
each (x, y) ∈ Dsf. We instantiate C as a logistic regres-
sor1 which models the prediction correctness probability
pc(x) = σ(w⊤s(x;M) + b), where σ(z) = 1

1+e−z is the
sigmoid function.

We can then leverage C to estimate per-sample prediction
correctness for user data samples x ∈ Du (since calculating
pc(x) does not require ground truth label access) as well
as the test data Dtest. Next, we discuss steps to verify and
ensure that C generalizes effectively to Du ∼ Dtarget.

Calibration. To ensure that the mean estimated probabil-
ity of prediction correctness directly reflects accuracy, pc(x)

1Note that while more flexible model classes can be used for
the correctness estimator C, we did not find any empirical evi-
dence that they provide a consistent performance improvement
over logistic regression (see Appendix A.4.4 for details).
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must be well-calibrated for both samples from Dsource and
Dtarget. However, absent specific assumptions about the dif-
ferences between Dsource and Dtarget, achieving this desired
calibration is impossible in practice (David et al., 2010).

One reasonable assumption under which such calibration
issues can be mitigated is if the potential target distributions
consist of subpopulations of the source distribution. In credit
scoring, for instance, the target distribution may include
subpopulations S, such as minority groups or individuals
with limited credit histories, who are underrepresented in the
training data. In such scenarios, multicalibration techniques
can ensure that C provides accurate predictions for every
subpopulation S ∈ C, thereby improving reliability across
all possible Dtarget (Hébert-Johnson et al., 2018). Here, C
denotes a collection of computationally identifiable subsets
of the support of Dsource and i ∼ S is a sample drawn from
Dsource conditioned on membership in S.

When no assumptions about Dsource and Dtarget can be made,
achieving reliable calibration is challenging. Calibrating
C on Dsf (e.g., using Platt’s method (Platt et al., 1999) or
temperature scaling (Guo et al., 2017)) ensures that the
classification correctness estimator C provides reliable esti-
mates of the probability that model M correctly classifies
samples in Dsf ∼ Dsource. While, in theory, this calibra-
tion extends to Dtest ∼ Dsource, we generally cannot assume
calibration on Du ∼ Dtarget. Our approach to addressing
this issue combines ongoing quality assurance checks with
appropriate margin adjustments and will be discussed in
more detail in Section 4.4.

4.3. Non-Inferiority Testing

Non-inferiority testing is a statistical method used to as-
sess whether the performance of a new treatment, model, or
method is not significantly worse than a reference or con-
trol by more than a pre-specified margin m (Wellek, 2002;
Walker & Nowacki, 2011). Unlike other statistical tests,
which typically test for a difference between distributions,
this test aims to confirm that the new method is not inferior
by more than a margin of m. Consequently, the null hypoth-
esis is that the method is inferior, in contrast to the usual
null hypothesis of no difference.

Correctness Distributions. If the per-sample prediction
correctness estimator C is well-calibrated, the mean of
the estimated prediction correctness probabilities across
a dataset approximates the accuracy of the model M on
that dataset. Formally, let pc[Dtest] and pc[Du] denote the
vectors of estimated prediction correctness probabilities for
the test dataset Dtest and the user dataset Du, respectively:

pc[Dtest] :=
[
pc(x1), . . . , pc(x|Dtest|)

]
∈ [0, 1]|Dtest| (2)

pc[Du] :=
[
pc(x1), . . . , pc(x|Du|)

]
∈ [0, 1]|Du| (3)

Here, pc(xi) represents the estimated probability of predic-
tion correctness for each sample xi.

Hypothesis Setup. We define the true means of the esti-
mated prediction correctness probabilities for data drawn
from the source and target distributions as follows:

µsource := Ex∼Dsource [pc(x)] (4)
µtarget := Ex∼Dtarget [pc(x)] (5)

The primary goal of the non-inferiority test is to compare the
true mean predicted correctness between the two distribu-
tions and determine whether µtarget is not lower than µsource
by more than a pre-specified margin m. This is formally
expressed as the following hypothesis testing setup:

H0 : µtarget < µsource −m (6)
H1 : µtarget ≥ µsource −m (7)

The null hypothesis H0 posits that the estimated perfor-
mance on the user dataset is worse than on the test dataset
by more than the margin m. The alternative hypothesis H1

asserts that the estimated performance on the user dataset
is either better than, equivalent to or not worse than that on
the test dataset within the allowed margin m. We conduct
the statistical non-inferiority test using a one-sided Welch’s
t-test (see Appendix A.1.1).

4.4. Suitability Decision

Finally, the decision on the suitability of the model for the
user dataset is based on the outcome of this non-inferiority
test. If the test indicates non-inferiority, we conclude that
the model’s performance on Du is acceptable and we output
SUITABLE. If the test fails to reject the null hypothesis,
the model is either unsuitable for the user dataset or the
number of samples provided was insufficient to determine
suitability and hence we return INCONCLUSIVE. To ensure
the reliability of these suitability decisions, we next discuss
statistical guarantees and the conditions under which they
hold for the end-to-end suitability decision.

Statistical Guarantees. To account for miscalibration er-
rors, we define δ-calibration as follows:

Definition 4.1 (δ-Calibration). Let pc(x) denote the esti-
mated probability of prediction correctness for a sample x
with predicted label M(x) and true label y. Assuming that
pc(x) has a well-defined probability density function fc(ν)
over [0, 1], we say pc(x) is δ-calibrated if

P [M(x) = y | pc(x) = ν] = ν + ϵ(ν), (8)

∀ν ∈ [0, 1] with calibration error
∫ 1

0
ϵ(ν)fc(ν) dν = δ for

0 ≤ |δ| ≪ 1.
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Under the assumption of testing two independent and nor-
mally distributed samples, the non-inferiority test ensures a
controlled false positive rate (FPR), bounding the probabil-
ity of incorrectly concluding non-inferiority.
Theorem 4.2 (Non-Inferiority Test Guarantee). Let µsource

and µtarget represent the true mean prediction correctness for
the source and target distributions, respectively. Assuming
that these samples are independent and normally distributed,
a non-inferiority test based on Welch’s t-test at significance
level α guarantees that the probability of rejecting the null
hypothesis H0 : µtarget < µsource − m (i.e., concluding
µtarget ≥ µsource −m) when H0 is true is controlled at α:

P(Reject H0 | H0 is true) ≤ α, (9)

where m is the non-inferiority margin (Lehmann et al., 1986;
Wellek, 2002).

The following results extend this guarantee to the end-to-
end suitability filter under δ-calibration for the correctness
estimator C with respect to both Dsource and Dtarget. All
expectations and probabilities are over samples (x, y) ∼
X × Y unless specified otherwise.
Lemma 4.3 (Expectation of Correctness). Under δ-
calibration as defined in Definition 4.1, the deviation be-
tween the true probability of prediction correctness and the
estimation by classifer C is given by:

E[pc(x)]− P[M(x) = y] = δ. (10)

Proof in Appendix A.1.2.

We use Lemma 4.3 to derive the end-to-end guarantee for
the suitability filter.
Corollary 4.4 (Bounded False Positive Rate for Suitability
Filter under δ-Calibration). Given a prediction correctness
estimator C that is δ-calibrated on both the source and
target distributions with δsource and δtarget, respectively, let
us define m′ := m + δsource − δtarget and conduct a non-
inferiority test with H0 : µtarget < µsource −m′. The proba-
bility of incorrectly rejecting H0 (i.e., returning SUITABLE)
when the model accuracy on Dtarget is lower than on Dsource

by more than a margin m is upper bounded by the signifi-
cance level α. Proof in Appendix A.1.3.

The following remark details the limits of these guarantees.
Remark 4.5 (Impossibility of Bounded False Positive Rate
without δ-Calibration). If the calibration deviations δsource
and δtarget are not provided or are not much smaller than 1,
it is not possible to choose m′ according to Corollary 4.4.
Hence, without δ-calibration, no guarantees on the false
positive rate of the suitability filter can be provided.

Practical Considerations. Under perfect calibration, the
calibration errors vanish, i.e., δsource = δtarget = 0, eliminat-
ing the need for any margin correction. However, achieving

Margin adjustment m′ = m+∆test −∆u.
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Figure 3. Margin adjustment under accuracy estimation error.
In each panel, the solid gray line is the perfect-calibration diagonal,
the dashed black/gray lines mark the original margin m and its
corrected value m′, respectively. The blue/orange arrows indicate
the estimation errors on the test set (∆test) and user data (∆u),
respectively. In the left panel, the user data Du is deemed suitable;
in the right panel it is deemed unsuitable.

perfect calibration in practice is rare. In most real-world
deployments, accurately determining the calibration errors
δsource and especially δtarget can be difficult. Consequently,
adjusting the margin as proposed in Corollary 4.4 may be
challenging. To address this, we draw inspiration from best
practices in quality assurance and propose that the model
owner periodically collects a small labeled dataset, D̂u,
from a potential user of the system. Given access to the test
dataset Dtest, the model owner can compute both the esti-
mated accuracies (µu, µtest) as approximated by C, as well
as ground truth accuracies (Accu, Acctest). This enables an
empirical evaluation of accuracy estimation errors, ∆u and
∆test, which correspond to δtarget and δsource, respectively:

∆ =
1

N

N∑
i=1

pc(xi)− I{M(xi) = yi} (11)

Following the margin adjustment in Corollary 4.4, the up-
dated margin is:

m′ = m+∆test −∆u. (12)

The intuition behind this adjustment is that the decisions
output by the suitability filter reflect the expected ground
truth suitability decisions even in the presence of prediction
errors as can also be seen in Figure 3. Regular recalibration
and careful margin tuning ensure that C continues to provide
reliable estimates, even in the presence of distribution shifts
or evolving deployment conditions.

5. Experimental Evaluation
To evaluate the performance of our proposed suitability filter,
we conduct a series of experiments with different datasets,
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Table 1. Evaluating detection performance of the proposed suitability filter on FMoW-WILDS, RxRx1-WILDS and
CivilComments-WILDS for m = 0 with both ID and OOD user data. We report the area under the curve for ROC and PR
(capturing the tradeoffs at various significance thresholds), as well as accuracy and the true false positive rate at α = 0.05. We also report
95% confidence intervals based on 3 models M trained on the same Dtrain with different random seeds.

DATASET ACC FPR ROC PR

FMOW-WILDS ID 81.8± 3.1% 0.027± 0.033 0.969± 0.023 0.967± 0.029
FMOW-WILDS OOD 91.9± 2.5% 0.018± 0.017 0.965± 0.016 0.891± 0.035

RXRX1-WILDS ID 100.0± 0.0% 0.000± 0.000 1.000± 0.000 1.000± 0.000
RXRX1-WILDS OOD 97.5± 7.2% 0.031± 0.088 0.997± 0.006 0.989± 0.024

CIVILCOMMENTS-WILDS ID 93.3± 5.3% 0.002± 0.007 0.997± 0.008 0.971± 0.067

model architectures, and naturally occurring distribution
shift types from the WILDS benchmark (Koh et al., 2021).

5.1. General Evaluation Setup

We evaluate the suitability filter on FMoW-WILDS (Christie
et al., 2018), CivilComments-WILDS (Borkan et al.,
2019) and RxRx1-WILDS (Taylor et al., 2019). For each
dataset, we follow the recommended training paradigm to
train a model M using empirical risk minimization and
the pre-defined Dtrain ∼ Dsource. We then further split the
provided in-distribution (ID) and out-of-distribution (OOD)
validation and test splits into folds as detailed in Appendix
A.2.2 (16 ID and 30 OOD folds for FMoW-WILDS, 4 ID
and 8 OOD folds for RxRx1-WILDS, and 16 ID folds
for CivilComments-WILDS). We conduct two types
of experiments: first, each ID fold is used as the user
dataset (Du), and the remaining ID data is split into 15
subsets, used as Dtest and Dsf. This yields 16×15×14 exper-
iments for FMoW-WILDS, 4×15×14 for RxRx1-WILDS,
and 16×15×14 for CivilComments-WILDS. Second, each
OOD fold is used as Du, and the ID data is split into 15
subsets, used for Dtest and Dsf. This yields 30×15×14 experi-
ments for FMoW-WILDS and 8×15×14 for RxRx1-WILDS.

We define the binary suitability ground truth as
Acc(M,Du) ≥ Acc(M,Dtest) − m. While statistical
guarantees are discussed under margin adjustments in Sec-
tion 4.4, achieving the necessary calibration error estimates
in practice is challenging. In particular, obtaining a reliable
approximation for δtarget requires access to a small labeled
user dataset D̂u, which may not always be available. More-
over, even if D̂u is collected, its representativeness of the
true deployment distribution Dtarget is uncertain, introduc-
ing potential biases in the accuracy estimation error ∆u.
To account for this in our experiments, we set m′ = m
for the non-inferiority test, effectively using the predefined
margin without additional corrections. We discuss this in
more detail in Appendix A.4.1. We evaluate suitability de-
cisions by computing the ROC AUC across significance
levels, capturing the trade-off between true and false posi-

tives. Additionally, we report PR AUC, accuracy, and false
positive rate at the common α = 0.05 threshold.

5.2. Suitability Signals

We use the following suitability signals in our instantiation
of the suitability filter (more details in Appendix A.2.1):

- conf max: Maximum confidence from softmax.
- conf std: Standard deviation of softmax outputs,

indicating confidence variability.
- conf entropy: Entropy of the softmax outputs,

measuring prediction uncertainty.
- conf ratio: Ratio of top two class probabilities.
- top k conf sum: Sum of the top 10% class proba-

bilities, indicating concentration of probability mass.
- logit mean: Mean of the logits, representing the

overall output magnitude.
- logit max: Maximum logit value, corresponding to

the highest predicted class.
- logit std: Standard deviation of logits, showing

the spread of model outputs.
- logit diff top2: Difference between the top two

logits, indicating confidence in distinguishing classes.
- loss: Cross-entropy loss w.r.t. the predicted class.
- margin loss: Difference in cross-entropy loss be-

tween the predicted class and next best class.
- energy: Logits energy, computed as the negative

log-sum-exponential, measuring model certainty.

5.3. Results

As our work introduces a novel problem setting with no ex-
isting baselines for direct comparison, the primary objective
of the following is to provide an intuition for the conditions
under which our approach works effectively, its limitations,
and the factors influencing its performance.

Table 1 summarizes the performance of the proposed suit-
ability filter across three benchmark datasets from the
WILDS collection: FMoW-WILDS, RxRx1-WILDS, and
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Figure 4. Sensitivity of suitability decisions to accuracy dif-
ferences between user and test data on FMoW-WILDS. The
plot, summarizing results from nearly 29k individual experiments,
shows the percentage of SUITABLE decisions for α = 0.05 and
m = 0 across various accuracy difference bins. We combine
both ID and OOD suitability filter experiments based on 3 models
trained with different random seeds.

CivilComments-WILDS. Although ID and OOD results
cannot be directly compared due to the differing numbers
of ground truth positives and negatives, interesting trends
still emerge. On FMoW-WILDS for example, we observe
higher accuracy and a lower FPR at the 5% significance
level for OOD user data, while ROC AUC and PR AUC are
higher for ID user data. This discrepancy may stem from
class imbalance: across OOD experiments, we have nearly
three times as many true negatives as true positives, making
it easier to achieve high accuracy despite it generally being
harder to maintain discriminative performance in an OOD
setting. The latter is also confirmed for RxRx1-WILDS,
where we see decreased performance on OOD user data
compared to ID user data. Another noteworthy observation
is the high overall performance on RxRx1-WILDS. The
reason for this is that we observe large differences in model
performance on RxRx1-WILDS depending on the fold con-
sidered, as can be seen in Table 3 (Appendix). This variation
helps the suitability filter detect performance deterioration
more easily, as larger performance differences enhance its
ability to identify changes.

This sensitivity of suitability decisions to differences in ac-
curacy between the user and test datasets is also illustrated
in Figure 4 on FMoW-WILDS for m = 0. The ideal relation-
ship would be a step function, where SUITABLE decisions
occur only when user dataset accuracy exceeds test accuracy.
However, achieving this requires a perfect estimate of accu-
racy on Du, which is impossible without ground truth labels.
In practice, we observe that the slope of the suitability deci-
sion curve is flatter than the ideal step function. There are
a few erroneous SUITABLE decisions when the accuracy
difference is below 0%, indicating occasional false positives.
However, for differences < −3% (indicating a performance
deterioration of at least 3%, this is the case for 8.4k experi-
ments out of nearly 29k in total), our proposed suitability
filter achieves 100% accuracy. Additionally, some false neg-

atives are observed in the range [0%, 3%], reflecting scenar-
ios where the empirical evidence provided by Du and Dtest
is insufficient to reject the inferiority null hypothesis at the
chosen significance level α = 0.05. However, for accuracy
difference buckets exceeding 3%, the percentage of SUIT-
ABLE decisions consistently exceeds 80% and increases
to 100% above 6% of accuracy difference, demonstrating
the robustness of the approach in scenarios with sufficiently
large accuracy differences. Additional experiments, results,
and interpretations can be found in Appendix A.4.

6. Discussion
Conclusion. We introduce the suitability filter, a novel
framework for evaluating whether model performance on
unlabeled downstream data in real-world deployment set-
tings deteriorates compared to its performance on test data.
We present an instantiation for classification accuracy that
leverages statistical hypothesis testing. We provide theo-
retical guarantees on the false positive rate of suitability
decisions and propose a margin adjustment strategy to ac-
count for calibration errors. Through extensive experiments
on real-world datasets from the WILDS benchmark, we
demonstrate the effectiveness of suitability filters across di-
verse covariate shifts. Our findings highlight the potential
of suitability filters as a practical tool for model monitoring,
enabling more reliable and interpretable deployment deci-
sions in dynamic environments. Suitability filters provide an
effective way to expose model capabilities and limitations
and thus enable auditable service level agreements (SLAs).

Possible Extensions. The suitability filter framework’s
modularity makes it adaptable to various contexts. For fair-
ness assessments, for instance, ensuring comparable accu-
racy across groups can be achieved by substituting the non-
inferiority test with an equivalence test (Wellek, 2002) to
evaluate if performance differences fall within a predefined
margin. If the goal extends beyond snapshot evaluations to
continuous monitoring, this can be achieved by applying
multiple hypothesis testing corrections to the p-values. Sim-
ilarly, the framework can support sequential testing, where
a decision is made iteratively: a user provides an initial
sample, and more data can be requested if no conclusion is
reached, using methods such as O’Brien-Fleming (O’Brien
& Fleming, 1979) or Pocock (Pocock, 2013) for control-
ling error rates. For a more detailed discussion of these
extensions, we refer the interested reader to Appendix A.3.

Limitations. Our method is designed to detect accuracy
degradations due to covariate shifts and does not address
other types of distribution shift, such as label shift. This is
due to the assumption that we generally only have access
to unlabeled data from the target distribution Dtarget. Future
work could extend this by incorporating information from a
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(potentially small) number of labeled samples from the tar-
get distribution. Moreover, our current approach is limited
to classification due to the choice of signals. Though our set
of suitability signals, designed to be applicable across data
types, model architectures and training paradigms, provides
a useful baseline, choosing signals tailored to the specific
deployment setting would likely improve suitability filter
performance. While our framework is general and could be
used with different performance metrics, our current instanti-
ation and experimental evaluation are limited to accuracy. It
thus focuses on scenarios where average-case performance
is the primary concern and does not address safety-critical
applications where ensuring good performance on a per-
instance (or worst-case) basis is often crucial. Lastly, it
should also be noted that one of the key underlying assump-
tions of our framework is non-adversarial behavior from
both model providers and users, who are expected to pro-
vide representative data. This assumption is justified by the
user’s goal of identifying a suitable model for their task, but
it implies vulnerability to deliberate adversarial manipula-
tion designed to bypass the filter.

Code Availability
The source code for the suitability filter framework
and the experiments presented in this paper is pub-
licly available on GitHub at https://github.com/
cleverhans-lab/suitability.
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Impact Statement
This work proposes a suitability filter framework for eval-
uating machine learning models in real-world deployment
settings, specifically designed to detect performance degra-
dations caused by covariate shifts. The primary goal is to
improve the robustness and fairness of machine learning
models by offering tools to assess their suitability with-
out requiring ground-truth labels. By facilitating reliable

model evaluation, this work has the potential to enhance
trustworthiness in automated systems especially in safety-
critical deployment contexts. However, there are ethical
considerations to note. The methodology assumes access
to well-calibrated prediction correctness estimators, which
might not hold in all scenarios, potentially leading to in-
correct evaluations. Additionally, while the framework is
adaptable, improper parameter choices or misinterpretations
of results could exacerbate existing biases in datasets or
models. Careful application and thorough understanding of
the framework are critical to mitigating these risks. Future
societal consequences of this work include its potential to
improve fairness by enabling consistent performance eval-
uation across diverse subpopulations. However, misuse
or overreliance on such automated evaluation frameworks
without human oversight could have adverse effects. We
encourage practitioners to complement this framework with
domain expertise and ethical considerations during deploy-
ment. This paper aims to advance the field of Machine
Learning by providing tools for model evaluation in dy-
namic deployment contexts. While we believe the societal
implications are largely positive, we acknowledge the impor-
tance of responsibly applying this methodology to prevent
unintended harm.
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A. Appendix
A.1. Statistical Hypothesis Testing

A.1.1. WELCH’S T-TEST

Welch’s t-test is a modification of the standard Student’s t-test that adjusts for unequal variances and unequal sample sizes
between the two groups (Welch, 1947). The test statistic for the suitability filter Welch’s t-test is given by:

t =
µ̂Dtest − µ̂Du√

σ̂2
test

|Dtest| +
σ̂2
u

|Du|

(13)

In the above, µ̂Du
= 1

|Du|
∑

x∈Du
pc(x) + m is the margin-adjusted sample mean of pc[Du] and µ̂Dtest =

1
|Dtest|

∑
x∈Dtest

pc(x) is the sample mean of pc[Dtest]. σ̂2
u and σ̂2

test are the sample variances of pc[Du] and pc[Dtest],
respectively. The test statistic follows a t-distribution with degrees of freedom (df) given by:

df =

(
σ̂2

test
|Dtest| +

σ̂2
u

|Du|

)2

(
σ̂2

test
|Dtest|

)2

|Dtest|−1 +

(
σ̂2
u

|Du|

)2

|Du|−1

(14)

The degrees of freedom are dependent on the size of provided user and test samples and are used to determine the appropriate
critical value for the t-distribution. Since non-inferiority testing is inherently a one-sided test, after calculating the two-sample
t-test statistic, the p-value is divided by 2 to reflect the one-sided nature of the non-inferiority test. This adjusted p-value is
then compared to the chosen significance level α to determine whether the null hypothesis H0 can be rejected.

A.1.2. PROOF OF LEMMA 4.3

Proof. In the following, all expectations and probabilities are over samples (x, y) ∼ X × Y unless specified otherwise.
We begin by noting that the predicted correctness probability for a given sample x is denoted as pc(x). We assume that
pc(x) has a well-defined probability density function fc(ν) over the interval [0, 1]. This means that the predicted correctness
probabilities pc(x) for samples x are distributed according to fc(ν), where ν ∈ [0, 1] represents the possible values of
prediction correctness. We can hence represent the expected value of the correctness probability pc(x) under the distribution
defined by fc(ν) as:

E[pc(x)] =
∫ 1

0

νfc(ν) dν. (15)

The true probability of prediction correctness for a model M on a sample x with predicted label M(x) and true label y
is denoted as P[M(x) = y]. This can be expressed as the integral over all possible predicted correctness probabilities ν
weighted by the conditional probability of correctness given pc(x) = ν and the probability density fc(ν). This decomposition
follows from the law of total probability, where the predicted correctness probability pc(x) serves as an intermediate variable.
We can hence write:

P[M(x) = y] =

∫ 1

0

P[M(x) = y | pc(x) = ν]fc(ν) dν. (16)

Due to the inherent uncertainty and error in the calibration process, the predicted probability pc(x) is not necessarily equal to
the true probability Px[M(x) = y]. We model this calibration error as ϵ(ν), which represents the deviation of the predicted
correctness from the true correctness for each possible correctness value ν. Following Equation 8, we can decompose the
true probability of prediction correctness as:

Px[M(x) = y] =

∫ 1

0

νfc(ν) dν +

∫ 1

0

ϵ(ν)fc(ν) dν = Ex[pc(x)] +

∫ 1

0

ϵ(ν)fc(ν) dν. (17)

The first term represents the expected value of the predicted correctness, while the second term represents the expected error
introduced by the calibration process.

Now, we make the assumption that the calibration error is equal to some small value δ with 0 ≤ |δ| ≪ 1. This assumption is
referred to as δ-calibration as defined in Definition 4.1 (CHANGE THIS). Under this assumption, we have that:∫ 1

0

ϵ(ν)fc(ν) dν = δ. (18)
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Combining this result with Equation 17, we find for the difference between the true probability and the expected correctness
that:

E[pc(x)]− P[M(x) = y] = δ. (19)

This completes the proof of Lemma 4.3.

A.1.3. PROOF OF COROLLARY 4.4

Proof. For simplicity, let us use the following notation:

Accsource := Px∼Dsource [M(x) = O(x)], (20)
Acctarget := Px∼Dtarget [M(x) = O(x)], (21)
µsource := Ex∼Dsource [pc(x)] , (22)
µtarget := Ex∼Dtarget [pc(x)] . (23)

Here, O(x) represents an oracle that provides the true label y for any input x. Let M be a model with correctness estimator
C that is δ-calibrated on both the source and target distributions. It hence follows from Lemma 4.3 that the predictions
output by the correctness estimator C satisfy:

µsource − Accsource = δsource and µtarget − Acctarget = δtarget. (24)

We are interested in upper-bounding the false positive rate of the end-to-end suitability filter, i.e., the probability of rejecting
the null hypothesis H0 at significance level α and returning SUITABLE when, in reality:

Acctarget < Accsource −m. (25)

We can define m′ := m+ δsource − δtarget and leverage Equation 24 to write:

Acctarget < Accsource −m ⇐⇒ µtarget − δtarget < µsource − δsource −m ⇐⇒ µtarget < µsource −m′. (26)

With this margin m′, the corresponding null hypothesis for the non-inferiority test H0 is:

H0 : µtarget < µsource −m′. (27)

Assuming normalcy and independence and applying Theorem 4.2 at significance level α, it is guaranteed that for the true
mean prediction correctness µsource and µtarget of the source and target distributions, the probability of rejecting the null
hypothesis H0 : µtarget < µsource −m′ (i.e., concluding µtarget ≥ µsource −m′) when H0 is true is controlled at α:

P(Reject H0 | H0 is true) ≤ α. (28)

This ensures that the difference in mean prediction correctness between the source and target distributions is bounded by the
margin m′ with high probability.

Let us now derive the implication for the end-to-end suitability filter. By definition:

P(Reject H0 | Acctarget < Accsource −m) =
P(Reject H0 ∩ Acctarget < Accsource −m)

P(Acctarget < Accsource −m)

=
P(Reject H0 ∩ µtarget < µsource −m′)

P(µtarget < µsource −m′)

= P(Reject H0 | H0 is true)
≤ α.

(29)

The inequality follows from the guarantees of the non-inferiority test as outlined in Equation 28. All other transformations
are applications of Bayes’ theorem and Equation 26.
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Under perfect calibration, δtarget = δsource = 0 and thus no adjustments to the performance deviation margin m are needed to
achieve a bounded false positive rate. Hence, under perfect calibration, the probability of rejecting the null hypothesis for a
non-inferiority test with margin m given that the model accuracy on Dtarget is lower than on Dsource by more than m is upper
bounded by the chosen significance level α. If we do incur miscalibration and observe |δtarget| > 0 or |δsource| > 0, we have to
adjust the performance deviation margin m accordingly to reflect this. As shown, when choosing m′ := m+ δsource − δtarget,
the end-to-end suitability filter false positive rate remains bounded. This concludes the proof of Corollary 4.4.

A.2. Additional Experiment Details

A.2.1. SUITABILITY SIGNALS

General Suitability Signals. Let M ∈ M be a classifier mapping inputs x ∈ X to probabilities over k classes
Y = {1, . . . , k}. Denote the logits of M(x) as z ∈ Rk and the softmax outputs as p = softmax(z), where pi =

ezi∑k
j=1 ezj

.

The following sample-level signals are derived from z and p:

- Maximum confidence (conf max):
conf max = max

i∈{1,...,k}
pi (30)

The maximum predicted probability.

- Confidence standard deviation (conf std):

conf std =

√√√√1

k

k∑
i=1

(pi − p̄)2, p̄ =
1

k

k∑
i=1

pi (31)

The standard deviation of the softmax probabilities.

- Confidence entropy (conf entropy):

conf entropy = −
k∑

i=1

pi log(pi + ϵ) (32)

The Shannon entropy of the predicted probabilities, measuring uncertainty. We add ϵ = 10−10 for numerical stability.

- Confidence ratio (conf ratio):

conf ratio =
p(1)

p(2) + ϵ
(33)

The ratio of the highest to the second-highest predicted probabilities, where p(1) and p(2) are the largest and second-
largest pi, respectively. We add ϵ = 10−10 for numerical stability.

- Sum of top 10% confidences (top k conf sum):

top k conf sum =
∑
i∈K

pi, K = indices of top-⌈0.1k⌉ probabilities (34)

The sum of the largest 10% of all predicted probabilities.

- Mean logit (logit mean):

logit mean =
1

k

k∑
i=1

zi (35)

The mean of the logits.
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- Maximum logit (logit max):
logit max = max

i∈{1,...,k}
zi (36)

The maximum logit value.

- Logit standard deviation (logit std):

logit std =

√√√√1

k

k∑
i=1

(zi − z̄)2, z̄ =
1

k

k∑
i=1

zi (37)

The standard deviation of the logits.

- Difference between two largest logits (logit diff top2):

logit diff top2 = z(1) − z(2) (38)

The difference between the two largest logits, where z(1) and z(2) are the largest and second-largest zi, respectively.

- Loss with respect to predicted label (loss):

loss = − log(p(1) + ϵ) (39)

The cross-entropy loss with respect to the predicted label, p(1) is the largest pi.

- Difference in loss between top two classes (margin loss):

margin loss = − log(p(1) + ϵ) + log(p(2) + ϵ) (40)

The difference in cross-entropy loss between the top two predicted probabilities. We add ϵ = 10−10 for numerical
stability.

- Energy (energy):

energy = − log

k∑
i=1

ezi (41)

The energy function derived from the logits, measuring prediction certainty.

Alternative Suitability Signals. In our work, we deliberately rely on suitability signals that avoid assumptions about
architecture, training, or data domains and are applicable to any classifier. However, many other signals shown to be
indicative of model performance have been proposed in the literature.

In unsupervised accuracy estimation, more recent approaches measure disagreement between predictions by different
models (Madani et al., 2004; Donmez et al., 2010; Platanios et al., 2016; 2017; Chen et al., 2021a; Baek et al., 2022; Jiang
et al., 2021; Jaffe et al., 2015; Fan & Davidson, 2006; Yu et al., 2022; Chuang et al., 2020; Ginsberg et al., 2023), rely on
manual provision of information about or make assumptions on the nature of the distribution shift between training and
deployment (Redyuk et al., 2019; Chen et al., 2021b; Elsahar & Gallé, 2019; Guillory et al., 2021; Schelter et al., 2020;
Peng et al., 2024; 2023; Deng & Zheng, 2021), focus on specific input data types (Maggio et al., 2022; Deng et al., 2021;
Bialek et al., 2024; Sun et al., 2021; Deng & Zheng, 2021; Unterthiner et al., 2020; Guan & Yuan, 2023; Li et al., 2023), or
analyze classification decision boundaries and feature separability (Hu et al., 2023; Xie et al., 2024; Tu et al., 2023; Miao
et al., 2023). To ensure generality and broad applicability of the suitability filter across diverse settings, these signals are
not included in our experimental evaluation. However, signals shown to predict accuracy in these studies could serve as
additional suitability signals in scenarios where their specific constraints are met.

Similarly, in selective classification, recent methods enhance the underlying model by augmenting its architecture (Geifman
& El-Yaniv, 2019; Lakshminarayanan et al., 2017), employing adapted loss functions during training (Gangrade et al., 2021;
Huang et al., 2020; Liu et al., 2019), or utilizing more advanced prediction correctness signals, albeit often with increased
inference costs (Geifman et al., 2019; Gal & Ghahramani, 2016; Rabanser et al., 2022; Feng et al., 2023). These approaches
require modifications to model architecture, training processes, or inference, and are thus not generally applicable. Having
said that, while these approaches are not incorporated into our work, they can serve as additional suitability signals in
scenarios where these modifications are feasible.

17



Suitability Filter: A Statistical Framework for Classifier Evaluation in Real-World Deployment Settings

A.2.2. DATASETS AND MODELS

FMoW-WILDS. The FMoW-WILDS dataset contains satellite images taken in different geographical regions and in
different years (Christie et al., 2018; Koh et al., 2021), thus considering both temporal and geographical shift. The input x is
an RGB satellite image (resized to 224× 224 pixels), the label y is one of 62 building or land use categories, and the domain
represents the year the image was taken and its geographical region. We train a DenseNet-121 model (Huang et al., 2017)
pretrained on ImageNet (Russakovsky et al., 2015) and without L2 regularization with empirical risk minimization. We use
the Adam optimizer (Kingma, 2014) with an initial learning rate of 10−4 that decays by 0.96 per epoch, and train fro 50
epochs with early stopping and a batch size of 64. All reported results are averaged over 3 random seeds. Following the
standard WILDS training setup, we use 76, 863 images from the years 2002-2013 as training data. We split the remaining
ID and OOD splits into 16 different ID folds and 30 different OOD data folds as detailed in Table 2. These folds were
chosen with the aim to be as representative as possible of shifts likely to occur in practice while still ensuring a sufficient
number of samples per fold for statistical testing (at least 666).

RxRx1-WILDS. The RxRx1-WILDS dataset reflects the disribution shifts induced by batch effects in the context of
genetic perturbation classification (Taylor et al., 2019; Koh et al., 2021). The input x is a 3-channel image of human cells
obtained by fluorescent microscopy (nuclei, endoplasmic reticuli and actin), the label y indicates which of the 1,139 genetic
treatments (including no treatment) the cells received, and the domain specifies the batch in which the imaging experiment
was run. The images in RxRx1-WILDS are the result of executing the same experiment 51 times, each in a different batch
of experiments. Each experiment was run in a single cell type, one of: HUVEC (24 experiments), RPE (11 experiments),
HepG2 (11 experiments), and U2OS (5 experiments) across 2 sites. The dataset is split by experimental batches into
training, validation, and test sets. For all experiments, we fine-tune a ResNet-50 model (He et al., 2016) pretrained on
ImageNet (Russakovsky et al., 2015), using a learning rate of 10−4 and L2-regularization strength of 10−5. The models are
trained with the Adam optimizer (Kingma, 2014) and a batch size of 75 for 90 epochs, linearly increasing the learning rate
for 10 epochs and then decreasing it following a cosine learning rate schedule. Results are reported averaged over 3 random
seeds. Following the standard WILDS training setup, we use 40, 612 images from 33 experiments in site 1 as training data.
We then split the remaining data by cell type into 4 ID data folds (same experiments as training data but different images but
site 2) and 8 OOD data folds (different experiments, combining sites 1 and 2) as detailed in Table 3.

CivilComments-WILDS. The CivilComments-WILDS dataset focuses on text toxicity classification across de-
mographic identities, aiming to address biases in toxicity classifiers that can spuriously associate toxicity with certain
demographic mentions (Borkan et al., 2019; Koh et al., 2021). The input x is a text comment on an online article, and
the label y is whether the comment was rated as toxic or not. The domain is represented as an 8-dimensional binary
vector, where each component corresponds to the mention of one of the 8 demographic identities: male, female, LGBTQ,
Christian, Muslim, other religions, Black, and White. The dataset consists of 450,000 comments, annotated for toxicity and
demographic mentions by multiple crowdworkers and randomly split into train, validation and test splits. We hence have no
additional OOD data splits (and correspondingly, no OOD data folds) for this dataset. We train a DistilBERT-base-uncased
model (Sanh, 2019) with the AdamW optimizer (Loshchilov et al., 2017), using a learning rate of 10−5, a batch size of 16,
and an L2 regularization strength of 10−2 for 5 epochs with early stopping. All reported results are averaged over 3 random
seeds. Following the standard WILDS training setup, we use 269, 038 comments as training data. We split the remaining
data into 16 different ID folds as detailed in Table 4. Since the data is generally from the same distribution as our training
data but we divide it into folds depending on the sensitive attributes mentioned in each comment, this is an example of the
target distribution consisting of subpopulations of the source distribution.

A.3. Possible Extensions

A.3.1. EQUIVALENCE TESTING

In equivalence testing, the goal is to assess whether the performance on the target dataset Dtarget is statistically similar to the
performance on the source dataset Dsource within a specified margin m, i.e., we want to test whether the difference between
the two means is sufficiently small (Wellek, 2002). This is formalized as the following hypothesis setup:

H0 : |µtarget − µsource| > m (42)
H1 : |µtarget − µsource| ≤ m (43)

18



Suitability Filter: A Statistical Framework for Classifier Evaluation in Real-World Deployment Settings

Table 2. Summary of different ID and OOD data folds for FMoW-WILDS. For accuracy, we report the mean and the 95% confidence
interval based on three models trained with different random seeds.

SPLIT YEAR REGION NUM SAMPLES ACCURACY

ID FOLDS

ID VAL 2002-2006 ALL 1420 53.99± 1.32%
ID VAL 2007-2009 ALL 1430 55.78± 0.70%
ID VAL 2010 ALL 2459 62.60± 1.64%
ID VAL 2011 ALL 2874 65.98± 1.25%
ID VAL 2012 ALL 3300 64.03± 0.13%
ID VAL ALL ASIA 2693 62.42± 1.03%
ID VAL ALL EUROPE 5268 59.88± 0.56%
ID VAL ALL AMERICAS 3076 63.85± 2.10%
ID TEST 2002-2006 ALL 1473 51.39± 4.54%
ID TEST 2007-2009 ALL 1423 57.25± 0.61%
ID TEST 2010 ALL 2456 61.01± 0.41%
ID TEST 2011 ALL 2837 65.03± 1.15%
ID TEST 2012 ALL 3138 62.42± 1.36%
ID TEST ALL ASIA 2615 59.39± 1.94%
ID TEST ALL EUROPE 5150 58.99± 0.51%
ID TEST ALL AMERICAS 3130 63.05± 1.39%

OOD FOLDS

VAL 2013 ALL 3850 60.29± 1.81%
VAL 2014 ALL 6192 62.44± 1.48%
VAL 2015 ALL 9873 57.77± 1.37%
VAL ALL ASIA 4121 56.30± 0.73%
VAL ALL EUROPE 7732 63.28± 1.07%
VAL ALL AFRICA 803 50.73± 1.25%
VAL ALL AMERICAS 6562 58.04± 2.05%
VAL ALL OCEANIA 693 66.38± 2.51%
VAL 2013 EUROPE 1620 61.30± 1.11%
VAL 2014 EUROPE 2523 68.05± 1.94%
VAL 2015 EUROPE 3589 60.82± 0.73%
VAL 2013 ASIA 813 57.40± 3.89%
VAL 2014 ASIA 1311 56.90± 2.31%
VAL 2015 ASIA 1997 55.45± 0.26%
VAL 2013 AMERICAS 1168 61.13± 1.66%
VAL 2014 AMERICAS 1967 60.85± 1.26%
VAL 2015 AMERICAS 3427 55.36± 3.32%
TEST 2016 ALL 15959 55.48± 1.14%
TEST 2017 ALL 6149 48.64± 2.13%
TEST ALL ASIA 4963 55.67± 0.72%
TEST ALL EUROPE 5858 56.38± 1.96%
TEST ALL AFRICA 2593 33.50± 3.87%
TEST ALL AMERICAS 8024 56.20± 1.17%
TEST ALL OCEANIA 666 59.56± 0.43%
TEST 2016 EUROPE 4845 58.42± 2.68%
TEST 2017 EUROPE 1013 46.63± 1.48%
TEST 2016 ASIA 3216 53.58± 0.80%
TEST 2017 ASIA 1747 59.53± 1.42%
TEST 2016 AMERICAS 6165 57.21± 1.42%
TEST 2017 AMERICAS 1859 52.86± 1.49%

The null hypothesis H0 asserts that the difference in means between the target and source distributions is greater than the
margin m. The alternative hypothesis H1 posits that the means are equivalent, with their difference being smaller than
or equal to the margin m. In practice, this is achieved by conducting two one-sided tests (TOST). This involves testing
both lower and upper bounds of the margin to confirm that the performance difference is not meaningfully large in either
direction.
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Table 3. Summary of different ID and OOD data folds for RxRx1-WILDS. For accuracy, we report the mean and the 95% confidence
interval based on three models trained with different random seeds.

SPLIT CELL TYPE NUM SAMPLES ACCURACY

ID FOLDS

ID TEST HEPG2 8622 25.39± 1.43%
ID TEST HUVEC 19671 50.30± 1.24%
ID TEST RPE 8623 23.86± 1.17%
ID TEST U2OS 3696 17.00± 0.98%

OOD FOLDS

VAL HEPG2 2462 21.01± 1.77%
VAL HUVEC 2464 36.85± 0.10%
VAL RPE 2464 16.44± 0.96%
VAL U2OS 2464 2.27± 0.30%
TEST HEPG2 7388 22.63± 1.28%
TEST HUVEC 17244 39.99± 1.13%
TEST RPE 7360 21.32± 0.41%
TEST U2OS 2440 8.96± 1.78%

Table 4. Summary of different ID data folds for CivilComments-WILDS. For accuracy, we report the mean and the 95% confidence
interval based on three models trained with different random seeds.

SPLIT SENSITIVE ATTRIBUTE NUM SAMPLES ACCURACY

VAL MALE 4765 89.31± 0.22%
VAL FEMALE 5891 90.09± 0.68%
VAL LGBTQ 1457 80.00± 0.97%
VAL CHRISTIAN 4550 92.72± 0.17%
VAL MUSLIM 2110 81.52± 1.39%
VAL OTHER RELIGIONS 986 85.87± 0.77%
VAL BLACK 1652 77.85± 1.14%
VAL WHITE 2867 77.26± 0.76%
TEST MALE 14295 88.84± 0.16%
TEST FEMALE 16449 90.02± 0.18%
TEST LGBTQ 4426 79.78± 0.68%
TEST CHRISTIAN 13361 92.22± 0.25%
TEST MUSLIM 6982 82.65± 0.58%
TEST OTHER RELIGIONS 3500 88.18± 0.58%
TEST BLACK 4872 78.39± 0.68%
TEST WHITE 7969 79.88± 0.47%

A.3.2. CONTINUOUS MONITORING

In continuous monitoring, the aim is to regularly re-evaluate if a model is still suitable for a given deployment context based
on new incoming data samples. When performance is evaluated over time with changing data, the Benjamini-Hochberg (BH)
procedure is used to control the false discovery rate (FDR) across multiple tests (Benjamini & Hochberg, 1995). The BH
procedure adjusts p-values by considering the number of tests performed up to the current point, ensuring that the proportion
of false positives remains controlled. This is formalized as follows: for each p-value pi, the null hypothesis is rejected
if pi ≤ i

m · α, where m is the total number of tests and α is the desired FDR threshold. The rolling window approach
further refines this by evaluating significance across a fixed window of recent data, smoothing out short-term fluctuations
and focusing on long-term trends in performance. This approach helps identify true changes in model performance while
accounting for variations in individual datasets over time.

A.3.3. SEQUENTIAL TESTING

When testing the same hypothesis sequentially with accumulating data, the O’Brien-Fleming (O’Brien & Fleming, 1979)
and Pocock (Pocock, 2013) methods are used to control the overall false positive rate (type I error rate) across multiple tests.
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These methods are designed for sequential testing, where a decision is made at each stage based on the data collected so
far, and more data can be added if no conclusion is reached. The O’Brien-Fleming method is more conservative early on,
requiring stronger evidence to reject the null hypothesis at earlier stages and relaxing this criterion as more data becomes
available. Specifically, the significance threshold at stage k is adjusted as:

αk = 1− (1− α)
1/(n−k+1) (44)

where n is the total number of stages and α is the desired overall Type I error rate. In contrast, the Pocock method applies a
constant critical value across all stages of testing. For each stage k, the significance level remains:

αk =
α

n
(45)

Both methods adjust the significance threshold at each stage to control the family-wise error rate (FWER), ensuring that the
probability of making at least one Type I error remains below a specified threshold, α.

A.4. Additional Results

A.4.1. CALIBRATION

Impact of Calibration on Dtarget. We visualize the impact of calibration on classifier C and the performance of the
end-to-end suitability filter in Figure 5. To this end, we select the ID validation and test splits from Europe as Dsf and Dtest,
respectively. We then plot the actual accuracy versus the mean of the prediction correctness estimated by a classifier C
trained on Dsf, with or without additional calibration on Du. It should be noted that this is mainly a theoretical experiment,
as in practice calibration on Du is not possible since we do not have access to ground truth information for user data.
We observe that the false positive rate of the end-to-end suitability filter is elevated due to miscalibration on the different
distribution Dtarget. Although the relationship between actual accuracy and mean estimated prediction correctness is weaker
without calibration, these metrics remain highly correlated. Therefore, the increased risk from miscalibration can be
mitigated by selecting an appropriate non-inferiority margin m.
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Figure 5. Suitability filtering on different OOD folds of FMoW-WILDS with and without additional calibration on Du. We choose a
non-inferiority margin of m = 0.05 for this experiment.

Accuracy Estimation Error. In Section 4.4, we propose using the empirical accuracy estimation error ∆ to adjust the
margin and mitigate the effects of miscalibration in C. To illustrate this in practice, Figure 6 presents the distribution of ∆
for both test and user data across 6300 experiments on FMoW-WILDS. As expected, ∆test is centered around zero, indicating
that the estimated accuracy closely matches the ground truth accuracy and there is no clear directional bias. However, ∆u is
frequently positive, indicating that accuracy is often overestimated. This miscalibration can lead to incorrect suitability
decisions. While adjusting the performance deterioration margin m, as proposed in Section 4.4, would mitigate this issue,
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Figure 6. Distribution of the empirical accuracy estimation error ∆ for both the user and the test data across 6300 experiments on
FMoW-WILDS. The suitability decisions depicted here have been made for a choice of m = 0 without margin adjustment due to
miscalibration and at a significance level of α = 0.05.

no such adjustment was applied here to highlight the impact of miscalibration on suitability decisions. Notably, suitability
decision errors do not occur for examples with large accuracy estimation errors.

To better understand this phenomenon, Figure 7 explores the relationship between accuracy estimation error ∆u and the
actual performance degradation from test to user data. As performance deteriorates, the accuracy estimation error tends
to increase. However, performance degradation grows at a faster rate than ∆u, meaning that the overall impact of ∆u on
suitability decisions remains limited for m = 0. This explains why incorrect suitability decisions are primarily concentrated
near the decision boundary rather than in cases with extreme accuracy estimation errors (and, correspondingly, larger
performance degradation).
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Figure 7. Relationship between performance deterioration for model M and the empirical accuracy estimation error ∆ for the user data
across 6300 experiments on FMoW-WILDS. The suitability decisions depicted here have been made for a choice of m = 0 without margin
adjustment due to miscalibration and at a significance level of α = 0.05. As can be seen, incorrect suitability decisions are centered
around the suitability decision boundary and are not, as might be expected, in areas of large empirical accuracy estimation error ∆.

By incorporating margin adjustments based on the empirical accuracy estimation error, suitability decisions can be made
more robust against calibration errors, ultimately improving the reliability of the suitability filter in deployment.

A.4.2. USING DIFFERENT SIGNAL SUBSETS FOR PREDICTION CORRECTNESS ESTIMATOR

In Table 5, we compare our proposed suitability filter that trains the prediction correctness estimator using various
suitability signals to alternatives that rely on only a single signal. As can be seen, the suitability filter leveraging all signals
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generally outperforms single-signal alternatives, demonstrating the benefit of integrating diverse signals for robust suitability
decisions. However, we find that certain signals, such as energy or logit max, perform nearly as well on their own.
Unsurprisingly, these signals are also identified as the most predictive of per-sample prediction correctness for classifier
C (see Appendix A.4.3). Noteworthy outliers in Table 5 include logit mean and logit std that have relatively high
accuracy but higher FPR and lower ROC and PR AUC than comparable signals. Upon closer examination, we find that
prediction correctness classifiers C trained on only these signals generally have a higher expected calibration error even
when tested on in-distribution data as can be seen in Table 6. As demonstrated in Corollary 4.5, proper calibration is
theoretically crucial for reliable suitability decisions, and this importance is evident in practice here. Signals that yield the
best-performing prediction correctness estimators C (high accuracy and low maximum calibration error) also demonstrate
superior performance when applied in the end-to-end suitability filter.

Table 5. Comparing performance of the proposed suitability filter against individual signal-based suitability decisions on FMoW-WILDS
for m = 0 with both ID and OOD user data. We report the area under the curve for ROC and PR (capturing the tradeoffs at various
significance thresholds), as well as accuracy and the true false positive rate at α = 0.05. We also report 95% confidence intervals based
on 3 models M trained on the same Dtrain with different random seeds.

METHOD ACC FPR ROC PR

ID USER DATA

SUITABILITY FILTER 81.8± 3.1% 0.027± 0.033 0.969± 0.023 0.967± 0.029
ENERGY 80.6± 4.3% 0.024± 0.040 0.965± 0.020 0.962± 0.033
LOGIT MAX 80.2± 4.8% 0.025± 0.041 0.965± 0.018 0.963± 0.030
LOGIT MEAN 80.1± 10.4% 0.112± 0.194 0.918± 0.113 0.896± 0.196
LOGIT DIFF TOP2 73.5± 4.5% 0.008± 0.001 0.963± 0.017 0.963± 0.017
MARGIN LOSS 73.5± 4.5% 0.008± 0.001 0.963± 0.017 0.963± 0.017
LOGIT STD 72.3± 13.3% 0.170± 0.134 0.855± 0.144 0.779± 0.300
CONF ENTROPY 71.1± 2.4% 0.003± 0.012 0.969± 0.014 0.967± 0.012
CONF STD 68.8± 3.1% 0.008± 0.019 0.963± 0.020 0.960± 0.017
TOP K CONF SUM 68.2± 6.9% 0.005± 0.015 0.947± 0.027 0.944± 0.029
CONF MAX 67.9± 4.4% 0.008± 0.021 0.957± 0.025 0.954± 0.025
LOSS 67.0± 2.8% 0.008± 0.021 0.952± 0.031 0.948± 0.035
CONF RATIO 62.3± 4.5% 0.046± 0.053 0.846± 0.056 0.826± 0.016

OOD USER DATA

SUITABILITY FILTER 91.9± 2.5% 0.018± 0.017 0.965± 0.016 0.891± 0.035
ENERGY 91.9± 4.7% 0.008± 0.007 0.971± 0.005 0.910± 0.028
LOGIT MAX 91.9± 4.7% 0.008± 0.007 0.971± 0.005 0.910± 0.030
CONF ENTROPY 89.1± 3.1% 0.011± 0.020 0.957± 0.007 0.872± 0.078
CONF STD 88.9± 4.0% 0.010± 0.019 0.952± 0.013 0.854± 0.108
LOGIT DIFF TOP2 88.9± 2.7% 0.005± 0.011 0.976± 0.014 0.917± 0.074
MARGIN LOSS 88.9± 2.7% 0.005± 0.011 0.976± 0.014 0.917± 0.074
CONF MAX 88.4± 4.2% 0.011± 0.020 0.948± 0.015 0.842± 0.121
LOSS 88.3± 3.4% 0.012± 0.023 0.944± 0.014 0.831± 0.118
TOP K CONF SUM 86.7± 4.4% 0.026± 0.057 0.916± 0.005 0.773± 0.097
CONF RATIO 83.6± 6.4% 0.001± 0.005 0.905± 0.050 0.711± 0.102
LOGIT MEAN 61.7± 20.5% 0.446± 0.268 0.845± 0.193 0.698± 0.175
LOGIT STD 28.3± 16.3% 0.812± 0.166 0.324± 0.256 0.137± 0.019

A.4.3. SIGNAL IMPORTANCE FOR THE PREDICTION CORRECTNESS ESTIMATOR

To analyze the importance of individual signals used to estimate prediction correctness, we present the ANOVA results on
FMoW-WILDS in Table 7. All signals, except for class prob ratio, show extremely high F-values with corresponding
p-values essentially zero, indicating their strong statistical significance in explaining the variance in prediction correctness.
The most valuable signals, as indicated by the highest F-values in Table 7, are logit max, energy, margin loss, and
logit diff top2. For certain signals, the sign of the logistic regression coefficient matches our expectations, with a
higher logit max value, an increase in the logit difference for the predicted class and the runner-up (logit diff top2)
or low energy indicating a correct prediction. Interestingly, however, we also observe that for features such as conf max,
the sign is negative, indicating that lower confidence is indicative of higher likelihood of correct prediction. While this
seems counterintuitive at first, it should be noted that for a large majority of samples this signal is 1 and is hence heavily
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Table 6. Table showcasing the mean accuracy and calibration metrics (ECE, MCE, RMSCE) for prediction correctness estimators trained
on different signals, with 95% confidence intervals. Suitability Filter refers to the classifier C trained using all available signals. The
metrics evaluate the classifiers’ prediction quality and their calibration over 3 random splits of the FMoW-WILDS ID train and validation
data splits.

SIGNALS ACCURACY ECE MCE RMSCE

SUITABILITY FILTER 77.5± 0.3% 0.021± 0.007 0.055± 0.021 0.027± 0.006
LOGIT MAX 76.6± 0.9% 0.027± 0.017 0.068± 0.050 0.033± 0.020
ENERGY 76.3± 0.9% 0.029± 0.012 0.075± 0.054 0.035± 0.017
MARGIN LOSS 75.5± 0.6% 0.021± 0.003 0.060± 0.021 0.028± 0.002
LOGIT DIFF TOP2 75.5± 0.6% 0.021± 0.003 0.060± 0.021 0.028± 0.002
CONF ENTROPY 74.4± 0.9% 0.089± 0.007 0.208± 0.055 0.113± 0.009
CONF STD 73.2± 0.6% 0.104± 0.020 0.263± 0.068 0.134± 0.013
CONF MAX 72.7± 0.5% 0.116± 0.014 0.260± 0.056 0.143± 0.015
LOSS 72.0± 0.4% 0.121± 0.012 0.265± 0.036 0.148± 0.022
TOP K CONF SUM 67.7± 1.8% 0.146± 0.026 0.301± 0.066 0.177± 0.030
LOGIT MEAN 67.1± 2.3% 0.081± 0.033 0.268± 0.081 0.119± 0.046
CONF RATIO 61.1± 2.9% 0.144± 0.008 0.320± 0.008 0.187± 0.001
LOGIT STD 59.8± 2.4% 0.132± 0.070 0.294± 0.209 0.167± 0.108

Table 7. ANOVA results showing the significance of individual signals in predicting model correctness. Signals are ordered by decreasing
F-value, which measures the variance explained by each signal relative to the residual variance. We also include the sign of the model’s
coefficients for each signal, indicating whether a given feature positively or negatively influences the prediction correctness estimate.

SIGNAL F-VALUE P-VALUE REL.

LOGIT MAX 2090.61 0 +
ENERGY 2051.45 0 −
MARGIN LOSS 1982.44 0 −
LOGIT DIFF TOP2 1978.44 0 +
CONF ENTROPY 1390.30 0 −
CONF STD 1232.76 0 −
CONF MAX 1108.32 0 −
LOSS 934.26 0 −
LOGIT MEAN 755.29 0 −
TOP K CONF SUM 281.76 0 +
LOGIT STD 116.16 9.18 · 10−27 −
CONF RATIO 12.05 5.21 · 10−4 +

concentrated around 0 after normalization. The contribution from this signal is thus mostly relevant in cases where the
maximum confidence is below 1 anyways, in which case it seems that a higher confidence can be indicative of incorrect
predictions.

SHAP (SHapley Additive exPlanations) is a model-agnostic method for interpreting machine learning models by assigning
each feature a contribution value to the model’s prediction. It calculates Shapley values based on cooperative game theory,
ensuring that the contribution of each feature is fairly distributed by considering all possible feature combinations and their
impact on the prediction. As can be seen in Figure 8, the signals deemed most predictive of prediction correctness are the
same ones as identified by the ANOVA analysis in Table 7.

A.4.4. CHOICE OF MODEL ARCHITECTURE FOR PREDICTION CORRECTNESS ESTIMATOR

In Table 8, we compare the accuracy of different prediction correctness estimators on the FMoW-WILDS dataset. We
evaluate a range of classifiers, including simple models like Logistic Regression and more complex architectures such as
Single-Layer and Two-Layer Neural Networks. We observe that logistic regression performs as well as more complex
models, delivering high accuracy and low expected calibration error. While this may seem surprising, it is important to note
that the suitability signals are already non-linear transformations of the model’s output logits. Since these transformations
capture the key relationships needed for our task, using more complex models capable of learning additional non-linear
patterns, such as neural networks, does not provide any further benefit.
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Figure 8. SHAP analysis for the prediction correctness estimator on FMoW-WILDS.

Table 8. Table showcasing the mean accuracy and calibration metrics (ECE, MCE, RMSCE) for various classifiers, with 95% confidence
intervals. The metrics evaluate the classifiers’ prediction quality and their calibration over 3 random splits of the FMoW-WILDS ID train
and validation splits.

CLASSIFIER ACCURACY ECE MCE RMSCE

LOGISTIC REGRESSION 77.2± 1.4% 0.022± 0.004 0.055± 0.040 0.027± 0.007
GRADIENT BOOSTING CLASSIFIER 77.1± 1.3% 0.020± 0.018 0.062± 0.102 0.027± 0.030
SINGLE-LAYER NEURAL NETWORK 77.1± 1.2% 0.037± 0.006 0.086± 0.017 0.046± 0.006
SUPPORT VECTOR MACHINE 77.1± 0.9% 0.077± 0.034 0.232± 0.147 0.107± 0.050
RANDOM FOREST 76.5± 0.9% 0.031± 0.007 0.067± 0.068 0.037± 0.016
TWO-LAYER NEURAL NETWORK 75.7± 2.3% 0.040± 0.006 0.087± 0.012 0.048± 0.002
DECISION TREE 70.7± 0.9% 0.111± 0.021 0.161± 0.050 0.123± 0.029
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