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Abstract

Variational inequalities have gained significant attention in machine learning
and optimization research. While stochastic methods for solving these
problems typically assume independent data sampling, we investigate an
alternative approach - the shuffling heuristic which involves permuting the
dataset before sequential processing and ensures equal consideration of all
data points. Despite its practical utility, theoretical guarantees for shuffling
in variational inequalities remain unexplored. We address this gap by
providing the first theoretical convergence estimates for shuffling methods in
this context. Our analysis establishes rigorous bounds and convergence rates,
extending the theoretical framework for this important class of algorithms.
We validate our findings through extensive experiments on diverse benchmark
variational inequality problems, demonstrating faster convergence of shuffling
methods compared to independent sampling approaches.

1 Introduction

Variational inequalities (VIs) have been attracting researchers’ attention in various fields
for more than half a century (Browder, 1965). In this work, we investigate the variational
inequality problem in the following form:

find z∗ ∈ Z such that ∀z ∈ Z ↪→ ⟨F (z∗), z − z∗⟩+ g(z)− g(z∗) ⩾ 0, (1)

where F is a monotone operator and g is a proper convex lower semicontinuous function,
which plays the role of regularizer. Variational inequalities serve as a universal tool for
addressing particular problems, such as minimization, saddle point problems, fixed point
problems, and others (Facchinei and Pang, 2003; Kinderlehrer and Stampacchia, 2000). We
give some examples to provide intuition about VIs.
Example 1 (Convex optimization). We consider the following convex regularized optimization
problem:

min
z∈Rd

[f(z) + g(z)] . (2)

In this example, f is a smooth data representative term, and g is probably a non-smooth
regularizer. In this setting, we define F (z) = ∇f(z). Then z∗ ∈ dom g is the solution of
(1) if and only if z∗ ∈ dom g is the solution of (2). In this way, the problem (2) can be
considered as a variational inequality.
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Example 2 (Convex-concave saddles). We consider the following convex-concave saddle
point problem:

min
x∈Rdx

max
y∈Rdy

[f(x, y) + g1(x)− g2(y)] . (3)

There, f has the same interpretation as in Example 1, and g1, g2 can also be perceived as
regularizers. In this setting, we define F (z) = F (x, y) = [∇xf(x, y),−∇yf(x, y)]. Then
z∗ ∈ dom g1 × dom g2 is the solution of (1) if and only if z∗ ∈ dom g1 × dom g2 is the
solution of (3). In this way, the problem (3) can be considered as a variational inequality.

There are multiple practical reasons to focus on this formulation. Firstly, for numerous
non-smooth problems, solutions are often more efficiently obtained when the former are
formulated as saddle point problems (Nesterov, 2005; Nemirovski, 2004; Chambolle and Pock,
2011; Esser et al., 2010). Secondly, recent studies have found new links between VIs and
reinforcement learning (Omidshafiei et al., 2017; Jin and Sidford, 2020), adversarial training
(Madry et al., 2017), and GANs (Goodfellow et al., 2014). In particular, consideration of
monotone and strongly monotone inequalities provides useful methods and recommendations
for the GAN community (Daskalakis et al., 2017; Gidel et al., 2018; Mertikopoulos et al.,
2018; Chavdarova et al., 2019; Liang and Stokes, 2019; Peng et al., 2020). VIs also have
extensive applications in various classical problems, including discriminative clustering (Xu
et al., 2004), matrix factorization (Bach et al., 2008), image denoising (Esser et al., 2010;
Chambolle and Pock, 2011), robust optimization (Ben-Tal et al., 2009), economics, game
theory (Von Neumann and Morgenstern, 1953), and optimal control (Facchinei and Pang,
2003).

Solving the problem (1) requires specialized methods, as traditional optimization techniques,
e.g. the gradient method, often fall short when applied to VIs and saddle point problems
(Harker and Pang, 1990). These classical methods not only struggle with efficiency but
also offer weak theoretical convergence guarantees in the VI context (Beznosikov et al.,
2023). Among the various approaches developed for VIs, the Extragradient method
(Korpelevich, 1976; Mokhtari et al., 2020) stands out as one of the most fundamental and
effective techniques.

While variational inequalities provide a powerful framework for addressing a wide range of
problems, recent trends in machine learning and data science present new challenges. The
exponential growth in dataset sizes and increasing complexity of models have created a
pressing need for more efficient computational approaches (Bottou, 2010; Dean et al., 2012;
Medyakov et al., 2023). To address these challenges in the context of VIs, we reformulate
the problem by considering the operator F as the finite sum of operators Fi:

F (z) =
1

n

∑n

i=1
Fi(z), (4)

where each Fi corresponds to an individual data point. This decomposition allows us to
tackle large-scale problems more effectively.

In this paper, we explore stochastic algorithms which are particularly suitable for practical
extensive applications. As mentioned before, in such cases, the number of operators n
is typically large, making the computation of the full operator value at each iteration
computationally expensive. Instead, stochastic algorithms randomly select Fi at each
iteration. The stochastic version of the Extragradient method (Juditsky et al., 2011)
select random independent indexes it, jt at iteration t and performs the following updates:

zt+
1
2 = zt − γFit(z

t),

zt+1 = zt − γFjt(z
t+ 1

2 ).
(5)

Just as deterministic Extragradient is the modification of the classical gradient method
with an additional step, similarly the stochastic Extragradient is the same modification
of SGD (Robbins and Monro, 1951). Although this method performs well on the variational
inequalities, it encounters a significant issue with its properties and performance thoroughly
studied: the variance of its inherent stochastic estimators of operators remains high through-
out the learning process. Hence, Extragradient with a constant learning rate converges
linearly only to a neighborhood of the optimal solution, the size of which is proportional
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to the step size and variance (Juditsky et al., 2011). This problem is also characteristic of
classical SGD (Bottou, 2009; Moulines and Bach, 2011; Gower et al., 2020).

To address this limitation, the variance reduction (VR) technique was developed for a classical
finite-sum minimization task (Johnson and Zhang, 2013). The method involves the following
steps: at the t-th iteration, an index it is selected along with a reference point ωt, which is
updated once per epoch or selected probabilistically (as in loopless versions, e.g., (Kovalev
et al., 2020)). Considering convex optimization problem (see Example 1), we can formally
write the stochastic reduced gradient at the point zt+

1
2 as

∇f̂it(z
t+ 1

2 ) = ∇fit(z
t+ 1

2 )−∇fit(ω
t) +∇f(ωt).

The objective of the variance reduction mechanisms is to overcome the limitations of naive
gradient estimators. The former employ an iterative process to construct and apply a gradient
estimator with progressively reduced variance. This approach allows for the safe use of larger
learning rates, thereby accelerating the training process.

Besides, along with aforementioned SVRG, some of the most popular methods for solving
the classical finite-sum problem based on this technique are SAG (Roux et al., 2012), SAGA
(Defazio et al., 2014a), Finito (Defazio et al., 2014b), SARAH (Nguyen et al., 2017; Hu
et al., 2019), and SPIDER (Fang et al., 2018). The technique of variance reduction is
used not only in methods that solve the minimization problem. It is also applicable in the
methods for the problem (1). Examples are variance reduced versions of Extragradient,
Mirror-prox (Alacaoglu and Malitsky, 2022), gradient method (Palaniappan and Bach,
2016), and forward-reflected-backward (FoRB) (Alacaoglu et al., 2021).

In addition to stochastic methods, various heuristics exist for selecting the it-th index
at each iteration of algorithms. Thoroughly examining these heuristics could lead to the
development of more stable and efficient algorithms in the future. In this paper, we explore
the shuffling heuristic (Mishchenko et al., 2020a; Safran and Shamir, 2020; Koloskova et al.,
2024; Malinovsky et al., 2023). Unlike the random and independent selection of the index it at
each iteration, which is common in classical stochastic methods, this heuristic adopts a more
practical approach. Specifically, it involves permuting the sequence of indexes {1, . . . , n},
where n is the number of data samples (4), and then selecting the index corresponding to
the iteration number during the algorithm’s execution. It guarantees us that at one epoch of
training we make a step for each operator, and once. This property seems important and
finds its application in many practical tasks (Chambolle and Pock, 2011; Xu et al., 2004;
Bach et al., 2008). There are several shuffling techniques available. Among the most popular
are Random Reshuffling (RR) (Gürbüzbalaban et al., 2021; Haochen and Sra, 2019; Nagaraj
et al., 2019), where data is shuffled before each epoch; Shuffle Once (SO) (Safran and Shamir,
2020; Rajput et al., 2020), where shuffling occurs once before the start of training; and Cyclic
permutation (Mangasarian and Solodov, 1993; Bertsekas and Tsitsiklis, 2000; Nedic and
Bertsekas, 2001; Li et al., 2019), where data is accessed deterministically in a cyclic order.

Related works. There are many methods available to solve the problem of variational
inequalities. As we mentioned above, the standard deterministic choice for solving the problem
(1) is Extragradient (Korpelevich, 1976). This method deals with variational inequalities
in the Euclidean setup. Later, Mirror-prox (Nemirovski, 2004), which exploits the Bregman
divergence, was proposed. This approach allowed to take into account generalized geometry
that could be non-Euclidean. Besides, there are a set of deterministic methods for solving VIs:
forward-backward-forward (FBF) (Tseng, 2000), Dual extrapolation (Nesterov,
2007), reflected gradient (Malitsky, 2015), forward-reflected-backward (FoRB)
(Malitsky and Tam, 2020).

For the first time, the stochastic version of algorithms for solving VIs was proposed in the
work (Juditsky et al., 2011). Later, to reduce the variance inherent in these stochastic
methods, researchers turned to the variance reduction technique. The first works in this field
are (Palaniappan and Bach, 2016; Chavdarova et al., 2019). In particular, the stochastic
gradient method with variance reduction was studied in (Palaniappan and Bach, 2016).
The method was based on SVRG (Johnson and Zhang, 2013) and added the Catalyst
envelope acceleration. The combination of Extragradient and SVRG was considered
in (Chavdarova et al., 2019), which also utilizes the VR technique and achieves better
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Table 1: Comparison of the convergence results for the methods for solving VI.

Algorithm Sampling VR?
Strongly
Monotone
Complexity

Monotone
Complexity

Extragradient (Korpelevich, 1976; Mokhtari et al., 2020) Deterministic ✗ Õ
(

nL
µ

)
O

(
nL
ε

)
Mirror-prox (Nemirovski, 2004) Deterministic ✗ \ O

(
nL
ε

)
FBF (Tseng, 2000) Deterministic ✗ \ O

(
nL
ε

)
FoRB (Malitsky and Tam, 2020) Deterministic ✗ \ O

(
nL
ε

)
Mirror-prox (Juditsky et al., 2011) Independent ✗ \ O

(
L
ε + 1

ε2

)
Extragradient (Beznosikov et al., 2020) Independent ✗ Õ

(
L
µ + 1

µ2ε

)
O

(
L
ε + 1

ε2

)
REG (Mishchenko et al., 2020b) Independent ✗ Õ

(
L
µ + 1

µ2ε

)
O

(
L
ε + 1

ε2

)
Extragradient (Carmon et al., 2019) Independent ✓ \ Õ

(
n +

√
nL
ε

)
Mirror-prox (Carmon et al., 2019) Independent ✓ \ Õ

(
n +

√
nL
ε

)
FBF (Palaniappan and Bach, 2016) Independent ✓ Õ

(
n +

√
nL
µ

)
Õ

(
n +

√
nL
ε

)(1)

Extragradient (Chavdarova et al., 2019) Independent ✓ Õ
(
n + L2

µ2

)
Õ

(
n + L2

ε2

)(1)

FoRB (Alacaoglu et al., 2021) Independent ✓ \ O
(
n + nL

ε

)
Extragradient (Alacaoglu and Malitsky, 2022) Independent ✓ Õ

(
n +

√
nL
µ

)
O

(
n +

√
nL
ε

)
Mirror-prox (Alacaoglu and Malitsky, 2022) Independent ✓ \ O

(
n +

√
nL
ε

)
Extragradient (this paper) RR / SO ✗ Õ

(
n + L

µ + n2

µ2ε

)
Õ

(
n + L

ε + n2

ε3

)(1)

Extragradient (this paper) RR / SO ✓ Õ
(
nL2

µ2

)
Õ

(
nL2

ε2

)(1)

Columns: Sampling = Deterministic, if considered non-stochastic method, Independent, if method uses independent choice of
operator’s indexes, RR / SO if method uses shuffling heuristic, Assumption = assumption on operator F , VR? = whether the
method uses variance reduction technique.
Notation: µ = constant of strong monotonicity, L = Lipschitz constant of F, L = Lipschitz in mean constant, i.e.
1/n

∑n
i=1 ∥Fi(z1) − Fi(z2)∥ ⩽ L∥z1 − z2∥ ∀z1, z2 ∈ Z, n = size of the dataset, ε = accuracy of the solution.

(1): This result is obtained with regularization trick: µ ∼ ε/D2.

convergence rate. However, only strongly monotone VIs were considered in these works.
Consequently, a notable paper in which the authors considered monotone operators was
presented (Carmon et al., 2019). This work also falls under the Bregman setup but requires
additional assumptions on the operator F and considers the matrix games setup. The current
state-of-the-art in this area is the article (Alacaoglu and Malitsky, 2022), which improves the
convergence estimates of previous studies. This work addresses various scenarios, including
generally monotone and strongly monotone operators, as well as the Bregman and Euclidean
setups. Convergence results from the papers highlighted above are summarized in Table 1.
In all these papers, the estimates were obtained in the formulation with an independent
choice of the indexes of the operator at each step of the algorithm. As for the shuffling
heuristic, there are many papers that explore methods suitable for solving classical finite-sum
minimization problems. In the work (Mishchenko et al., 2020a), the authors proposed a
classical SGD algorithm, and, by introducing a new notion of variance specific to RR/SO,
they were able to match the lower bounds in such cases. In the work (Malinovsky et al.,
2023), the SVRG method with RR was considered. The authors actively used results of the
work (Mishchenko et al., 2020a) and obtain better rates. Besides, there are a set of works,
that considered methods uses the VR technique in the shuffling setup (Huang et al., 2021;
Mokhtari et al., 2018; Ying et al., 2020). However, so far there are no papers where the
shuffling setting would be used to solve variational inequalities. We are filling this gap.

Contributions. Our main results can be summarized as follows.
• Novel approach to proof. Since shuffling methods do not have the property of unbiasedness
of stochastic operators, it is necessary to propose new approaches to prove convergence. In
this paper, we present a technique that allows us to "return" to the starting point of an
epoch in which there is a property of unbiasedness.
• Convergence estimates. We provide the first theoretical convergence rates for shuffling
methods applied to the finite-sum variational inequality problem. We consider two algorithms:
Extragradient and Extragradient with variance reduction. Our comprehensive analysis
establishes upper bounds on convergence rates, extending the theoretical framework to
encompass this important class of algorithms. In the case of Extragradient, our estimate
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on the linear term coincides with that for the method without shuffling, and in the case
of Extragradient with VR, we are the first to obtain a linear convergence estimate for
methods with shuffling in the VI problem.
• Experiments. We conduct comprehensive experiments, which emphasize the superiority
of shuffling over the random index selection heuristic. We consider two classical practical
applications: image denoising and adversarial training.

2 Setup
Assumptions. Now we present a list of assumptions within which we obtain the main
statements.
Assumption 1. Each operator Fi is L-Lipschitz, i.e., it satisfies ∥Fi(z1) − Fi(z2)∥ ≤
L∥z1 − z2∥ for any z1, z2 ∈ Z.
Assumption 2. Each operator Fi is µ-strongly monotone, i.e., it satisfies ⟨Fi(z1) −
Fi(z2), z1 − z2⟩ ⩾ µ∥z1 − z2∥2 for any z1, z2 ∈ Z.
Assumption 3. Each stochastic operator Fi and full operator F is bounded at the point of
the solution z∗ ∈ dom g, i.e. E∥Fi(z

∗)∥2 ⩽ σ2
∗, ∥F (z∗)∥2 ⩽ σ2

∗.

Proximal Algorithm. Earlier, we gave examples of the application of variational inequalities
(Examples 1, 2). In many optimization problems, particularly in machine learning and signal
processing, we often encounter the need to minimize the function of the same form, i.e.
decomposed it into two parts: a smooth differentiable function f : Rn → R and a possibly
non-smooth function g : Rn → R. To solve this problem, we can utilize the proximal gradient
method. The core idea is to iteratively update the solution by combining gradient descent on
the smooth part f and the proximal operator for the probably non-smooth part g. We also
assume that g is proximal friendly, i.e. the computation of the proximal operator is done for
free or costs very little. The proximal operator of the function g at a point x is defined as:

proxg(z) = arg min
y∈Rn

{
g(y) +

1

2
∥y − z∥2

}
,

where ∥ · ∥ denotes the Euclidean norm. Using the proximal operator, the update step for
solving the optimization problem can be written as:

zt+1 = proxαtg

(
zt − αt∇f(zt)

)
.

For us, the proximal operator plays a role, since (1) also uses a regularizer.

3 Algorithms and convergence analysis

3.1 Extragradient

The setting of shuffling lies in the fact that we do not choose stochastic operator independently
at each step of the method. Instead, we permute the sequence of indexes and, at each iteration,
of the algorithm we choose operator according to the new sequence. In this work, we pay
attention to the Random Reshuffling and Shuffle Once techniques and provide appropriate
Extragradient methods (Algorithms 1, 2).

The analysis of shuffling methods has some specific details. The key difference between
shuffling and independent choice is that shuffling methods do not have one essential feature –
unbiasedness of stochastic operators:

Eπt
s

[
Fπt

s
(zts)

]
̸= 1

n

∑n

i=1
Fπi

s
(zts) = F (zts).

This restriction leads us to a more complex analysis and non-standard techniques to prove
convergence of the shuffling methods. Nevertheless, at two points – z0s and z∗, this equality
is true. Indeed, the point z0s is the first point of the epoch and there we choose one random
index out of n, and the point z∗ does not depend on t. Thus, we can "go back" at the
beginning of the epoch and take advantage of the unbiased operators. This technique is
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Algorithm 1 RR Extragradient

1: Input: Starting point z00 ∈ Rd

2: Parameter: Stepsize γ
3: for s = 0, 1, 2, . . . , S − 1 do
4: Generate a permutation π0, π1, . . . , πn−1

of sequence {1, 2, . . . , n}
5: for t = 0, 1, 2, . . . , n− 1 do
6: z

t+ 1
2

s = proxγg

(
zts − γFπt

s
(zts)

)
7: zt+1

s = proxγg

(
zts − γFπt

s
(z

t+ 1
2

s )

)
8: end for
9: zns = z0s+1

10: end for
11: Output: znS

Algorithm 2 SO Extragradient

1: Input: Starting point z00 ∈ Rd

2: Parameter: Stepsize γ
3: Generate a permutation π0, π1, . . . , πn−1 of se-

quence {1, 2, . . . , n}
4: for s = 0, 1, 2, . . . , S − 1 do
5: for t = 0, 1, 2, . . . , n− 1 do
6: z

t+ 1
2

s = proxγg

(
zts − γFπt

s
(zts)

)
7: zt+1

s = proxγg

(
zts − γFπt

s
(z

t+ 1
2

s )

)
8: end for
9: zns = z0s+1

10: end for
11: Output: znS

interesting not only in relation to shuffling methods. For example, it is applicable to methods
that use Markov chains to select indexes, because there is also no unbiased property anywhere
except at the correlation point of the chain. This is the key point of our analysis, and now,
having shown it, we present the main result of this section.
Theorem 1. Suppose Assumptions 1, 2, 3 hold. Then for Algorithms 1, 2 with γ ⩽

min
{

1
2µn ,

1
6L

}
after S epochs,

∥znS − z∗∥2 ⩽ (1− γµ

2
)Sn∥z00 − z∗∥2 + 256γn2σ2

∗
µ

.

Corollary 1. Suppose Assumptions 1, 2, 3 hold. Then Algorithms 1, 2 with γ ⩽

min

 1
2µn ,

1
6L ,

2 log

(
max

{
2,

µ2∥z00−z∗∥2T

512n2σ2
∗

})
µT

, to reach ε-accuracy, where ε ∼ ∥znS − z∗∥2, needs

Õ
((

n+
L

µ

)
log

(
1

ε

)
+

n2σ2
∗

µ2ε

)
iterations and oracle calls.

Remark 1. We can transform the obtained estimation for the case of monotone stochastic
operators. To do this, we use a regularization trick with µ ∼ ε

D . Thus, solving the problem
with the operator F̂ (z) = F (z) + µ(z − z00) with the accuracy ε

2 , we solve the problem (1)

with the accuracy ε and obtain Õ
(
n+ L

ε + n2

ε3

)
iteration and oracle complexity. This is

convergence in argument, it differs from the classical form.

Let us explain the result of the theorem. The form of the estimate is classical and appears
in all stochastic methods for strongly convex minimization (Moulines and Bach, 2011; Stich,
2019) and strongly monotone VIs (Beznosikov et al., 2020; Mishchenko et al., 2020b). Let us
compare it with the results of related works. Our method is based on REG (Mishchenko
et al., 2020b). In this work, authors obtain Õ

(
L
µ + 1

µ2ε

)
oracle complexity. Therefore, our

result is a great achievement in the shuffling theory, since despite the deterioration on n in
the sublinear term, the estimation on the linear term coincides with that in the classical
setting with independent choice of stochastic operators. Let us also compare the result with
the work (Juditsky et al., 2011). The authors obtain O

(
L
ε + 1

ε2

)
. However, uniform bounds

on the variance were required in this work, and we bound the variance only at the optimum.
Note that, according to current theory, shuffling methods are no more effective than methods
with independent sampling for the classical minimization problem (Mishchenko et al., 2020a;
Koloskova et al., 2024).

Let us pay attention to the second term in the estimation. In general, the sublinear term
with σ2

∗ is not improved. However, for the finite-sum problem, this term can be eliminated
by using additional techniques, such as variance reduction.
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3.2 Extragradient with variance reduction

Now we use the variance reduction technique, which improves the convergence of the
algorithms by reducing the influence of random fluctuations. This approach was not used in
the previous algorithms presented. We introduce a version of the RR/SO Extragradient
with variance reduction algorithm (Algorithm 3) and the convergence results for this method.
Note the peculiarity in Line 11 of this algorithm. In the work (Malinovsky et al., 2023),
where shuffling is investigated in variance reduction methods, the authors use a more classical
version and compute F (ωt

s) at the beginning of each epoch. We consider another option
and compute this full operator randomly with probability p. We put p = 1

n not to increase
the oracle complexity and obtain that on average we also update the full operator once per
epoch.

Theorem 2. Suppose that Assumptions 1, 2 hold. Then for Algorithm 3 with γ ⩽ (1−α)µ
6L2 , p =

1
n and V t

s = E∥zts − z∗∥2 + E∥ωt
s − z∗∥2 after T iterations,

V n
S ⩽

(
1− γµ

4

)T

V 0
0 .

Corollary 2. Suppose that Assumptions 1, 2 hold. Then Algorithm 3 with γ ⩽ (1−α)µ
6L2 , p = 1

n

and V t
s = E∥zts − z∗∥2 + E∥ωt

s − z∗∥2, to reach ε-accuracy, where ε ∼ V n
S , needs

O
(
n
L2

µ2
log

(
1

ε

))
iterations and oracle calls.

Remark 2. Similarly to Remark 1, we can use our result in the monotone case by the
regularization trick and obtain Õ

(
nL2

ε2

)
.

Algorithm 3 RR/SO Extragradient with variance reduction

1: Input: Parameters: z00 , ω
0
0

2: Parameter: Stepsize γ, α ∈ (0, 1)
3: Generate a permutation π0, π1, . . . , πn−1 of sequence {1, 2, . . . , n} // SO heuristic
4: for s = 0, 1, . . . do
5: Generate a permutation π0, π1, . . . , πn−1 of sequence {1, 2, . . . , n} // RR heuristic
6: for t = 0, 1, . . . , n− 1 do
7: zts = αzts + (1− α)ωt

s

8: z
t+1/2
s = proxγg

(
zts − γF

(
ωt
s

))
9: F̂ (z

t+1/2
s ) = Fπt

s
(z

t+1/2
s )− Fπt

s
(ωt

s) + F (ωt
s)

10: zt+1
s = proxγg

(
zts − γF̂

(
z
t+1/2
s

))
11: ωt+1

s =

{
zts, with probability p

ωt
s with probability 1− p

12: end for
13: z0s+1 = zns
14: ω0

s+1 = ωn
s

15: end for
16: Output: znS

We remove the variance that arose in Theorem 1 and obtain the linear convergence. Even
though we get worse estimates than in the works that also use variance reduction tech-
nique, such as (Alacaoglu and Malitsky, 2022; Alacaoglu et al., 2021; Chavdarova et al.,
2019; Palaniappan and Bach, 2016) (see Table 1), there is a distinct explanation for this.
According to current theory, methods with the shuffling heuristic are worse than methods
with independent sampling for the variance reduction methods (Malinovsky et al., 2023).
Thus, we were unable to obtain theoretical convergence estimates for methods using shuffling
heuristics that are equivalent to those for methods with independent index selection for the
VI problem. Additionally, in the course of the work, no theoretical differences were revealed
in the SO and RR techniques in relation to the problem (1).
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4 Experiments

In this section, we evaluate the proposed algorithms to demonstrate their practical applications
by conducting experiments in two cases: image denoising and adversarial training.

4.1 Image denoising

To formulate the image denoising problem (Chambolle and Pock, 2011), we consider the
classic saddle point problem as we did in Example 2:

min
x∈X

max
y∈Y

[⟨Kx, y⟩+G1(x)−G2(y)] ,

where regularizers G1 and G2 are proper convex lower semicontinuous functions, and K is a
continuous linear operator. To proceed to image denoising, we consider g is a given noisy
image and u is a solution we seek. We use the Cartesian grid with the step h : {(i · h, j · h)}.
Thus, specifically for the image denoising, we consider:

min
u∈X

max
p∈Y

[
⟨∇u, p⟩Y + λ/2∥u− g∥22 − δP (p)

]
,

where p is a dual variable, δP (p) is the indicator function of the set P defined as: P = {p ∈
Y : ∥p(x)∥ ≤ 1}. The indicator function δP (p) is defined as zero if p belongs to the set P , and
infinity otherwise. We define operator ∇u as the difference between neighboring pixels in
the grid horizontally and vertically, normalizing by the step of the grid h. This formulation
represents a saddle point problem, where we seek to minimize the first term with respect to
u while simultaneously maximizing the second term with respect to p. Using duality, we can
write the final formulation of considering problem as

min
u∈X

max
p∈Y

[
−⟨u,div p⟩X + λ/2∥u− g∥22 − δP (p)

]
. (6)

To bring the problem to the form of a finite sum (4), we divide images into batches – equal
squares. We consider two options – batches of size 4 and 8, according to the grid. Since
the images are black and white, they are single-channel, which means that each batch is a
square matrix with non-negative integers. It is also important to note that when calculating
the gradient, the edges of the batch are processed according to the rule of adding a number
equal to the nearest neighbor.

We compare the RR/SO Extragradient with variance reduction (Algorithm 3) with
Extragradient with variance reduction (Alacaoglu and Malitsky, 2022). Analogically we
compare the RR/SO Extragradient (Algorithms 1, 2) and Extragradient (Juditsky
et al., 2011). We select two images with different levels of additive zero-mean Gaussian
noise: σ = 0.05 and σ = 0.1. Figures 1 and 2 provide a comparison of the proposed methods.
Additional results for all considered methods on another image are presented in Figures 4, 5
in A.
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Figure 1: Extragradient convergence on image with σ = 0.05 on the problem (6).

8



0 20 40 60 80 100
Epochs

10−9

10−8

‖x
−
x

* ‖
2 2

batch size=4

RR VR
SO VR
IC VR

Independent Choice result Shuffling result Original Image

0 20 40 60 80 100
Epochs

10−9

10−8

‖x
−
x

* ‖
2 2

batch size=8

RR VR
SO VR
IC VR

Independent Choice result Shuffling result Original Image

Figure 2: Extragradient with VR convergence on image with σ = 0.05 on the problem
(6).
Comparing the images, it is evident that algorithms incorporating shuffling perform better
than those that do not, even if the difference in the line graphs is subtle. Thus, using
shuffling techniques allows us to achieve better results in solving such an important practical
application as image denoising.

4.2 Adversarial training

Next, we address an adversarial training problem. We can formulate it in the following way:

min
w∈Rd

max
∥ri∥⩽D

[
1

2N

N∑
i=1

(
wT (xi + ri)− yi

)2
+

λ

2
∥w∥2 − β

2
∥r∥2

]
, (7)

where the samples corresponds to features xi and targets yi. We evaluate this issue across
several datasets: mushrooms, a9a, and w8a, sourced from the LIBSVM library (Chang and
Lin, 2011). A brief description of these datasets is provided in Table 2, A. The results are
presented in Figure 3.
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Figure 3: Extragradient with and without VR compared using various shuffling heuristics on
mushrooms, a9a and w8a datasets on the problem (7).

As shown on plots, Extragradient and Extragradient with the VR algorithms using
the independent choice of indexes demonstrate worse performance compared to those using
shuffling methods. In these series of experiments, the RR exhibits better performance than
other shuffling methods and significantly outperforms the non-shuffled versions.
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A Additional Experiments

In this section, we present additional experiments that have been performed. Similar to
the previous experiments, we observe a consistent pattern: methods incorporating shuffling
techniques outperform those without shuffling. These results further confirm the effectiveness
of shuffling techniques in solving the denoising problem on another image with higher σ.
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Figure 4: Extragradient convergence on image with σ = 0.1 on the problem (6).
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Figure 5: Extragradient with VR convergence on image with σ = 0.1 on the problem (6).

The datasets used for the experiments on the adversarial training include mushrooms, a9a,
and w8a. These datasets vary in size and complexity, providing a comprehensive evaluation
of our proposed algorithms in the context of adversarial training.

Name Number of
Instances

Number of
Features

Number of
Classes

mushrooms 8,124 112 2
a9a 32,561 123 2
w8a 49,749 300 2

Table 2: Summary of Datasets
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B Basic Inequalities

For all vectors x, y, {xi}ni=1 in Rd with a positive scalar α, the following holds:

⟨x, y⟩ ⩽
∥x∥2

2α
+

α∥y∥2

2
, (Scalar)

2⟨x, y⟩ = ∥x+ y∥2 − ∥x∥2 − ∥y∥2, (Norm)

−2∥x∥2 ⩽ − ∥x+ y∥2 + 2∥y∥2, (CS)∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

⩽ n

n∑
i=1

∥xi∥2, (Sum)

∥∥proxγg(x)− proxγg(y)
∥∥2 ⩽ ∥x− y∥2 . (Prox)

C Extragradient

Theorem 1. Suppose Assumptions 1, 2 hold. Then for Algorithms 1, 2 with γ ⩽

min
{

1
2µn ,

1
6L

}
after S epochs,

∥znS − z∗∥2 ⩽ (1− γµ

2
)Sn∥z00 − z∗∥2 + 256γn2σ2

∗
µ

.

Proof. We start with the standard prox-inequality:

ẑ = proxg(z) ⇐⇒ ⟨ẑ − z, u− ẑ⟩ ⩾ g(ẑ)− g(u), ∀u ∈ Z. (8)

Substituting both steps of Algorithm 1 (Algorithm 2) into (8), we derive:

⟨zt+1
s − zts + γFπt

s
(zt+

1/2
s ), z∗ − zt+1

s ⟩ ⩾ γ(g(zt+1
s )− g(z∗)),

⟨zt+1/2
s − zts + γFπt

s
(zts), z

t+1
s − zt+

1/2
s ⟩ ⩾ γ(g(zt+

1/2
s )− g(zt+1

s )).

Summing inequalities, we get:

γ(g(zt+
1/2

s )− g(z∗)) ⩽ ⟨zt+1
s − zts, z

∗ − zt+1
s ⟩+ ⟨zt+1/2

s − zts, z
t+1
s − zt+

1/2
s ⟩

+ γ⟨Fπt
s
(zt+

1/2
s ), z∗ − zt+1

s ⟩+ γ⟨Fπt
s
(zts), z

t+1
s − zt+

1/2
s ⟩.

Now, we add and subtract z
t+1/2
s to the right part of the third scalar product. Thus,

rearranging terms, we arrive at:

γ(g(zt+
1/2

s )− g(z∗)) ⩽ ⟨zt+1
s − zts, z

∗ − zt+1
s ⟩+ ⟨zt+1/2

s − zts, z
t+1
s − zt+

1/2
s ⟩

+ γ⟨Fπt
s
(zt+

1/2
s ), z∗ − zt+

1/2
s ⟩

+ γ⟨Fπt
s
(zt+

1/2
s )− Fπt

s
(zts), z

t+1/2
s − zt+1

s ⟩.

We want to rewrite two first scalar products. We use (Norm). Thus, we come to:

2⟨zt+1
s − zts, z

∗ − zt+1
s ⟩ = ∥zts − z∗∥2 − ∥zt+1

s − zts∥2 − ∥z∗ − zt+1
s ∥2,

2⟨zt+1/2
s − zts, z

t+1
s − zt+

1/2
s ⟩ = ∥zt+1

s − zts∥2 − ∥zt+1/2
s − zts∥2 − ∥zt+1

s − zt+
1/2

s ∥2.

Substituting this, we get:

∥zt+1
s − z∗∥2 ⩽ ∥zts − z∗∥2 − 2γ

(
⟨Fπt

s
(zt+

1/2
s ), zt+

1/2
s − z∗⟩+ g(zt+

1/2
s )− g(z∗)

)
+ 2γ⟨Fπt

s
(zt+

1/2
s )− Fπt

s
(zts), z

t+1/2
s − zt+1

s ⟩
− ∥zt+1/2

s − zts∥2 − ∥zt+1
s − zt+

1/2
s ∥2.
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Now, applying (Scalar) and Assumption 1 to the second scalar product, we obtain:

∥zt+1
s − z∗∥2 ⩽ ∥zts − z∗∥2 − 2γ

(
⟨Fπt

s
(zt+

1/2
s ), zt+

1/2
s − z∗⟩

+ g(zt+
1/2

s )− g(z∗)
)
+ γ2∥Fπt

s
(zt+

1/2
s )− Fπt

s
(zts)∥2

+ ∥zt+1
s − zt+

1/2
s ∥2 − ∥zt+1/2

s − zts∥2 − ∥zt+1
s − zt+

1/2
s ∥2

Ass.1
⩽ ∥zts − z∗∥2 +

(
γ2L2 − 1

)
∥zt+1/2

s − zts∥2

− 2γ

⟨Fπt
s
(zt+

1/2
s ), zt+

1/2
s − z∗⟩+ g(zt+

1/2
s )− g(z∗)︸ ︷︷ ︸

T1

 . (9)

To estimate the T1 term, we take the expectation:

ET1 = E⟨Fπt
s
(zt+

1/2
s ), zt+

1/2
s − z∗⟩+ g(zt+

1/2
s )− g(z∗)

= E⟨Fπt
s
(zt+

1/2
s )− Fπt

s
(z∗), zt+

1/2
s − z∗⟩

+ E⟨Fπt
s
(z∗), zt+

1/2
s − z∗⟩+ g(zt+

1/2
s )− g(z∗)

Ass.2
⩾ µE∥zt+1/2

s − z∗∥2 + E⟨Fπt
s
(z∗), zt+

1/2
s − z0s⟩

+ E⟨Fπt
s
(z∗), z0s − z∗⟩+ g(zt+

1/2
s )− g(z∗).

Now we pay attention to the second scalar product. Using tower property and unbiasedness
of stochastic operator at the points z0s and z∗, we have E

[
Et

[
Fπt

s
(z∗)|z0s − z∗

]]
= F (z∗).

Thus, we continue the estimation of ET1:

ET1

(Scalar)
⩾ µE∥zt+1/2

s − z∗∥2 − γ

2β
E∥Fπt

s
(z∗)∥2 − β

2γ
E∥zt+1/2

s − z0s∥2

+ ⟨F (z∗), z0s − z∗⟩+ g(zt+
1/2

s )− g(z∗)

= µE∥zt+1/2
s − z∗∥2 − γ

2β
E∥Fπt

s
(z∗)∥2 − β

2γ
E∥zt+1/2

s − z0s∥2

+ ⟨F (z∗), z0s − zt+
1/2

s ⟩+ ⟨F (z∗), zt+
1/2

s − z∗⟩+ g(zt+
1/2

s )− g(z∗)︸ ︷︷ ︸
⩾0 (1)

(Scalar)
⩾ µE∥zt+1/2

s − z∗∥2 − γ

2β
E∥Fπt

s
(z∗)∥2

− γ

2β
∥F (z∗)∥2 − β

γ
E∥zt+1/2

s − z0s∥2.

Here we introduced β > 0, which we will define later. Substituting this inequality into (9),
we obtain:

E∥zt+1
s − z∗∥2 ⩽ E∥zts − z∗∥2 − 2γµE∥zt+

1
2

s − z∗∥2

+ (γ2L2 − 1)E∥zt+
1
2

s − zts∥2 +
γ2

β
E∥Fπt

s
(z∗)∥2

+
γ2

β
∥F (z∗)∥2 + 2βE∥zt+

1
2

s − z0s∥2

(Ass.3,CS)

⩽ (1− γµ)E∥zts − z∗∥2 + 2γ2

β
σ2
∗ + 2βE∥zt+

1
2

s − z0s∥2

+ (γ2L2 + 2γµ− 1)E∥zt+
1
2

s − zts∥2. (10)
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Now, we evaluate the ∥zt+
1
2

s − z0s∥2 term:

∥zt+
1
2

s − z0s∥2 ⩽

(
1 +

1

a

)
∥zt+

1
2

s − zts∥2 + (1 + a)∥zts − z0s∥2

⩽

(
1 +

1

a

)
∥zt+

1
2

s − zts∥2 + (1 + a)

(
1 +

1

b

)
∥zts − z

t− 1
2

s ∥2

+ (1 + a)(1 + b)∥zt−
1
2

s − z0s∥2

=

(
1 +

1

a

)
∥zt+

1
2

s − zts∥2

+ (1 + a)

(
1 +

1

b

)∥∥∥proxγg

(
zt−1
s − γFπt

s
(z

t− 1
2

s )
)

− proxγg

(
zt−1
s − γFπt

s
(zt−1

s )
)∥∥∥2 + (1 + a)(1 + b)∥zt−

1
2

s − z0s∥2

(Prox)
⩽

(
1 +

1

a

)
∥zt+

1
2

s − zts∥2

+ (1 + a)

(
1 +

1

b

)∥∥∥γFπt
s
(z

t− 1
2

s )− γFπt
s
(zt−1

s )
∥∥∥2

+ (1 + a)(1 + b)∥zt−
1
2

s − z0s∥2

⩽

(
1 +

1

a

)
∥zt+

1
2

s − zts∥2

+ (1 + a)

(
1 +

1

b

)
γ2L2∥zt−

1
2

s − zt−1
s ∥2

+ (1 + a)(1 + b)∥zt−
1
2

s − z0s∥2

⩽

(
1 +

1

a

)
∥zt+

1
2

s − zts∥2 +
t−1∑
i=1

∥zi+
1
2

s − zis∥2

·
((

1 +
1

a

)
(1 + a)(1 + b) + (1 + a)

(
1 +

1

b

)
γ2L2

)
· [(1 + a)(1 + b)]

t−1−i

+

(
(1 + a)

(
1 +

1

b

)
+ 1

)
[(1 + a)(1 + b)]

t ∥z
1
2
s − z0s∥2.

We choose a = b = 1
n and consider coefficients before all three terms.

1 +
1

a
= 1 + n,((

1 +
1

a

)
+

1

b
γ2L2

)
[(1 + a)(1 + b)]

t−i
= (1 + n+ nγ2L2)

(
1 +

1

n

)2(t−i)

,(
(1 + a)

(
1 +

1

b

)
+ 1

)
[(1 + a)(1 + b)]t−i

∣∣∣∣
i=0

=

(
3 +

1

n
+ n

)(
1 +

1

n

)2(t−i) ∣∣∣∣
i=0

.

We can evaluate the smaller terms from above by the biggest one and write them into one
sum:

∥zt+
1
2

s − z0s∥2 ⩽
t∑

i=0

∥zi+
1
2

s − zis∥2
(
1 + n+ nγ2L2

)(
1 +

1

n

)2(t−i)

.

18



Let us substitute the obtained inequality into (10).

E∥zt+1
s − z∗∥2 ⩽ (1− γµ)E∥zts − z∗∥2 + (γ2L2 + 2γµ− 1)E∥zt+

1
2

s − zts∥2

+
2γ2

β
σ2
∗ + 2β

t∑
i=0

E∥zi+
1
2

s − zis∥2
(
1 + n+ nγ2L2

)(
1 +

1

n

)2(t−i)

. (11)

Now we define new sequence that contains iteration points in all epochs:

z̃k = zt+sn.

Thus, additionally considering
(
1 + 1

n

)2(t−i)
⩽

(
1 + 1

n

)2n
⩽ e2 ⩽ 8, we can rewrite (11) in

the following form:

E∥z̃k+1 − z∗∥2 ⩽ (1− γµ)E∥z̃k − z∗∥2 + (γ2L2 + 2γµ− 1)E∥z̃k+ 1
2
− z̃k∥2

+
2γ2

β
σ2
∗ + 16β

n∑
i=0

E∥z̃k−i+ 1
2
− z̃k−i∥2

(
1 + n+ nγ2L2

)
.

Let us pay attention to the
n∑

i=0

E∥z̃k−i+ 1
2
− z̃k−i∥2 term in the obtained inequality. For the

original sequence, this term represented the sum of the norms from the beginning of the
current epoch to the current iteration t and could contain a maximum of n terms. Thus, a
new expression that contains the sum of n norms up to the current iteration k is an upper
bound and our expression is correct. Now we define pk = pk =

(
1− γµ

2

)−k and summarize
both sides over all iterations with coefficients pk:

Sn−1∑
k=0

pkE∥z̃k+1 − z∗∥2 ⩽ (1− γµ)

Sn−1∑
k=0

pkE∥z̃k − z∗∥2

+ (γ2L2 + 2γµ− 1)

Sn−1∑
k=0

pkE∥z̃k+ 1
2
− z̃k∥2

+

Sn−1∑
k=0

pk

n∑
i=0

E∥z̃k−i+ 1
2
− z̃k−i∥2

· 16β
(
1 + n+ nγ2L2

)
+

2γ2σ2
∗

β

Sn−1∑
k=0

pk. (12)

Now we need to estimate the following term:
Sn−1∑
k=0

pk

n∑
i=0

E∥z̃k−i+ 1
2
− z̃k−i∥2 ⩽ pn

Sn−1∑
k=0

n∑
i=0

pk−iE∥z̃k−i+ 1
2
− z̃k−i∥2

⩽ pnn

Sn−1∑
k=0

pkE∥z̃k+ 1
2
− z̃k∥2.

Note that we define points z̃−n, z̃−n+ 1
2
, . . . , z̃− 1

2
by shifting the sequence {z̃k} on n points.

Since pn =
(
1− γµ

2

)−n
=

(
1− γµn

2n

)−n
⩽ e

γµn
2 , we choose γ ⩽ 1

2µn and obtain pn ⩽ e
1
4 ⩽ 2.

Substituting this into (12), we obtain:
Sn−1∑
k=0

pkE∥z̃k+1 − z∗∥2 ⩽ (1− γµ)

Sn−1∑
k=0

pkE∥z̃k − z∗∥2 + 2γ2σ2
∗

β

Sn−1∑
k=0

pk

+ (γ2L2 + 2γµ− 1)

Sn−1∑
k=0

pkE∥z̃k+ 1
2
− z̃k∥2

+ 32β
(
1 + n+ nγ2L2

)
n

Sn−1∑
k=0

pkE∥z̃k+ 1
2
− z̃k∥2.
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We consider the coefficient before
Sn−1∑
k=0

pkE∥z̃k+ 1
2
− z̃k∥2 and we make it negative by selecting

γ and β.

32β(1 + n+ nγ2L2)n+ γ2L2 + 2γµ− 1 ⩽ 0

We need γ ⩽ 1
6L , β = 1

64n2 . Then to satisfy the previous estimate on gamma we finally put

γ ⩽ min
{

1
2µn ,

1
6L

}
and, assuming n > 3, have

1

2n
+

1

2
+

1

72
+

1

36
+

1

3
− 1 ⩽ 0.

In this way,
Sn−1∑
k=0

pkE∥z̃k+1 − z∗∥2 ⩽ (1− γµ)

Sn−1∑
k=0

pkE∥z̃k − z∗∥2 + 2γ2σ2
∗

β

Sn−1∑
k=0

pk.

Thus, substituting definition of pt, we obtain:
Sn−1∑
k=0

(
1− γµ

2

)−k

E∥z̃k+1 − z∗∥2 ⩽
Sn−1∑
k=0

(
1− γµ

2

)−k+1

E∥z̃k − z∗∥2

+
2γ2σ2

∗
β

Sn−1∑
k=0

(
1− γµ

2

)−k

,

(
1− γµ

2

)−(Sn−1)

E∥z̃Sn − z∗∥2 ⩽
(
1− γµ

2

)
E∥z̃0 − z∗∥2

+
2γ2σ2

∗
β

Sn−1∑
k=0

(
1− γµ

2

)−k

,

E∥z̃Sn − z∗∥2 ⩽
(
1− γµ

2

)Sn

E∥z̃0 − z∗∥2

+
2γ2σ2

∗
β

Sn−1∑
k=0

(
1− γµ

2

)Sn−k−1

=
(
1− γµ

2

)Sn

E∥z̃0 − z∗∥2

+
2γ2σ2

∗
β

Sn−1∑
k=0

(
1− γµ

2

)k

.

Finally, estimating geometric progression in the last term as
Sn−1∑
k=0

(
1− γµ

2

)k
⩽ 2

γµ , we can

write the final statement of the theorem:

E∥znS − z∗∥2 ⩽
(
1− γµ

2

)Sn

E∥z00 − z∗∥2 + 4γσ2
∗

βµ

=
(
1− γµ

2

)Sn

E∥z00 − z∗∥2 + 256γn2σ2
∗

µ
.

Corollary 1. Suppose Assumptions 1, 2 hold. Then Algorithms 1, 2 with γ ⩽

min

 1
2µn ,

1
6L ,

2 log

(
max

{
2,

µ2∥z00−z∗∥2T

512n2σ2
∗

})
µT

, to reach ε-accuracy, where ε ∼ ∥znS −z∗∥2, needs

Õ
((

n+
L

µ

)
log

(
1

ε

)
+

n2σ2
∗

µ2ε

)
iterations and oracle calls.
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Proof. For the result obtained in Theorem 1, we utilize Lemma 2 from (Stich, 2019) and,

using special tuning of γ, such as γ ⩽ min

 1
2µn ,

1
6L ,

2 log

(
max

{
2,

µ2∥z00−z∗∥2T

512n2σ2
∗

})
µT

, we obtain

that we need Õ
((

n+ L
µ

)
log

(
1
ε

)
+

n2σ2
∗

µ2ε

)
iterations and oracle calls to reach ε-accuracy,

where ε ∼ ∥znS − z∗∥2.

D Extragradient with variance reduction

Theorem 2. Suppose that Assumptions 1, 2 hold. Then for Algorithm 3 with γ ⩽ (1−α)µ
6L2 , p =

1
n and V t

s = E∥zts − z∗∥2 + E∥ωt
s − z∗∥2, after T iterations we have

V n
S ⩽

(
1− γµ

4

)T

V 0
0 .

Proof. We start with substituting both steps of Algorithm 3 to (8):

⟨zt+1
s − zts + γF̂ (zt+

1/2
s ), z∗ − zt+1

s ⟩ ⩾ γ(g(zt+1
s )− g(z∗)),

⟨zt+1/2
s − zts + γF (ωt

s), z
t+1
s − zt+

1/2
s ⟩ ⩾ γ(g(zt+

1/2
s )− g(zt+1

s )).

Let us summarize this two inequalities:

γ(g(zt+
1/2

s )− g(z∗)) ⩽ ⟨zt+1
s − zts, z

∗ − zt+1
s ⟩+ ⟨zt+1/2

s − zts, z
t+1
s − zt+

1/2
s ⟩

+ γ⟨F̂ (zt+
1/2

s ), z∗ − zt+1
s ⟩+ γ⟨F (ωt

s), z
t+1
s − zt+

1/2
s ⟩.

Now, we add and subtract z
t+1/2
s to the right part of the third scalar product. Thus,

rearranging terms and utilizing the definition of F̂ (z
t+1/2
s ), we arrive at:

⟨zt+1
s − zts, z

∗ − zt+1
s ⟩︸ ︷︷ ︸

T1

+ ⟨zt+1/2
s − zts, z

t+1
s − zt+

1/2
s ⟩︸ ︷︷ ︸

T2

+ γ⟨Fπt
s
(ωt

s)− Fπt
s
(zt+

1/2
s ), zt+1

s − zt+
1/2

s ⟩︸ ︷︷ ︸
T3

+ γ⟨F̂ (zt+
1/2

s ), z∗ − zt+
1/2

s ⟩+ γ(g(z∗)− g(zt+
1/2

s ))︸ ︷︷ ︸
T4

⩾ 0. (13)

We defined terms as T1, T2, T3, T4, respectively. Let us estimate them separately. We start
with T1 and T2. To estimate them, firstly, we use the definition of zts and, secondly, use
(Norm). Thus, we obtain:

2T1 = 2⟨zt+1
s − zts, z

∗ − zt+1
s ⟩

= 2α⟨zt+1
s − zts, z

∗ − zt+1
s ⟩+ 2(1− α)⟨zt+1

s − ωt
s, z

∗ − zt+1
s ⟩

= α(∥z∗ − zts∥2 − ∥zt+1
s − zts∥2 − ∥z∗ − zt+1

s ∥2)
+ (1− α)(∥z∗ − ωt

s∥2 − ∥zt+1
s − ωt

s∥2 − ∥z∗ − zt+1
s ∥2)

= α∥zts − z∗∥2 − ∥zt+1
s − z∗∥2 + (1− α)∥ωt

s − z∗∥2

− α∥zt+1
s − zts∥2 − (1− α)∥zt+1

s − ωt
s∥2.

The same holds for T2:
2T2 = 2⟨zt+1/2

s − zts, z
t+1
s − zt+

1/2
s ⟩

= 2α⟨zt+1/2
s − zts, z

t+1
s − zt+

1/2
s ⟩+ 2(1− α)⟨zt+1/2

s − ωt
s, z

t+1
s − zt+

1/2
s ⟩

= α(∥zt+1
s − zts∥2 − ∥zt+1/2

s − zts∥2 − ∥zt+1
s − zt+

1/2
s ∥2)

+ (1− α)(∥zt+1
s − ωt

s∥2 − ∥zt+1/2
s − ωt

s∥2 − ∥zt+1
s − zt+

1/2
s ∥2)

= α∥zt+1
s − zts∥2 − ∥zt+1

s − zt+
1/2

s ∥2 + (1− α)∥zt+1
s − ωt

s∥2

− α∥zt+1/2
s − zts∥2 − (1− α)∥zt+1/2

s − ωt
s∥2.
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Now, we moving to the estimate of T3:

2T3 = 2γ⟨Fπt
s
(ωt

s)− Fπt
s
(zt+

1/2
s ), zt+1

s − zt+
1/2

s ⟩
(Scalar)
⩽

γ2

τ
∥Fπt

s
(ωt

s)− Fπt
s
(zt+

1/2
s )∥2 + τ∥zt+1

s − zt+
1/2

s ∥2

(Sum)
⩽

γ2L2

τ
∥zt+1/2

s − ωt
s∥2 + τ∥zt+1

s − zt+
1/2

s ∥2;

Here we introduced τ > 0, which we will define later. Last, we do the same for T4:

2T4 = 2γ⟨F̂ (zt+
1/2

s ), z∗ − zt+
1/2

s ⟩+ 2γ(g(z∗)− g(zt+
1/2

s ))

= 2γ⟨F̂ (zt+
1/2

s )− F (zt+
1/2

s ), z∗ − zt+
1/2

s ⟩
+ 2γ⟨F (zt+

1/2
s )− F (z∗), z∗ − zt+

1/2
s ⟩

+ 2γ

⟨F (z∗), z∗ − zt+
1/2

s ⟩+ g(z∗)− g(zt+
1/2

s )︸ ︷︷ ︸
⩽0 (1)


(Scalar,Ass.1)

⩽
4γ2L2

τ
∥zt+1/2

s − ωt
s∥2 + τ∥zt+1/2

s − z∗∥2

− 2γ⟨F (zt+
1/2

s )− F (z∗), zt+
1/2

s − z∗⟩
(Ass.2)
⩽

4γ2L2

τ
∥zt+1/2

s − ωt
s∥2 + τ∥zt+1/2

s − z∗∥2 − 2γµ∥zt+1/2
s − z∗∥2.

Substituting all the obtained estimates into (13), we arrive at:

0 ⩽ α∥zts − z∗∥2 − ∥zt+1
s − z∗∥2 + (1− α)∥ωt

s − z∗∥2 − α∥zt+1
s − zts∥2

− (1− α)∥zt+1
s − ωt

s∥2 + α∥zt+1
s − zts∥2 − ∥zt+1

s − zt+
1/2

s ∥2

+ (1− α)∥zt+1
s − ωt

s∥2 − α∥zt+1/2
s − zts∥2 − (1− α)∥zt+1/2

s − ωt
s∥2

+
γ2L2

τ
∥zt+1/2

s − ωt
s∥2 + τ∥zt+1

s − zt+
1/2

s ∥2 + 4γ2L2

τ
∥zt+1/2

s − ωt
s∥2

+ τ∥zt+1/2
s − z∗∥2 − 2γµ∥zt+1/2

s − z∗∥2.

By grouping the coefficients of the same terms, we get:

∥zt+1
s − z∗∥2 ⩽ α∥zts − z∗∥2 + (1− α)∥ωt

s − z∗∥2

+

(
5γ2L2

τ
− (1− α)

)
∥zt+1/2

s − ωt
s∥2 − (1− τ)∥zt+1

s − zt+
1/2

s ∥2

− (2γµ− τ)∥zt+1/2
s − z∗∥2 − α∥zt+1/2

s − zts∥2. (14)

Now, we want to estimate the −(2γµ − τ)∥zt+1/2
s − z∗∥2 term. To do this we split it into

two equal parts. To the first part we add and subtract ωt
s, and to the second – zts. After

that we use (CS) for both terms:

− (2γµ− τ) ∥zt+1/2
s − z∗∥2 = −

(
γµ− τ

2

)
∥zt+1/2

s − z∗∥2 −
(
γµ− τ

2

)
∥zt+1/2

s − z∗∥2

= −
(
γµ− τ

2

)
∥zt+1/2

s − ωt
s + ωt

s − z∗∥2

−
(
γµ− τ

2

)
∥zt+1/2

s − zts + zts − z∗∥2

⩽
(
γµ− τ

2

)
∥zt+1/2

s − ωt
s∥2 −

(γµ
2

− τ

4

)
∥ωt

s − z∗∥2

+
(
γµ− τ

2

)
∥zt+1/2

s − zts∥2 −
(γµ

2
− τ

4

)
∥zts − z∗∥2.
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Substituting this into (14),

∥zt+1
s − z∗∥2 ⩽

(
α− γµ

2
+

τ

4

)
∥zts − z∗∥2 +

(
1− α− γµ

2
+

τ

4

)
∥ωt

s − z∗∥2

+

(
5γ2L2

τ
+ γµ− τ

2
− (1− α)

)
∥zt+1/2

s − ωt
s∥2

− (1− τ)∥zt+1
s − zt+

1/2
s ∥2 +

(
γµ− τ

2
− α

)
∥zt+1/2

s − zts∥2.

We want to choose parameters such that coefficients before the last three terms would be
non-positive. Let us start with ∥zt+1/2

s − ωt
s∥2 term.

We pick τ = γµ;

We want 1− α ⩾
5γL2

µ
+

γµ

2
;

It is enough for us that γ ⩽
(1− α)µ

6L2
.

Obviously, with this choice of γ and α, the last two terms are less than zero. In that way,
we obtain:

∥zt+1
s − z∗∥2 ⩽

(
α− γµ

4

)
∥zts − z∗∥2 +

(
1− α− γµ

4

)
∥ωt

s − z∗∥2.

According to the condition for updating the point ωt
s,

E∥ωt+1
s − z∗∥2 = p∥zts − z∗∥2 + (1− p)∥ωt

s − z∗∥2.

In that way:

E∥zt+1
s − z∗∥2 + 1− α

p
E∥ωt+1

s − z∗∥2 ⩽
(
1− γµ

4

)
E∥zts − z∗∥2

+

(
(1− α)

(
1 +

1

p
− 1

)
− γµ

4

)
E∥ωt+1

s − z∗∥2.

Now we put p = 1− α and obtain:

E∥zt+1
s − z∗∥2 + E∥ωt+1

s − z∗∥2 ⩽
(
1− γµ

4

) (
E∥zts − z∗∥2 + E∥ωt

s − z∗∥2
)
.

Denoting V t
s = E∥zts − z∗∥2 + E∥ωt

s − z∗∥2 and going into recursion over all epochs and
iterations, we get:

V n
S ⩽

(
1− γµ

4

)T

V 0
0 ,

where T is the total number of iterations.

Corollary 2 Suppose that Assumptions 1, 2 hold. Then Algorithm 3 with γ ⩽ (1−α)µ
6L2 , p = 1

n

and V t
s = E∥zts − z∗∥2 + E∥ωt

s − z∗∥2, to reach ε-accuracy, where ε ∼ V n
S , needs

O
(
n
L2

µ2
log

(
1

ε

))
iterations and oracle calls.

Proof. Substituting estimation of γ to the result of Theorem 2 we obtain, that method to
converge to ε-accuracy, where ε = V n

S , needs O
(

L2

pµ2 log
(
1
ε

))
iterations. At the same time

each iteration costs pn + 2 calls to Fπ. Thus, we obtain O
((

nL2

µ2 + L2

pµ2

)
log

(
1
ε

))
oracle

complexity. Finally, the optimal choice p = 1
n gives O

(
nL2

µ2 log
(
1
ε

))
iteration and oracle

complexity. This ends the proof.
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