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Abstract
Causal inference is a key research area in ma-
chine learning, yet confusion reigns over the tools
needed to tackle it. There are prevalent claims
in the machine learning literature that you need
a bespoke causal framework or notation to an-
swer causal questions. In this paper, we want to
make it clear that you can answer any causal in-
ference question within the realm of probabilistic
modelling and inference, without causal-specific
tools or notation. Through concrete examples, we
demonstrate how causal questions can be tack-
led by writing down the probability of everything.
Lastly, we reinterpret causal tools as emerging
from standard probabilistic modelling and infer-
ence, elucidating their necessity and utility.

1. Introduction
Causal inference questions play a key role in many areas
of machine learning (Kaddour et al., 2022), such as pol-
icy (Athey & Imbens, 2017), healthcare (Sanchez et al.,
2022), or fairness (Kusner et al., 2017). Despite the growing
emphasis on these problems within the machine learning
research community, there is still an apparent lack of clar-
ity regarding the tools and frameworks necessary to tackle
them. Concretely, there is a prevalent belief that one cannot
answer causal questions without adopting tools from outside
machine learning and probability.

This lack of clarity is epitomised by the disagreement be-
tween Judea Pearl and Andrew Gelman — foundational
researchers in the area of causality and statistical inference
who appear to hold contradictory views on the technical
foundations of their field. Whereas Pearl holds that “there
is no way to answer causal questions without snapping out
of statistical vocabulary” (Hartnett, 2018) and that “we
need to enrich our language with a do-operator” (Pearl,
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2019a), Andrew Gelman states: “I find it baffling that Pearl
and his colleagues keep taking statistical problems and, to
my mind, complicating them by wrapping them in a causal
structure” (Gelman, 2019).

Such allegations of insufficiency of standard statistical tools
— such as probabilistic modelling or Bayesian Networks —
are perpetuated in the machine learning literature. Claims
that causal questions “[cannot] be answered with statistical
tools alone, but require methods from causality” (Pawlowski
et al., 2020) are prevalent (see Appendix D).

In this paper we show that the standard tools of proba-
bilistic modelling are sufficient for causal inference. In
particular, we show that one just needs to follow the ‘one’
overarching rule advocated by David MacKay:

“Always write down the probability of everything.”
— Steve Gull (MacKay, 2003, p. 61)

We argue that the resulting approach is clear, unifying,
and general for answering causal inference questions.

Heeding Pearl (2019b)’s call for concrete examples, we will
demonstrate the probabilistic approach on simple examples
of causal inference problems – in turn, interventional (Sec-
tion 2) and counterfactual (Section 3). For each, we will
illustrate how one can solve it by ‘writing down the proba-
bility of everything’. There are convenient classes of models
(e.g. Structural Causal Models (Peters et al., 2017)), useful
notational shorthands (e.g. the do-operator), and a machin-
ery developed around them (e.g. the do-calculus (Pearl,
2009)) to tackle causal questions, which we will introduce
as “syntactic sugar” in the probabilistic framework.

We advocate for the position that the probabilistic mod-
elling approach is useful, yet, under-recognised. It makes
causal inference accessible to a large part of the machine
learning community and lowers the barrier to entry to tack-
ling causal problems by removing the need for familiarity
with a specialised notational toolkit. Secondly, probabilistic
modelling is a more flexible and general tool. Hence, we
also believe that statements like “causal questions cannot
be answered with statistics alone” are at best misguided ,
but at worst unhelpful (see Appendix Q for a discussion),
confusing generations of newcomers to the field.

As this position can easily be misconstrued, we want to clar-
ify: We claim the causal toolbox is not necessary for causal
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inference, but not that it’s without utility. We are not seeking
to understate the many insights regarding the challenging
nature of causal inference problems that have come from
Pearl and the causal inference community. Neither are we
arguing that the mainstream (Pearl’s) causal framework and
notation should be entirely disbanded with. We are also not
proposing a new framework. Our goal is to clearly illustrate
how causal problems can be tackled in an existing one.

2. Interventions
Throughout this paper, we will use the running example
of aspirin’s efficacy on headache duration to ground the
discussion in a concrete problem. In this section, we will
first introduce the problem, the data generating process, and
a causal (interventional) question. We will illustrate how a
probabilistic modelling approach where we write down the
joint of everything can be applied, and finally relate it to the
“classical” causal approach.

2.1. A Concrete Example

Let’s start by specifying a model for the data-generating
process in the observed setting.1

T

Y

Z
Z – Initial headache severity
T – Aspirin dosage
Y – Headache duration

Figure 1. Graphical model for the observational data on aspirin’s
effect in a population.

In the model, we will assume that every variable is
distributed according to a log-normal distribution (Ap-
pendix A.1) like so:

Z ∼ logN
(
µZ , σ

2
Z

)
T = ZaεT where εT ∼ logN

(
0, σ2

T

)
Y =

Zb

T c
εY where εY ∼ logN

(
0, σ2

Y

) (1)

Here, θ={a, b, c, µz, σZ , σT , σY } are the parameters to be
inferred from the observed data.

As seen in Equation (1), the parameter c captures the
strength of the effect of aspirin dosage on the headache
duration; the larger the value of c, the more effective aspirin
is. Similarly, a captures how the headache severity affects

1We denote random variables with capital letters (e.g., X), the
values in the space of possible realisations with lowercase letters
(e.g., x). We write pX,Y (x, y) to denote a probability density/mass
function of X,Y , or p(x, y) whenever the random variables are
apparent from context. Sometimes we abbreviate p( · |θ) to pθ(·)
to signify that the distribution is parameterised by θ.

the decision to take a given dose of aspirin, and b controls
how the headache severity affects the headache duration.
We assume a, b > 0 to reflect that higher initial headache
severity makes people take more aspirin, and makes the
headache last longer. From the properties of log-normal dis-
tributions, it follows that

[
Z T Y

]⊺∼ logN (µ,Σ) are
jointly distributed according to a multivariate log-normal
(see Appendix B.1).

Example 1: Interventions on Aspirin Dose

Inference question In the observed world, in which
the subjects decide their own aspirin dosage, we’ve
surveyed people on their headaches to collect a dataset
D = {(zi, ti, yi)}Ni=1. We want to use this dataset to
answer the question: what is the expected effect of
intervening to assign someone a given dose of aspirin
t∗ on their headache duration on average?

This question can be considered an instance of a “causal”
inference question, as it asks what would happen in a hy-
pothetical setting where we have altered the mechanism by
which the aspirin dose is determined.

One has to take care when approaching such problems — as
has clearly been demonstrated by e.g. Pearl (2009) — due to
confounding. In particular, a naïve supervised learning ap-
proach of estimating the conditional distribution pY |T (·|t∗)
to compute the conditional expectation E[Y |T=t∗] would
not give the right answer to the question that we asked. The
conditional expectation E[Y |T ] can be computed analyti-
cally for this problem (Appendix B.2). In the special case
when c=0 — i.e. aspirin has no effect on the headache
duration (Y =ZbεT ) — this reduces to:

E[Y |T ] = exp

(
abσ2

Z

σ2
Z + σ2

Y

(T − aµz) + const.

)
positive whenever ab > 0

In this case, we observe that the expected headache dura-
tion goes up with the ingested aspirin dose T , even though
aspirin dose has no effect on the headache duration (c=0).
Even whenc > 0— i.e. when aspirin has a remedial effect
on the headache duration — it’s possible to observe that peo-
ple who take a higher aspirin dose have a longer headache
on average (see Equation (9)). The longer headache in those
who had taken a higher dose is, of course, due to a more
severe initial headache, rather than due to adverse workings
of aspirin. Figure 2 illustrates this phenomenon, which is
often referred to as the Simpson’s paradox (Simpson, 1951;
Pearl, 2009, §6.1).

The inadequacy of the naïve approach to answering such
inference questions is the cornerstone of arguments that
machine learning techniques are not sufficient for causal
inference without some enrichment by a causal framework
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(Pearl, 2009; Pearl & Mackenzie, 2018). It certainly high-
lights that inference corresponding to causal questions often
requires generalising beyond the observed data distribution,
and that — as we will illustrate below — significant mod-
elling assumptions are necessary to answer causal questions.
However, we will show precisely how these assumptions
can be specified by defining a joint model over all the tasks
or settings that we care about.
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Figure 2. Samples of the headache duration against aspirin dose
from the log-normal aspirin model. The plot shows headache
duration increasing with aspirin dose taken; however, for any
group of people with a narrow range of headache severities, the
trend is reversed. Parameters for the model are a=1.5, b=2.68,
c=1.0, µZ=3.95, σZ=0.15, σT =0.07 and σY =0.05.

2.2. Modelling Interventions with Bayesian Networks

To isolate the effect of aspirin, we are asking what would
happen if we hypothetically intervened to assign people a
higher dose. Such an intervention would clearly change
the mechanism by which a person’s dose is determined;
the probability distribution over the dose conditioned on
the headache severity in the hypothetical intervened-upon
setting would be different.

Let’s consider how we could model such an intervention.
In a probabilistic framework, the first step in any inference
procedure is to write down all the assumptions about the
problem. From these assumptions, a joint distribution over
all variables and settings of interest should follow. That
joint distribution can then be queried for any quantities of
interest. Below, we’re going to follow through with this
approach, and write a joint distribution over the original
unintervened world and the new intervened world by first
specifying exactly how they are related.

To this end, in addition to the random variables corre-
sponding to the observed dataset {(Zi, Ti, Yi)}Ni=1, which
we assume has been generated as described in eq. 1, we
also define variables Z∗, T ∗, Y ∗, which correspond to the
intervened-upon setting. For notational convenience, we’ll
write q(·) in place of p(·) when referring to distribution func-
tions over interventional variables Z∗, T ∗, Y ∗ when using

the machine learning short-hand; for instance, we’ll write
q(y|t, z) in place of pY ∗|T∗,Z∗(y|t, z).

Example 1 continued:

Model and assumptions Let’s begin by setting up a
model in which the two settings of interest — the ob-
served and the interventional — are modelled explicitly.
We’re going to make the assumptions embodied in the
Bayesian Network (Appendix A.2) in the figure below:

Yi

Ti

Zi

Θ

Y ∗

T ∗

Z∗

OBSERVED WORLD INTERVENED WORLD

i = 1 . . . N

Figure 3. Graphical model for interventional aspirin example.

Parameters Θ are shared between the two worlds allow-
ing observations in the real world to inform inference
in the intervened-upon one. The aspirin dose T ∗ in the
interventional setting is independent of the headache
severity Z∗, reflecting that we are asking a question
about the effect of a hypothetical assignment of a given
dose regardless of the subject’s initial headache severity.

The graph above specifies independence assumptions,
but we need to further specify the distribution q(·) on
the variables in the intervened-upon setting. We assume
that the physical mechanism determining the headache
duration Y ∗ based on the initial headache severity Z∗

and aspirin dose ingested T ∗ remains unchanged in the
interventional setting; in other words, the physiological
properties of the subjects in the hypothetical setting are
the same as in the observed one. Hence, we assume that
the conditional distribution of the headache duration Y ∗

conditioned on T ∗, Z∗ in the intervened-upon world is
the same as the distribution of Y conditioned on T,Z
in the observed world: pθ(y|t, z) = qθ(y|t, z).
To represent the belief that we are manipulating the
system to assign a specific dose t∗ independently of Z∗,
we specify qθ(t) = q(t) = δ(t∗ − t).

Lastly, the distribution on the initial headache severity
Z∗ in the intervened-upon setting is assumed to be the
same as in the observed setting: qθ(z) = pθ(z).

Based on the above assumptions and graphical model,
we can write down a full joint distribution:
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p(z∗, t∗, y∗,θ,D) =

Interventional world︷ ︸︸ ︷
pθ(z

∗)q(t∗)pθ(y
∗|z∗, t∗)

×
(

N∏
i=1

pθ(zi)pθ(ti|zi)pθ(yi|zi, ti)
)

︸ ︷︷ ︸
Observed world

×p(θ) (2)

See Appendix B.3 for a step-by-step derivation where
we highlight which of the above assumptions were used
at each step.

Given a joint, probability theory tells us how to find all the
marginal distributions, conditional distributions and expec-
tations of interest.2

Example 1 continued:

Inference Returning to the inference question, we
wanted to know the expected headache duration in the
intervened world in response to a given dose t∗ (which
is a fixed parameter of the model). Hence, we compute
the expected value of Y ∗ given the observed data D
(see Appendix B.4):

E[Y ∗|D] = E [E[Y ∗|Θ] | D] (3)

=

∫∫∫
y∗qθ(y

∗|z∗, t∗)qθ(z∗)dz∗dy∗︸ ︷︷ ︸
Calculate expectation in the intervened
world conditioned on posterior over θ

p(θ|D)dθ︸ ︷︷ ︸
Infer model parameters
using observed data D

Note that in Equation (3), all the density functions in
the inner integral are the same as these in the observed
distribution. For the log-normal aspirin model, we can
actually calculate the inner expectation exactly (Ap-
pendix B.5):

E[Y ∗|θ] = (t∗)−c exp

(
bµZ +

b2σ2
Z + σ2

Y

2

)
(4)

As expected, the effect of assigning a different dose of as-
pirin t∗ is only determined by the parameter c; whenever
c > 0, intervening to administer a higher dose will in expec-
tation shorten the headache duration.

In the example above, we demonstrated a probabilistic mod-
elling approach to solving a causal inference problem. We
showed how interventional questions can be answered by
specifying a joint model over both the intervened-upon and
observed settings. We used a Bayesian Network (BN) to
encapsulate assumptions about both worlds and how they
are related. We refer to this approach as the twin model ap-
proach.3 This method works; the assumptions conveyed are
transparent, and as long as they are correct, it’s a valid way

2How to actually estimate the numerical values for these ex-
pressions then falls right within the realms of machine learning
and statistics. See Appendix G for a discussion.

3As it is closely related to the twin network method presented
by Balke & Pearl (1994).
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Figure 4. Distributions of the headache duration in the intervened
upon world for different interventions t∗ on the assigned aspirin
dose in the log-normal aspirin model.

to approach causal inference. Crucially, we didn’t need any
bespoke causal syntax (e.g. the do-notation) to do so4. We
summarise this approach in Appendix E. Of course, when
specifying the assumptions, the devil is in the details. In
Appendix F, we highlight the challenges that arise when
constructing a model for interventional problems that prac-
titioners need to be weary of.

2.3. “Classical” Approach: Causal Bayesian Networks

We will now relate the twin model approach to the more
conventional presentation of causal tools. Specifically, we
will introduce the intervention operation and the do-notation
as a concise syntax for specifying a joint model over the
observed and interventional settings. With this approach,
we will specify a graph over a single set of variables in the
observed world only — like the one over Z, T, Y in Figure 1
— in a way that encompasses the assumptions about how to
extend it to other interventional settings of interest. Namely,
we will specify a rule for obtaining a joint distribution in the
intervened setting from a graphical model of the observed
setting.

Formally, we can define an intervention operation on a BN
as follows:5

Definition 2.1. Interventions in Bayesian Networks.
Consider a Bayesian Network on X={X1, . . . , Xd}
with a graph G that entails the factorisation
p(x)=

∏d
i=1 p(xi|xPAG

i
). An intervention on node

j with new parents PA∗
j and a new conditional distribution

g∗(xj |xPA∗
j
) yields a new BN on X∗={X∗

1 , . . . , X
∗
d}

with a graph G∗. The graph G∗ is identical to G with the
exception that the edges going into j are replaced with a
new set of edges from the new set of parents PA∗

j . The

4Note that the graphical model in Figure 3 is a Bayesian net-
work (as defined in Def. A.3) – a strictly probabilistic tool.

5Here, we continue to use the notation q(·)/p(·) when referring
to density or mass functions in the intervened/observed setting.
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intervened-upon BN has a new entailed joint distribution:

q(x) = g∗(xj |xPA∗
j
)

∏
i∈{1,...,d}\{j}

p(xi|xPAG
i
) (5)

Here, the new conditional distribution function
q(xj |xPA∗

j
)=g∗(xj |xPA∗

j
) replaces the previous one

p(xj |xPAG
j
) in the factorisation, while the remaining

conditionals are kept the same.

OBSERVED WORLD BN INTERVENED-UPON BN

Y

T

Z

Intervention on T with
an empty set of new

parents and new
conditional
g∗(t) = q(t) Y ∗

T ∗

Z∗

Joint:
p(z, t, y)=p(z)p(t|z)p(y|t, z)

Joint:
q(z, t, y)=p(z)q(t)p(y|t, z)

Figure 5. Illustration of the rule in def. 2.1 for obtaining the joint
on the intervened-upon variables from the BN over the observed
variables.

There is an intuitive connection between the graph in a
BN, and the everyday meaning of the terms ‘cause’ and
‘effect’, as has been noted by Pearl (2009). If we specify the
graph such that the distributions obtained through applying
the intervention operator match up with what we would
expect to happen were we to perform interventions in the
real system, the edges in the graph would match up with
what we would colloquially call causal relationships.

do-notation for interventions The do-notation can be
used as a shorthand for denoting the result of applying
the intervention operation. For instance, one could write
q(x)=pdo(Xk:=g∗(·|xPA∗

k
))(x) to denote an intervention on

node k with a new set of parents PA∗
k and a new condi-

tional distribution given parents g∗(·|xPA∗
k
). For atomic

interventions, the notation is often simplified further to
p(x|do(Xk=c))=pdo(Xk:=δ(· −c))(x). The conditioning-
like syntax in this notation can be seen as signifying that
this joint is equal to the distribution in a Randomised Con-
trolled Trial conditioned on Xk=c (Appendix I).

The above machinery, built on top of probability theory,
leads to some conveniences. For example, it leads to a
succinct definition of confounding: the effect of T on Y is
said to be confounded whenever p(y|t) ̸= p(y|do(T=t)).

do-calculus Once the model is defined, we can use stan-
dard probability theory to obtain any quantities of interest
from the joint. However, in the context of causal inference,
there are some common operations and, consequently, short-
cuts that might be deployed. Various “adjustment criteria”

and the do-calculus have been developed to address issues
in that domain, arguably providing utility to a practitioner
familiar with them. In Appendix J, we discuss these tools
in more detail, and illustrate how they build on top of the
language of probabilistic modelling and inference.

2.3.1. EQUIVALENCE CLASSES & DEFINITIONS

The intervention is a purely mathematical operation on a
BN and its graph; it gives us a shorthand syntax for defining
distributions over multiple settings of interest. We could
choose to parameterise the conditionals p(xi|xPAG

i
) with

parameters θ. If we were to treat the parameters Θ proba-
bilistically, we could further assume that all the variables
in settings derived by applying the intervention operator in
Def. 2.1 are conditionally independent given Θ. This would
allow us to define the exact model in Example 1 using this
shorthand notation.

However, one has to be careful when defining a joint model
with a BN and the intervention operator, because of Markov
Equivalence Classes. In the traditional way of deploying
Bayesian Networks (such as in the twin model approach),
one does not have to worry about this; the role of the graph
is strictly to specify a set of conditional independencies. If
multiple graphs entail the same set of conditional indepen-
dencies — i.e they are said to be part of the same Markov
Equivalence Class — a practitioner can pick between them
at will to enforce the same independence constraints. In this
new way of deploying Bayesian Networks — by using the
shorthand graph and the intervention operation in Def. 2.1
on the graph — different graphs in the same Markov Equiv-
alence Class can entail different joint distributions. In this
context, which graph from the equivalence class is chosen
does make a difference (see Appendix H for details), and so
one needs to carefully pick between them.

3. Counterfactuals
In the previous section, we showed one can tackle inter-
ventional questions by writing down the probability of ev-
erything. In this section, we are going to follow the same
approach to answer counterfactual questions. We will end
up with a structure that is similar to that in Example 1, but
one that shares individual rather than group variables across
the two settings of interest. We will start again by giving a
concrete example of a counterfactual inference question, il-
lustrate how to answer it within the probabilistic modelling
framework, and then relate the approach to other causal
graphical frameworks.

Example 2: Aspirin Model Counterfactual

Inference problem A friend tells you that she had a
headache before her exam. She says that she took a
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given dose of aspirin t, and the headache lasted for y
hours, disrupting her exam performance. She doesn’t re-
call the initial headache severity. You have access to the
survey dataset D = {(zi, ti, yi)}Ni=1 from Example 1.
You are now wondering: had your friend taken some
larger dose of aspirin, would her headache had gone
away before the exam?

Model and assumptions Let’s again set up a model
over all the settings of interest — the observed and
the counterfactual. In addition to the random variables
Z, T, Y in the observed setting, where Z is now latent,
we also define variables T ∗ and Y ∗, which correspond
to the counterfactual dose choice and headache dura-
tion respectively. We assume that Z — the headache
severity — is the same in the counterfactual and
the observed world. In addition, we still have the
variables for the dataset of previous fully-observed
cases {(Zi, Ti, Yi)

N
i=1}, which we can use to infer

the parameters of our model. We’ll use q(·) again
to refer to densities in the counterfactual world, e.g.
pY ∗|T∗,Z(y|t, z)=q(y|t, z) or pT∗(t)=q(t).

Again, we can further encode assumptions about how
the variables are related with a Bayesian Network:

Y

T

Z

Θ

T ∗

Y ∗Yi

Ti

Zi

OBSERVED
WORLD

COUNTERFACTUAL
WORLD

i = 1 . . . N

Figure 6. Graphical model for counterfactual inference in the
aspirin example.

In the hypothetical counterfactual world, our friend no
longer decides what dose to take based on the initial
headache severity Z — we’ve intervened to decide for
her. To reflect this assumption, we remove the edge
from Z to T ∗ in the counterfactual setting, making Z
and T ∗ marginally independent,6 and set q(t) = δ(t∗ −
t). Again, we assume qθ(y|t, z) = pθ(y|t, z).
Based on the graphical model, we can again write down
a full joint distribution over the settings of interest (Ap-
pendix B.6):

p(z, t, y, t∗,y∗,θ,D)=

N∏
i=1

pθ(zi)pθ(ti|zi)pθ(yi|zi, ti)

×
(
pθ(t|z)pθ(y|t, z) pθ(z) q(t∗)pθ(y

∗|t∗, z)
)
p(θ)

Dataset (joint) density

Observed world Counterfactual world
Shared in both

Inference We wanted to infer the likely headache dura-
tion in the counterfactual world had we given our friend
t∗ milligrams of aspirin. In the model, we can phrase
this question as the conditional probability distribution
p(y∗|t, y,D) — the distribution over the hypothetical
headache duration in response to aspirin dose t∗, given
that we’ve observed that the actual headache lasted for
y minutes after our friend took a dose t, and given the
dataset D:

p(y∗|t, y,D)=Ep(θ|D,t,y)

[∫
pθ(y

∗|t∗, z)pθ(z|t, y)dz
]

(6)
Again, we can obtain analytical formulas for the in-
ner integral in Equation (6) or for the conditional ex-
pectation E [Y ∗|T, Y,θ]. Coupled with a MAP or a
maximum-likelihood estimate of the parameters θ, we
can answer our counter-factual query (see Appendix B.7
for details).

The inner expression in Equation (6) can be interpreted
as computing the marginal over Y ∗ in an intervened-upon
model where distribution for the headache severity has been
replaced by the posterior on Z conditioned on the observed
data. This observation is useful for connecting this approach
to Structural Causal Models. See Appendix L for more
details. We’ll discuss this observation shortly.

3.1. Which Latent Variables Should We Share?

In Example 2, we considered a counterfactual world in
which our friend had the same headache severity as in the ob-
served world. Headache severity is the only variable shared
between the observed and the hypothetical world. However,
you may recall that in our original formulation of the model
in eq. 1 we specified Y = Zb

T c εY . We used this equation
as a shorthand to define that Y conditioned on T,Z is log-
normal distributed: Y |Z, T ∼ logN (Z

b

T c , σ
2
Y ). So far in this

note, we’ve only made use of this conditional distribution,
and in no way relied or considered the dependence on εY .
Should we have shared εY between the counterfactual and
the observed world? And what would it mean to share it?

If we assume that εY captures some latent person-specific
health attributes (weight, age, BMI, etc.) then it would
certainly make sense to share it if our intent was to predict
the counterfactual headache duration for the same person.
Alternatively, the variable could potentially represent the
effect of environmental factors, or even the randomness
in the actual amount of the active substance in the aspirin
tablet of a given dose, due to tolerances in the manufacturing

6Note that, if we didn’t remove the Z → T ∗ edge the choice of
a hypothetical dose T ∗ in the counterfactual world would influence
our belief over the headache severity Z in the observed world,
which would be somewhat paradoxical.
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process. In that case, it might be counterintuitive to share the
noise variable. If, in the hypothetical setting, we gave our
friend a tablet with an advertised dose, there is little reason
to expect that the variation in active substance content would
be the same as for the lower dose tablet. See Appendix M
for examples of other machine learning-specific reasons
why sharing all the noise variables might not be the right
thing to do.

All that is to say: whether to share all sources of randomness
between the observed and counterfactual settings can be con-
textual depending on the counterfactual problem at hand.
However, the way counterfactuals are typically defined in
the causal literature, all sources of randomness must be
shared (Peters et al., 2017; Pearl, 2009; Pearl & Mackenzie,
2018) as we’ll see in Section 3.2. Of course, we could still
tackle counterfactual problems in which we share all sources
of randomness in the probabilistic framework (Appendix N).
Nonetheless, sharing all sources of randomness requires
us to make much stronger assumptions (see Appendix O).
Hence, a framework that requires us to make such assump-
tions when we don’t need to for the actual question at hand
is overly restrictive.

3.2. “Classical” Approach: Structural Causal Models

In this section, we will again show how the probabilistic
approach relates to the standard tools in causal inference —
specifically, the Structural Causal Model.

We think clarifying these connections is needed, as a sur-
face view of the literature might make one confused about
what tools are sufficient or adequate for answering counter-
factual questions. For example, Peters et al. (2017) write
that “causal graphical models are not rich enough to pre-
dict counterfactuals”. Instead, they claim that a class of
models called Structural Causal Models (SCMs) is neces-
sary: “Formally, SCMs contain strictly more information
than their corresponding graph and law (e.g., counterfac-
tual statements)”. On the other hand, Kusner et al. (2017),
use Causal Bayesian Networks to reason about questions
of counterfactual nature. Others, yet, make statements im-
plying that standard probability theory is also insufficient:

“Counterfactuals, however, cannot be expressed through prob-
abilistic conditioning alone.” (Tavares et al., 2021).

Informally, a Structural Causal Model (SCM) is a Bayesian
Network on random variables X in which each variable Xk

is a deterministic function of its parents and a latent noise
variable Nj . Formally, we can define SCMs as follows
(Peters et al., 2017, §6.2):

Definition 3.1. Structural Causal Model (SCM). A struc-
tural causal model C on a set of random variables X consists
of a tuple ⟨S,G, pN⟩ where 1) G is a directed acyclic graph

on X, 2) S is a collection of d structural assignments:

Xj := fj

(
XPAG

j
, Nj

)
, j = 1, . . . , d

in which XPAG
j
⊆ {X1, . . . , Xd} \ {Xj} are the parents of

Xj in graph G and Nj are the latent noise variables, and
3) pN is a probability distribution over the noise variables
{N1, . . . , Nd} which are assumed to be independent, i.e.
pN(n) =

∏d
j=1 pNj

(nj). The SCM uniquely specifies the
distribution of the variables X ∪N.

A Structural Causal Model implies a Bayesian Network on
X with the same graph G. This is because each functional
assignment Xj := fj

(
XPAG

j
, Nj

)
and the corresponding

distribution function over the noise variable Nj yield a con-
ditional distribution on Xj given its parents:

p(xj |xPAG
j
) =

∫
δ
(
xj − fj(xPAG

j
, nj)

)
p(nj)dnj

Since the functional assignments entail the same set of con-
ditional independencies as a Bayesian Network with a graph
G, the SCM also yields the same factorisation of the joint
p(x) =

∏
j p(xj |xPAG

j
). In that sense, an SCM can be

viewed as a Bayesian Network on X with additional struc-
ture; it conveys more than a Bayesian Network on X. From
another point of view, an SCM can be viewed as a restricted
class of Bayesian Networks on X ∪N.

In that framework, to specify the counterfactual distribution,
one can use the following construction:

Definition 3.2. Counterfactuals in Structural Causal
Models. Given an SCM C=⟨S,G, pN⟩ and an observa-
tion of the variables X=x, we can define a counterfactual
SCM CCF on X∗ by replacing the distribution of the noise
variables:

CCF = ⟨S,G, pN∗⟩
The altered distribution on the noise variables is given by
pN∗(n)=pN(n|X=x). In other words, the posterior over
the noise variables given X=x in the original SCM C be-
comes the prior for the new counterfactual SCM CCF . The
noise variables in this new counterfactual SCM need not be
independent anymore.

Counterfactual statements can then be computed by inter-
vening (in the sense of the rule given in def. 2.1) on the
Bayesian Network on X∗ with graph G implied by the coun-
terfactual SCM CCF .

This definition results in an inference procedure that is no
different than what we’ve been doing in a joint model over
both settings so far (Appendices N and N.1). Following this
definition, we would first compute the posterior over the un-
observed variables N given the observed data, and then run
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inference using that posterior as a prior in a second counter-
factual model (which might have been altered to represent
that we’ve intervened on the generative process). This is
equivalent to assuming a joint model over both settings in
which N are shared, and the remaining groups of variables
(X,X∗) are independent conditioned on N. Pearl would
likely agree with that point, seeing as he himself proposed
such a ‘twin network’ model as a way to do Bayesian infer-
ence in SCMs (Balke & Pearl, 1994; Pearl, 2009, §7.1.4).
Hence, we can use SCMs and the counterfactual operator in
Def. 3.2 to define our assumptions over all settings of inter-
est, and it is just a special case of the probabilistic modelling
approach. As such, Structural Causal Models are sufficient
for counterfactual inference, but not necessary. Furthermore,
the need to specify everything in terms of ‘structural’ rela-
tions can be overly stringent for answering some types of
counterfactual questions, as we illustrated in Section 3.1.

4. Discussion
In the previous sections, we illustrated, as concretely as
possible, how to answer causal inference questions within
the probabilistic modelling framework. In this section, we
will argue why this perspective matters, why it is useful, and
why there is a prevalence of statements that on the surface
appear to oppose the main claim of this paper.

4.1. Benefits of a Probabilistic Framework

The probabilistic modelling framework is very flexible when
dealing with settings that deviate from those foreseen by
the Causal Bayesian Networks framework. (1) For exam-
ple, Von Kügelgen et al. (2023) describe a different type of
causal question they term “backtracking counterfactuals”.
The authors explicitly define a "backtracking counterfac-
tual" with a joint distribution over the observed and the coun-
terfactual settings. (2) Another example is modelling causal
questions using tools other than graphical models. It is
well-known, e.g. in the probabilistic programming literature
(Milch et al., 2007), that a wide range of interesting mod-
els can’t be represented with a Bayesian Network (or any
‘causal’ variant thereof): “Despite widespread use, causal
graphs cannot easily express many real-world phenomena”
(see Appendix P or Park et al. (2023) for examples). When
taking the probabilistic modelling approach, tackling in-
terventional and counterfactual questions in a probabilistic
programming framework is conceptually no different than
with a BN. The key principle is to specify all assumptions
over all the tasks or settings of interest. Whether this is done
through a probabilistic programming language, a BN, or
otherwise, is secondary. (3) Yet another example is doing
causal inference when we have data available from both the
interventional and the observational settings (Colnet et al.,
2023). Again, in this case, specifying a joint model over the

two settings makes it evident how to combine data from the
two sources to infer the shared model parameters.

Secondly, with the probabilistic modelling approach, we can
specify the joint and make inferences in the model however
we want. In, e.g., the SCM framework, we are prescribed
to follow the “abduction, action, prediction” steps. The
cumbersomeness of this added rigidity is illustrated in Ap-
pendix N when computing counterfactuals for Example 2.

Lastly, the probabilistic framework can lower the barrier
to entry to causal modelling to 1) many in the machine
learning community already familiar with that framework,
and 2) those that would have otherwise been turned off by
having to learn a narrowly specialised tool.

In our view, there is plenty of potential for useful work at
the intersection of causality and probabilistic modelling. In
recent history, that has certainly been the case. For instance,
Mossé et al. (2024) formally show that causal queries are
always reducible to purely probabilistic queries to prove
that causal and probabilistic languages have equal compu-
tational complexity. The movement to study identifiability
(see Appendix J.1) in deep learning broadly has been heav-
ily propelled and influenced by the causal and Independent
Component Analysis (ICA) communities (see, for example,
the plethora of references to causality and ICA in (Locatello
et al., 2019)). For instance, Von Kügelgen et al. (2021) study
identifiability in a strictly probabilistic model (Von Kügel-
gen et al. (2021, Figure 1)), but are evidently inspired by
identifiability concerns in causality, and draw connections
between their probabilistic model and interventions in a
causal one. This is also the case in Locatello et al. (2020),
who even explicitly write down the joint distribution over all
the variables of interest as recommended in this paper. Vice-
versa, the works on nonlinear ICA (Hyvarinen et al., 2019;
Hyvärinen et al., 2023) have led to plenty of novel results on
identifiability of causal representation learning (Hyvärinen
et al., 2024; von Kügelgen et al., 2023). Understanding that
causal tools can be seen as syntactic shorthands for speci-
fying joint distributions is, in our view, productive towards
these endeavours.

5. Alternative Views
We wouldn’t write this work if our main claim — that causal
inference problems can be tackled with standard probability
and statistics — wasn’t seemingly frequently contradicted
in the literature. One does not have to look far to find claims
by Pearl that “we need to enrich our language with a do-
operator” (Pearl, 2019a), and a plethora of machine learning
papers mirror this sentiment (Appendix D).

Causal-statistical dichotomy Is the answer to the dis-
agreement on the distinctness of causal and statistical ap-
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proaches to inference clear-cut? Or can it be considered
a matter of semantics or a difference in terminology? We
thoroughly explore this question in Appendix Q; in short,
it is our belief that the disagreement is primarily semantic.
Nonetheless, we argue that the terminology that leads to the
claim that ‘causal and statistical inference are distinct’ is
deeply misleading, confuses newcomers to the field, and
that the claims of a causal-statistical dichotomy should be
done away with or carefully contextualised.

Statements about the limitations of the statistical frame-
work are often directed at the caveats of using the “naïve”
approach described in Section 2.2, and are used to stress
the difficulty of specifying assumptions (Appendix F) and
the importance of identifiability concerns (Appendix J.1) in
the causal setting. However, attributing an inability to han-
dle such caveats to the entirety of the statistical framework
requires a historically inaccurate and reductionist charac-
terisation of the field of statistics. Statistics research is
well-accustomed to 1) the necessity of subjective assump-
tions for inference, and 2) tackling inference in non-static
settings (e.g. domain shift, domain adaptation or off-policy
reinforcement learning settings to name a few); two corner-
stone attributes of the causal setting that Pearl uses as a key
motivation for insisting on a causal-statistical dichotomy.
In later works (Pearl et al., 2009), Pearl tempers the ter-
minological distinction to that between associational and
causal concepts instead. Although this delineation does not
rely on unfaithfully limiting the scope of statistics — and
is in our view clearer — it does impose the causal trade-
mark on a broad class of concepts. Furthermore, the legacy
of Pearl’s activism for the causal-statistical distinction is
still reflected in the language in present machine learning
literature (Appendix D includes such examples).

6. Conclusion
In this paper, we demonstrated that you can do causal infer-
ence through probabilistic modelling by defining a model
over all settings of interest. This approach is clear, useful,
and completely general. We gave concrete examples of
causal inference questions on which we illustrated this ap-
proach and linked it to the more bespoke tools from the field
of causality, hopefully resolving the confusion surround-
ing whether you can do causal inference without the causal
framework.

To conclude, if there is ‘one key takeaway’ that we would
like the reader to come away with, we want to expand upon
MacKay’s rule of writing down the probability of every-
thing. We firmly recommend: always write down the joint
probability over all the settings you are interested in.
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A. Background and Definitions
A.1. Log-normal Distribution

In the example, we will make use of the log-normal distribution, which is defined as follows:

Definition A.1. Log-normal Distribution. A random variable X is distributed according to a log-normal distribution with
parameters (µ, σ2) when its logarithm is distributed according to a Gaussian distribution. In other words:

X ∼ logN
(
µ, σ2

)
iff logX ∼ N

(
µ, σ2

)
Definition A.2. Multivariate Log-normal Distribution. Similarly, a random vector X on Rd is distributed according to a
multivariate log-normal distribution with parameters (µ,Sigma) when its elementwise logarithm is distributed according to
a multivariate Gaussian distribution:

X ∼ logN (µ,Σ) iff

logX1

...
logXd

 ∼ N (µ,Σ)

A notable property is that product of two log-normal variables X1 ∼ logN (µ1, σ
2
1) and X1 ∼ logN (µ2, σ

2
2) is log-normal

with parameters (µ1 + µ2, σ
2
1 + σ2

2), and a log-normal variable X ∼ logN (µ, σ2) raised to a constant power c is also
log-normal with parameters (µ, c2σ2).

A.2. Bayesian Networks

Formally, a Bayesian Network can be defined as:

Definition A.3. Bayesian Network (BN). Random variables X = (X1, . . . , Xd) are a Bayesian Network with respect to a
directed acyclic graph G if the random variables satisfy the following set of independencies7:

Xi ⊥⊥ XNDG
i
|XPAG

i

where XNDG
i

are the non-descendants of Xi in G, and XPAG
i

are its parents. In other words, the non-descendants of Xi are
independent of Xi given its parents.

The graph G in a Bayesian Network simply describes the set of conditional independencies between variables in X. This set
of conditional independencies leads to a simplified factorisation of the joint distribution:

p (x1, . . . , xd) =

d∏
i=1

p
(
xi|xPAG

i

)
=

d∏
i=1

gi

(
xi,xPAG

i

)
(7)

where gi(xi, xPAG
i
) = p(xi|xPAG

i
) is the conditional probability density function of xi given its parents8. This factorisation

and the set of conditional independencies are two equivalent ways of defining a Bayesian Network; one necessarily implies
the other.

A.3. The rules of the do-calculus

In this section we give the rules of the do-calculus for reader’s reference. It is helpful to define some extra notation before
doing so. We’ll write GX for the graph obtained from G by deleting all the incoming edges for the nodes in set X. Similarly,
we’ll write GX for the graph obtained from G by deleting all the outgoing edges from the nodes in set X.

For a Causal Graphical Model (or a Structural Causal Model) with a graph G and any disjoint subsets of variables X , Y , Z
and W , the rules of the do-calculus are as follows:

7When the random variables satisfy this condition, it is often said said that they satisfy the Markov property with respect to the graph
G.

8In the above definition of Bayesian Networks we considered the case when each node corresponds to one random variable. The
definition can be trivially extended to the case in which we multiple random-variables correspond to each node. This could, for instance,
occur when dealing with image data.
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1. Insertion/deletion of observations

p(y|z,w, do(X = x)) = p(y|w, do(X = x))

if Y and Z are d-separated by X,W in GX

2. Action/observation exchange

p(y|w, do(X := x,Z = z)) = p(y|z,w, do(X := x))

if Y and Z are d-separated by X,W in GXZ.

3. Insertion/deletion of actions

p(y|w, do(X := x,Z = z)) = p(y|w, do(X := x))

if Y and Z are d-separated by X,W in GX Z(W)
where Z(W) is the subset of nodes in Z that are not ancestors of any

nodes in W in graph GX.

B. Example Derivations
B.1. Joint log-normal distribution derivation for the aspirin example

To show that [Z, T, Y ]⊤ are jointly log-normal as depicted in eq. 8, we can use the definition in eq. 1 to write:

log

[
Z
T
Y

]
=

[
logZ

a logZ + log εT
(b− ac) logZ − c log εT + log εY

]
=

[
1 0 0
a 1 0

(b− ac) (−c) 1

]
︸ ︷︷ ︸

A

[
logZ
log εT
log εY

]

Since log[Z, εT , εY ]
⊤ are jointly normal distributed as N (µ,Σ), where µ=[µZ , 0, 0]

⊤ and Σ=diag([σ2
Z , σ

2
T , σ

2
y]

⊤), an
affine transformation of these variables is also a Gaussian with mean Aµ and covariance AΣA⊤. Hence, [Z, T, Y ]⊤ are
jointly distributed as logN (Aµ, AΣA⊤). Evaluating the matrix multiplications yields the expression in eq. 8:ZT

Y

∼ logN
([

µZ

aµZ

(b− ac)µZ

]
,

[
σ2
Z aσ2

Z (b−ac)σ2
Z

aσ2
Z a2σ2

Z+σ2
T a(b−ac)σ2

Z−cσ2
T

(b−ac)σ2
Z a(b−ac)σ2

Z−cσ2
T (b−ac)2σ2

Z+c2σ2
T+σ2

Y

])
(8)

B.2. Expectation of Y conditioned on T in the aspirin example

To obtain the expression in eq. 9, first denote the mean and the covariance matrix for the joint on log[Z, T, Y ]⊤ as µ and Σ,
i.e. log[Z, T, Y ]⊤ ∼ N (µ,Σ). Using the marginalisation and conditioning properties of the multivariate normal (Wikipedia
contributors, 2020) we get:

log

[
T
Y

]
∼ N

([
µ2

µ3

]
,

[
Σ22 Σ23

Σ32 Σ33

])
log Y | log T ∼ N

(
µ3 +Σ32Σ

−1

22 (log T − µ2)︸ ︷︷ ︸
µY |T

,Σ33 − Σ32Σ
−1

22 Σ23︸ ︷︷ ︸
σ2
Y |T

)

Again, since log Y | log T is Gaussian, Y |T is log-normal distributed. We can then use the property that for a log-normal
distribution logN (µ, σ2) the expected value is exp (µ+ 0.5σ2). Plugging in the values for µ and Σ into equations for
µY |T and σ2

Y |T then yields the expression in Equation (9).

E[Y |T ] = exp

(
a(b− c)σ2

Z − cσ2
T

σ2
Z + c2σ2

T + σ2
Y

(T − aµz) + const.︸ ︷︷ ︸
independent

of T

)
(9)
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B.3. Derivation of the joint distribution in the interventional aspirin example

We can derive the expression for the joint distribution in Equation (2) as follows:

p(z∗, t∗, y∗,θ,D) = (10)

= p(z∗, t∗, y∗|θ,�D )p(D|θ)p(θ) (11)

= qθ(z
∗, t∗, y∗)

(
N∏
i=1

pθ(zi, ti, yi)

)
p(θ) (12)

= qθ(z
∗)qθ(t

∗|��z∗ )qθ(y∗|z∗, t∗)
(

N∏
i=1

pθ(zi)pθ(ti|zi)pθ(yi|zi, ti)
)
p(θ) (13)

= qθ(z
∗)qθ(t

∗)qθ(y
∗|z∗, t∗)︸ ︷︷ ︸

Interventional world

(
N∏
i=1

pθ(zi)pθ(ti|zi)pθ(yi|zi, ti)
)

︸ ︷︷ ︸
Observed world

p(θ) (14)

Let’s go through and make explicit the assumptions we exploited in the above derivation.

Firstly, in lines 11 and 12 we used the independence assumption given by the graphical model that all the observed examples
(Zi, Ti, Yi) and the interventional outcome (Z∗, T ∗, Y ∗) are independent given the model parameters θ. I.e. once we know
the parameters, the duration of one person’s headache, its severity, and the dose they took is independent of how much
aspirin someone else had taken, how long their headache lasted for, and its severity.

Secondly, in line 13 we used the fact that the aspirin dose T ∗ in the interventional setting is independent of the headache
severity Z∗, hence qθ(t

∗|z∗) = qθ(t
∗). Let’s consider in detail why this assumption makes sense. We’re interested in a

hypothetical intervention where we assign people a higher dose. To isolate the effect of aspirin, we are enquiring about an
assignment of a given dose regardless of the subject’s initial headache severity. Hence, the dose T ∗ in the interventional
setting ought to be independent of the headache severity Z∗.

These are all the assumptions we used to get us to eq. 14. We can plug in the exact forms of the distributions qθ(z∗), qθ(t∗),
qθ(y

∗|z∗, t∗) to arrive at Equation (2). Namely, by using the assumptions:

qθ(y|t, z) = pθ(y|t, z) (15)
q(t) = δ(t∗ − t) (16)

qθ(z) = pθ(z) (17)

where δ(·) is a Dirac delta function. Setting T ∗ to be delta distributed results in the property:

p(·) =
∫

p(·, T ∗= t) dt =

∫
p(·|T ∗= t) p(T ∗= t)︸ ︷︷ ︸

δ(t∗−t)

dt = p(· |T ∗= t∗) (18)

I.e. marginalising out T ∗ is equivalent to conditioning on T ∗ = t∗. This identity will come in useful below.

We can get the full joint in terms of probability density function which we know:

p(z∗, t∗, y∗,θ,D) = pθ(z
∗)qθ(t

∗)pθ(y
∗|z∗, t∗)︸ ︷︷ ︸

Interventional world

(
N∏
i=1

pθ(zi)pθ(ti|zi)pθ(yi|zi, ti)
)

︸ ︷︷ ︸
Observed world

p(θ) (19)
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B.4. Conditional expectation of Y ∗ in the intervention aspirin example

To derive the expression in Equation (3), we can write:

E[Y ∗|D] =

∫
y∗p(y∗|D)dy∗ (20)

=

∫
y∗p(y∗|t∗,D)dy∗ (using eq. 18) (21)

=

∫∫∫
y∗p(y∗, z∗,θ|t∗,D)dz∗dy∗dθ (22)

=

∫∫∫
y∗p(y∗|z∗, t∗,θ,�D )p(z∗|θ,��t∗ ,�D )p(θ|��t∗ ,D)dz∗dy∗dθ (23)

=

∫∫∫
y∗qθ(y

∗|z∗, t∗)qθ(z∗)dz∗dy∗︸ ︷︷ ︸
Calculate expectation in the intervened
world conditioned on posterior over θ

p(θ|D)dθ︸ ︷︷ ︸
Infer model parameters
using observed data D

(24)

where the cancellations in eq. 23 follow from the conditional independencies in the model.

B.5. Marginal on Y ∗ in the intervention aspirin example

In the interventional part of the model, Y ∗|Z∗, T ∗ is distributed in the same way as Y |Z, T — Y ∗|Z∗, T ∗ ∼ logN
( (Z∗)b

(t∗)c , 1
)
.

We can equivalently specify Y ∗ = (Z∗)b

(t∗)c ε
∗
Y where ε∗Y ∼ logN (0, 1). Hence, we can write:

log
[
Z∗

Y ∗

]
=
[

logZ∗

b logZ∗ + log ε∗Y − c log t∗

]
=

[
1 0
b 1

]
︸ ︷︷ ︸

B

[
logZ
log ε∗Y

]
+

[
0

−c log t∗

]
︸ ︷︷ ︸

d

Again, as this is an affine transformation of normal-distributed variables, log[Z∗, Y ∗]⊤ is Gaussian:

log

[
Z∗

Y

]
∼ N

([
µZ

bµZ − c log t∗

]
,

[
σ2
Z bσ2

Z

bσ2
Z b2σ2

Z + σ2
Y

])
Consequently, by marginalising out Z∗ we get Y ∗ ∼ logN (bµZ − c log t∗, b2σ2

Z + σ2
Y ). Using the property that for a

log-normal distribution logN (µ, σ2) the expected value is exp (µ+ 0.5σ2), we obtain:

E[Y ∗] = exp

(
bµZ − c log t∗ +

b2σ2
Z + σ2

Y

2

)
= (t∗)−c exp

(
bµZ +

b2σ2
Z + σ2

Y

2

)

B.6. Derivation of the joint distribution in the counterfactual aspirin example

Based on the graphical model, we can again write down a full joint distribution over the settings of interest:

p(z, t, y, z, t∗, y∗,θ,D) =

= p(z, t, y, t∗, y∗|θ,�D )p(D|θ)p(θ) (25)

=
(
p(z|θ)p(t|z,θ)p(y|t, z,θ)p(t∗|�y, �t, �z, �θ)p(y

∗|t∗, �y, �t, z,θ)
)
p(D|θ)p(θ) (26)

=

(
pθ(z)pθ(t|z)pθ(y|t, z)q(t∗)qθ(y∗|t∗, z)

)(
N∏
i=1

pθ(zi)pθ(ti|zi)pθ(yi|zi, ti)
)
p(θ) (27)

=

(
pθ(t|z)pθ(y|t, z)︸ ︷︷ ︸

Observed world

pθ(z)︸ ︷︷ ︸
Shared
in both

q(t∗)pθ(y
∗|t∗, z)︸ ︷︷ ︸

Counterfactual world

)(
N∏
i=1

pθ(zi)pθ(ti|zi)pθ(yi|zi, ti)︸ ︷︷ ︸
Dataset likelihood

)
p(θ) (28)
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Let’s again unpack the assumptions made at each line. We used the conditional independence assumptions embodied in the
graphical model to cancel terms in lines 25 and 26. In line 28, we make the additional assumption that qθ(y|t, z) = pθ(y|t, z);
in other words, the distribution of the counterfactual headache duration Y ∗ conditioned on Z and T ∗ is distributed in the
same way as the observed world counterpart Y conditioned on Z and T ; the effect of aspirin dose and initial headache
severity on headache duration is the same in the counterfactual world as in the observed world.

Using the properties of log-normal distributions, it can be seen that, conditioned on θ, variables [Z, T, Y, Y ∗]⊤ are jointly
distributed according to:

logN


 µZ

aµZ

(b− ac)µZ

bµZ − c log t∗

 ,

 σ2
Z aσ2

Z (b− ac)σ2
Z bσ2

Z

aσ2
Z a2σ2

Z+σ2
T a(b− ac)σ2

Z−cσ2
T abσ2

Z

(b− ac)σ2
Z a(b− ac)σ2

Z−cσ2
T (b− ac)2σ2

Z+c2σ2
T+σ2

Y b(b− ac)σ2
Z

bσ2
Z abσ2

Z b(b− ac)σ2
Z b2σ2

Z + σ2
Y


 (29)

Hence, once we have a good estimate of the parameters θ, we can use the above expression and the conditioning/marginali-
sation formulas for the log-normal distribution to answer inferential questions about the counterfactual setting.

B.7. Derivation of the conditional distribution in the counterfactual aspirin example

We can derive the expression for the conditional distribution in Equation (6) as follows:

p(y∗|t, y,D) =

∫
p(y∗|t, y,θ,�D )p(θ|t, y,D)dθ (30)

= Eθ∼p(θ|D,t,y) [pθ(y
∗|t, y)] (31)

= Eθ∼p(θ|D,t,y)

[∫
pθ(y

∗|t∗, z, �t, �y)p(z|t, y,θ)dz
]

(32)

= Eθ∼p(θ|D,t,y)

[∫
pθ(y

∗|t∗, z)pθ(z|t, y)dz
]

(33)

where we again relied on conditional independence properties entailed by the Bayesian Network in Figure 6 to arrive at the
final expression.

From Equation (31), it is clear that once we have a good estimate of the parameters θ from our dataset D, we can answer
questions about the counterfactual headache duration if we can evaluate the conditional density pθ(y

∗|t, y). This conditional
density has an analytical form. We can obtain the joint on [T, Y, Y ∗]⊤ from equation 29 by marginalising out Z. This would
yield: [

T
Y
Y ∗

]
∼ logN

([
aµZ

dµZ

bµZ − c log t∗

]
,

[
a2σ2

Z+σ2
T adσ2

Z−cσ2
T abσ2

Z

adσ2
Z−cσ2

T d2σ2
Z+c2σ2

T+σ2
Y bdσ2

Z

abσ2
Z bdσ2

Z b2σ2
Z + σ2

Y

])
(34)

It is then straightforward to obtain the expression for the conditional pθ(y∗|t, y) from the log-normal joint over [T, Y, Y ∗]⊤.
Using a MAP estimate of the parameters, we could then obtain an approximate analytical (albeit lengthy) expression the
conditional density p(y∗|t, y,D) that we were seeking to infer.

C. Derivations
C.1. Proof of the parent adjustment formula

In this appendix, we give a proof of the parent adjustment formula.

The formula says that, in the case of an intervention on Xt with an empty set of new parents, adjusting using the parents of
Xt in the observed Bayesian Network graph G is sufficient, i.e.:

q(xy) = q(xy|xt) =

∫
p(xy|xt,xPAG

t
)p(xPAG

t
)dxPAG

t
(35)

Where q(·) are the distribution functions in the intervened setting, and p(·) correspond to the observed setting. We can show
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that the parent adjustment formula holds by expanding:

q(xy|xt) =
q(xy, xt)

q(xt)
=

q(xy, xt)

g∗(xt)

=

∫ (∫
q(x)

g∗(xt)
dxother

)
dxPAG

t

where the inner integral over xother is taken with respect to all nodes {1, . . . , d} other than {t, y} ∪PAG
t . Expanding the

joint q(x):

=

∫ (∫ ����g∗ (xt)
∏

i̸=t g
(
xi, xPAG

i

)
���g∗(xt)

dxother

)
dxPAG

t

=

∫ (∫ gt(xt,xPAG
t
)
∏

i ̸=t g
(
xi, xPAG

i

)
gt(xt,xPAG

t
)

dxother

)
dxPAG

t

=

∫ (∫ ∏
i

g
(
xi, xPAG

i

)
︸ ︷︷ ︸

p(x)

dxother

)
1

gt(xt,xPAG
t
)
dxPAG

t

=

∫ (∫
p(x)dxother

)
1

p(xt|xPAG
t
)
dxPAG

t

=

∫
p(xy, xt,xPAG

t
)

1

p(xt|xPAG
t
)
dxPAG

t

=

∫
p(xy|xt,xPAG

t
)p(xt|xPAG

t
)p(xPAG

t
)

1

p(xt|xPAG
t
)
dxPAG

t

=

∫
p(xy|xt,xPAG

t
)p(xPAG

t
)dxPAG

t

where the last line is the same as the right-hand side of equation 35.

D. Claims of insufficiency of machine learning and statistics for causal inference
In this section, we give examples of apparent claims of insufficiency of machine learning, statistics, probability and
probabilistic modelling and inference for causal reasoning. The quotes are intended to showcase the seeming disagreement
with the main premise of the paper: that you can answer interventional and counterfactual inference questions with
probabilistic conditioning alone. We note that many of the quotes could be interpreted as voicing a more nuanced opinion;
even in these cases — as we note in Appendix Q — we believe they can be (and often are) easily misconstrued by newcomers
to the field. Hence, they still point to a need for greater clarity of language when discussing what probabilistic methods can
and cannot do.

•

“The field of causality was born from the observation that probability theory and statistics cannot encode the
notion of causality, and so we need additional mathematical tools to support the enhanced view of the world
involving causality.”

Park et al. (2023, p. 1)

Yet, the assumptions and axioms Park et al. (2023) formulate directly build upon (i.e. include) the axioms of probability
theory. Hence, arguably, they show that probability theory can encode their notions of causality.
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•

“Many questions in everyday life as well as in scientific inquiry are causal in nature: “How would the climate
have changed if we’d had less emissions in the ’80s?”, “How fast could I run if I hadn’t been smoking?”, or

“Will my headache be gone if I take that pill?”. None of those questions can be answered with statistical tools
alone, but require methods from causality to analyse interactions with our environment (interventions) and
hypothetical alternate worlds (counterfactuals), going beyond joint, marginal, and conditional probabilities
Peters et al. (2017).”

Pawlowski et al. (2020, p. 1)

In this work, we have shown that such questions can be answered using statistical tools (Bayesian Networks) alone. Like
many of the quotes that will follow, their claims of insufficiency of “statistical tools” can likely be attributed to ascribing a
very specific meaning to the term “statistical” (as discussed in detail in Appendix Q). Namely, if one takes it as a given that
the goal of “statistics” is only to describe the data from the “observed distribution” well (something we argue is an unfair
assessment of the field in Appendix Q), then the quote makes sense in a self-fulfilling manner. For instance, they clarify that
“In addition, deep generative models have been heavily used for (unsupervised) representation learning with an emphasis on
disentanglement. However, even when these methods faithfully capture the distribution of observed data, they are capable of
fulfilling only the association rung of the ladder of causation” (Pawlowski et al., 2020, p. 5). In our view, it should come
as no surprise that these models can only answer associational questions, when they are deployed to model associations
amongst observed variables only. This, however, does hint at the restricted meaning the authors imbue the term “statistical”
with in their work.

•

“Crucially, unlike conventional Bayesian networks, the conditional factors [in Structural Casual Models defined]
above are imbued with a causal interpretation. This enables [Structural Causal Models] to be used to predict
the effects of interventions [...].”

Pawlowski et al. (2020, p. 2)

We have successfully used “conventional” Bayesian Networks in this work to answer causal questions. Of course, the
difference likely lies in interpreting “conventional” as “the way in which Bayesian Networks are conventionally deployed”.
If one considers it “conventional” to only specify Bayesian Networks over the variables in the observed world (rather than a
hypothetical intervened-upon or counterfactual world), then the meaning of the quote is clear. We would, however, argue
that we’re not breaking any conventions by using Bayesian Networks to specify models in this way.

•

“Scientific inquiry is invariably motivated by causal questions: “how effective is X in preventing Y ?”, or “what
would have happened to Y had X been x?”. Such questions cannot be answered using statistical tools alone.”

Ribeiro et al. (2023, p. 1)

The quote again makes sense, but only under a very specific meaning attributed to the term “statistical” (Appendix Q).

•

“Counterfactuals, however, cannot be expressed through probabilistic conditioning alone.”

Tavares et al. (2021, p. 1)

In Section 3, we answer counterfactual questions using conditioning in a probabilistic model. The intended meaning of
the quote is likely that probabilistic conditioning of the random variables in the observed variables will, in general, not
correspond to the intended question when doing interventional or counterfactual inference (see Section 2.1). However, with
the specific wording the authors chose, it’s easy to come away with a different message.

•

“While Bayesian networks can uncover statistical correlations between factors, SCMs can be used to answer
higher-order questions of cause-and-effect, up in the ladder of causation.”

Ke et al. (2020, p. 1)

Although the authors do not claim Bayesian Networks cannot be used to answer questions of cause-and-effect, it is easy to
misconstrue the sentence as implying such a contrast in capabilities of SCMs and Bayesian Networks.
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•

“Many statisticians are reluctant to deal with problems involving causal considerations because we lack the
mathematical notation for distinguishing causal influence from statistical association.”

Pearl (1995, p. 1)

In this work, we show it is perfectly adequate to notate both questions about statistical association and causal influence in
the mathematical notation of probability theory. At the time, Rubin (1974) had already accomplished a similar feat. Pearl
likely means that we lack accessible mathematical notation for answering causal questions, and it is clear he did not believe
the notation of Rubin was up to the standard. We believe that the method and mathematical notation for answering causal
questions presented in this work is both clear and accessible.

•

The following are yet a few more examples of statements that makes sense under the reappropriated meaning of “statistical”
discussed in Appendix Q:

“Examples include interventional questions: “What if I make it happen?” and retrospective or explanatory
questions: “What if I had acted differently?” or “What if my flight had not been late?”. Such questions cannot
be articulated, let alone answered, by systems that operate in purely statistical mode.”

Pearl (2019c, p. 1)

“Traditional statistical learning techniques only allow us to answer questions that are inherently associative in
nature.”

Rasal et al. (2022, p. 2)

“Causal learning is motivated by shortcomings of statistical learning”

Schölkopf and von Kügelgen (2022, p. 2)

The authors of the last quote later clarify that that the cause of the issue is with wrongly making the i.i.d. assumption: “a
crucial aspect that is often ignored is that we assume [in statistical learning] that the data are i.i.d.” Schölkopf & von
Kügelgen (2022). However, that assumption is not intrinsic to a statistical approach, it is just common.

•

“Current statistical methods, in contrast, exploit associative relationships to improve prediction accuracy, which
is sound as long as distributions do not shift [...]. But interventions in a system generally lead to distribution
shift, and correlation does not imply causation.”

Paleyes et al. (2023, p. 2)

This quote could easily be interpreted as claiming that statistical methods are not able to correctly answer inference questions
in the presence of distribution shift, in particular, that induced by interventions. This is clearly possible with statistical tools,
such as Bayesian networks, which were “current” at the time of writing of the paper.

•

“To model interventions requires the ability to represent context-specific independence: in the context of an
intervention on a variable, any influences that normally have a causal effect on that variable are removed.
Bayesian networks and factor graphs lack the ability to represent such context-specific independence and so
are unable to represent interventions in sufficient detail to reason about conditional independence properties.
Pearl’s innovative do calculus was proposed as an additional mechanism outside of probabilistic inference
which allows for reasoning about interventions and hence causality.”

Winn (2012, p. 1)

•

Certain quotes could be read as making claims about the necessity of the use of a particular framework, such as Pearl’s
causal models:
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“Answering the interventional and counterfactual queries requires modeling policy interventions using a causal
model.”

Hızlı et al. (2023, p. 1)

•

Many works do, however, seem to appropriately caveat the claims about the insufficiencies of machine learning and statistical
methods by pointing these are tendencies in the research landscape:

“ML [Machine Learning] methods excel at fitting data and making predictions based on statistical associations,
but are generally unable to answer causal questions.”

Kekić et al. (2022, p. 2)

E. General “recipe” for tackling interventional problems with Bayesian Networks
Let’s briefly summarise how we could approach interventional inference using Bayesian Networks by defining a joint model
over the observed and the intervened-upon setting. This approach summarises the general steps that we used to model the
effects of an intervention in the preceding aspirin example:

1. Specify a Bayesian Network over the observed world variables X .

2. Define the joint distribution pθ(x) over the observed variables parameterised by some (usually unknown) parameters θ.

3. Specify a Bayesian Network over the corresponding variables X∗ in the intervened-upon setting by considering which
dependencies have been altered/removed compared to the observed setting.

4. Define the form of the joint distribution qθ(x
∗) in the intervened-upon setting, specifying which parts are to remain the

same as in the observed setting, and giving the form for the remaining ones.

5. The complete joint model over the two settings is constructed from the two Bayesian Networks over X and X∗ by
drawing arrows from θ to variables in both world, reflecting that the parameters θ are assumed to be the same in both
settings, and that X, X∗ are independent once the parameters are known.

In Example 1, we looked at inferring an interventional quantity of interest under one of many possible interventions. The
intervention detailed above, in which the treatment (aspirin dose) is independent of the headache severity, allowed us to
determine the efficacy of aspirin. We could have just as well extended to different, possibly probabilistic, interventions. For
instance, what if we were wondering what would happen if the national department for health issued a new recommendation
to increase aspirin dosage? In this interventional setting, the aspirin dose would still likely be dependent on the headache
severity; however, as a result of the intervention, pT∗|Z∗(t∗|z∗) would differ from the observed world. We could specify a
similar joint model as in Example 1 by designating how we believe the decision mechanism for choosing a dose based on
the headache severity would change subject to the intervention.

Effects of such “soft” probabilistic interventions are of interest in many domains, especially with regards to policy-making.
For example, consider predicting the effect of a regulation banning cigarette advertisement on the national life expectancy.
We could construct an equivalent model with T representing cigarette usage, Y the life expectancy, and Z the underlying
health attitude. In this case, the regulation is likely to alter the conditional distribution of cigarette usage given someone’s
health attitude — pT∗|Z∗(t∗|z∗) — hopefully lowering the expected number of cigarettes consumed for any given z∗;
nevertheless, T ∗ would still be dependent on Z∗ after this intervention.

Furthermore, Bayesian Networks are only one of the many tools we could use to define a joint model over the interventional
and observed settings; we could specify our assumptions in a variety of other equivalent ways. The key part is to recognise
that the variables in the interventional and observational settings might be distributed differently, and then choose a method
to define how the two settings are related by defining a joint distribution over X, X∗. In fact, as we discuss in section ??,
Bayesian Networks – and graphical models in general – are somewhat limited in that they cannot describe certain settings
that, for instance, probabilistic programming languages can.
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F. Challenges of specifying an interventional model
In the aspirin example, it was fairly easy to see how to model the intervention; we could quite intuitively deduce which parts
of the intervened-upon world to keep shared with the real world and which ones to alter. However, it is worth noting that in
general there is significant nuance to it.

In a more general setting, consider having an outcome variable Y (e.g. headache duration), a treatment variable T (e.g.
aspirin dose), and a set of remaining variables Z in the observed world. The initial instinct, based on the aspirin example,
might be to factorise the joint distribution p(z, t, y) = p(z)p(t|z)p(y|t, z) and simply replace the ‘treatment-determining’
mechanism p(t|z) with a new ‘intervention’ mechanism q(t|z) to get the joint over the interventional variables. For instance,
in the intervened-upon setting, we could specify T to be independent of Z — q(t|z) = δ(t− t∗) — mirroring what we did
in the aspirin example. Although this was adequate in said example, it is not necessarily so in the general case.

For instance, what if some of the variables in Z mediate the effect of the treatment T rather than confound it? If Z contained
a variable representing measurements of post-ingestion prostaglandin levels, for instance, making prostaglandin levels
independent of the aspirin dose could “block” the main mechanism by which the aspirin affects the headache duration. This
is illustrated in Figure 7a. When we want to infer the effects of an action to assign a given aspirin dose, we would imagine
that in the intervened-upon world the physical effect of aspirin on the body is still the same as in the observed world; that is,
we would believe that prostaglandin levels are still dependent (in the same way as in the observed setting) on the aspirin
dose ingested9.

Another important consideration is: what if there is another hidden confounder that we haven’t accounted for? For instance,
the subjects in the survey possibly based their aspirin dose decision on whether they had a fever; however, a fever might
be indicative of the headache type (migraine, tension headache, etc.), which in turn affects the effectiveness of aspirin.
We saw in section 2.1 how not accounting for a confounder could yield an inference outcome different from the one we
intended. In the intervened setting, if we are asking about hypothetically administering someone a given dose regardless
of their condition, we implicitly assume the dose assignment to be independent of the fever. However, if the model of the
interventional setting doesn’t reflect that assumption, as it doesn’t account for some hidden confounder, the output of the
inference procedure could be heavily misleading. In other words, there would be a mismatch between our interpretation of
the output of the procedure, and what it actually corresponds to. In fact, this is one of the fundamental problems of causal
inference: the hope that you have accounted for all the factors that could confound the relationship between the quantities of
interest.

T

Zm

Y

Zc

(a) Graphical model for an aspirin example with a mediator vari-
able Zm.

T

Y

Zc Zhc

(b) Graphical model with an unobserved hidden confounder Zhc.

Figure 7.

Judea Pearl’s “The Book of Why” (Pearl & Mackenzie, 2018) and “Causality” (Pearl, 2009) do an excellent job showcasing
how an incorrect treatment of such scenarios could lead to a misinterpretation of the outcome of an inference procedure.
The takeaway message advocated by Pearl is that there is no universal way to generalise from the observed distribution to
what we would interpret as an intervened-upon distribution; you need to make assumptions about the generative process for
the data, and how an intervention would change it, to be able to do so.

9Note that in this example, which variables in Z mediate and which confound requires a very simple judgement call. Any measurements
taken before the treatment decision was made are potential confounders, and any measurements taken after the treatment decision couldn’t
have possibly influenced the decision to take a given treatment. This is, however, complicated by the fact that there could be other
unobserved variables that confound the treatment decision and the measurement taken after that decision was made.
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G. Interventional inference with machine learning models
The aspirin example presented in section 2.2 is a very simple three-variable task. We could derive analytical expressions
for all conditional distributions of interest. In machine learning, however, we are often dealing with high-dimensional and
highly non-linear data. For instance, in a medical setting we might be dealing with DNA sequences or CT images rather
than something as simple as a scalar headache severity rating. How could we approach modelling interventions in these
more complex settings?

We saw previously in eq. 5 that we can factorise the joint distribution in the intervened-upon world into conditional
distribution functions shared with the observed world and those explicitely specified as part of the intervention. Each of the
conditional distribution functions had the form pθ(xk|xPAG

k
). We can use a probabilistic model of choice to model these

conditional distributions in a supervised-learning fashion using data from the observed world. For the variables without
any parents10, we could use any unsupervised learning method, e.g. Variational Autoencoders (VAEs) (Kingma & Welling,
2013) or Normalising Flows (Rezende & Mohamed, 2015), to model gθ(xk) = pθ(xk). A fairly general framework for
specifying such systems using Gaussian Processes has been proposed by e.g. Silva & Gramacy (2010).

Running inference in these models can be very application-dependent. For instance, Louizos et al. (2017) consider a
specific architecture based on VAEs for estimating Individual Treatment Effect for a specific graphical model with a
partially-observable confounder. In the more general case, however, one can imagine using e.g. ancestral sampling to
estimate any integrals of interest — first sample the variables that don’t have any parents from pθ(xk), then their children
from pθ(xk|xPAG

k
) conditioned on the sampled values, their children’s children and so on.

Hence, it should be clear that you can do causal inference using machine learning and deep learning methods. You also
don’t need to invoke any causal notation or causal-specific framework to do so.

H. Markov Equivalence Classes
There can be multiple graphs that give the same set of conditional independencies in a Bayesian Network, and hence entail
the same factorisation of the joint distribution. They are said to belong to the same Markov Equivalence Class. Recall that
in the definition of a Bayesian Network, the graph was solely used to define said conditional independencies. Hence, all
members of a Markov Equivalence Class imply the same restrictions on the joint distribution.

To give a concrete example of a Markov Equivalence Class, consider the graph in fig. 1 for the aspirin example. That
graph does not entail any conditional independencies; the factorisation that we obtain from that Bayesian Network —
p(y, t, z) = p(y|t, z)p(t|z)p(z) — is valid for any probability distribution by the product rule of probability functions. I.e.
the graph doesn’t entail any conditional independence assumptions. Hence, any rearrangement of the edges that results in a
Directed Acyclic Graph, as shown in Figure 8, yields the same set of conditional independencies.
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Figure 8. Bayesian Networks entailing the same set of conditional independencies (and consequently the same factorisation of the joint
distribution).

For the purposes of fitting the observed distribution only, if we use the graph of a Bayesian Network as a constraint on
the learnt distribution, it makes no difference which of the Bayesian Networks in the Markov equivalence class is being
considered; they all imply the same restrictions (in terms of conditional independencies) on the observed distribution. If we
tried to infer the graph by estimating the conditional independencies from observed data, we could only distinguish between
different Markov Equivalence Classes, but not between the members of each class. Even in the limit of infinite data, there is
no statistical test on the observed data to uniquely determine a member from within the equivalence class.

10Also called exogenous.

23



Probabilistic Modelling is Sufficient for Causal Inference

It should be clear that applying the rule in Def. 2.1 to the different graphs in Figure 8 will yield different interventional
distributions. For instance, an atomic intervention on T in the 6th graph in Figure 8 would make T ∗ independent of Z∗ and
Y ∗ in the intervened-upon setting, whereas same intervention on T for the 3rd graph wouldn’t introduce any independencies.

As the different graphs will, however, yield a different “interventional” distribution through the application of the rule in
Def. 2.1, this means that we can’t uniquely determine the interventional distribution from the observed data by learning a
graph. The interventional distribution is non-identifiable in the absence of further assumptions. These assumptions could,
for example, come in the form of a particular graph (and hence, implicitly, a particular interventional distribution implied by
it), or through constraints on the observed distribution (e.g. by assuming that the form of the conditional distribution of a
child variable conditioned on its parents is a specific model class, such as an additive noise model (Peters et al., 2012)).

Note that this is a complete non-issue when using a joint model over all the settings of interest. By specifying a complete joint
model over all the relevant tasks — like we did in the aspirin example — we are forced to explicitly make the assumptions
about how these tasks are related. Hence, you can either choose to specify a single model over the observed setting while
being mindful of the implicit assumptions and the Markov Equivalence Classes, or you can specify a joint model where the
assumptions are crystal clear.

I. Atomic interventions and Randomised Controlled Trials
The most prevalent type of an intervention is an atomic intervention. In an atomic intervention, no new edges are added in
the modified model (PA∗

j = ∅) and the random variable at node j is set to a constant value cj , i.e. g∗(xj) = δ(xj − cj)
11.

Intuitively, the modification to the graphical model compromises removing edges going into j and forcing the variable Xj to
take on some fixed value. This corresponds exactly to the type of intervention we considered in the aspirin example. The
post-intervention distribution for the case of an atomic intervention can be written as12:

q(x) = δ(xj − cj)
∏

i∈{1,...,d}\{j}
gi(xi,xPAG

i
)

For atomic interventions, and in fact for any intervention with an empty set of parents (PA∗
j = ∅), the conditional distribution

q(x−j |xj)=q(x1, . . . , xj−1, xj+1, . . . , xd|xj) simplifies to:

q(x−j |xj) =

g∗(xj)
∏

i∈{1,...,d}\{j}
g(xi,xPAG

i
)

 1

g∗(xj)
=

∏
i∈{1,...,d}\{j}

g(xi,xPAG
i
) (36)

whenever xj is in the support of g∗(xj). I.e., the conditional distribution given Xj = xj is the same independently of the
choice of g∗(xj), or whether the intervention is atomic or probabilistic.

I.1. Interventions and randomised control trials

Linking interventional distributions obtained through this rule to experimental studies helps to establish some intuition for
its workings. Specifically, atomic interventions have an intuitive relation to randomised control trials (RCTs).

In RCT studies, one randomly assigns the value (treatment) to a variable of interest Xj irrespective of other factors. For
instance, patients would be administered placebo or the real drug based solely on ’the flip of a coin’. This can of course
be represented by an intervention in a Bayesian Network (assuming original BN represents a non-experimental setting),
where the new set of parents of Xj is an empty set, and its value is determined purely at random, according to some
distribution g∗(xj) (e.g. Xj ∼ Bern( 12 ) if Xj ∈ {0, 1} is picked based on a coinflip). As such, it can be seen that in the BN
corresponding to the randomised control trial, the conditional distribution pRCT (x−j |xj) is the same as the conditional
distribution for a BN resulting from an atomic intervention fixing the value of Xj to xj :

pRCT (x−j |xj) =
pRCT (x)

g∗(xj)
=

(
g∗(xj)

∏
i∈{1,...,d}\{j}

g(xi, xPAG
i
)

)
1

g∗(xj)
=

∏
i∈{1,...,d}\{j}

g(xi, xPAG
i
)

11In the discrete case, a Kronecker delta function can equivalently be used.
12For the discrete case, when δ(xj − cj) ∈ {0, 1} is a Kronecker delta, this neatly simplifies to: q(x) =

∏
i∈{1,...,d}\{j} g(xi,xPAG

i
)

if xj = cj and 0 otherwise.
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J. Inference in interventional models and the do-calculus
In the aspirin example, in equations 20 - 3 we were able to obtain an expression for the conditional q(y∗|t∗,θ) in the
interventional part of the model in terms of density functions that were the same between observed and interventional worlds:
q(y∗|t∗,θ) =

∫
pθ(y

∗|t∗, z∗)pθ(z∗)dz∗. Specifically, conditioning on Z∗ allowed us to do so. This is typically referred to
as adjusting for Z.

The mathematics were simple for this three-variable model, however, what if the model was more complex? In Bayesian
Networks, are there any shortcuts to expressing the conditional of interest in the intervened-upon world in terms of
conditionals of the variables from the observed world only?

The definition for the intervention operation in BNs def. 2.1 gives an expression for the joint in term of conditionals from
the observed setting and g∗(xj ,xPA∗

j
), which is specified as part of the intervention (eq. 5). From the joint, we can obtain

any desired conditional of interest in the interventional setting by marginalising out; say, without loss of generality, we’re
interested in q(x1, . . . , xm|xm+1 . . . xn) for a BN on d variables:

q(x1, . . . , xm|xm+1 . . . xn) =
q(x1, . . . , xn)∫

q(x1, . . . , xn)dxm+1:n
=

∫
q(x1, . . . , xd)dxn+1:d∫
q(x1, . . . , xd)dxm+1:d

Where we can express q(x1, . . . , xd) in terms of densities from the observed distribution as desired. For complex models,
such as neural networks, the fraction of the two integrals could be estimated with e.g. sampling, however, it is not necessarily
trivial, and usually a simpler expression could be obtained.

For instance, in the case of an atomic intervention on xt (or any intervention with an empty set of new parents), adjusting
using the parents of xt in the observed BN graph G is sufficient. Consider estimating q(xy) under such an intervention when
Xy /∈ XPAG

t
. Then, we can obtain a potentially much simpler expression:

q(xy) = q(xy|xt) =

∫
p(xy|xt,xPAG

t
)p(xPAG

t
)dxPAG

t
(37)

The last expression in fact matches the ones we obtained for the aspirin intervention earlier:
∫
pθ(y

∗|t∗, z∗)pθ(z∗)dz∗.
Pearl and others have proposed other “adjustment sets” of this sorts, including the backdoor criterion and towards necessity
Peters et al. (2017, Proposition 6.41).

Beyond just obtaining expressions for probability distributions of interest, another consideration comes into play when some
of the variables in X are unobserved. This would mean that, for conditional probability functions in the observed setting
p(xA|xB), the ones for which a subset of variables in either xA or xB correspond to unobserved variables would not be
easily estimable. Hence, one may ask: can we express a conditional probability function in the interventional setting using
only the probability density/mass functions of the observed variables (in the observational setting) only? This would clearly
be desirable, as any such probability function can be fitted via standard supervised learning; but when is that possible? And
how could we obtain such an expression (potentially automatically from the graph)?

The do-calculus has been developed to address these questions. We’ve put its rules in the appendix A.3, or you can find
them in Pearl (2009, §3.4) or Peters et al. (2017, §6.7). A particular probability distribution in the interventional world is
called identifiable if it can be expressed in terms of distribution functions of observed variables in the observed world only
Peters et al. (2017, p. 119) Pearl (2009, Corollary 3.4.2). The do-calculus allows for finding expressions for all identifiable
intervention distributions with a repeated application of its rules13. Using the do-calculus, Tian and Pearl have developed an
algorithm that is guaranteed to find all identifiable intervention distributions (Tian & Pearl, 2012), and Schipster and Pearl
have developed a graphical criterion on G for determining identifiability of an interventional distribution (Shpitser & Pearl,
2006).

The choice to include ‘calculus’ in the name of the do-calculus adds a ring of profoundness to it, and inspires curiosity. This
has possibly instilled a somewhat warped expectation of what it actually is in some. The do-calculus simply builds on the
rules of probability theory, the definition of a BN and the definition of interventions in BNs. Its rules are derived from these,
and hence any result obtained using the do-calculus can be obtained from these underlying rules as well.

13Which you’d hope seeing as you can do this by using Defs. 2.1 and A.3 and the rules of probability theory.
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J.1. Identifiability

Above, we briefly introduced the concept of identifiability: an interventional conditional probability function (the "causal
effect") is identifiable whenever it can be expressed in terms of probability functions of the observed variables only Pearl
(2009, p. 77). This criterion conforms to a frequentist notion of identifiability wherein we would require that a quantity of
interest can be uniquely determined in the infinite observed data limit14.

Note that, from a Bayesian perspective, identifiability is not a requirement for drawing inferences about a quantity of interest.
From a Bayesian perspective, as long as we specify the model in full, there is nothing stopping us conceptually from
computing a posterior over any quantity of interest in our model. We can still concern ourselves with whether observations
reduce the (epistemic) uncertainty in the quantity we wish to infer. Generally, we won’t be able to to reduce the epistemic
uncertainty completely in the presence of non-identifiability, even in the infinite data limit, unless we encode further
restrictive assumptions through the use of the prior (in effect constraining the model class until there is identifiability).
However, even in the presence of non-identifiability, Bayesian learning can still occur (defined as whenever the posterior
distributions can differ from the prior distributions, reflecting that we have updated our beliefs based on the data (Palomo
et al., 2007)). We recommend (MacKay, 2003, § 28) for a useful discussion on this topic.

K. What is a Causal Bayesian Network?
Here, we expand on the discussion of the different definitions of a Causal Bayesian Network found in the literature.

In the main body of the paper, we recommended viewing the term Causal Bayesian Network as a — potentially useful —
piece of terminology or jargon. It has not additional mathematical meaning beyond that conveyed by the term Bayesian
Network. The term indicates that, when defining a Causal Bayesian Network over the observed variables, we intend
to use the operation in Def. 2.1 to define an interventional distribution from it, and that this obtained distribution will
reflect our assumptions about the intervened-upon setting. Whereas in Example 1 we verbally described how we interpret
the variables Z∗,T∗,Y∗ in the intervened-upon world, the interpretation of the variables resulting from applying the
intervention operation Def. 2.1 can be implicitly implied by terming the original Bayesian Network ‘causal’.

This is not too far off from how Pearl (2009, p. 23) would define Causal Bayesian Networks. Pearl’s definition (effectively)
starts with a collection of all (atomic) ‘interventional’ distributions and a Bayesian Network, and says that the Bayesian
Network is a Causal Bayesian Network for the collection of interventional distributions if applying the rule in Def. 2.1 to the
unintervened distribution matches the respective interventional distribution.15With that definition, a Bayesian Network is
only a causal Bayesian Network with respect to something — the collection of interventional distributions. To establish
that a Bayesian Network is causal, we need to specify what the set of interventional distributions is. If we leave it implicit,
we effectively just say that the Bayesian Network and the rule in Def. 2.1 is a valid shorthand for those interventional
distributions.

On the other hand, Peters et al. (2017, Def. 6.32) define a Causal Graphical Model (their name for a Causal Bayesian
Network) as effectively a Bayesian Network to which the rule in Def. 2.1 can be applied. As we mentioned in the main text,
this definition is, mathematically, not adding anything to the definition of a Bayesian Network. The underlying mathematical
object (graph and random variables) is the same, and we could just as well apply the intervention operation to a Bayesian
Network as well as the Causal Graphical Model.

Some would define Causal Bayesian Networks as Bayesian Networks in which the edges are ‘causal’. However, one quickly
finds out that this has to be a claim about the interpretation of the mathematical object at hand, rather than a definition of it.

Among all the definitions, the one given by Cohen (2022) is perhaps the clearest: “A Causal Bayesian Network is a Bayesian
Network with the word ‘causal’ prepended”. Although intended to be humorous, as a mathematical definition, it just might
be the most rigorous as well.

14As, under some reasonable assumptions, we would be able to infer all the distribution functions for all observed variables in the
infinite data limit.

15Pearl’s definition actually has one slight difference to how we described it. One would start with the collection of all interventional
distributions (including the unintervened one) and a graph. Then one can say that the graph is a Causal Bayesian Network consistent
with the interventional distributions if applying the rule in Def. 2.1 to the Bayesian Network obtained by combinig the unintervened
distribution and the graph matches the respective interventional distribution. The difference to how we described it is inconsequential, as
the the unintervened distribution and the graph can be together comprised into a Bayesian Network at the outset.

26



Probabilistic Modelling is Sufficient for Causal Inference

L. Viewing twin model inference as two-stage inference in two separate models
There is an alternative way to arrive at the inference procedure we followed in Example 2. Namely, just as we could
equivalently frame our twin model procedure in the interventional setting as inference in two separate models (the observed
and the interventional), an analogue perspective holds for counterfactuals. Recall from the graphical model that the
counterfactual variables T ∗, Y ∗ are independent of the variables in the observed setting conditioned on Z (and model
parameters θ). We could define a model over a single set of counterfactual variables — Z∗, T ∗, Y ∗ — and set the prior on
Z∗ in that model to equal the posterior on Z in the observed world:

pθ(Z
∗ = z) = pθ(z|t, y)

If we then run inference in that model, say conditioned on T ∗ = t∗, we would obtain:

Eθ∼p(θ|D,t,y) [pθ(y
∗|t∗)] = Eθ∼p(θ|D,t,y)

∫ pθ(y
∗|t∗, z∗) pθ(Z∗ = z)︸ ︷︷ ︸

=pθ(z|t,y)

dz

 (38)

This is the same expression as the one we obtained using the joint model in Equation (6). Hence, we can completely
equivalently view the joint model approach we have outlined for the aspirin example as the posterior in the observed world
becoming the prior for a counterfactual world model.

M. Other reasons to not share all the noise variables in counterfactual inference
Deciding whether to share all the noise variables between the observed and the counterfactual worlds gets even more
ambiguous once we consider noise variables that have been added to account for modelling error, rather than to represent
actual stochasticity in the data. This is a common practice in machine learning; even if the problem is known or assumed to
be deterministic, we would often specify a small observational noise to: 1) deal with models of finite capacity, or 2) make
the likelihood continuous with respect to model parameters to allow for gradient-based optimisation. If that is the case,
sharing the noise variable between the observed and counterfactual worlds is hard to link to an intuitive interpretation.

N. Counterfactual inference in the aspirin example sharing all the noise variables
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Figure 9. Graphical model for counterfactual inference in the aspirin example with the noise variable εY shared between the two settings.

We can consider what happens when we share εY across the observed and counterfactual settings in Example 2. For the
particular parameterisation on εY that we have chosen, Y = Zb

T c εY , Y is a deterministic function of Z, T and εY (conditioned
on θ). Hence, by sharing both Z and εY we could uniquely identify the counterfactual value of Y ∗ for any given T ∗. To see
this, we can write (assuming Y ∗ has the same functional dependence on εY , Z, T

∗):

Y ∗ =
Zb

(T ∗)c
εY =

(
Zb

T c
εY

)
T c

(T ∗)c
= Y

T c

(T ∗)c
(39)

which, assuming point-estimate of model parameters θ, uniquely identifies the value of Y ∗ for any given set of Y, T, T ∗.
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N.1. Equivalence to the Structural Causal Model Approach

It is illustrative to verify that the same answer follows if we follow the standard Structural Causal Model approach.

Since the joint distribution of E, T, Y (where E are the latent “noise” variables) does not have a density, and since strictly
following the “abduction, action, prediction” definition of counterfactuals in (Peters et al., 2017) requires computing a
conditional probability distribution over E conditioned on (T, Y ), the measure-theoretic details become necessary. This is
another advantage of viewing counterfactuals as a single twin model: we were able to avoid these awkward inference details
by not having to manifest a conditional probability.

Let E = (EZ , ET , EY ) be independent random variables (we implicitly assume a probability space (Ω,F , P ) throughout)
with distribution implied by the density:

pE(ϵ) = logN (ϵZ ;µZ , σ
2
Z) logN (ϵT ; 0, σ

2
T ) logN (ϵY ; 0, σ

2
Y )

Let random variables (Z, T, Y ) be defined with structural assignments (fZ , fT , fY ):

Z = fZ(EZ) = EZ T = fT (Z, ET ) = ZaET Y = fY (T,Z, EY ) =
Zb

T c
EY .

Then, ⟨S,G, pE⟩ is an SCM on the random variables (Z, T, Y ) with:

• G a directed graph on (Z, T, Y ) with edges {(Z, T ), (Z, Y ), (T, Y )}

• pE as defined above

• S = (fZ , fT , fY )

Conditioned on any observation of (T, Y ), we would construct a counterfactual SCM with exogenous variables E∗ =
(E∗

Z , E∗
T , E∗

Y ) distributed according to a version of conditional probability distribution (Billingsley, 1995, p. 439):

P [E∗ ∈ ·] := P [E ∈ ·||T, Y ]

and random variables (Z∗, T ∗, Y ∗) defined with the following intervened-upon structural equations with an atomic interven-
tion on T :

Z∗ = fZ(E∗
Z) = E∗

Z T ∗ = t∗ (t∗ is a constant) Y ∗ = fY (T
∗, Z∗, E∗

Y ) =
(Z∗)b

(T ∗)c
E∗
Y .

Note, that P [E∗ ∈ ·] is implicitly a conditional distribution (a function of ω ∈ Ω that’s measurable σ((T, Y )), but the
dependence is notationally suppressed).

Then, for every value of ω ∈ Ω, ⟨S∗,G∗, P [E∗ ∈ ·]⟩ is a counterfactual SCM on (Z∗, T ∗, Y ∗), where S∗ = (fZ , t
∗, fY )

and G∗ is directed graph on (Z∗, T ∗, Y ∗) with edges {(Z∗, Y ∗), (T ∗, Y ∗)}. In this SCM:
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P [Y ∗ = y∗] = P [
(Z∗)b

(t∗)c
E∗
Y = y∗] = P [

(E∗
Z)

b

(t∗)c
E∗
Y = y∗]

△Get into the form of a probability distribution for E∗

= P [E∗ ∈ {ϵ :
(ϵZ)

b

(t∗)c
ϵ∗Y = y∗}]

△Substitute in the definition of probability distribution for E∗

= P [E ∈ {ϵ :
(ϵZ)

b

(t∗)c
ϵ∗Y = y∗}||T, Y ]

= P

[[
(EZ)b
(t∗)c

EY = y∗
]
||T, Y

]
= P

[[
(T )c

(t∗)c
(EZ)b
(T )c

EY = y∗
]
||T, Y

]
= P

[[
(T )c

(t∗)c
(Z)b

(T )c
EY = y∗

]
||T, Y

]
= P

[[
(T )c

(t∗)c
Y = y∗

]
||T, Y

]
△Since

(T )c

(t∗)c
Y =

(T )c

(t∗)c
Y is true on the entire sample space Ω:

=

{
P [Ω||T, Y ] if y∗ = (T )c

(t∗)cY

P [∅||T, Y ] otherwise

=

{
1 if y∗ = (T )c

(t∗)cY

0 otherwise
,

where the last equality holds with probability 1 by the properties of any conditional probability (Billingsley, 1995, eq.
(33.27) and (33.28)).

O. Non-identifiability – different latent representations can yield different counterfactuals
There is another complication with trying to share an unobserved variable between the counterfactual and the observed
settings. Let’s say that we hypothesise the existence of a latent variable that represents some person or situation-specific
properties relating to how the headache duration will be affected by a given dose of aspirin. There are potentially infinitely
many parameterisations on such a latent that will give the same observed distribution, but different counterfactual outcomes.

For a concrete example, consider what would happen if the headache duration’s (Y ) dependence on εY had instead been
defined as:

Y =
Zb

T c
(εY )

sign(log T ) (40)

The marginal distribution on (Z, T, Y ) would be left completely unchanged by this revision; we’ve left the distributions
on Z and T unchanged, and the conditional distribution on Y given Z, T is the same, because both (εY )

1 and (εY )
−1 are

distributed as logN (0, 1)16.

Now, consider what would then happen if we shared εY with the counterfactual world (let’s for convenience assume that Z
is observed this time). From eq. 40, we could infer the value of the latent: εY =

(
Y T c

Zb

)sign(log T )
. The equation for the

16To see this, we can write (εY )−1 = exp (−1 log εY ) and recall that log εY ∼ N (0, 1). A standard normal distributed variable
multiplied by −1 is, however, also standard normal distributed.
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counterfactual headache duration would then take the form:

Y ∗ =
Zb

(T ∗)c
(εY )

sign(log T∗)
=

{
Zb

(T∗)c ε
1
Y

Zb

(T∗)c ε
−1
Y

=

 Zb

(T∗)c

(
Y T c

Zb

)sign(log T )
if log T ∗ ≥ 0

Zb

(T∗)c

(
Y T c

Zb

)− sign(log T )
if log T ∗ < 0

This is compared to the case for the standard formulation (Y = Zb

T c εY ), where the counterfactual outcome takes the form
Y T c

(T∗)c as shown in eq. 39. Hence, clearly, the inferred counterfactual quantity would be different for these two formulations.

Without additional assumptions, there are infinitely many ways in which the observed variables can depend on the latent
variables that could give different counterfactual outcomes. Hence, returning to the recurring theme, we need to specify
these assumptions to be able to do counterfactual inference.

P. A short causal problem not conveniently represented by a graphical model
Concretely, consider a system in which the number of random variables for one observation depends on another random
variable. Take as an example a casino game in which the player throws a dice, and depending on its outcome D, they draw
D cards {Ci}Di=1 from the deck. Then, the sum of the values of the cards drawn is compared to that of a dealer to determine
the payout. For a simple six-sided die, we ‘could’ specify six distinct card nodes Ĉi in a Bayesian Network graph, and
augment their sample space to include a special symbol when they aren’t drawn. But what if D is an infinite-sided die
(a discrete random variable taking on values in {0, 1, 2, . . .} with some probability), and we have an infinite-sized deck?
Specifying a graph on an infinite number of nodes seems cumbersome — the Bayesian Network representation for this
system seems somewhat contrived. Nonetheless, it’s still easy to imagine interventional and counterfactual questions one
might ask about this system (e.g. “would I have won had the die rolled a 6?”).

Q. Causal-statistical dichotomy
A quick glance at the causality debate reveals one of the major recurring themes: the proposition that causality is in some
sense strictly distinct from statistical analysis. Judea Pearl has repeatedly insisted that these two differ in their goals
and approaches, even coming as far as to say “If I am remembered for no other contribution except for insisting on the
causal-statistical distinction, I would consider my scientific work worthwhile” Pearl (2009, p. 332). In this section, we
summarise and comment on the arguments for such a distinction, hopefully addressing and resolving the confusion that has
arisen from this claim.

The rationale for the causal-statistical dichotomy claim is grounded in the argument that standard statistical analysis’ only
aim is to assess properties of a static distribution. Judea Pearl proclaims that causal analysis “goes one step further; its
aim is to infer not only the likelihood of events under static conditions, but also the dynamics of events under changing
conditions, for example, changes induced by treatments or external interventions, or by new policies or new experimental
designs” Pearl (2009, p. 332). Pearl maintains that there is no more to statistics than inferring or answering questions about
the properties of the observational distribution p(x). Once any property of p(x) of interest can be tractably computed with
no uncertainty, there is nothing else left to do within the realm of statistics.

This argument, of course, rests on imposing the above constraining definition onto statistics; it relies on accepting that
statistics does in fact only deal with observational distributions and static conditions. Many researchers who consider
themselves statisticians would, however, disagree with the claim that statistics reduces to inference within the observational
distribution, as there is plenty of work within the statistical realm that extends to non-static domains as well. For instance,
research in covariate and dataset shift, domain adaptation, off-policy reinforcement learning, or robustness is all about
dealing with changes in the distribution from which the variables are drawn.

If one were to consider causal-statistical distinction as a novel terminological proposition rather than a claim about the
historical limits of the fields, the nature of the argument becomes clearer. As there is nothing in a distribution function
that tells us how it would change if the external conditions were to change, there is a need for additional assumptions to
answer these kinds of questions. Andrew Gelman, who has notably criticised Pearl’s claims in his review of “The Book of
Why” (Gelman, 2019), admits that he “agree[s] [with Judea Pearl] that data analysis alone cannot solve any causal problems.
Substantive assumptions are necessary too”. One might then argue that these extra assumptions should be called causal
assumptions, and analysis that goes beyond reasoning about variables distributed according to the observed distribution
should be referred to as causal analysis. However, the necessity for assumptions is not unique to the causal setting. In
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his 2003 book, MacKay writes: “You can’t do inference – or data compression – without making assumptions”. These
assumptions are going to be subjective, but once the human input enters through the design of the hypothesis space, in the
probabilistic modelling paradigm, the inference is mechanical. Hence, the fact that causal inference requires subjective
assumptions is not a convincing argument for delineating causal inference from statistics. Lastly, as the term statistical
analysis has historically not been used exclusively to refer to the restricted scope of static distributions, the insistence on the
existence of a dichotomy between statistics and causal analysis is somewhat confusing.

In the paper “Causal inference in statistics: an overview” Judea Pearl tempers the terminological separation17described
above by suggesting a distinction between associational and causal concepts instead Pearl et al. (2009). There, he draws a
demarcation line by saying that an associational concept is any relationship that can be defined in terms of a joint distribution
of observed variables, whereas a causal concept is any relationship that cannot be defined from the observed distribution
alone. Although this definition does not rely on unfaithfully limiting the scope of statistics, it does impose the causal
trademark onto a broad class of concepts.

17Perhaps to appease the statisticians to whom the paper is addressed.
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