
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS

Notation. We start from a balanced regression dataset {(xi, yi)}Ni=1 and a equidistant partition of

observation space Y =
|B|⋃
b=1

Yb ⊂ R, |Yb| = C. To model the imbalanced sampling, we introduce

binary revealing set O = {0, 1}N to label whether (xi, yi) is sampled. In addition, probability set
P = {Pb}|B|b=1, Pb = P(yi ∈ Yb) describes the marginal probability distribution for each bin. For
each bin b, index indicator set Ub = {i|yi ∈ Yb} denotes the index of samples, and Sb = {i|Oi =
1, yi ∈ Yb} denotes index given the imbalanced observation made on raw dataset.
Definition 1. The expectation over the revealing indicator is defined as:

EO[·] = EOi∼P(Oi=1)[·].
Definition 2. (True Risk). The true risk for estimating ŷ is defined as:

R(ŷ) =
1

|B|

|B|∑
b=1

1

|Ub|
∑
i∈Ub

δi(y, ŷ),

where δi(y, ŷ) denotes any loss function with upper bound 0 ≤ δi(y, ŷ) ≤ ∆.

The definition of true risk is for the purpose of evaluation of the risk of observation space with no
sampling bias.
Definition 3. (Naive Estimator). The naive estimator for estimating ŷ is defined as:

R̂NAIVE(ŷ) =
1

|B|∑
b=1

|Sb|

|B|∑
b=1

∑
i∈Ub

δi(y, ŷ).

The definition of naive estimator is for the purpose of evaluation of imbalanced sampled dataset.
Definition 4. (IPS Estimator). The IPS estimator for estimating ŷ is defined as:

R̂IPS(ŷ) =
1

|B|

|B|∑
b=1

1

|Ub|
∑
i∈Ub

δi(y, ŷ)

Pb
.

The definition of IPS estimator is originated from Schnabel et al. (2016), for the purpose of evalua-
tion of imbalanced sampled dataset with corrected sampling probabilities.
Definition 5. (PFS Estimator). The PFS estimator for estimating ŷ is defined as:

R̂PFS(ŷ) =
1

|B|

|B|∑
b=1

1

|Ub|
∑
i∈Ub

δi(y, ŷ)

P̃b

,

where {P̃b}Bb=1 represents the smoothed label distribution utilized in our PFS’s objective function.

The definition of PFS estimator is for the purpose of evaluation of imbalanced sampled dataset with
smoothed probabilistic features.
Definition 6. (Propensity-Scored ERM). The Propensity-Scored ERM for observation space H is
defines as:

ŷERM = argmin
ŷ∈H

{R̂PFS(ŷ|P̃)}.

Lemma 1. (Tail bound for PFS Estimator). For any given ŷ and y, with probability 1− η, the PFS
estimator R̂PFS(ŷ|P̃) does not deviate from its expectation EO[R̂PFS(ŷ|P̃)]by more than:

|R̂PFS(ŷ|P̃)− EO[R̂PFS(ŷ|P̃)]| ≤ ∆

|B|

√
log(2|H|/η)

2

√√√√ |B|∑
b=1

1

P̃ 2
b

. (15)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. According to Hoeffding’s inequality states that for independent bounded random variables
Z1, . . . , Zn that take values in intervals of sizes ρ1, . . . , ρn with probability 1 and for any ϵ > 0

P(|
∑
k

Zk − E[
∑
k

Zk]| ≥ ϵ) ≤ 2 exp(
−2ϵ2∑
k

ρ2k
)

Defining Zk = R̂PFS(Ŷ
ERM|P̃), P(Zk = δi(y,ŷ)

P̃b
) = P̃b and P(Zk = 0) = 1− P̃b. With ϵ0 = |B|ϵ,

we have:

P(||B|R̂PFS(ŷ
ERM|P̃)− |B|EO[R̂PFS(ŷ

ERM|P̃)]| ≥ ϵ0) ≤ 2 exp(− 2ϵ20

∆2
|B|∑
b=1

1
|Ub|

∑
i∈Ub

1
P̃ 2

b

)

⇔ P(|R̂PFS(ŷ
ERM|P̃)− EO[R̂PFS(ŷ

ERM|P̃)]| ≥ ϵ) ≤ 2 exp(− 2ϵ2|B|2

∆2
|B|∑
b=1

1
P̃ 2

b

)

Solving for ϵ completes the proof.

Theorem 1. (Propensity-Scored ERM Generalization Error Bound of PFS). In imbalanced regres-
sion with bins partition B, for any finite hypothesis space of predictions H = {ŷ1, . . . ŷ|H|}, the
transductive prediction error of the empirical risk minimizer ŷERM, using the PFS estimator with
estimated propensities P̃ (P̃b > 0) and given training observations O from Y with independent
Bernoulli propensities P, is bounded by:

R(ŷERM) ≤ R̂PFS(ŷ
ERM|P̃) +

∆

|B|

|B|∑
b=1

|1− Pb

P̃b

|︸ ︷︷ ︸
Bias

+
∆

|B|

√
log(2|H|/η)

2

√√√√ |B|∑
b=1

1

P̃ 2
b︸ ︷︷ ︸

V ariance

. (16)

Proof.

R(ŷERM) ≤ R̂PFS(ŷ
ERM|P̃) +R(ŷERM)− EO[R̂PFS(ŷ

ERM|P̃)]︸ ︷︷ ︸
Bias

+ |R̂PFS(ŷ
ERM|P̃)− EO[R̂PFS(ŷ

ERM|P̃)]|︸ ︷︷ ︸
Variance

Bias Term. For the bias term:

R(ŷERM)− EO[R̂PFS(ŷ
ERM|P̃)]

=
1

|B|

|B|∑
b=1

1

|Ub|
∑
i∈Ub

δi(y, ŷ
ERM)− 1

|B|

|B|∑
b=1

1

|Ub|
∑
i∈Ub

Pb

P̃b

δi(y, ŷ
ERM)

≤ 1

|B|

|B|∑
b=1

1

|Ub|
∑
i∈Ub

|1− Pb

P̃b

|

=
1

|B|

|B|∑
b=1

|1− Pb

P̃b

|

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Variance Term. For the variance term:

P(|R̂PFS(ŷ
ERM|P̃)− EO[R̂PFS(ŷ

ERM|P̃)]| ≤ ϵ) ≥ 1− η

⇐ P(max
ŷi

|R̂PFS(ŷ|P̃)− EO[R̂PFS(ŷ|P̃)]| ≤ ϵ) ≥ 1− η

⇔ P(
∨
ŷi

|R̂PFS(ŷ|P̃)− EO[R̂PFS(ŷ|P̃)]| ≥ ϵ) < η

⇐
|H|∑
i=1

P(|R̂PFS(ŷ|P̃)− EO[R̂PFS(ŷ|P̃)]| ≥ ϵ) < η

⇐ 2|H| exp(− 2ϵ2|B|2

∆2
|B|∑
b=1

1
|Ub|

∑
i∈Ub

1
P̃ 2

b

) < η

⇔ 2|H| exp(− 2ϵ2|B|2

∆2
|B|∑
b=1

1
P̃ 2

b

) < η

, where 2|H| exp(− 2ϵ2|B|2

∆2
|B|∑
b=1

1
|Ub|

∑
i∈Ub

1

P̃2
b

) < η holds by (Lemma1). Solving the last line for ϵ concludes

that with probability 1− η, |R̂PFS(ŷ
ERM|P̃)− EO[R̂PFS(ŷ

ERM|P̃)]| ≤ ∆
|B|

√
log(2|H|/η)

2

√
|B|∑
b=1

1
P̃ 2

b

By combining the bound for bias term and variance term, we reach the stated results.

B EXPERIMENTAL DETAILS

B.1 KERNEL FUNCTIONS

Linear Kernel. Linear Kernel is a commonly used kernel function, which can easily probe the linear
relationship between input datum.

kLIN
θ (x1,x2) = θ

2
1 + θ

2
2x

⊤
1 x2,

where θ is the parameter learned during training.

Radial Basis Kernel. Radial Basis Kernel is also referred to as Gaussian Kernel or Squared Expo-
nential Kernel, a stationary kernel derived from the squared Euclidean distance between two inputs.

kRBF
θ (x1,x2) = θ

2
1 exp(−

∥x1 − x2∥2

2θ22
),

where θ is the parameter learned during training.

The computations of GP and PFS-PITC with kernel functions listed above are implemented on
PyTorch(Paszke et al. (2019)).

B.2 METRICS

In this subsection, we briefly clarify the metrics used to evaluate the performance of our experiments.

Mean Squared Error(MSE). MSE measures the average of the squares of the errors, which are
the differences between predicted and actual values. It gives more weight to larger errors, making it
particularly sensitive to outliers. A lower MSE indicates better model performance.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2,

where y and ŷ denotes ground truth and model prediction values respectively.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Mean Average Error(MAE). MAE represents the average absolute differences between predicted
and actual values. Unlike MSE, it treats all errors equally, providing a straightforward interpretation
of model accuracy. A smaller MAE signifies better predictive performance.

MAE =
1

n

n∑
i=1

|yi − ŷi|.

Negative Log Likelihood(NLL). NLL quantifies how well the predicted probability distribution
aligns with the observed data. It is commonly used in probabilistic models, where a lower NLL
indicates a better fit of the model to the data.

NLL =
1

2
log |KN +Σ|+ 1

2
y⊤(KN +Σ)−1y +

N

2
log(2π).

Correlation Coefficient(CORR). CORR measures the correlation coefficient between predicted
and actual signals, making it a common metric for evaluating time series prediction. It validates the
relationship between signals, where a higher CORR indicates better prediction accuracy of the time
series signals.

CORR =
1

n

n∑
i=1

∑
t
(yit − Ê[yi])(ŷit − Ê[ŷi])√∑

t
(yit − Ê[yi])2(ŷit − Ê[ŷi])2

.

B.3 SYNTHETIC DATASET

The synthetic regression task considers the following ground-truth function with observation
noise:f(x) = exp(x) ∗ cos(2πx) ∗ (2 + ϵ), ϵ ∼ N (0, 1). Training inputs are gathered from the
combination of two separate distributions on input variables:D = {(xi, yi)} ∪ {(x′

j , y
′
j)}, xi ∼

N (0, 1), x′
j ∼ N (2, 1). Test inputs are gathered from a uniform distribution and are free of ob-

servation noise:Dtest = {(x∗
i , y

∗
i)}, x∗

i ∼ U (2.5, 3.5), ϵ = 0. This sampling process generates
200 training samples and 100 test samples with interleaved distributions to simulate training on an
imbalanced dataset while testing with balanced demands.

We establish Gaussian Processes (GP), local GP, and PFS-PITC based on the RBF kernel, training
them with the Adam optimizer at a learning rate of 3e− 3 over 1,000 iterations. For PFS-PITC, we
adopt a bin number of 80 to maximize its performance improvement. When implementing local GP,
we set the number of clusters to 4, aiming to enable its adaptation to varying noise amplitudes. The
outcomes of this experiment are presented in Figure 3, which illustrates the training and test samples
along with the mean ± standard error curves of the three algorithms for comparison.

B.4 REGRESSION DATASET

In the regression dataset experiment, we first preprocess the input features and split the dataset to
simulate sampling imbalance. We eliminate duplicate observations of input variables and apply
min-max normalization to mitigate potential distribution shifts. Next, we create 100 equal-distance
intervals for the sample targets and corresponding variables to assess target distribution. Instances
within each bin are allocated to the training, validation, and test datasets in sequence until the quota
is met. The quota is set at the 90th percentile of the sample size for each bin, ensuring label balance
in the test set. After this process, the sizes of the training, validation, and test sets are 4,656, 2,289,
and 2,582 for the CCPP dataset, and 4,656, 2,289, and 2,582 for the CCS dataset.

To evaluate the influence of feature extractor on different algorithms, we employ the feature extractor
introduced in Finn et al. (2017) on CCS dataset, which consists of a two-layer MLP with ReLU
activation that doubles the dimensionality of the input features. The Adam optimizer is again utilized
to train the model over 500 iterations, with a batch size of 512 samples. A learning rate of 1e− 3 is
applied to the feature extractor, while a learning rate of 3e− 3 is used for the GP parameters.

Most algorithms in this experiment synthesize artificial samples to alleviate sampling imbalance,
implemented on the training set prior to feature extraction. An exception is FDS, which applies

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

smoothing to latent features for performance enhancement. Utilizing the source code of FDS (Yang
et al. (2021)), we implement it to operate during the training iteration of GP. For PFS-PITC, the
smoothing operation is performed using a Gaussian kernel with a size of 5 and an update rate of
0.05. We test three numbers of bins on each dataset to validate the stability of PFS-PITC concerning
the partitioning of bins.

The experiment for each algorithm is repeated five times to provide statistical information for sta-
bility assessment. We record performance metrics, including MAE, MSE, and NLL, to demonstrate
the impact of each algorithm on both regression output and parameter optimization of the Gaussian
process model.

B.5 TIME SERIES PREDICTION

In the preprocessing stage, we apply maximum normalization to ensure numerical stability. The
dataset is then split into training (60%), validation (20%), and test (20%) sets in chronological order.
The feature extractor combines CNN and MLP architectures. An initial 2D convolutional layer with
a kernel size of 6 captures local temporal patterns from the input data, followed by a ReLU activation
layer and a dropout layer (dropout rate = 0.2). The two-layer MLP is configured with intermediate
and output layer dimensions set to 512 and 256, respectively. For the Gaussian Process, we utilize a
mixture of linear and RBF kernels. A regularization coefficient of 1e− 4 is added to the diagonal of
the kernel matrix to prevent floating-point calculation errors that may lead to a non-positive definite
kernel matrix. During the training process, we employ the Adam optimizer to train each model for
500 epochs, using a learning rate of 3e − 3 for GP parameters and 1e − 3 for the feature extractor.
In the calculation of PFS-PITC, the smoothing operation is applied using a Gaussian kernel with a
size of 3 and an update rate of 0.05. We present the test results for PFS-PITC with three different
numbers of bins to examine the impact of bin partitioning on time series prediction. Additionally,
three look-ahead horizons{3, 6, 12} are tested on each dataset to assess the prediction stability of
each algorithm.

19

	Theoretical Analysis
	Experimental Details
	Kernel functions
	Metrics
	Synthetic Dataset
	Regression Dataset
	Time Series Prediction

