
Under review as a conference paper at ICLR 2023

A LAZY LOVÁSZ ALGORITHM

A.1 CLASSIC LOVÁSZ ALGORITHM

Here we illustrate the steps of the classic Lovász method (Lovász, 1985) for the coherence of this
research. The first two steps of the classic Lovász method are the same as the CLE method. For
the third step, the algorithm invokes a depth-first search (DFS) to detect all the cycles in graph F .
Assume DFS returns a list of cycles {Ci}Li=1 (L ≥ 1). For each cycle Ci in graph F , the method
would detect all the vertices that is connected to the cycle Ci, noted as Hi (Ci∩Hi = ∅). We denote
those vertices non-reachable from Ci as Ki, which is defined as:

Ki := {v|v ∈ V, v ̸∈ Ci ∪Hi} (14)

Let d(vk, xc) be the shortest distance from vk ∈ Ki to xc ∈ Ci, where the path could include
vertices and edges not in F . Let βi be the shortest entering distance from outside (i.e., Ki) into
cycle Ci. We have:

βi : = min{d(xk, xc)|xk ∈ Ki, xc ∈ Ci} (15)
Let Ui be the set of vertices to be contracted:

Ui := {v| min
xc∈Ci

d(v, xc) ≤ βi}

We then shrink every Ui, which is a region of distance βi centered at Ci, into one single vertex ui.
The self-connected edges to ui will be deleted. We denote the contracted graph as G′ and update
the weight of edges related to ui. For every incoming edge that is previously connected to the set of
vertices Ui, the edge weight would be adjusted as:

A(v, ui) = min
xu∈Ui

A(v, xu) + di(xu, Ci)− βi (16)

All the rest edges stay the same. Afterward, the classic Lovász approach iteratively updates over
graph G′ until there are no cycles. Finally, the Lovász method performs the same expansion step as
in the CLE method to find the exact edges that form MWA in the original graph G.

B IMPLEMENTATION AND RUNNING TIME ANALYSIS

B.1 UNDER O(n) GPU PROCESSORS

We dedicate this part to showing the difference between the existing Lovász-based algorithm. The
main difference is that our approach trade-offs the time efficiency for hardware limitations that only
O(n) processors are available. While Lovász (1985) requires O(n3) processors for the best time
efficiency.

Step 1: Edge Preprocess. The first step is to find the minimum incoming edge for each vertex. In
Lavá method, every vertex launches a processor to check all the incoming edges, which takes O(n)
time. Instead, Lovász (1985) uses the idea of parallel divide-and-conquer, that O(n) processors with
O(log n) time to find the minimum edge for a vertex.

If we limit the size of processors to O(n), then Lovász (1985) would take more time than ours.
The classic Lovász method still can process every vertex using O(log n) time but need to process
vertices sequentially. The total time under this hardware constrained setting for Lovász (1985) would
be O(n log n).

Subtract Min Incoming Edges. We subtract the value of the minimum incoming edge from all
the incoming edges of every vertex. In our method, the jth processor sequentially subtracts aj
(in equation 7) for all the incoming edges of the jth vertex. So our method takes O(n) time with
O(n) processors. Instead, Lovász (1985) launches a processor for every edge for subtraction, which
takes O(1) time with O(n2) processors.

If we limit the size of processors to O(n), Lovász (1985) takes the same time complexity as ours.
Specifically, Lovász (1985) processes all the incoming edges for one single vertex in parallel and
then sequentially goes through all the vertices. Thus, the overall time is O(n).

Termination Criterion. This step is to find if there is a directed cycle. In our method, jth pro-
cessor maintain a distance dictionary they can reach jth vertex and overall it would takes O(log n)

13

Under review as a conference paper at ICLR 2023

iterations. At tth iteration, the jth processor checks for the parent vertex that are 2t step away from
the current vertex. See figure 5 as an example. Note that in this specific problem, except the root,
every vertex has exactly one parent vertex with one single incoming edge. In total, our method takes
O(log2 n) time with O(n) processors.

x1 x2 x3 x4 x5 x6 x7 x8 x1

Iteration 1

Iteration 2

Iteration 3

At every iteration, every vertex updates its reachability vector in parallel.
For a cycle with 8 edges, it takes iterations.log2 8 = 3

Input cycle

Figure 5: Illustration of checking cycle.

In Lovász (1985), fix jth vertex, O(n2) processors are launched in parallel for every edges to check
if vertex xj can reach any new vertex through the edge and it would takes O(log n) iterations. In
summary, Lovász (1985) takes O(log n) time with O(n3) processors.

If we limit the size of processors to O(n), then Lovász (1985) cannot be more efficient than our
method for this step. The classic method would process edges sequentially for every vertex, tak-
ing O(n2 log n) time with O(n) processors. In another approach, Lovász (1985) would process
only adjacent edges for every vertex, which uses the same time and processors as ours.

Note that in the sequential setting with 1 processors, we can use the DFS method to recursively find
the parent of the current vertex. Since there are only n− 1 edges, DFS only needs O(n) time.

C DETECTING WCCS

C.1 DEPTH FIRST SEARCH FOR DETECTING WCCS

Classic algorithms for detecting the connected components are mainly based on DFS. For example,
Tarjan’s algorithm is applied to find strongly connected components (i.e, the cycle C on graph F),
and thereafter a separate DFS is applied with any vertex on the cycle to determine H . Note that
Tarjan’s algorithm internally is based on DFS. For the dense graph, it takes take O(n2) time. The
proposed approach also takes O(n2) time. But the actual execution of our approach is on GPU,
which is highly optimized for all the matrix computations and avoids transferring the matrix moving
from CPU to GPU or vice versa. Thus our approach can have a more efficient empirical running
time than the DFS-based algorithms in practice.

C.2 BINARY MATRIX MULTIPLICATION FOR DETECTING WCCS

After “step 1: edge pre-process”, the obtained graph F contains n − 1 edges. In the corresponding
adjacency matrix F ∈ {0, 1}n×n, Fij = 1 implies the edge xi → xj exists. The matrix power in
Eq. 8 is defined as: is there a two-step path from xi to xj using edges only in F ?

(F × F)ij =

{
1 there exists xk ∈ F, s.t. xi → xk → xj

0 otherwise

which has the same meaning using the element-wise logic operators: (F × F)ij =
∨

1≤k≤n(Fik ∧
Fkj). An intuitive idea is to define:

S =

n−1∨
k=1

F k = F ∨ F 2 ∨ . . . ∨ Fn−1 (17)

14

Under review as a conference paper at ICLR 2023

Sij = 1 means there is a path from vertex xi to vertex xj in less than n − 1 steps. Since there
are n − 1 edges in graph F , the last element in the equation of S is Fn−1. Directly computing S
using the logical-AND operator and logical-OR operator requires O(n) to compute every F k for
1 ≤ k ≤ n, which is not time efficient. Therefore we propose Eq. 9 by observing the following
equivalence: (F ∨ F 2)ij = 1 if xi can reach xj with 1 or 2 steps.

Let I be the identity matrix. Following the definition in Eq. 8, the element ((I ∨ F) ∨ F)ij is
computed as:

((I ∨ F)× F)ij =
∨

1≤k≤n

((I ∨ F)ik ∧ Fkj)

=
∨

1≤k≤n

((Iik ∧ Fkj) ∨ (Iik ∧ Fkj))

=

 ∨
1≤k≤n

(Iik ∧ Fkj)

 ∨

 ∨
1≤k≤n

(Fik ∧ Fkj)


=

 ∨
1≤k≤n

(Fij)

 ∨

 ∨
1≤k≤n

(Fik ∧ Fkj)


= Fij ∨ F 2

ij

(18)

Thus (I ∨ F) ∨ F computes the same thing as F ∨ F 2. Another benefit is that we can combine the
whole series. For example, let n = 4,

4∨
k=1

F k = F ∨ F 2 ∨ F 3 ∨ F 4 =
(
F ∨ F 2

)
∨
(
F 2 ∨ F 3

)
∨
(
F 3 ∨ F 4

)
= ((I ∨ F) ∨ F)) ∨

(
(I ∨ F) ∨ F 2)

)
∨
(
(I ∨ F) ∨ F 3)

)
= (I ∨ F)

3∨
k=1

F k

= (I ∨ F)2
2∨

k=1

F k

= (I ∨ F)3F

The mentioned divide-and-conquer trick works as follow: We can first compute S1 = (I ∨ F) at
round 1 and then compute (I ∨ F)2 by doing S2 = S2

1 . In the next step, we compute (I ∨ F)4 by
doing S3 = S2

2 . In fact, k-th round computes Sk = S2
k−1 = (I ∨ F)2

k

. Therefore, we state that
O(log n) round is needed to compute the whole series in Eq. 9 and is empirically more efficient to
compute, compared to the computation involved in the definition in Eq. 17.

C.3 MATRIX INVERSE FOR DETECTING WCCS

Numerically, the logic-AND operator computes the same thing as the add operator. Another reason
we need to transfer to add operator is that we can apply matrix inverse property on top of it. Let
S =

∑n−1
k=1 F

k, where Sij > 0 (previously we use Sij = 1) implies vertex xi can reach vertex xj

within n− 1 steps.

Directed computing S using the above divide-and-conquer trick would be slower because arithmetic
operations are slower than logic operations. For example, arithmetic multiplication is slower than
bit-wise level logical-OR operations. Instead, we further extend at most n− 1 steps to infinite steps,
where vertex xi can take infinite steps to reach vertex xj in graph F . Let S =

∑∞
k=1 F

k, we have

S + I = I+ F + F 2 + F 3 + . . .

(S + I)F = F + F 2 + F 3 + . . .

15

Under review as a conference paper at ICLR 2023

Thus we obtain S = (I − F)−1 − I. However, the power series on the RHS almost certainly does
not converge numerically. So that the matrix inverse does not exist.

We introduce a hyper-parameter α > 0, to solve the numerical convergence problem. We re-define
S =

∑∞
k=1 α

kF k. Following the same analysis, we obtain

S = (I− αF)−1 − I (19)

If we choose a small α , the infinite series on RHS would converge. In experiment, we set α = 0.9.
Solving the matrix inverse is generally not recommended, since numerically the solver tends to incur
large errors for the large matrix. We show the numeric stability in Fig. 3(c) and empirical running
time in Fig. 3(d).

To conclude, the matrix-inverse approach is another approach for computing strongly connected
components (C) and weakly connected components (C ∪ H). See the following example for a
detailed overview of the result.

Example 2. Using Fig. 2(a) left figure as an example. The corresponding adjacency matrix F and
matrix S = (I− αF)−1 − I are:

F =


x1 x2 x3 x4 r

x1 0 1 0 0 0
x2 1 0 1 0 0
x3 0 0 0 1 0
x4 0 0 0 0 0
r 0 0 0 0 0

 S =


x1 x2 x3 x4 r

x1 1.01 1.01 1.01 1.01 0
x2 1.10 1.10 1.10 1.01 0
x3 0 0 0 1.01 0
x4 0 0 0 0 0
r 0 0 0 0 0

,
Since S11 > 0 and S22 > 0, vertices x1 and x2 are on the cycle. In fact, the two vertices are on the
same cycle by the following analysis. By equation 10, 1) the set of vertices that x1 can reach from
and to can be determined by

S ∧ S⊤ =


x1 x2 x3 x4 r

x1 1.01 1.01 0 0 0
x2 1.10 1.10 0 0 0
x3 0 0 0 0 0
x4 0 0 0 0 0
r 0 0 0 0 0


so we obtain C = {x1, x2}. 2) the set of vertices that can be reached from the cycle but not on the
cycle are H = {x3, x4}. 3) the set of vertices that are non-reachable from the cycle K = {r}.

C.4 OTHER APPROACHES FOR DETECTING CYCLES

There exist more advanced algorithms for detecting WCCs on GPU, that can have faster theoretical
running time but are non-trivial to be implemented (Barnat et al., 2011; Azad & Buluç, 2019; Zhang
et al., 2020). There are line of work in parallel DFS (Träff, 2013; Naumov et al., 2017) that requires
to pre-process the general directed graph into directed acyclic graph.

D PROOF OF THEOREM 1

Here we present detailed proof of the upper bound on the number of contractions that our Lavá
method takes.

Proof. 1) According to the steps of Lavá, there exists at least one super vertex in the cycle. Other-
wise, this cycle would be contracted in the previous rounds, which contradicts the assumption.

2) We then prove by contradiction that there are at least exists two contracted vertices. Suppose we
have only one super vertex ui in the contracted graph. In the original graph, this cycle corresponds
to a path starting at Ui and ending at Ui. No vertex on this path is included in Ui. Based on the edge
weight update rule in Eq. 13, we have

0 = A′(xj , xk) = A(xj , xk) + di(xk)− βi ≥ di(xj)− βi.

16

Under review as a conference paper at ICLR 2023

where di(xj) and di(xk) is the shortest entering distance from xj and xk to Ci correspondingly. In
the worst case, x can pick xj ⇝ xk ⇝ Ci as the shortest path. In any other case, xj can find a
shorter one. So the RHS is always smaller than or equal to the LFS. This implies that xj ∈ Ui by
the definition of Ui (in Eq. 12), which forms a contradiction. This proves that there exists at least
two super vertices in the cycle.

3) By induction on the rounds, the t-th round at least contracts 2t vertices in the original graph G.
Therefore, Lavá takes at most O(log n) rounds.

E CLOSED FORM FOR COMPUTING logZθ(x)

The Laplacian matrix L of graph G is defined as:

Lij(x) =

{
− exp(ϕθ(xi, xj)) if xi ̸= xj∑

xk ̸=xi
exp(ϕθ(xi, xk)) otherwise

(20)

Define det(L) be the determinant of a matrix L. Let det+(L) to denote the determinant of matrix L
with the last row and column removed. By the matrix tree theorem (Durfee et al., 2017), logZθ(x)
can be computed in a closed form as: Zθ(x) = det+(L). So we can easily obtain:

logZθ(x) = log det+(L((x))) (21)

We can use this exact solution to evaluate the wellness of the perturbation-based solution in Eq. 5.

F EXPERIMENT SETTINGS

F.1 IMPLEMENTATIONS

For programming convenience, all the baselines and our implementations are based on Python3.9.
We acknowledge that implementation in low-level programming language would use less time. Here
we want to evaluate the time growth pattern that every algorithm would take, which is orthogonal to
the choice implementation language. Our code sample can be found at the following link:

G ADDITIONAL EXPERIMENTS

Please find our (anonymous) online code repository at:

https://anonymous.4open.science/r/lazy_lovasz-0475/

The CLE method used in the experimental analysis is from the standard implementation in AllenNLP
package1.

The set of baselines in Fig. 3(d):

• Tarjan-DFS (cpu) from the scipy sparse graph library2. The implementation use an iterative
version of Tarjan’s algorithm to find the strongly connected components of a directed graph.
The algorithmic complexity is for a graph with n edges and n − 1 vertices is O(n). The
GPU version is still under heavy development and is not available for time benchmark3.

• The “matrix inverse (cpu)” is computed from Numpy linear algebra API4. The “matrix
inverse (gpu)” is computed with Cupy linear algebra API5.

1https://github.com/allenai/allennlp/blob/main/allennlp/nn/chu_liu_
edmonds.py

2docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.
connected_components.html

3docs.cupy.dev/en/stable/reference/generated/cupyx.scipy.sparse.
csgraph.connected_components.html

4numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
5docs.cupy.dev/en/stable/reference/generated/cupy.linalg.solve.html

17

https://anonymous.4open.science/r/lazy_lovasz-0475/
https://github.com/allenai/allennlp/blob/main/allennlp/nn/chu_liu_edmonds.py
https://github.com/allenai/allennlp/blob/main/allennlp/nn/chu_liu_edmonds.py
docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html
docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html
docs.cupy.dev/en/stable/reference/generated/cupyx.scipy.sparse.csgraph.connected_components.html
docs.cupy.dev/en/stable/reference/generated/cupyx.scipy.sparse.csgraph.connected_components.html
numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
docs.cupy.dev/en/stable/reference/generated/cupy.linalg.solve.html

Under review as a conference paper at ICLR 2023

• The “BMM (cpu)” is implemented with Numpy’s logical operations6. and the “BMM
(cpu)”. The “BMM (gpu)” is implemented with Cupy’s logical operations7, which is be-
cause PyTorch does not implement low precision matrix multiplication.

G.1 GRAPH-BASED DEPENDENCY PARSING

Dependency parsing considers the syntactic structure of a sentence, which describes the grammat-
ical relations among words Jurafsky & Martin (2009). The notion of non-projectivity considers
languages with flexible word order, like German, Dutch, and Czech McDonald et al. (2005). Words
in sentences are formulated as vertices a in graph, which avoids the short and long-range accuracy
difference when representing sentences as sequences McDonald & Nivre (2011).

In what follows, x = [root, x1, . . . , xn] represents an input sentence with root being the dummy
root. Let T denote the ground-truth dependency tree for sentence x. The annotation tree T is
composed of n edges, where every (vxi

, vxj
) ∈ T is a directed dependency relation from the head

word xi to modifier word xj . Figure 6 shows the non-projective dependency analysis as a tree
alongside its universal part-of-speech (UPOS) tags for the example “A hearing is scheduled on the
issue today”. The learning task is to learn a neural model given annotated training data {xi, Ti}Ni=1.
In testing, we need to predict a dependency tree with the optimal score for a given input x′.

DT NN VBZ VBN PREP DT NN NN

A hearing is scheduled on the issue today

root

det

nsubj:pass

aux:pass

case

det

nmod

nmod:tmod

Figure 6: A non-projective dependency tree with fixed root for sentence along with part-of-speech
tags. Directed arcs represent the head-modifier relation between words, and the labels on the arcs
denote the dependency type. The task is to assign every sentence a labeled grammar tree for under-
standing the structure and composition of sentences.

Datasets & Evaluation Metrics. For the choice of data, we select 4 popular languages in the
Universal Dependency Dataset (de Marneffe et al., 2021)8, the statistics of which are shown in
Table 2. For the evaluation of the models, we report Labeled Attachment Score (LAS) for labeled
cases and Unlabeled Attachment Score (UAS) for the unlabeled case.

Table 2: Statistics dependency parsing datasets of multiple languages. The table includes the number
of sentences in the training, development, and testing datasets.

Du-ALP En-GWT Fr-GSD Cr-SET

Train 12269 14187 2914 14450
Dev 718 1400 707 1476
Test 596 426 769 416

Model Settings. The deep neural network used in this application follows the NeruoMST model Ma
& Hovy (2017). Our implementation and analysis are conducted on top of their code repository 9.
Our neural architecture is composed of 3 layers Bi-LSTM layers with dimension 512, which serve
to transform the input sentence into a sequence of vectors. We use Fasttext pretrained embeddings10

6numpy.org/doc/stable/reference/routines.logic.html
7docs.cupy.dev/en/stable/reference/logic.html
8universaldependencies.org/
9https://github.com/XuezheMax/NeuroNLP2

10https://fasttext.cc/docs/en/crawl-vectors.html

18

numpy.org/doc/stable/reference/routines.logic.html
docs.cupy.dev/en/stable/reference/logic.html
universaldependencies.org/
https://github.com/XuezheMax/NeuroNLP2
https://fasttext.cc/docs/en/crawl-vectors.html

Under review as a conference paper at ICLR 2023

for the initialization of the embedding layer. Then the biaffine attention mechanism is used for
computing the edge weight of the score Dozat & Manning (2017).

For the logZθ approximation task, we ask the model to predict M = 1000 MWA with the perturbed
adjacency matrix and then computes the empirical average based on Eq. 5:

logZθ(x) =
1

M

M∑
i=1

max
T ′∈T (x)

∑
(xi,xj)∈T

ϕθ(xi, xj) + g′ij , g′ij ∼ Gumbel(0, 1) (22)

if u is drawn form the uniform distribution between (0, 1), then − log(− log(u)) follows the Gumbel
distribution. Here we draw i.i.d. gumbel variable g′ij from its distribution we obtain a adjacency
matrix A′

θ based on the new edge weight ϕθ(xi, xj) + g′ij for all xi, xj ∈ x. We then compute the
noisy MWA. After M iterations, we compute the averaged score of the noisy MWA and thus obtain
the approximated value logZθ(x). To quatify how well is the noisy estimation, we compute the
distance between the exact solution by Eq. 21 and our estimation:

apx. err. =
1

N

N∑
k=1

| log det+(L((xk)))− logZθ(x
k)| (23)

This metric can help us to reveal the learning process of arborescence using the Gumbel-max trick.

G.2 SYNTHETIC DENSE GRAPH

Synthesised Dataset Generation. We present the statistics of the round of contractions taken by
the CLE method for graphs of different sizes. For this synthetic experiment, we fix the number of
vertices |V | from 25 to 211 and assign edge weights using uniform distribution between ∈ [−1, 1]
for every pair of edges. We generate 100 dense graphs for a fixed |V | with random weights and
evaluate the number of contractions the CLE approach takes.

19

	Lazy Lovász Algorithm
	Classic Lovász algorithm

	Implementation and Running Time Analysis
	Under O(n) GPU Processors

	Detecting WCCs
	Depth First Search for Detecting WCCs
	Binary Matrix Multiplication for Detecting WCCs
	Matrix Inverse for Detecting WCCs
	Other Approaches for Detecting Cycles

	Proof of Theorem 1
	Closed Form for Computing Z(x)
	Experiment Settings
	Implementations

	Additional experiments
	Graph-based Dependency Parsing
	Synthetic Dense Graph

