
Published as a conference paper at Deep RL Workshop NeurIPS 2022

A BENCHMARKING METHODS

A.1 RE3

Given a trajectory {s0,a0, . . . ,aT−1, sT } collected the agent, RE3 first uses a random encoder to
encode the visited states before using a k-NN estimator to compute the state entropy (Seo et al.,
2021). Denote by E = {ei}Ti=1 the encoding vectors, RE3 proposes to define the intrinsic reward as

r̂(st) = log (µk(et, E) + 1) . (8)

Then the intrinsic reward can be used to online RL and unsupervised pre-training.

A.2 RIDE

RIDE is built based on the ICM (Pathak et al., 2017), which trains a forward and an inverse dynamics
model to learn the representation of the state space. Denote by φ(s) the state representation, RIDE
computes the intrinsic reward as the following Euclidean distance:

r̂(st) =
‖φ(st+1)− φ(st)‖2√

Nep(st+1)
, (9)

where Nep is the state visitation frequency during the current episode. Nep is used to discount
the intrinsic reward, which prevents the agent from lingering in a sequence of states with a large
difference in their embeddings.

B DETAILS ON ATARI GAMES EXPERIMENTS

B.1 ENVIRONMENT SETTING

To handle the graphic observations, we stacked 4 consecutive frames as one state, and these frames
were cropped to the size of (84, 84) to reduce the computational complexity. Moreover, we clip
the extrinsic reward using a sign function to accelerate the training process. To simulate the sparse-
reward scenario, we modified the original environment by adding a reward constraint, which will
randomly set the value of extrinsic reward as zero.

B.2 EXPERIMENTAL SETTING FOR RL

In this work, we used a PyTorch implementation of A2C and PPO that can be found in (https:
//github.com/DLR-RM/stable-baselines3). An identical policy network and value
network were employed for all methods to make a fair comparison, and their architectures are illus-
trated in Table 1 (LeCun et al., 2015). Here, 8×8 Conv. 32 represents a convolutional layer with
32 filters of size 8×8, and each convolutional layer is followed by a batch normalization (BN) layer
(Ioffe & Szegedy, 2015; Agarap, 2018).

Table 1: The CNN-based network architectures.
Module Policy network Value network Encoder
Input States States States

Arch.

8×8 Conv 32, ReLU
4×4 Conv 64, ReLU
3×3 Conv 32, ReLU
Flatten
Dense 512, ReLU
Dense |A|
Categorical Distribution

8×8 Conv 32, ReLU
4×4 Conv 64, ReLU
3×3 Conv 32, ReLU
Flatten
Dense 512, ReLU
Dense 1

8×8 Conv 32, ReLU
4×4 Conv 64, ReLU
3×3 Conv 32, ReLU
Flatten
Dense 512, ReLU
Dense d

Output Actions Predicted values Encoding vectors

For each game, we trained the agent for 10 million environment steps, in which the agent was set to
interact with 10 parallel environments. Take PPO for instance, the agent sampled 256 steps in each

13

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

Published as a conference paper at Deep RL Workshop NeurIPS 2022

episode, producing 2560 pieces of transitions. After that, the transitions were used to update the
policy network and value network. The agent was trained with a learning rate of 0.0003, an action
entropy coefficient of 0.01, a value function coefficient of 0.5, a generalized-advantage-estimation
(GAE) parameter of 0.95, and a gradient clipping threshold of 0.1 (Schulman et al., 2015). More
detailed parameters of PPO and A2C can be found in Table 2 and Table 3.

Table 2: Hyparameters of PPO+REVD for Atari experiments.

Method Hyperparameter Value

PPO

Observation downsampling (84, 84)
Stacked frames 4
Environment steps 10000000
Number of workers 10
Episode steps 256
Optimizer Adam
Learning rate 0.0003
GAE coefficient 0.95
Action entropy coefficient 0.05
Value loss coefficient 0.5
Max gradient norm 0.5
Value clipping coefficient 0.2
Batch size 64
Update epochs 5
Gamma γ 0.99

REVD

Embedding size d 128
k 5
α 0.5
λ0 0.1
κ 0.00001
ε 0.0001

Table 3: Hyparameters of A2C+REVD for Atari experiments.

Method Hyperparameter Value

A2C

Observation downsampling (84, 84)
Stacked frames 4
Environment steps 10000000
Number of workers 10
Episode steps 32
Optimizer Adam
Learning rate 0.0003
GAE coefficient 0.95
Action entropy coefficient 0.01
Value loss coefficient 0.5
Max gradient norm 0.5
Value clipping coefficient 0.2
Batch size 32
Gamma γ 0.99

REVD

Embedding size d 128
k 5
α 0.5
λ0 0.1
κ 0.00001
ε 0.0001

14

Published as a conference paper at Deep RL Workshop NeurIPS 2022

B.3 EXPERIMENTAL SETTING FOR EXPLORATION METHODS

REVD. We employed a randomly-initialized and fixed encoder for encoding the state space, whose
architecture is illustrated in Table 1. At the end of each episode, the transitions were used to compute
the mixed rewards using Eq. (7), where k = 5, α = 0.5, λ0 = 0.1, κ = 0.00001 and ε = 0.0001. In
particular, since we considered the on-policy setting, the k-NN searching operation for a state was
only performed within its own trajectory.

RE3. We followed the implementation of RE3 in a publicly released repository (https://
github.com/younggyoseo/RE3), which uses intrinsic reward r̂(st) = µk(et, E) without log
exploration. Then the intrinsic reward was combined with the extrinsic reward to make a mixed
reward rtotal

t = ř(st,at) + λt · r̂(st), where λt = λ0(1 − κ)t. Here, we set λ = 0.05 and
κ ∈ {0.001, 0.0001, 0.00001} and k ∈ {5, 10}. Similar to REVD, the k-NN searching operation
for a state was also performed within its own trajectory.

RIDE. We follow the implementation of RIDE in a publicly released repository (https://
github.com/facebookresearch/impact-driven-exploration). In practice, we
trained a single forward dynamics model g to predict the encoded next-state φ(st+1) based on the
current encoded state and action (φ(st),at), whose loss function is ‖g(φ(st),at)− φ(st+1)‖2. To
compute the state visitation frequency of st+1, we used a pseudo-count method that approximates
the frequency using the k-NN distance within episode (Badia et al., 2020).

C DETAILS ON PYBULLET EXPERIMENTS

C.1 ENVIRONMENT SETTING

We further tested REVD on six tasks from PyBullet Robotics Environments, namely Ant, Cart Pole,
Half Cheetah, Hopper, Humanoid, and Walker 2D. The source code of these environments can be
found in (https://github.com/bulletphysics/bullet3).

C.2 EXPERIMENTAL SETTING FOR RL

Since PyBullet tasks provided low-dimensional features as observations, multilayer perceptron
(MLP) (LeCun et al., 2015) was used to build the policy network and value network, whose ar-
chitectures are illustrated in Table 4.

Table 4: The MLP-based network architectures.
Module Policy network Value network Encoder
Input States States States

Arch.

Dense 64, Tanh
Dense 64, Tanh
Dense dim(A)
Gauss Distribution

Dense 64, Tanh
Dense 64, Tanh
Dense 1

Dense 64, ReLU
Dense 64, ReLU
Dense d

Output Actions Predicted values Encoding vectors

For each PyBullet task, we trained the agent for 2 million environment steps, in which the agent
was also set to interact with 10 parallel environments. Take PPO for instance, the agent sampled
128 steps in each episode, producing 1280 pieces of transitions. After that, the transitions were
used to update the policy network and value network. The agent was trained with a learning rate
of 0.0003, an action entropy coefficient of 0.01, a value function coefficient of 0.5, a generalized-
advantage-estimation (GAE) parameter of 0.95, and a gradient clipping threshold of 0.1 (Schulman
et al., 2015). More detailed parameters of PPO and A2C can be found in Table 5 and Table 6.

C.3 EXPERIMENTAL SETTING FOR EXPLORATION METHODS

For REVD, We also used a randomly-initialized and fixed encoder to encode the state space, whose
architecture is shown in Table 4. In each episode, the visited states were first encoded as vectors

15

https://github.com/younggyoseo/RE3
https://github.com/younggyoseo/RE3
https://github.com/facebookresearch/impact-driven-exploration
https://github.com/facebookresearch/impact-driven-exploration
https://github.com/bulletphysics/bullet3

Published as a conference paper at Deep RL Workshop NeurIPS 2022

Table 5: Hyparameters of PPO+REVD for PyBullet experiments.

Method Hyperparameter Value

PPO

Environment steps 2000000
Number of workers 10
Episode steps 128
Optimizer Adam
Learning rate 0.0003
GAE coefficient 0.95
Action entropy coefficient 0.01
Value loss coefficient 0.5
Max gradient norm 0.5
Value clipping coefficient 0.2
Batch size 64
Update epochs 5
Gamma γ 0.99

REVD

Embedding size d 64
k 3
α 0.5
λ0 0.1
κ 0.00001
ε 0.0001

Table 6: Hyparameters of A2C+REVD for PyBullet experiments.

Method Hyperparameter Value

A2C

Environment steps 2000000
Number of workers 10
Episode steps 8
Optimizer Adam
Learning rate 0.0003
GAE coefficient 0.95
Action entropy coefficient 0.01
Value loss coefficient 0.5
Max gradient norm 0.5
Value clipping coefficient 0.2
Batch size 32
Gamma γ 0.99

REVD

Embedding size d 64
k 3
α 0.5
λ0 0.1
κ 0.00001
ε 0.0001

with a dimension of 64. Then the encoding vectors were used to compute intrinsic rewards, where
k = 3, α = 0.5, λ0 = 0.1, κ = 0.00001, and ε = 0.0001. Finally, the augmentated transitions were
used to update the policy network and value network. For RE3 and RIDE, we followed the similar
procedures elaborated in Atari experiments and reported the best result.

16

	Introduction
	Related Work
	Novelty-Based Exploration
	Prediction-Based Exploration
	Computation-Efficient Exploration

	Preliminaries
	Problem Formulation
	Rényi Divergence

	REVD
	Intrinsic Reward Design
	Training Objective

	Experiments
	Atari Games
	Setup
	Results

	PyBullet Robotics Environments
	Setup

	Results

	Conclusion
	Benchmarking methods
	RE3
	RIDE

	Details on Atari Games Experiments
	Environment Setting
	Experimental Setting for RL
	Experimental Setting for Exploration Methods

	Details on PyBullet Experiments
	Environment Setting
	Experimental Setting for RL
	Experimental Setting for Exploration Methods

