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Abstract

To operate effectively in household environments,
service robots must reason about object placement
not just through direct visual perception, but also
by drawing on context, prior knowledge, and com-
monsense expectations. For example, when asked
to locate a spoon in an unfamiliar kitchen, a human
might infer it is most likely stored in a drawer near
the countertop. Enabling similar reasoning in mul-
timodal models presents a significant challenge.

In this work, we introduce the Stored Household
Item Challenge, a benchmark designed to evalu-
ate commonsense spatial reasoning in domestic set-
tings. The task requires models to predict the most
likely storage location for a given item—such as a
drawer or cabinet door—even when the item is not
visible. We release two complementary datasets:
a crowdsourced development set containing 6,500
annotated item-image pairs from kitchen scenes,
and a real-world test set based on actual item stor-
age in private homes.

We evaluate a range of state-of-the-art mod-
els, including vision-language models (Grounding-
DINO) and multimodal large language models
(Gemini, GPT-40, Kosmos-2). Our results reveal
that many models perform at or below random
chance, and none come close to matching human-
level performance. This highlights key limitations
in current models’ ability to integrate visual context
with structured commonsense knowledge. By pro-
viding this task and dataset, we offer a novel testbed
for advancing and benchmarking multimodal rea-
soning capabilities in real-world environments.

1 Introduction

Service robots and personal assistants are rapidly improving
in their ability to perform domestic tasks, from navigating
indoor spaces to manipulating household objects. Yet, they
continue to struggle with deeper semantic understanding of
their environments, particularly when reasoning about what
cannot be directly seen. In this work, we address a specific
challenge in this domain: detecting the likely storage loca-
tions of household items. Humans intuitively avoid searching

for a fork in a high cabinet, instead drawing on prior experi-
ence and commonsense expectations about how kitchens are
typically organized. Similarly, enabling robots or agents to
reason about concealed storage spaces, such as drawers and
cabinets, demands not just visual context but also the integra-
tion of structured knowledge and pragmatic inference. Ex-
isting object detection methods rely heavily on visible cues
or explicit user input, which limits their applicability when
target objects are occluded or hidden from view.

To begin addressing this gap, we introduce a new task:
commonsense storage prediction, which involves inferring
where an object is most likely stored within a household en-
vironment based solely on an image of the scene and the item
name. We focus specifically on kitchens (Figure 1, right),
where storage conventions are both common and diverse. Our
core hypothesis is that item placements follow semantically
meaningful patterns that can be learned from annotated data.
For example, mugs are more often stored in upper cabinets,
while cutlery is typically found in drawers. By leveraging
these patterns, it becomes possible to make plausible, human-
like predictions about where an object might be stored—even
if it is not currently visible.

To support this task, we introduce the Stored Household
Item Challenge, a new benchmark consisting of 6,500 item-
image pairs, created by combining real-world kitchen scenes
from a publicly available Scene Understanding dataset, object
detections from a vision-language grounding model, and hu-
man annotations of likely storage locations. We evaluate sev-
eral baseline models, including random selection, grounded
vision-language models (e.g., Grounding-DINO), and multi-
modal large language models (e.g., GPT-40), and compare
them to human performance (Figure 1, top and middle left).
Notably, many of these models—despite their strong perfor-
mance on general vision-language tasks struggle to outper-
form a random baseline, highlighting a critical blind spot in
their reasoning capabilities.

This work does not aim to show incremental accuracy
gains, but rather to formalize and benchmark a form of
spatial commonsense reasoning that is essential for embod-
ied Al systems and is currently underrepresented in existing
datasets. The Stored Household Item Challenge captures a
class of inference that is underrepresented in existing bench-
marks: reasoning about what is likely true but not directly
observable. As large vision-language and multimodal models
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Figure 1: Depiction of the Stored Household Item Challenge (right). We compare the performance of various models on this task (left). This
evaluation includes grounded vision-language models and multimodal large language models.

evolve, we expect their performance on this task to improve;
however, the challenge itself—requiring the integration of
spatial pragmatics, visual grounding, and structured world
knowledge—will remain a useful diagnostic for evaluating
deeper, human-like understanding in MLLMs and VLMs.

2 Related Work

Our research focuses on the intersection of three topics: Do-
mestic Service Robots, Scene Understanding, and Object De-
tection. We utilize vision and language models for semantic
understanding under object detection.

2.1 Domestic Service Robots

In recent years, the scope of research on cleaning robots has
evolved beyond vacuum or floor cleaning robots to encom-
pass service robots capable of performing diverse household
tasks such as cleaning, tidying, organizing groceries, washing
dishes, and setting tables.

In contrast to our work, existing research on this new
generation of robots emphasizes aspects like learning pro-
cesses tailored to specific houses [Hasegawa et al., 2023;
Kim et al., 2019; Shah et al., 2020] and user instruc-
tions posed before robot utilization [Kaneda et al., 2024;
Khan, 2022; Matsushima et al., 2022; Ribeiro et al., 2021;
Wu et al., 2023a; Wu et al., 2023b; Yan et al., 2021]. Notable
approaches include using Graph Neural Networks (GNNs)
to learn user preferences from observations [Kapelyukh and
Johns, 2022] and learning user preferences from similari-
ties between objects using object hierarchies and collabora-
tive filtering [Abdo et al., 2015]. While most research on
pick-and-place tasks for service robots primarily addresses
open shelves or tables [Hu et al., 2023; Shiba et al., 2023;
Xu and Hsu, 2023], our work uniquely focuses on stored ob-
jects in enclosed containers. The work by Liu et al. [Liu et
al., 2022] represents a knowledge-based framework for object
search in service planning, considering multi-domain knowl-
edge and utilizing an ontology-based knowledge structure.

Ramrakhya et al. [Ramrakhya et al., 2024] define a Seman-
tic Placement (SP) task, predicting where an object could be
placed in an image based on its name. While their method-
ology shares similarities with ours, we specifically concen-
trate on finding stored objects in containers rather than pre-
dicting visible placements. Furthermore, our approach is de-
signed to apply to any common household object, while their
work specifically targets 9 chosen items. Kant et al. [Kant et
al., 2022] focus on rearranging objects in a house based on
human preferences without explicit goal specifications. Ad-
ditionally, the researchers employed a simulator to validate
the effectiveness of their model. While their approach also
leverages commonsense reasoning in home environments us-
ing an LLM, it differs from ours by relying on partial obser-
vations and not addressing items that are already stored and
thus not visible. Kurenkov’s research [Kurenkov, 2023] dis-
cusses searching in containers, assuming the agent possesses
the layout of the environment, storage locations, and observa-
tions of objects when exploring a container for the first time.
Our work aims to contribute to both of these studies by re-
ducing the deployment time of service robots in new houses.

Additional work explores contextual semantics for con-
tinual sweeping for a fleet of cleaning robots [Ahmadi and
Stone, 2006], or for organizing household items based on
user preferences [Akanimoh Oluwasanmi Adeleye, 2023;
Kant er al., 2022; Wu et al., 2023a; Wu et al., 2023b;
Xu and Hsu, 2023]. Additionally, some studies adapt nat-
ural language processing (NLP) to the context of object ar-
rangement [Hu et al., 2023]. These works provide valuable
insights for our task, facilitating the efficient integration of
LLMs by generalizing user preferences without specifying
particular ones.

2.2 Scene Understanding

Scene understanding, as articulated by Naseer et al. [Naseer
et al., 2019], involves the analytical process of evaluating a
visual scene by considering both its geometric and seman-



tic context, along with the intrinsic relationships between
its elements. This holistic comprehension is crucial for the
seamless integration of robots into daily environments, pro-
moting effective collaboration with humans [Aarthi and Chi-
trakala, 2017]. Recognizing the limitations of mere ob-
ject recognition or classification, robots must possess a nu-
anced, functional understanding of the visual scene to en-
hance their overall performance [Ye ef al., 2017]. Within
the broader landscape of scene understanding, subtasks like
scene classification play a pivotal role in accurately label-
ing the elements within a given image [Patel er al., 2020;
Tong et al., 2017]. Ongoing research in scene analysis for ob-
ject understanding by assistive robots aims to simplify com-
putational costs, ensuring a user-friendly interface for indi-
viduals to convey their needs [Bousquet-Jette et al., 2017].

Furthermore, the intersections of semantics and Simultane-
ous Localization and Mapping (SLAM) are relevant to scene
understanding. SLAM, a foundational technique in robotics,
constructs a map of an unknown environment while concur-
rently determining the robot’s location within that environ-
ment [Cadena er al., 2016; Chen et al., 2022; Garg et al.,
2020; Singandhupe and La, 2019]. Semantics in robotics en-
able robots to interpret and represent the meaning of objects
and actions. The simultaneous use of semantics and SLAM
equips robots with both the semantic context of targeted ob-
jects and the spatial mapping essential for comprehensive
scene understanding. This approach provides a deep under-
standing of the environment, offering insights into the proba-
ble position of objects within specific frames and contributing
crucial information for advancing robotic understanding and
facilitating nuanced navigation.

2.3 Object Detection

Object detection aims to identify instances of semantic ob-
jects in digital images and videos, addressing the fundamental
question of “"What objects are here?” [Zou et al., 2023]. Tra-
ditional methods, relying on handcrafted features and shal-
low architectures, face performance limitations, leading to the
emergence of powerful deep learning tools capable of learn-
ing semantic features with distinctions in architecture, train-
ing, and optimization [Zhao et al., 2019]. This study explores
image segmentation, encompassing semantic, instance, and
panoptic segmentation. Semantic segmentation assigns pixel-
level labels to object categories across the entire image, pos-
ing a more intricate challenge than whole-image classifica-
tion [Minaee et al., 2021]. Instance segmentation further
enhances detailed scene interpretation by precisely detecting
and delineating individual objects of interest [Hafiz and Bhat,
2020]. In our research, we leverage object detection and seg-
mentation to identify the containers themselves such as draw-
ers, closet doors, and cabinet doors in images. Specifically,
we utilize Grounding-DINO [Liu er al., 2023], an open-set
object detector capable of localizing arbitrary objects based
on textual prompts, including category names and referring
expressions. For segmentation, we use the Segment Anything
Model (SAM) [Kirillov et al., 2023al, a prompt-driven seg-
mentation model designed to generalize across diverse image
distributions and tasks. We assess performance using stan-
dard evaluation metrics for detection and segmentation[Ayala

et al., 2024].

Concealed object detection (COD), a method that segments
objects with similar patterns (e.g., texture, color, direction) to
their natural or man-made environment [Fan et al., 2022], is
noteworthy. However, it cannot be leveraged in our task, as
that problem assumes that the objects are visible in some lo-
cation within the scene. Occlusion object detection, dealing
with challenges of hidden or partially visible objects, presents
solutions in controlled environments and robotics [Saleh et
al., 2021]. These are considered impractical for our sce-
nario of stored items, as the item of interest is completely
concealed. In specific environments like prisons and airports,
monitoring completely occluded objects is essential [Kristof-
fersen er al., 2016]. Yet, the proposed system’s use of internet
protocol and thermal cameras is irrelevant to our case, as ther-
mal cameras cannot detect most locations of stored household
items.

3 The Stored Household Item Challenge

We present the Stored Household Item Challenge, a chal-
lenge designed to probe the limitations of current Al systems
when it comes to providing assistance in a household envi-
ronment. This task was deliberately chosen because it en-
capsulates several core challenges that remain unresolved in
today’s models. It goes beyond standard object detection by
requiring agents to reason about what is not directly visible,
using indirect evidence, contextual cues, and prior semantic
knowledge — all of which push the boundaries of current vi-
sual and vision-language systems.

First, the challenge directly targets the gap between visual
input and semantic understanding. While many models can
localize and label visible containers like drawers or cabinets,
they rarely encode what those containers mean in context.
The challenge forces systems to bridge this gap: they must
map from an image of a household scene to an understanding
of which storage locations are most appropriate for a given
item, such that mugs are more likely found in upper kitchen
cabinets than under the sink. This demands deeper reasoning
than detection alone, encouraging models to internalize func-
tional and cultural norms around household organization.

Second, the task is designed to require commonsense pri-
ors. It is not enough to extrapolate from local image fea-
tures; a successful model must incorporate general knowl-
edge about how items tend to be stored across many homes.
Unlike traditional supervised learning tasks, where labels cor-
respond directly to what is visible, the stored household item
challenge rewards systems that can generalize across scenes
and reason probabilistically about plausible storage locations,
even with limited or ambiguous visual information. This re-
quirement makes this challenge a natural testbed for combin-
ing visual grounding with large-scale pretraining and struc-
tured knowledge.

Finally, the challenge emphasizes interpretable and action-
able predictions. It is not sufficient to name a likely container
type; the model must select a specific instance of that con-
tainer in the scene — one that is localized, segmentable, and
ideally interactable by a robot. This requirement adds a layer
of embodied relevance that connects abstract reasoning to ac-



tionable physical outcomes. By grounding each prediction to
a concrete location within an image, the task supports real-
world robotic use cases where storage inferences must trans-
late into navigation and manipulation actions. Together, these
aspects make this challenge a principled and practical test of
the next generation of service robots.

4 Datasets and Data Collection

To develop a model capable of predicting where household
items are typically stored, we constructed two complemen-
tary datasets: a real-world test dataset and a crowdsourced
development dataset. Together, these datasets support both
the training and rigorous evaluation of models targeting se-
mantic understanding of storage locations in domestic envi-
ronments.

The real-world test dataset consists of images collected
from participants’ actual home environments, where indi-
viduals manually annotated the precise storage locations
(e.g., specific drawers, cabinets) of common household items.
These annotations serve as ground truth labels for evaluating
model performance in realistic, privacy-sensitive settings.

In contrast, the crowdsourced development dataset is de-
signed to support model training and validation at scale. It
is based on publicly available kitchen images from the SUN
dataset [Xiao et al., 2010; Xiao et al., 2016], which avoids the
privacy concerns of in-home data collection. We recruited an-
notators through a crowdsourcing platform to label the most
likely storage container for a given item in each scene. To en-
sure data quality, we performed thorough preprocessing, in-
cluding duplicate removal, inconsistency filtering, and analy-
sis of inter-annotator agreement. The result is a high-quality
dataset suitable for supervised learning and benchmarking,
and our pipeline provides a reusable framework for future
data collection efforts focused on storage reasoning.

4.1 Dataset Selection and Collection

To train a model to understand “commonsense” house-
hold storage norms, we required a dataset that captured
where items are typically stored within home environ-
ments—specifically in containers such as drawers, cabinets,
or closets. As no suitable dataset existed, we opted to build
one. We initially considered sourcing data from volunteers
who would submit labeled images of their homes. How-
ever, this approach proved challenging for two reasons: First,
ethically, creating a dataset of images in homes, including
kitchens or bedrooms, can potentially hold private informa-
tion that is hard to obfuscate, such as personal documents
or photos. It would require a significant amount of effort to
make such a dataset public without risking privacy breaches.
Second, from a logistical perspective, collecting a sufficiently
large and diverse set of in-home images at the scale required
for effective model training proved infeasible. To overcome
these challenges, we eventually chose to maintain a smaller
volunteer dataset as a ground truth benchmark and focused
training on a semi-artificial dataset, by repurposing existing
image datasets with additional human annotation.

To further maintain consistency and ensure a focused ex-
perimental scope, we restrict this research to kitchen envi-
ronments, which present a diverse range of storage options

compared to other rooms around the house. We selected 15
kitchen items, including both common and less common ex-
amples: bottle opener, Tupperware containers, dish towels,
cutting board, bowl, spices, spoon, mug, plate, pot, pan, cut-
ting knife, cooking oil, screwdrivers and painkillers. This se-
lection was used to guide both image sampling and annotation
efforts.

4.2 Dataset Preprocessing

For both of the datasets we collected, we applied a detec-
tion and segmentation pipeline using Grounding-DINO [Liu
et al., 2023] and SAM [Kirillov et al., 2023b] to identify and
segment all visible storage containers. There were ~ 16 con-
tainers on average in the train dataset and ~ 19 containers on
average in the test dataset.

These automated segmentation serves two purposes: First,
they provide structured visual cues to assist various algo-
rithms in detecting the correct container. Second, by mark-
ing potential storage locations in each scene, we can simply
automate the verification of the recognizer’s answers (rather
than evaluating the correctness of an open-ended answer like
“the fork is likely to be in an upper drawer”). An institutional
review board (IRB) was obtained for participant-based data
collection, covering both datasets.

After surveying available resources, we selected the SUN
dataset due to its diversity and relevance to indoor scene
understanding [Xiao et al., 2010; Xiao et al., 2016]. We
extracted images from the kitchen category. Storage con-
tainers within these images were automatically identified us-
ing Grounding-DINO and SAM. We then launched a crowd-
sourcing campaign on Upwork! in which human annotators
selected the most plausible container for storing a specific
household item in each image.

4.3 Development Dataset: Crowdsourced
Annotations

Three annotators (one male, two female) were recruited, two
from the U.S. and one from Ireland. A custom web applica-
tion, hosted on GitHub pages, facilitated the annotation pro-
cess. The interface presented the name of a household item
alongside an image with marked storage containers. The in-
terface can be viewed in Figure 2. Annotators either selected
the most likely container or indicated that the item would not
typically be stored in any of the shown containers. Total an-
notation times per participant were: 7.2, 9.6, and 10.2 hours
per annotator.

From an initial pool of 1,746 kitchen images, we selected
1,656 that contained at least three detectable storage contain-
ers suitable for annotation. Anticipating the use of this dataset
for training purposes, we withheld two items from our orig-
inal 15-item list to enable future evaluation of model gener-
alizability to previously unseen items. For each of the re-
maining 13 items, we sampled 500 images, yielding a total of
6,500 unique item-image pairs.

To assess annotation quality, 16% of the images for each
item (80 out of 500) were labeled by all three annotators,
while the remaining 420 images were evenly divided, with

"https://www.upwork.com/
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Figure 2: A screenshot from the annotation tool used to collect
human-labeled data.

each annotator labeling 140. Annotation was conducted in
four batches to enhance usability within the web application
and maintain quality—each new batch was released only af-
ter satisfactory performance on the previous one. In total,
each annotator completed 2,860 annotations, including 1,040
shared annotations. This process yielded 5,460 unique an-
notations and 3,120 overlapping ones. In total, we collected
8,580 item-image annotations, from which we constructed a
training dataset of 6,500 pairs, as detailed in Section 4.5.

4.4 Real-World Evaluation Data

In addition to the crowdsourced annotations, we collected a
small set of real-world examples submitted by volunteers.
These included images of home interiors, each paired with
a labeled storage container for a specific item. Participants
were informed that their photos would be made public, and
they were instructed to hide any personal items or informa-
tion they did not want to be published. The images were fur-
ther manually checked for any personal identifiers, such as
documents or personal photos.

From the list of 15 items mentioned earlier, participants
provided storage locations for four items: bottle openers,
Tupperware containers, painkillers, and screwdrivers. The
latter two are the ones that were intentionally excluded from
the development dataset to be able to test the models’ general-
izability. In total, the evaluation dataset comprises 100 item-
image pairs collected from 74 distinct kitchens, with some
participants contributing locations for multiple items.

This dataset served dual purposes: it was used to validate
annotator reliability and will also be used to compare against
future model predictions.

4.5 Data Cleaning and Processing

To ensure dataset quality, we first removed duplicate entries
and conflicting responses due to server lag in recording users’
responses. We then consolidated annotations from multiple
users: if two annotators agreed, we retained the majority vote.
If no agreement was reached, one label was selected at ran-
dom.

Preliminary analysis revealed variation in annotator agree-
ment across different object categories. Overall, the Fleiss’
Kappa inter-annotator agreement was x = 0.372 for all items
in the real-world evaluation set, and k = 0.354 (fair agree-
ment) for the development dataset. As only 16% of each
item’s item-image pairs in the development set were anno-
tated by all annotators, the presented agreement only cov-
ers that segment of the data. Items with more standardized
storage locations, such as bottle openers and plates, exhib-
ited higher consistency in responses with moderate agree-
ment (v = 0.494 and k = 0.478, respectively). In con-
trast, more subjective categories like Tupperware containers
showed slight agreement (x = 0.155). These results high-
light both the inherent difficulty and variability of the task,
while also suggesting that people rely on more than random
reasoning when searching for hidden household items.

S Experimental Setup

We provide a preliminary evaluation of current state-of-the-
art models on this task, using the real-world evaluation data
described in Section 4.4. We tested two categories of mod-
els: grounded vision-language models (Grounding-DINO)
and multimodal large language models (MLLMs) (Gemini,
ChatGPT-40, and Kosmos-2). To train all models, we used
the development dataset presented in Section 4.3. Approxi-
mately 5% of the dataset (370 out of the 6,500 item-image
pairs) was used to train the vision-language models, and the
remainder was used for evaluation and parameter tuning of all
models. All baseline models receive an image and a prompt
as input and return a bounding box. Models were prompted
with a query about a specified household item, and were eval-
uated on their ability to identify the correct storage location
among drawers and cabinet doors. Predicted bounding boxes
were compared to ground truth annotations using Intersection
over Union (IoU) and binary accuracy thresholds.

All experiments were conducted on a standard Intel 17 ma-
chine, while model training requiring a GPU (e.g., Kosmos-2)
was performed on a university computing cluster.

5.1 Evaluation Metrics

Each model’s performance was evaluated separately on the
development and evaluation datasets. Model performance
was assessed using the following metrics:

* Accuracy: The percentage of predictions with IoU >
0.2 compared to ground truth.

* IoU (Intersection over Union): The overlap between
the predicted and true bounding boxes, computed as:

_ Area of Overlap

I
© Area of Union



5.2 Baseline Comparisons

Random For each item-image pair, we took the list of con-
tainers provided by Grounding-DINO during the annotation
phase and picked one at random.

Kosmos-2 We used the Kosmos-2 MLLM with an image
and the following prompt format:

<grounding> In which<phrase>
drawer</phrase> or<phrase>
cabinet door</phrase> is<phrase>
a {item}</phrase> stored?

In the prompt above, {item} is a placeholder that is dy-
namically replaced with the name of the queried object (e.g.,
spoon, plate,bottle opener) for each example.

The model outputs captions and entity bounding boxes rel-
evant to the query. Since Kosmos-2 does not use a pre-defined
list of container locations (unlike human annotators), we con-
sidered a prediction correct if the IoU between the model’s
output and the ground truth was > 0.2 (meaning that the
bounding box overlapped with the true container in at least
20% of its area).

Grounding-DINO and SAM We used Grounding-DINO
in combination with SAM for detection and segmentation.
The prompt was:

drawer for {item}. cabinet door

for {item}.

Notice that this baseline is a second, separate use of
Grounding-DINO from the first use for data annotation: In
the annotation phase, we used Grounding-DINO to output all
polygons representing cabinets, closets, and drawers. Here,
we ask the model to output a bounding box for a stored item.
From the resulting set of polygons, we selected the one with
the highest confidence score and compared it to the ground
truth. Because these models were also used during dataset
construction, we had to ensure that we did not provide these
models with an unfair bias during evaluation. Thus, we only
considered a prediction correct for these models if IoU was
exactly 1.0.

Gemini (Google MLLM) We used the Gemini API to eval-
uate vision-language performance. As with Kosmos-2, pre-
dictions with IoU > 0.2 were considered correct. For each
item-image pair, we submitted the image with the following
prompt:

Analyze the provided image of

a kitchen. TIdentify the item:
"{item}’. Determine the most
likely storage location for this
item, considering only drawers
or cabinet doors visible in the
image. Provide the bounding
box coordinates as a Python

list of four integers: [x_min,
ymin, xmax, y-max]. If you
cannot determine a likely storage
location, output: [0, 0, 0, 0]

ChatGPT-40 We used the GPT-40 model with vision capa-
bilities through the OpenAl API. The prompt format was:

You are analyzing a kitchen
image.

The visible containers are
drawers and cabinet doors.

The item to store is: {item}
Determine the most likely storage
location among visible drawers
and cabinet doors only.

Return a list of 4-point bounding
box coordinates.

If no suitable location is found,
return an empty list [].

As in the other models, predictions were counted as correct
if the ToU with the ground truth polygon was > 0.2.

6 Results and Analysis

We begin by reporting the overall performance of the various
algorithms on the real-world evaluation dataset. As shown in
Table 1, Grounding-DINO substantially outperforms all other
approaches. To further assess whether the observed perfor-
mance differences between models were statistically signifi-
cant, we conducted a one-way ANOVA on accuracy scores,
followed by post-hoc pairwise comparisons using the Bonfer-
roni correction. The results confirmed a significant effect of
model type on performance (p < 0.05). Moreover, no model
was able to reach results similar to those of the human anno-
tators (p < 0.05).

We continue by reporting the accuracy and IoU results
on the annotated development dataset, as shown in Table 2.
While our primary focus is on evaluation set results, the de-
velopment set performance helps reveal whether a model has
learned meaningful patterns or is simply underfitting. For ex-
ample, models like Kosmos-2 and Gemini achieve relatively
low accuracy even on the development set (lower than ran-
dom from a given set of containers), suggesting limited ca-
pacity or misalignment with the task rather than overfitting.
Including development results thus helps distinguish between
models that fail to generalize and those that fail to learn effec-
tively in the first place. Human performance on this dataset is
estimated based on the subset of overlapping annotations used
to assess inter-annotator agreement, and may slightly differ
from actual human performance on the full development set.

Table 1: Evaluation Set Accuracy and Average IoU for Various
Models.

Model Accuracy (%) Average IoU
Human Annotator 1 (IoU = 1.0) 38.00 0.380
Human Annotator 2 (IoU = 1.0) 27.00 0.271
Human Annotator 3 (IoU = 1.0) 36.00 0.361
Grounding-DINO (IoU = 1.0) 13.00 0.188
Random (IoU = 1.0) 6.00 0.062
Kosmos-2 (IoU > 0.2) 4.00 0.042
Gemini-1.5-flash (IoU > 0.2) 3.00 0.034
GPT-40 API (IoU > 0.2) 8.00 0.082




Table 2: Development Set Accuracy and Average IoU for Various Models.

Model Accuracy (%) Average IoU
Human Annotator (Estimated) 35.83 0.361
Grounding-DINO (IoU = 1.0) 5.89 0.112
Random (IoU = 1.0) 7.55 0.083
Kosmos-2 (IoU > 0.2) 2.25 0.013
Gemini-1.5-flash (IoU > 0.2) 8.65 0.083
GPT-40 API (IoU > 0.2) 13.78 0.138
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Figure 3: Accuracy of the different models using different intersec-
tion over union (IoU) values.

Lastly, to validate our evaluation framework further, we an-
alyze the effect of varying the Intersection over Union (IoU)
threshold on model accuracy. Recall that all of the evalu-
ated models output a bounding box that may or may not over-
lap with the container bounding box provided by Grounding-
DINO for annotation. As expected, stricter IoU thresh-
olds impose more demanding localization criteria, making
it harder for models to achieve high accuracy. Conversely,
lower thresholds (e.g., IoU > 0.2) allow for more lenient
matches. Figure 3 illustrates this trade-off for the models
evaluated above. Notably, the results remain relatively con-
sistent across thresholds, suggesting that our findings are ro-
bust to the exact choice of IoU cutoff and reinforcing the re-
liability of our evaluation methodology.

7 Conclusion and Future Work

This paper introduces the Stored Household Item Challenge,
a novel problem designed to evaluate semantic spatial rea-
soning about the likely locations of non-visible objects in
household environments. Unlike conventional object detec-
tion tasks, this challenge targets a critical but underexplored
capability: inferring hidden item locations based on context
and commonsense knowledge. We present a new dataset of
labeled item-image pairs featuring concealed storage scenar-
ios, along with a suite of baseline evaluations. Preliminary
results reveal a significant gap between current state-of-the-
art methods and human-level reasoning.

Our work highlights several key directions for future re-
search. First, integrating this task into physical robots would

bring the challenge closer to real-world deployment, intro-
ducing new considerations such as actuation constraints and
real-time perception. Richer scene understanding may also
emerge through interactive or multimodal inputs and adap-
tation to user preferences. Second, future models may ben-
efit from learning hierarchical spatial priors, such as typical
room layouts or common sub-region uses (e.g., “mugs are of-
ten stored above counters”). Another promising direction is
embedding this task in embodied systems, allowing robots to
refine their beliefs about storage through feedback and explo-
ration.

Although this paper focuses on kitchens, the underlying
reasoning principles extend to a broad range of domestic and
industrial environments. We plan to expand the dataset and
task to include additional spaces and item categories. By ad-
vancing hidden object reasoning, this work supports the de-
velopment of service robots that operate effectively in unfa-
miliar, dynamic human environments.

Finally, deploying these models on physical robots intro-
duces practical challenges, including perception noise, var-
ied cabinet designs, shifting viewpoints, and the physical cost
of interaction. For example, a robot may need to weigh the
likelihood of an item being in a distant, hard-to-reach cabinet
against a closer drawer that is slightly less probable. Balanc-
ing prediction confidence with physical effort will be essen-
tial for efficient, real-world deployment.

Ethical Statement

This work involves no experiments with human subjects, per-
sonal data, or animals. All visual data used for training
and evaluation was sourced from the publicly available SUN
dataset, which consists of images collected from the internet
for scene understanding research. To avoid potential privacy
concerns associated with collecting in-home photos, we did
not solicit or share any private images of participant homes
beyond a small, non-public evaluation set. Annotations for
the larger dataset were obtained via crowdsourcing using a
standardized task description and anonymized images, and
responses were screened for quality and consistency. The
study design ensures that all human annotation work was vol-
untary, compensated fairly, and involved no sensitive or iden-
tifying information.
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