
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ATTENTION AS A HYPERNETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers can under some circumstances generalize to novel problem instances
whose constituent parts might have been encountered during training but whose
compositions have not. What mechanisms underlie this ability for compositional
generalization? By reformulating multi-head attention as a hypernetwork, we
reveal that a composable, low-dimensional latent code specifies key-query specific
operations. We find empirically that this latent code is predictive of the subtasks
the network performs on unseen task compositions revealing that latent codes
acquired during training are reused to solve unseen problem instances. To further
examine the hypothesis that the intrinsic hypernetwork of multi-head attention
supports compositional generalization, we ablate whether making the hypernetwork
generated linear value network nonlinear strengthens compositionality. We find
that this modification improves compositional generalization on abstract reasoning
tasks. In particular, we introduce a symbolic version of the Raven Progressive
Matrices human intelligence test which gives us precise control over the problem
compositions encountered during training and evaluation. We demonstrate on
this task how scaling model size and data enables compositional generalization in
transformers and gives rise to a functionally structured latent space.

1 INTRODUCTION

Abstract reasoning is a cornerstone of human intelligence. Many intelligence tests in psychology
measure intelligence using abstract reasoning tasks (e.g. Wechsler, 1958; Binet & Simon, 1961;
Raven, 1962). Arising from the idea that combinatorial structures are central to human cognitive
abilities, the ability of connectionist models to reason has been debated for decades (e.g. Rumelhart
& McClelland, 1986; Fodor & Pylyshyn, 1988; Smolensky, 1991). However, with the success of
neural networks at scale, the capacity for reasoning has seemingly come into reach (Huang & Chang,
2023). Arguably key to this success is the ability for in-context learning paired with the capacity to
flexibly recombine learned skills and knowledge to unseen settings. While these capabilities emerge
at least partially from training large models on huge datasets (Brown et al., 2020), it is not clearly
understood how the resulting networks implement them - and why they still often fail.

A number of recent studies that aim to illuminate in-context learning abilities have found that
transformers can learn to perform gradient-based optimization within sequence (Dai et al., 2023;
Akyürek et al., 2023; von Oswald et al., 2023). They build on the insight that linear attention can be
understood as a fast-weight programmer (Schmidhuber, 1992), that learns to construct an implicit
model in-context, with weights given by a sum of input-dependent outer products (Schlag et al.,
2021). Complementing this perspective, (Hendel et al., 2023; Todd et al., 2024) have found that
in-context learning creates task vectors in the hidden activations of deeper layers of the network
which summarize in-context information and modulate the forward computation. What is striking is
that learning in-context can under some circumstances lead to compositional generalization, that is
generalization to unseen combinations of previously observed constituents (An et al., 2023; Lake
& Baroni, 2023; Hosseini et al., 2022), a capacity that neural networks notoriously struggle with
(Srivastava et al., 2023; Press et al., 2023; Dziri et al., 2023). The mechanism behind this ability
however is not well understood. Here we aim to shed light on this question.

Central to our results is a novel decomposition of multi-head attention as a hypernetwork, a neural
network that reconfigures the computation of another neural network in a data-dependent manner. Our
decomposition differs from that of (Schlag et al., 2021), revealing that multiple heads form a linear
hypernetwork with key-query specific inputs, illustrated in Figure 1. As a result, the attention scores

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Hypernetwork attention. A A linear hypernetwork maps a latent code to a set of
parameters that configure a value network to process the input. B The attention scores along the head
index form the latent code of the hypernetwork. C Multi-head attention can be equivalently expressed
as a linear hypernetwork that configures key-query specific computations of a linear value network.

along the head index represent a compact code that specifies the operation applied to each key-query
pair via a linear value network. We hypothesize that the shared hypernetwork in each attention
layer is what supports the reuse and recombination of learned operations. In order to investigate
whether this constitutes a faithful characterization of what transformers learn in practice, we study
in-context learning tasks that require recomposing knowledge obtained during training. As one such
task we develop a challenging abstract reasoning task based on the Raven Progressive Matrices
human intelligence test (Raven, 1962) and show how multi-head attention develops a structured latent
code that captures information about the operations implemented.

Our main contributions can be summarized as follows:

• We reformulate standard multi-head attention from a hypernetwork perspective revealing that
network computations are specified by a low dimensional latent code.

• We show that scaling up model size and data enables transformers to compositionally generalize on
abstract reasoning tasks and leads to a structured latent space that is predictive of network function.

• To test the hypothesis that the hypernetwork mechanism supports compositionality, we introduce a
simple modification to multi-head linear attention that makes the value network nonlinear without
introducing additional parameters finding that it improves compositional generalization.

• We introduce SRAVEN, a challenging Raven-based symbolic, abstract reasoning task whose diffi-
culty can be controlled parametrically and which offers precise control over the problem composi-
tions encountered during training in order to test for compositional generalization.

2 ATTENTION AS A HYPERNETWORK

In this section, we will first briefly recapitulate hypernetworks (Ha et al., 2017) and standard multi-
head dot-product attention (Vaswani et al., 2017) before showing how attention can equivalently be
expressed as a hypernetwork. We will then introduce Hypernetwork Linear Attention (HYLA) as
a simple modification of linear attention that renders the hypernetwork mechanism inside attention
more expressive.

For notation we will use bold lower-case letters for vectors (e.g. z), bold upper-case letters for
matrices (e.g. A) and bold, italic upper-case letters for learnable parameter matrices (e.g. WV).

2.1 MULTI-HEAD ATTENTION

A hypernetwork is a neural network h(z;θ) parameterized by θ that takes as input a latent code z
and outputs parameters W that parameterize a value network f(x;W) which then processes the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

inputs (see Figure 1A). The latent code, z, is typically low-dimensional and can be interpreted as a
specification of the computation performed by the value network. As we will see in the following,
multi-head attention can be viewed as a linear hypernetwork producing the weights for a linear value
network. Note that this is different from the observation that linear attention can be understood
as a fast weight programmer (Schlag et al., 2021) where the fast weights of a value network are
constructed as a sum of outer products over the key indices instead of the head indices.

Self-attention maps a sequence of inputs X ∈ RT×D to a sequence of outputs Y ∈ RT×D. For
each attention head h ∈ {1, . . . ,H} the inputs are projected into keys Kh = XW key

h and queries
Qh = XW query

h using head-specific projection matrices W key
h ,W query

h ,W value
h ∈ RD×Dkey

. The
attention matrix can then be obtained as

A = σ
([

Ã1 Ã2 . . . ÃH

])
with Ãh =

QhK
⊤
h√

Dkey
(1)

where A = (ah,q,k)h,q,k ∈ RH×T×T stacks the head-specific unnormalized attention matri-
ces (Ãh)h into a three-dimensional array and applies a normalization operation σ(·). For linear
attention, σ(·) = Id(·) is simply the identity whereas for softmax attention σ(·) = Softmax(·)
applies the softmax operation for each head and query index independently across the key indices.
Considering a single query index q ∈ {1, . . . , T} and xk the k-th row of X, multi-head attention
(MHA) can be equivalently expressed as a hypernetwork with a key-query specific latent code:

MHAq(X) :=W out
H⊕

h=1

T∑
k=1

ah,q,k W value
h xk (2)

=

H∑
h=1

W out
h

T∑
k=1

ah,q,k W value
h xk (3)

=

T∑
k=1

 H∑
h=1

ah,q,k︸ ︷︷ ︸
latent code

W out
h W value

h︸ ︷︷ ︸
hypernetwork

xk (4)

=

T∑
k=1

Wq,k︸ ︷︷ ︸
value network

xk (5)

where ⊕ denotes concatenation along the leading axis and the W out
h ∈ RDvalue×D are defined as the

slices of W out such that W out =
⊕H

h=1 W
out
h . See Figure 1C for a diagram of the computation.

As a result, the key-query specific attention scores over the multiple heads form a latent code where
the number of heads H corresponds to the latent dimension of a hypernetwork. Accordingly, the
dot products between any key-query pair over all heads can be interpreted as an amortized inference
process to configure the computation implemented in the linear value network.

The key significance of our finding is that it suggests that multi-head attention can implement
specialized, reusable operations through the latent code of the hypernetwork. Notably, it has been
shown that hypernetworks support compositional generalization (Schug et al., 2024), providing a
possible explanation for similar capabilities observed in transformers (Lake & Baroni, 2023; An
et al., 2023; Hosseini et al., 2022). Note that inside of multi-head attention the same hypernetwork is
used for every key-query index. Specifically, the hypernetwork linearly combines the same matrices
(W out

h ,W value
h)h according to the weights given by ah,q,k. This incentivizes reuse of latent codes and

their associated operations implemented through the value network.

2.2 HYPERNETWORK LINEAR ATTENTION (HYLA)

If the perspective of multi-head attention as a hypernetwork indeed reflects how it operates in practice,
it should be possible to modify multi-head attention in a way that further reinforces the hypernetwork
mechanism. For instance both the hypernetwork and the value network in multi-head attention are
simple linear networks and could be replaced by nonlinear networks. Furthermore the normalization

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

operation σ(·) could be used to encode inductive biases such as competition or sparsity in the latent
code by imposing structural constraints.

Here, we focus on a simple modification to linear attention where we make the value network
nonlinear and normalize the latent code along the head index (instead of along the key index as
in standard softmax attention). Specifically, we define Hypernetwork Linear Attention (HYLA) to
use a single hidden layer value network with nonlinearity. This should increase the expressivity of
the subfunctions that are learned and recomposed by the layer. Noting that the output and value
projections, W out

h ,W value
h , already form a deep linear network in standard multi-head attention (c.f.

Eq. 4) this can be achieved without adding additional parameters as follows:

HYLAq(X) =

T∑
k=1

(
H∑

h=1

ah,q,k W out
h

)
ϕ

(
H∑

h=1

ah,q,k W value
h xk

)
(6)

=

T∑
k=1

W′
q,kϕ(Wq,kxk), (7)

where ϕ(x) is an element-wise nonlinearity; here we set it to be a ReLU, ϕ(x) = max(0, x).

Additionally, we use σ(·) = RMSHead(·), to normalize the attention scores for each key and query
index independently across the head indices using the RMSNorm(x) = x√

1
n

∑n
i=1 x2

i

. This ensures

that the parameters of the value network generated by the hypernetwork are appropriately initialized to
prevent exploding/vanishing gradients when backpropagating through it. The resulting HYLA-layer
is a simple drop-in replacement to standard attention. Notably, since the normalization operation
σ(·) is local to the query and key index, it requires no communication across keys as opposed to
softmax attention. By making the value network more expressive, we allow the network to implement
more complex operations for a given latent code which we hypothesize strengthens the ability for
compositional generalization.

3 COMPOSITIONAL GENERALIZATION ON FUZZY LOGIC FUNCTIONS

We start by developing a fuzzy logic task with compositional structure, inspired by a similar task
previously considered by Rahaman et al. (2021). Learning such tasks in an in-context learning setting
will allow us to study the ability of multi-head attention-based models to compositionally generalize
and analyze the structure of their latent code when solving each task.

Given a set of L scalars {x1, ..., xL} with xi ∈ [0, 1] we define fuzzy logic operators on the elements
of this set as the Zadeh operators (Zadeh, 1965):

xi ∧ xj := min(xi, xj), xi ∨ xj := max(xi, xj), x̄i := 1− xi (8)

These operators have the property that for boolean inputs xi ∈ {0, 1} the outputs coincide with the
outputs of the corresponding Boolean operation. Each task is then defined as a function in disjunctive
normal form consisting of K terms such as for example for L = 4 and K = 2

f(x1, x2, x3, x4) = (x1 ∧ x2 ∧ x3 ∧ x4)︸ ︷︷ ︸
Term 1

∨ (x̄1 ∧ x2 ∧ x̄3 ∧ x4)︸ ︷︷ ︸
Term 2

(9)

where each term is a conjunction of all variables with negations applied to some of them. In order to
test for compositional generalization, we index each of the 2L possible terms, generate all possible
combinations of K terms and hold out a fraction of the combinations for out-of-distribution (OOD)
testing, ensuring that their constituent terms have been encountered in some tasks during training.

For each task, we present N examples in-context (see Figure 2A) where each token has dimension
L + 1 consisting of the concatenated inputs sampled uniformly from [0, 1] and the corresponding
target of the function for the current task. For the final token we mask out the target and use the
output logits of the final token to predict the target, measuring the loss using the mean-squared error.

3.1 COMPOSITIONAL GENERALIZATION

We first investigate how well multi-head attention based transformer models are able to learn our
fuzzy logic tasks in-context and compositionally generalize to held out tasks. We vary the number of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Compositional generalization on fuzzy logic functions. A We split fuzzy logic functions
according to their constituent terms into train and out-of-distribution (OOD) set to measure composi-
tional generalization in a sequence model that learns these functions in-context. B The latent code of
the query token is predictive of the constituent terms underlying each task. Shown is the F1 score of
logistic regression classifiers for each layer and term, trained to predict the terms underlying each task
based on the attention scores across the head index for the query attending to itself for unseen tasks.
C Task performance on unseen tasks reported as OOD R2 for varying number of in-context examples
and fraction of tasks held out during training. D tSNE visualization of the latent codes (attention
scores across the head index for the query token attending to itself) colored according to the target
label (top) and colored according to the first term of the fuzzy logic function of each task (bottom).

examples presented in context as well as the fraction of combinations of fuzzy logic terms held out
from the training set. Figure 2C compares standard multi-head softmax attention and linear attention
as well as our HYLA model in terms of their coefficient of determination (R2) on the queries of held
out tasks. We find that all models are able to solve the fuzzy logic task given sufficient examples
are presented in context. As the fraction of held out tasks increases, compositional generalization
performance starts decreasing for all models. Interestingly, HYLA is less affected by this decline
than softmax and linear attention. We hypothesize that the more expressive value network allows to
more efficiently represent the nonlinear terms being composed and thereby strengthens the inductive
bias towards compositionality. Consistent with this interpretation, in-distribution the models show
comparably small differences in performance (see A2). In Appendix A.1 we conduct additional
model ablations that separate the contributions of the RMSHead normalization and the nonlinearity
added to the value network, showing that both components in combination are required to obtain the
observed performance improvements.

Our compositional split only contains novel combinations of known terms. A priori, it might be
possible that the system learns to compose the basic fuzzy logic operations in a way that allows it to
generalize to any fuzzy logic function, including those that contain novel combinations of unknown
terms. However, testing on functions obtained as novel combinations of K unknown terms, we find
that none of the models considered here is able to solve such a task (see Figure A4 in the appendix).

3.2 LATENT CODE STRUCTURE

Next, we analyze the structure of the latent code for the different models solving the task. As
suggested by Eq. 4, the attention scores for a given key-query pair across the head dimension
configure the computation performed in the value network and accordingly we would expect it to
reflect the fuzzy logic function that needs to be implemented to correctly predict the output of the
query token. To test this hypothesis, we collect the attention scores for the final query token attending
to itself, obtaining a vector of dimension H for each layer and task. For this purpose we use the tasks
held out from training, varying the query token while keeping inputs shown in-context fixed. In order
to visualize the H-dimensional points we thereby obtain for each layer, we reduce the dimensionality

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: SRAVEN. A Illustration of SRAVEN task generation and the construction of the compositional
generalization split. B Example problem instance illustrating a key challenge of the original Raven
Progressive Matrices of finding correspondences (adapted from (Carpenter et al., 1990)). When
attempting to solve this instance, different hypotheses over which figural elements are governed by a
consistent rule across rows are possible. This is akin to different orderings of the symbolic features.

using tSNE (Maaten & Hinton, 2008). The results of this analysis are shown in Figure 2D (for an
extended figure showing all layers see Figure A3). In line with our hypothesis, the latent codes for
each model form clusters. The structure of these clusters is only partially explained by the target value
of the function for a given query value. Strikingly, coloring data points according to the fuzzy logic
terms present underlying each function reveals that clusters in the latent codes closely correspond to
the functions. Indeed, it is possible to decode the terms underlying each function from the latent code
using a logistic regression classifier which is trained to predict the function terms given the latents
and is evaluated on held out tasks as shown in Figure 2B.

4 SRAVEN: SYMBOLIC RAVEN

Next we will introduce an abstract reasoning task based on Raven Progressive Matrices (Raven, 1962)
we refer to as SRAVEN. We develop this task to provide a challenging benchmark that specifically
probes symbolic reasoning capabilities while giving us fine-grained control over the constituent parts
of each task in order to assess compositional abilities and analyze latent code structure.

4.1 ABSTRACT REASONING BASED ON SYMBOLIC RAVEN PROGRESSIVE MATRICES

The original Raven Progressive Matrices test is a classic human intelligence test that probes the ability
to induce abstract relations (Raven, 1962). It requires test subjects to generate and verify a potentially
large number of hypotheses over rules that can parsimoniously explain a given problem instance
(Carpenter et al., 1990). While there have been previous machine learning datasets inspired by Raven
Progressive Matrices (Wang & Su, 2015; Zhang et al., 2019; Barrett et al., 2018; Hu et al., 2021), we
seek to study a setting that is both symbolic, compositional and models an aspect which to the best of
our knowledge has not been explicitly considered in prior benchmarks: we seek to model the key
difficulty of RAVEN tasks referred to as finding correspondences by Carpenter et al. (1990) which
requires to search through a large number of possible hypotheses. We discuss existing RAVEN-based
benchmarks in Section 6.

4.2 TASK DESCRIPTION

Figure 3A illustrates the generative process of SRAVEN. For each task, a matrix of eight context
panels is presented and the goal is to predict the contents of the final query panel. In the original

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Scaling data and model size on SRAVEN. A Compositional generalization measured by
OOD accuracy as a function of the number of training problem instances for different widths (scaling
embedding and key-query-value dimensions) . B Same as A but increasing depth instead of width.

Raven Progressive Matrices Test, each panel typically displays a combination of geometrical shapes
as for instance shown in Figure 3B. For our symbolic version, each panel is defined as a vector of
integers of length M (in our experiments we set M = 4 unless stated otherwise). For each dimension
m ∈ {1, 2, . . . ,M} one of R = 8 possible rules is sampled as well as three corresponding sequences
of three integers generated by the respective rule (see Figure 3A and Appendix B.3 for more details on
the rules). We restrict rules to apply within each row while generally rules could also be applied both
across columns and across rows. As a result we obtain nine panels where each row can be explained
by the same set of underlying rules. In order to maintain a finite set of possible symbols both for the
context panels and the query panel, we limit all tasks to contain only integers {0, 1, 2, . . . ,K − 1} (in
our experiments we set K = 8). Arithmetic rules such as progression, sum or difference are therefore
defined using modular arithmetic modulo K.

We use the first eight panels as context panels and present them sequentially to a sequence model
which needs to predict each dimension of the final query panel independently. A prediction is
considered correct if and only if all subpredictions were correct. In the original Raven task, a number
of possible answer panels are presented alongside the context panels and test subjects are asked to
pick the one which contains the correct answer (Raven, 1962). Since in our case the correct answer
will consist of a combination of a finite set of known symbols, we can ask the agent solving the task
to directly predict the missing symbols. Conveniently this helps avoid potential shortcuts for solving
a task that might arise from a biased generative process to create multiple-choice answers as a popular
prior Raven-based benchmark has been found to be affected by (Zhang et al., 2019; Hu et al., 2021).

One of the key features of SRAVEN is its compositional structure. Each task consists of a combination
of a finite set of rule combinations. To systematically test whether a system trained on a subset of
rule combinations can generalize to unseen combinations, we split all rule combinations into a train
set and a test set. Unless noted otherwise, we hold out 25% of all possible rule combinations for
evaluation in our experiments. Note that permutations of rule combinations (e.g. AB and BA) are
considered to be the same and will only appear in one of the two sets. This ensures that at test time
the agent is confronted with instances of tasks whose underlying combination of rules it has never
encountered during training.

4.3 FINDING CORRESPONDENCES

Making the task symbolic instead of presenting images of geometric shapes comes with the advantage
of a smaller input space allowing us to scale to larger model and data sizes in our experiments. How-
ever, it removes the visual representation learning step of discovering the right symbolic abstractions.
We argue that while this is a difficult problem worth studying by itself, it is typically not the main
source of difficulty for the original Raven tasks which mostly consist of simple visual features such
as numerosity, shape, or position. As Carpenter et al. (1990) argue in their theoretical account of the
original Raven test, what makes many tasks difficult is the problem of finding correspondences of
rules to feature dimensions.

This is best illustrated when considering the example in Figure 3B showing an adapted version of
Figure 5 of (Carpenter et al., 1990). When first attempting to solve this task, a test subject might
hypothesize that there is a rule guiding the numerosity and orientations per shape. For example one
might to try find a rule that governs all curved shapes, one rule that governs all lines and one rule that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Latent code structure of SRAVEN. A tSNE visualizations of the final layer latent codes
for the final query token colored by the magnitude of the predicted target value. B Same as A
but colored by the ground-truth rule the model needs to apply to the query token to generated the
correct prediction. C OOD accuracy for varying numbers of attention heads. For a single head the
hypernetwork mechanism is absent which hampers OOD generalization. D The difficulty of SRAVEN
can be parametrically controlled by varying the number of modules M . E Heatmap showing the
pairwise cosine similarity between the average latent code of each rule for HYLA revealing how
semantically related rules form clusters. For instance rule F (sum) and G (difference) are implemented
with a very similar latent code indicating that the same code might be reused by flipping the sign
of the operands. F Decoding performance of a logistic regression classifier trained to predict the
ground-truth SRAVEN rule based on the latent code at the final query token of training tasks and
evaluated on unseen OOD tasks revealing that the latent code is predictive of the implemented rule.

governs all rectangles. Translated into a symbolic encoding, this is akin to ordering symbols by the
shape and trying to find rules along each dimension in this ordering. However, this approach turns out
to not provide a parsimonious answer. The correct answer can instead be obtained by grouping the
objects by their orientations, i.e. by finding a rule that applies to all horizontal objects and a rule that
applies to all vertical objects. In the symbolic encoding this new correspondence of features amounts
to a new ordering of the same symbolic encoding where symbols are now ordered by orientation and
one needs to find rules guiding the numerosity and shape per orientation.

To model the property of finding correspondences in SRAVEN we similarly allow for permutations of
the features. Specifically, we sample and apply a column-specific permutation of the features when
generating each task such that the entries of the vectors encoding each panel are permuted with a
consistent permutation for a given column across all rows. This makes finding the correct solution
difficult since the number of possible hypotheses grows significantly (see Appendix B.1 for more
details). Note that in principle a problem instance might have multiple valid but divergent answers
making the task ill-posed. In the settings considered here this happens for less than half a percent of
the problem instances. See Appendix B.2 for more details on handling such ambiguities.

4.4 RESULTS

Scaling model size and data enables compositional generalization. We first evaluate to what
extent transformers can compositionally generalize on SRAVEN as we increase the number of problem
instances trained on and scale up the models both in terms of width and depth. Figure 4 shows the
results of these scaling experiments. Given sufficient data and model size, all model classes are
able to solve 80% of problem instances created from tasks held out during training. The inductive
bias of making the value network more expressive by introducing a nonlinearity in HYLA seems
to be beneficial for this task. Especially when presented with few problem instances and for small
model sizes it outperforms both linear and softmax attention. In contrast, disrupting the hypernetwork

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

mechanism by decreasing the number of heads to H = 1 noticeably decreases performance as shown
in Figure 5C.

The latent code is structured according to the rules of the task. We next analyze the latent
code for the different models solving the task. To this end we collect the attention scores of the
final query token attending to itself. Following the perspective of attention as a hypernetwork, we
expect latent codes corresponding to the same rule to form clusters. Indeed, Figure 5B reveals a
strikingly structured code for the final layer across models with clusters closely matching the rule
to be inferred to correctly predict the query output for each given task. In comparison, Figure 5A
colors the points in latent space by the magnitude of the inputs the query needs to attend to to make
the correct prediction. This tends to explain clusters more prominently in early layers as shown in the
appendix in Figure A5 and for a 16 layer softmax transformer in Figure A6.

To obtain a better understanding of the semantics of the latent code, we explore the pairwise cosine
similarity between average latent codes for each rule across tasks for HYLA. Figure 5C shows that
semantically related rules like sum/difference can form clusters, suggesting that latent codes might
even be reused to solve related task operations. Finally, we train a logistic regression classifier
to predict the ground-truth SRAVEN rule based on the latent code at the final query token of in-
distribution SRAVEN tasks and evaluate it on unseen OOD tasks. This reveals that especially for
later layers the latent code is strongly predictive of the subfunctions performed by the network.

Figure 6: Language mod-
eling. Performance of au-
toregressively trained decoder-
only transformer models with
50M parameters over the
course of training on the C4
dataset with 130B tokens (Raf-
fel et al., 2020).

5 LANGUAGE MODELING

Multi-head attention has proven especially effective for language
modeling. With language itself being highly compositional, it stands
to question whether the hypernetwork mechanism inside of multi-
head attention might play a part in explaining its success. To shed
light on this question, we conducted language modeling experiments
and evaluate the performance of HYLA in comparison to linear
and softmax attention. We train decoder-only transformer models
with 50M parameters autoregressively for 130 Billion tokens on
the C4 dataset (Raffel et al., 2020). We find that strengthening the
hypernetwork mechanism via HYLA improves performance over
linear attention and performs closely to softmax attention despite
being a linear attention variant itself. This is noteworthy considering
the importance of softmax in language modeling hypothesized to
be due to its role in binding and associative recall problems on
which linear attention methods typically struggle (Arora et al., 2023;
Olsson et al., 2022; Schlag et al., 2021). The fact that reinforcing
the hypernetwork mechanism inside of multi-head attention as done
by HYLA helps close the gap of linear attention to softmax attention
suggests that the hypernetwork mechanism might be of practical
relevance for understanding large-scale transformer models.

6 RELATED WORK

The role of multiple heads in attention. Prior work that has studied the question why the attention
mechanism benefits from multiple heads has counterintuitively found that it is possible to prune
almost all but one head in some layers after training, sacrificing only relatively small amounts of
performance (Voita et al., 2019; Michel et al., 2019). It has therefore been speculated that equipping
the attention mechanism with multiple heads primarily aids stability during training (Liu et al., 2021).
The hypernetwork perspective of attention offers an alternative account, suggesting that multiple
heads create a way of configuring compositional computations in the value network. Seen from
this perspective, the observation of singular heads dominating could point to a connection to the
phenomenon of module collapse often observed when training modular systems in practice (Shazeer
et al., 2017; Kirsch et al., 2018; Rosenbaum et al., 2018; Mittal et al., 2022).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Compositional generalization. Consistent with our observation on scaling model size on the
SRAVEN task, (Hosseini et al., 2022) find that as pretrained large language models are scaled, their
ability to compositionally generalize on in-context semantic parsing tasks improves. Similarly, outside
the in-context learning regime, (Furrer et al., 2021) have demonstrated that pretrained large language
models outperform many architectures specialized towards compositional generalization. Still, to
what extent the ability for compositional generalization extends beyond the training distribution
remains openly debated (Srivastava et al., 2023; Press et al., 2023; Dziri et al., 2023).

Raven-based tasks. A number of Raven-inspired tasks have been introduced to assess abstract
reasoning capabilities of neural networks (Wang & Su, 2015; Zhang et al., 2019; Barrett et al., 2018;
Hu et al., 2021). Common to all these variants including our version is an underlying generative
task model based on a finite number of possible rules that are applied on one or more of the feature
dimensions for each panel. Different from our version, these variants render the problem instances as
images using simple geometrical shapes resulting in larger datasets and computational demand. Still
we argue that the so generated tasks are not necessarily harder than the tasks of SRAVEN, given that
SRAVEN models an additional difficulty of finding correspondences as detailed in Section 4.3 and its
difficulty can be controlled parametrically; for instance by increasing the number of features.

7 DISCUSSION

We have proposed a novel decomposition of multi-head attention revealing that it can be interpreted
as a hypernetwork that composes value networks specific to each key-query pair. Consistent with this
perspective, we find empirically that the attention scores over the heads for each key-query pair form
a functionally structured space, identifying reusable subfunctions in two abstract reasoning tasks.
Furthermore, modifying multi-head attention to strengthen the hypernetwork mechanism improves
compositional generalization on these tasks.

Adopting the hypernetwork perspective more broadly, multi-head attention can be interpreted as
a particular choice for the level of granularity at which the hypernetwork parameterizes the value
network: The value networks are key-query specific and are followed by a pooling step that sums the
key-query specific outputs over the key index. In principle, other levels of granularity are possible.
For instance the hypernetwork could parameterize a query specific value network which subsumes
the aggregation over the key index. In the extreme case, it could directly parameterize the full
sequence operation potentially facilitating the re-use of sequence-level operations. This also offers
an interesting connection to attention-based graph neural networks (Veličković et al., 2018; Shirzad
et al., 2023). Classically, a non-causal single layer transformer is seen as a fully connected graph
where each token corresponds to a node and aggregation is done via attention (Battaglia et al., 2018).
Our derivation suggests an alternative interpretation where the message function is a hypernetwork
that subsumes the attention weights while the aggregation becomes the sum operator. Given the
crucial role that aggregation plays in graph neural networks (Rosenbluth et al., 2023; Dudzik et al.,
2023), a natural question is whether different pooling operators should be considered more generally
for multi-head attention.

Limitations. We have focused our analysis on models trained from scratch in order to give us
fine-grained control over what data is encountered during training. Many interesting behaviors emerge
in large-scale models pretrained on diverse tasks. Investigating whether the resulting models form a
similarly structured latent code is an interesting avenue for future work.

Ethics statement. This paper conducts foundational research aiming to illuminate the mechanisms
of the widely used multi-head attention layer. While we foresee no immediate negative societal
impact, we hope that it may improve our understanding of this widely deployed technology.

Reproducibility statement. To ensure the reproducibility of our work, we are providing the
code for all our experiments as part of the supplementary material. We further expand upon the
experimental details explained in the main text in Appendix C.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? Investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou, and Dongmei Zhang.
How Do In-Context Examples Affect Compositional Generalization? In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 11027–11052, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.618. URL
https://aclanthology.org/2023.acl-long.618.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and Improving Recall in Efficient Language Models,
December 2023. URL https://arxiv.org/abs/2312.04927v1.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky,
David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio Fantacci,
Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven
Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena Martens, Hamza
Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John Quan, Roman Ring,
Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan
Srinivasan, Wojciech Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind
JAX Ecosystem, 2020. URL http://github.com/deepmind.

David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring abstract
reasoning in neural networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 511–520. PMLR, July 2018. URL https://proceedings.mlr.press/
v80/barrett18a.html.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli,
Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases, deep
learning, and graph networks, October 2018. URL http://arxiv.org/abs/1806.01261.
arXiv:1806.01261 [cs, stat].

Lukas Biewald. Experiment Tracking with Weights and Biases, 2020. URL https://www.wandb.
com/.

Alfred Binet and Theophile Simon. The development of intelligence in children. 1961. Publisher:
Appleton-Century-Crofts.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot
Learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

11

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://aclanthology.org/2023.acl-long.618
https://arxiv.org/abs/2312.04927v1
http://github.com/deepmind
https://proceedings.mlr.press/v80/barrett18a.html
https://proceedings.mlr.press/v80/barrett18a.html
http://arxiv.org/abs/1806.01261
https://www.wandb.com/
https://www.wandb.com/
http://github.com/google/jax
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

P. A. Carpenter, M. A. Just, and P. Shell. What one intelligence test measures: a theoretical
account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97
(3):404–431, July 1990. ISSN 0033-295X. URL https://psycnet.apa.org/record/
1990-27436-001.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why
Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta-
Optimizers. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the
Association for Computational Linguistics: ACL 2023, pp. 4005–4019, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.247. URL
https://aclanthology.org/2023.findings-acl.247.

Andrew Joseph Dudzik, Tamara von Glehn, Razvan Pascanu, and Petar Veličković. Asynchronous
Algorithmic Alignment with Cocycles. In The Second Learning on Graphs Conference, 2023.
URL https://openreview.net/forum?id=ba4bbZ4KoF.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren,
Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and Fate: Limits of Transformers on Com-
positionality, June 2023. URL http://arxiv.org/abs/2305.18654. arXiv:2305.18654
[cs].

Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71, March 1988. ISSN 00100277. doi: 10.1016/0010-0277(88)90031-5. URL
https://linkinghub.elsevier.com/retrieve/pii/0010027788900315.

Daniel Furrer, Marc van Zee, Nathan Scales, and Nathanael Schärli. Compositional Generalization
in Semantic Parsing: Pre-training vs. Specialized Architectures, September 2021. URL http:
//arxiv.org/abs/2007.08970. arXiv:2007.08970 [cs].

David Ha, Andrew M. Dai, and Quoc V. Le. HyperNetworks. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=rkpACe1lx.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL
http://github.com/google/flax.

Roee Hendel, Mor Geva, and Amir Globerson. In-Context Learning Creates Task Vectors, October
2023. URL http://arxiv.org/abs/2310.15916. arXiv:2310.15916 [cs].

Arian Hosseini, Ankit Vani, Dzmitry Bahdanau, Alessandro Sordoni, and Aaron Courville. On the
Compositional Generalization Gap of In-Context Learning. In Jasmijn Bastings, Yonatan Belinkov,
Yanai Elazar, Dieuwke Hupkes, Naomi Saphra, and Sarah Wiegreffe (eds.), Proceedings of the Fifth
BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 272–280,
Abu Dhabi, United Arab Emirates (Hybrid), December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.blackboxnlp-1.22. URL https://aclanthology.org/
2022.blackboxnlp-1.22.

Sheng Hu, Yuqing Ma, Xianglong Liu, Yanlu Wei, and Shihao Bai. Stratified Rule-Aware Network
for Abstract Visual Reasoning. Proceedings of the AAAI Conference on Artificial Intelligence, 35
(2):1567–1574, May 2021. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v35i2.16248. URL
https://ojs.aaai.org/index.php/AAAI/article/view/16248.

Jie Huang and Kevin Chen-Chuan Chang. Towards Reasoning in Large Language Models: A
Survey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the
Association for Computational Linguistics: ACL 2023, pp. 1049–1065, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
https://aclanthology.org/2023.findings-acl.67.

Plotly Technologies Inc. Collaborative data science, 2015. URL https://plot.ly. Place:
Montreal, QC Publisher: Plotly Technologies Inc.

12

https://psycnet.apa.org/record/1990-27436-001
https://psycnet.apa.org/record/1990-27436-001
https://aclanthology.org/2023.findings-acl.247
https://openreview.net/forum?id=ba4bbZ4KoF
http://arxiv.org/abs/2305.18654
https://linkinghub.elsevier.com/retrieve/pii/0010027788900315
http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
https://openreview.net/forum?id=rkpACe1lx
http://github.com/google/flax
http://arxiv.org/abs/2310.15916
https://aclanthology.org/2022.blackboxnlp-1.22
https://aclanthology.org/2022.blackboxnlp-1.22
https://ojs.aaai.org/index.php/AAAI/article/view/16248
https://aclanthology.org/2023.findings-acl.67
https://plot.ly

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Louis Kirsch, Julius Kunze, and David Barber. Modular Networks: Learning to Decompose Neu-
ral Computation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for Neural Text Processing. In Eduardo Blanco and Wei Lu (eds.), Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 66–71, Brussels, Belgium, November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-2012. URL https://aclanthology.org/D18-2012.

Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-
learning neural network. Nature, 623(7985):115–121, November 2023. ISSN 1476-
4687. doi: 10.1038/s41586-023-06668-3. URL https://www.nature.com/articles/
s41586-023-06668-3. Publisher: Nature Publishing Group.

Liyuan Liu, Jialu Liu, and Jiawei Han. Multi-head or Single-head? An Empirical Compari-
son for Transformer Training, June 2021. URL http://arxiv.org/abs/2106.09650.
arXiv:2106.09650 [cs].

Peter J. Liu, Roman Novak, Jaehoon Lee, Mitchell Wortsman, Lechao Xiao, Katie Everett, Alexan-
der A. Alemi, Mark Kurzeja, Pierre Marcenac, Izzeddin Gur, Simon Kornblith, Kelvin Xu,
Gamaleldin Elsayed, Ian Fischer, Jeffrey Pennington, Ben Adlam, and Jascha-Sohl Dickstein.
NanoDO: A minimal Transformer decoder-only language model implementation in JAX., 2024.
URL http://github.com/google-deepmind/nanodo.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts, May
2017. URL http://arxiv.org/abs/1608.03983. arXiv:1608.03983 [cs, math].

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019. URL
http://arxiv.org/abs/1711.05101. arXiv:1711.05101 [cs, math].

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(86):2579–2605, 2008. ISSN 1533-7928. URL http://jmlr.org/
papers/v9/vandermaaten08a.html.

Paul Michel, Omer Levy, and Graham Neubig. Are Sixteen Heads Really Better than One?, November
2019. URL http://arxiv.org/abs/1905.10650. arXiv:1905.10650 [cs].

Sarthak Mittal, Yoshua Bengio, and Guillaume Lajoie. Is a Modular Architecture Enough? In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022. URL https://openreview.net/forum?id=
3-3XMModtrx.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-Context Learning and Induction Heads, September 2022. URL http:
//arxiv.org/abs/2209.11895. arXiv:2209.11895 [cs].

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
and Narrowing the Compositionality Gap in Language Models, May 2023. URL http://arxiv.
org/abs/2210.03350. arXiv:2210.03350 [cs].

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

13

https://proceedings.neurips.cc/paper_files/paper/2018/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://aclanthology.org/D18-2012
https://www.nature.com/articles/s41586-023-06668-3
https://www.nature.com/articles/s41586-023-06668-3
http://arxiv.org/abs/2106.09650
http://github.com/google-deepmind/nanodo
http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1711.05101
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1905.10650
https://openreview.net/forum?id=3-3XMModtrx
https://openreview.net/forum?id=3-3XMModtrx
http://arxiv.org/abs/2209.11895
http://arxiv.org/abs/2209.11895
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://jmlr.org/papers/v21/20-074.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter Vincent Gehler, Yoshua Bengio,
Francesco Locatello, and Bernhard Schölkopf. Dynamic Inference with Neural Interpreters. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
IUjt25DtqC4.

John C. Raven. Advanced Progressive Matrices, Set II. H. K. Lewis, London, 1962.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing Networks: Adaptive Selection
of Non-Linear Functions for Multi-Task Learning. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=ry8dvM-R-.

Eran Rosenbluth, Jan Toenshoff, and Martin Grohe. Some Might Say All You Need Is Sum, May
2023. URL http://arxiv.org/abs/2302.11603. arXiv:2302.11603 [cs].

David E Rumelhart and James L McClelland. On learning the past tenses of English verbs. 1986.
Publisher: Cambridge, MA: MIT Press.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear Transformers Are Secretly Fast Weight
Programmers, June 2021. URL http://arxiv.org/abs/2102.11174. arXiv:2102.11174
[cs].

Jürgen Schmidhuber. Learning to Control Fast-Weight Memories: An Alternative to Dynamic
Recurrent Networks. Neural Computation, 4(1):131–139, 1992. doi: 10.1162/neco.1992.4.1.131.

Simon Schug, Seijin Kobayashi, Yassir Akram, Maciej Wo\lczyk, Alexandra Proca, Johannes von Os-
wald, Razvan Pascanu, João Sacramento, and Angelika Steger. Discovering modular solutions that
generalize compositionally. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=H98CVcX1eh.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=B1ckMDqlg.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse Transformers for Graphs. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
31613–31632. PMLR, July 2023.

Paul Smolensky. Connectionism, Constituency and the Language of Thought. In Barry M. Loewer
and Georges Rey (eds.), Meaning in Mind: Fodor and His Critics. Blackwell, 1991.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Johan
Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew La,
Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna
Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes,
Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut
Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bart\lomiej Bojanowski,
Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk
Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron Dour, Catherine
Stinson, Cedrick Argueta, Cesar Ferri, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta
Baral, Chiyu Wu, Chris Callison-Burch, Christopher Waites, Christian Voigt, Christopher D.
Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel,
Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman,
Dan Roth, C. Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle
Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David
Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz

14

https://openreview.net/forum?id=IUjt25DtqC4
https://openreview.net/forum?id=IUjt25DtqC4
https://openreview.net/forum?id=ry8dvM-R-
http://arxiv.org/abs/2302.11603
http://arxiv.org/abs/2102.11174
https://openreview.net/forum?id=H98CVcX1eh
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho
Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad
Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodolà,
Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan
Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar,
Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra,
Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio
Mariani, Gloria Xinyue Wang, Gonzalo Jaimovitch-Lopez, Gregor Betz, Guy Gur-Ari, Hana
Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar,
Henry Francis Anthony Shevlin, Hinrich Schuetze, Hiromu Yakura, Hongming Zhang, Hugh Mee
Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon
Lee, Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocon,
Jana Thompson, Janelle Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason
Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy
Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan
Waweru, John Burden, John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg
Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones,
Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth,
Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh Dhole, Kevin Gimpel,
Kevin Omondi, Kory Wallace Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar,
Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin,
Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble,
Ludwig Schmidt, Luheng He, Luis Oliveros-Colón, Luke Metz, Lütfi Kerem Senel, Maarten
Bosma, Maarten Sap, Maartje Ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika,
Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramirez-Quintana, Marie Tolkiehn,
Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás
Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael Andrew
Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michal
Swedrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac
Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini,
Mukund Varma T, Nanyun Peng, Nathan Andrew Chi, Nayeon Lee, Neta Gur-Ari Krakover,
Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas
Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah
Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans,
Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah
Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter W. Chang, Peter Eckersley, Phu Mon Htut,
Pinyu Hwang, Piotr Milkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing
Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon
Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe
Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan Le Bras, Rosanne
Liu, Rowan Jacobs, Rui Zhang, Russ Salakhutdinov, Ryan Andrew Chi, Seungjae Ryan Lee, Ryan
Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou,
Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel Stern Schoenholz,
Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey,
Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan,
Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane
Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima Shammie Debnath,
Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-
Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon,
Stella Biderman, Stephanie Lin, Stephen Prasad, Steven Piantadosi, Stuart Shieber, Summer
Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu,
Tariq Ali, Tatsunori Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas
Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias
Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant
Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Venkatesh Ramasesh, vinay uday
prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William
Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah
Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao,
Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Zijian Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the Imitation Game: Quantifying
and extrapolating the capabilities of language models. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=uyTL5Bvosj.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. RoFormer: Enhanced
transformer with Rotary Position Embedding. Neurocomputing, 568:127063, February 2024. ISSN
0925-2312. doi: 10.1016/j.neucom.2023.127063. URL https://www.sciencedirect.
com/science/article/pii/S0925231223011864.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function Vectors in Large Language Models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://papers.nips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
2018.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing Multi-Head
Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned. In Anna
Korhonen, David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 5797–5808, Florence, Italy, July 2019. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1580. URL https://aclanthology.
org/P19-1580.

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Arcas, Max Vladymyrov, Razvan
Pascanu, and João Sacramento. Uncovering mesa-optimization algorithms in Transformers,
September 2023. URL http://arxiv.org/abs/2309.05858. arXiv:2309.05858 [cs].

Ke Wang and Zhendong Su. Automatic generation of Raven’s progressive matrices. In Proceedings of
the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 903–909, Buenos Aires,
Argentina, July 2015. AAAI Press. ISBN 978-1-57735-738-4. URL https://www.ijcai.
org/Proceedings/15/Papers/132.pdf.

David Wechsler. The measurement and appraisal of adult intelligence. Academic Medicine, 33(9):
706, 1958. Publisher: LWW.

L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, June 1965. ISSN 0019-9958. doi:
10.1016/S0019-9958(65)90241-X. URL https://www.sciencedirect.com/science/
article/pii/S001999586590241X.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. RAVEN: A Dataset for
Relational and Analogical Visual REasoNing. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5312–5322, 2019. doi: 10.1109/CVPR.2019.00546.

16

https://openreview.net/forum?id=uyTL5Bvosj
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://openreview.net/forum?id=AwyxtyMwaG
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/P19-1580
https://aclanthology.org/P19-1580
http://arxiv.org/abs/2309.05858
https://www.ijcai.org/Proceedings/15/Papers/132.pdf
https://www.ijcai.org/Proceedings/15/Papers/132.pdf
https://www.sciencedirect.com/science/article/pii/S001999586590241X
https://www.sciencedirect.com/science/article/pii/S001999586590241X

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 Multi-head softmax attention
Input: x
Require: emb_dim, heads, h_dim

1: q = Dense(shape=(heads, h_dim), axis=-1)(x)
2: k = Dense(shape=(heads, h_dim), axis=-1)(x)
3: v = Dense(shape=(heads, h_dim), axis=-1)(x)
4:
5: a = einsum("...qhd,...khd->...hqk", q, k)
6: a = softmax(a, axis=−1)
7:
8: z = einsum("...hqk,...khd->...qhd", a,v)
9:

10:
11: y = Dense(features=emb_dim, axis=(-2, -1))(z)
12:
13: return y

Algorithm 2 Hypernetwork linear attention
Input: x
Require: emb_dim, heads, h_dim

1: q = Dense(shape=(heads, h_dim), axis=-1)(x)
2: k = Dense(shape=(heads, h_dim), axis=-1)(x)
3: v = Dense(shape=(heads, h_dim), axis=-1)(x)
4:
5: a = einsum("...qhd,...khd->...hqk", q, k)
6: a = rms_norm(a, axis=−3)
7:
8: z = einsum("...hqk,...khd->...qkd", a, v)
9: z = relu(z)

10: z = einsum("...hqk,...qkd->...qhd", a, z)
11: y = Dense(features=emb_dim, axis=(-2, -1))(z)
12:
13: return y

Figure A1: Psuedocode comparing multi-head softmax attention to hypernetwork linear attention.
Differences between the two are highlighted in yellow.

A ADDITIONAL RESULTS

A.1 MODEL ABLATIONS

Compared to linear attention, HYLA introduces three modifications: (1) normalization of the attention
scores across the head indices using RMSNorm, (2) applying the attention-weighted sum operation
also to the output projection and (3) inserting a nonlinearity in the value network (c.f. the pseudocode
for HYLA shown in Figure 1). To delineate the contributions of these modifications, we run an
ablation study on the fuzzy logic task and SRAVEN shown in Table A1. We find that while simply
applying RMSHead to linear attention (Linear Attention + RMSHead) and also the attention-weighted
sum operation without nonlinearity (HYLA − nonlinearity) both by themselves can slightly boost
performance, the full HYLA model generally performs best.

Increasing depth of the value network. To further test our hypothesis that it is the hypernetwork
mechanism inside multi-head attention which improves compositional generalization, we explore
making the value network configured by the hypernetwork deeper, adding an additional layer as
follows,

HYLA+
q (X) =

T∑
k=1

(
H∑

h=1

ah,q,k W out
h

)
ϕ

(
H∑

h=1

ah,q,k W value′
h ϕ

(
H∑

h=1

ah,q,k W value
h xk

))
, (10)

where W value′
h ∈ RDkey×Dkey

is a second layer value matrix which increases the number of parameters
of this model. Consistent with our hypothesis, this model also demonstrates strong OOD performance
as reported in Table A1.

Replacing RMSHead normalization with the softmax. We perform an additional ablation where
we replace the RMSHead normalization of HYLA with the standard softmax. As shown in Table A1
this model performs poorly. This might be partially explained by the fact that with the softmax the
linear combination of weights produced by the hypernetwork is no longer guaranteed to maintain the
scale of a standard neural network initialization corresponding to the value network.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table A1: Model ablations. Left column reports the OOD R2 score on the fuzzy logic task studied
in Figure 2 for a sequence length of 32 and 70% of tasks held out from training. Right column reports
the OOD accuracy on the SRAVEN task studied in Figure 4 for a 4-layer transformer trained on 20M
problem instances. We report the standard error over 3 seeds.

Fuzzy logic: SRAVEN:
OOD R2 OOD accuracy

Softmax attention 63.28± 2.31 56.56± 1.05
Linear attention 59.89± 5.22 56.30± 1.11
HYLA 81.13± 7.77 69.13± 1.90

Linear attention + RMSHead 68.93± 5.10 59.01± 2.50
Linear attention + RMSHead + nonlinear value 56.91± 4.25 55.38± 0.32

HYLA − RMSHead 81.27± 7.88 62.53± 5.73
HYLA − nonlinearity 84.54± 5.32 56.54± 0.21
HYLA − nonlinearity − RMSHead 79.42± 7.43 56.33± 1.41
HYLA − RMSHead + softmax 70.98± 7.08 38.21± 2.98
HYLA + deep value network 87.65± 4.54 66.59± 0.08

16 32 64 96
0.4

0.6

0.8

1

16 32 64 96 16 32 64 96

Softmax attention Linear attention HYLA

Sequence length Sequence length Sequence length

Tr
ai

n
R2

OOD fraction 0.3 OOD fraction 0.5 OOD fraction 0.7

Figure A2: Training coefficient of determination (R2) for varying sequence length and fraction of
held out tasks when in-context learning of fuzzy logic functions.

Figure A3: tSNE visualization of the attention scores across the head index for the query token on
the fuzzy logic task for a sequence length of 32 and 70% of tasks held out from training colored
according to (A) target label (B) fuzzy logic function, (C) term 1 and (D) term 2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

16 32 64 96
−0.5

0

0.5

1

16 32 64 96 16 32 64 96

Softmax attention Linear attention HYLA

Sequence length Sequence length Sequence length

U
ns

ee
n

O
O

D
 R

2
OOD fraction 0.3 OOD fraction 0.5 OOD fraction 0.7

Figure A4: Performance on fuzzy logic functions containing terms not
encountered during training. As expected all methods fail in this setting.
Same setup as in Figure 2B.

Figure A5: Latent code on SRAVEN. A tSNE visualization of the latent code predicting the final
query token colored by the magnitude of the predicted target value for 4-layer transformers trained
on 40M problem instances. B Same as A but colored by rule.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure A6: Latent code visualization in SRAVEN for a softmax transformer of depth 16. A tSNE
visualization of the latent code predicting the final query token colored by the rule to be inferred for a
softmax transformer of depth 16 trained on 40M problem instances. B Same plot as in A but colored
by the magnitude of the predicted target value.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B SRAVEN

B.1 NUMBER OF POSSIBLE TASKS AND INSTANCES

In the general case, the number of possible tasks in SRAVEN is a product of the number of possible rule
combinations

(
R+M−1

M

)
and the number of possible unique permutations ((M !)G−1 −M) where G

is the number of columns of the grid (in Raven-based tasks typically G = 3). Figure A7A shows the
number of possible SRAVEN tasks and Figure A7B shows the number of possible SRAVEN problem
instances. Note specifically that the latter is orders of magnitudes larger than the number of training
examples in our experiments for M = 4, K = 8.

B.2 AMBIGUITY

In principle, a problem instance generated given a set of rules and permutations might have an
ambiguous answer. That is there is at least one other set of rules and permutations that fit all context
panels but prescribe a different final query panel. One possibility is to check for such examples
when generating task instances and reject ambiguous ones. This process is prohibitively expensive
as it requires a search over the exponentially many possible permutations. We therefore resort to
a Monte-Carlo estimation of the fraction of ambiguous instances. Table A2 shows the results for
various parameterizations of the SRAVEN task. In the setting we consider here, (M = 4,K = 8), the
probabilities are negligible and we do not take measures to filter out ambiguous examples given the
computational overhead it produces in the data generation process.

B.3 RULES

sraven contains the following rules:

1. constant: Each row consists of a random but fixed integer in the range 1 to K.
2. progression (+1): The first element of each row is sampled uniformly at random and

incremented by 1 modulo K for each successive column.
3. progression (+2): The first element of each row is sampled uniformly at random and

incremented by 2 modulo K for each successive column.
4. progression (-1): The first element of each row is sampled uniformly at random and

decremented by 1 modulo K for each successive column.
5. progression (-2): The first element of each row is sampled uniformly at random and

decremented by 2 modulo K for each successive column.
6. addition: Two elements are sampled uniformly at random for each row and added modulo K

to obtain the last column.
7. subtraction: Two elements are sampled uniformly at random for each row and subtracted

modulo K to obtain the last column.
8. distribute three: Three elements are sampled uniformly at random and presented in three

independently sampled random permutations for each row.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure A7: A Number of possible SRAVEN tasks as a function the number of features (M). B Number
of possible SRAVEN problem instances as a function of the number of features (M) and the number
of feature values (K).

Table A2: Monte Carlo estimation of fraction of ambiguous examples over 4096 problem instances
± standard error. Bold used to denote the setting used for all experiments in this paper.

Number of features (M) Number of feature values (K) Estimated fraction of ambiguous examples

4 4 0.0642± 0.0038
4 8 0.0032± 0.0009
4 16 0.0005± 0.0003

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS

Architecture For all models we use a standard decoder-only transformer architecture where each
block is structured as

Z = MultiHeadAttention(LayerNorm(X)) +X

Y = FeedForward(LayerNorm(Z)) + Z.

MultiHeadAttention is either linear attention, softmax attention or hypernetwork linear at-
tention (HYLA) and uses T5-style relative positional embeddings (Raffel et al., 2020). For the
FeedForward layer, we employ a standard single-hidden layer MLP with GeLU nonlinearity
applied to each position in the sequence independently. For our language modeling experiments we
use rotary positional encodings (Su et al., 2024).

Tokenization For the fuzzy logic task we directly use the concatenated input examples as tokens.
Similarly for SRAVEN we use one-hot encodings of the integer inputs as the input tokens. In both cases
the input tokens are mapped into the embedding space of the transformer using a fully connected
dense layer and another fully connect dense layer is used to produce the output logits. For the
language modeling experiment we use the default sentencepiece tokenizer (Kudo & Richardson,
2018) of NanoDo (Liu et al., 2024) with a vocabulary size of 32000 and use the transposed embedding
matrix to produce the logits.

Optimizer We use the AdamW optimizer (Loshchilov & Hutter, 2019) with linear warmup starting
from a learning rate of 0 followed by a cosine decay learning rate scheduler (Loshchilov & Hutter,
2017) that decays the learning rate to 0.1 times the base learning rate. We exempt biases and
LayerNorm parameters from weight decay. In the fuzzy logic task we use the mean-squared error on
the logits of the query token whereas in SRAVEN we use the softmax cross-entropy loss on the logits
of all query tokens. The language modeling task uses an autoregressive softmax cross-entropy loss
with causal masking applied to the attention mechanism.

Hyperparameters For all tasks and models we perform a grid search over the learning rate, weight
decay and warmup steps. We report the search grid as well as all other hyperparameters in Table A3.

Table A3: Hyperparameters for all tasks and methods. Lists of values indicates that a grid search over
all points contained in the list have been conducted and for each method the optimal combination has
been picked. The width factor multiplies the embedding dimension, key-query-value dimension and
MLP dimension.

Parameter Fuzzy logic SRAVEN Language modeling

batch_size 128 128 256
num_layers 2 4 / 8 / 16 6
width_factor 1 1 / 2 / 4 1
emb_dim 128 128 512
kqv_dim 16 64 64
mlp_dim 256 256 2048
num_heads 8 16 8
learning_rate [0.001, 0.003] [0.0003, 0.001] [0.001, 0.003]
weight_decay [0.03, 0.1] [0.1, 0.3] [0.1, 0.03]
warmup_steps 100 [1000, 3000] 1000

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D ADDITIONAL DETAILS

D.1 COMPUTE RESOURCES

We used a Linux workstation with two Nvidia RTX 3090 GPUs with 24GB of memory each for
development and conducted hyperparameter searches and experiments using 1 Linux server with 4
Nvidia RTX 3090 GPUs as well as a Slurm cluster equipped with Nvidia RTX 4090 GPUs. With a
single GPU of these two GPU models, a single run of the fuzzy logic task takes around 2− 3 minutes,
a single run on SRAVEN between 20 − 200 minutes. For the language modeling experiments, we
use 16 Cloud TPU v5e with a complete run taking 72-100 hours. In total, it takes around 24 GPU
hours to reproduce all fuzzy logic results on our hardware, around 10 GPU days to reproduce all our
SRAVEN results and approximately 163 TPU days to reproduce our results on C4.

D.2 SOFTWARE AND LIBRARIES

For the results obtained in this paper we built on free and open-source software. We implemented
our experiments in Python using JAX (Bradbury et al., 2018, Apache License 2.0), Flax (Heek et al.,
2023, Apache License 2.0), NanoDo (Liu et al., 2024, Apache License 2.0) and the Deepmind Jax
Ecosystem (Babuschkin et al., 2020, Apache License 2.0). We utilized WandB (Biewald, 2020, MIT
license) to monitor the progress and results of experiments, and Plotly (Inc, 2015, MIT license) for
generating the plots.

24

	Introduction
	Attention as a hypernetwork
	Multi-head attention
	Hypernetwork Linear Attention (HYLA)

	Compositional generalization on fuzzy logic functions
	Compositional generalization
	Latent code structure

	sraven: Symbolic raven
	Abstract reasoning based on symbolic Raven Progressive Matrices
	Task description
	Finding correspondences
	Results

	Language modeling
	Related work
	Discussion
	Additional results
	Model ablations

	sraven
	Number of possible tasks and instances
	Ambiguity
	Rules

	Experimental details
	Additional details
	Compute resources
	Software and libraries

