
Perceptual Kalman Filters: Online State Estimation
under a Perfect Perceptual-Quality Constraint -

Supplementary Material

In App. A we provide a detailed theoretical background on the Kalman Filter, its properties and
recursive calculation. In App. B we prove that under our perfect perceptual filtering setting, there
exists a linear optimal filter (Thm. 4.1). In App. C we discuss a direct, non-recursive method for
optimizing perceptual filter coefficients. In App. D we present the derivation of the Lyapunov equation
(17) for the error of perceptual filters. In App. E we derive the recursive expression for the filter
given in (18). In App. F we find a closed-form solution for PKF coefficients by proving Theorem 4.3.
In this appendix, we also give some brief overview on the extremal problem of finding a minimal
distance between distributions. App.G contains a discussion about stationary perceptual Kalman
filters in the steady-state regime. We summarize all definitions and notations in App. H. Finally, in
App.I we give full details for all numerical demonstrations, and present additional empirical and
visual results. More results are provided in the supplementary video.

A The Kalman Filter algorithm

In this Section we supply a detailed reminder of the Kalman filter Algorithm. The celebrated Kalman
filter [11] assumes a state xk ∈ Rnx , where dynamics are modeled as deterministic linear functions
perturbed by a Gaussian noise, and observations yk ∈ Rny are linear functions of xk with an additive
noise

xk =Akxk−1 + qk, qk ∼ N (0, Qk), k = 1, ..., T, (31)
yk =Ckxk + rk, rk ∼ N (0, Rk), k = 0, ..., T. (32)

The noise terms qk and rk are independent white Gaussian processes with zero mean and covariances
Qk, Rk, respectively. x0 is assumed to have a zero-mean Gaussian distribution with covariance
P0, independent of q1, r0. For convenience, we will sometimes refer to P0 as Q0. The matrices
Ak, Ck, Qk.Rk and P0 are system parameters with appropriate dimensions, and assumed to be known.
Considering the MSE distortion, we denote

x̂k|s ≜ argmin
x̂

E
[
∥xk − x̂∥2|y0, . . . , ys

]
, (33)

namely the optimal MSE estimator of the state at time k, given measurements up to time s. Under the
assumptions mentioned above, Kalman filters produce the mean state estimate x̂k|k, an MSE-optimal
estimator of xk given the observations up to time k. The Kalman optimal state x̂∗k ≡ x̂k|k is given by
the recurrence

x̂∗k = Akx̂
∗
k−1 +KkIk, (34)

where Kk is the optimal Kalman gain [11], given explicitly in Algorithm 2.

The vector Ik is the innovation process,

Ik = yk − Ckx̂k|k−1, (35)

describing the contribution of the new observation yk over the optimal prediction based on previous
observations. Since we are in the Linear-Gaussian setup, we have that the innovation state Ik is
orthogonal to the measurements y0, . . . , yk−1, guaranteeing the MSE optimality of the estimation.
The calculation of Kalman state is summarized in Algorithm 2.

12



Algorithm 2 Kalman Filter

initialize: x̂∗0 = K0y0 = P0C
⊤
0 Σ−1

Y0
y0, P0|0 = P0 − P0C

⊤
0 Σ−1

Y0
C0P0, I0 = y0, S0 =

C0P0C
⊤
0 +R0.

for k = 1 to T do
calculate prior: x̂k|k−1 = Akx̂k−1|k−1, Pk|k−1 = AkPk−1|k−1A

⊤
k +Qk

calculate Innovation: Ik = yk − Ckx̂k|k−1, Sk = CkPk|k−1C
⊤
k +Rk

Kalman gain: Kk = Pk|k−1C
⊤
k S

−1
k

update (posterior): x̂∗k = x̂k|k = x̂k|k−1 +KkIk, Pk|k = (I −KkCk)Pk|k−1

end for
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B Optimality of linear filters (proof of Thm. 4.1)

In this section we show that under a family of optimality criteria (5) and perfect-perceptual quality
and causality constraints (6-7), linear filters of the form (14) are optimal. We start with the following.
Theorem B.1. Let Y T

0 = (y0, . . . , yT ) be the set of measurements (4), and let (JT
0 , Y

T
0 ) be a joint

distribution s.t. Jk is independent of yk+n given Y k
0 for all k ∈ [0, T ] and n ≥ 1. Then,

E
[
JkI⊤

k+n

]
= 0. (36)

Proof. Denote Ĵk = E
[
Jk|Ik

0

]
. We can write the measurements as a linear function of the innova-

tions, yk =
∑k

t=0Hk,tIt. We have

ŷk+n−1
k+n ≜ E

[
yk+n|Y k+n−1

0

]
= E

[
yk+n|Ik+n−1

0

]
=

k+n−1∑
t=0

Hk+n,tIt, (37)

and

ŷkk+n ≜ E
[
yk+n|Y k

0

]
= E

[
yk+n|Ik

0

]
=

k∑
t=0

Hk+n,tIt = E
[
ŷk+n−1
k+n |Ik

0

]
. (38)

For any k and n = 1, Ik+1 = yk+1 − ŷkk+1, and therefore

E
[
JkI⊤

k+1

]
= E

[
E
[
Jk
[
yk+1 − ŷkk+1

]⊤ |Ik
0

]]
= E

[
Ĵk
[
ŷkk+1

]⊤ − E
[
Jk|Ik

0

] [
ŷkk+1

]⊤]
= 0.

(39)
This is due to the facts that Jk and yk+1 are independent given the condition, and that ŷkk+1 is a
deterministic function of Ik

0 .

Now, assume we know that E
[
JkI⊤

t

]
= 0 for k + 1 ≤ t ≤ k + n− 1. We can write

E
[
JkI⊤

k+n

]
= E

[
E
[
Jk
[
yk+n − ŷk+n−1

k+n

]⊤ |Ik
0

]]
= E

[
Ĵk
[
ŷkk+n

]⊤ − E

[
Jk

k+n−1∑
t=0

I⊤
t H

⊤
k+n,t|Ik

0

]]

= E

[
Ĵk
[
ŷkk+n

]⊤ − E

[
Jk

k∑
t=0

I⊤
t H

⊤
k+n,t|Ik

0

]
− E

[
Jk

k+n−1∑
t=k+1

I⊤
t H

⊤
k+n,t|Ik

0

]]

= E

[
Ĵk
[
ŷkk+n

]⊤ − Ĵk
[
ŷkk+n

]⊤ −
k+n−1∑
t=k+1

E
[
JkI⊤

t |Ik
0

]
H⊤

k+n,t

]

= −
k+n−1∑
t=k+1

E
[
JkI⊤

t

]
H⊤

k+n,t

= 0. (40)

We now show that for every filter which is feasible under (6) and (7), one can find a linear filter,
jointly Gaussian with the measurement set, attaining the same cost objective.
Theorem B.2. Let Y T

0 = (y0, . . . , yT ) be the set of measurements (4), and let J T
0 = (J0, . . . ,JT )

be jointly distributed with Y T
0 such that:

(i) J T
0 ∼ N (0,diag{P0, Q1, . . . , QT }).

(ii) Jk is independent of yk+n given Y k
0 for all k ∈ [0, T ] and n ≥ 1.

(iii)
∑T

k=0 αkE
[
∥xk − χk∥2

]
= C, where χk is the process given by χk = Akχk−1 + Jk with

χ0 = J0.
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Then, there exists a joint Gaussian distribution (JT
0 , Y

T
0 ) in which (i) and (ii) hold, and the estimator

given by
x̂k = Akx̂k−1 + Jk, x̂0 = J0 (41)

achieves the same cost (iii), namely
∑T

k=0 αkE
[
∥xk − x̂k∥2

]
= C.

Furthermore, we can write
Jk = πkIk + ϕkυk + wk, (42)

where
υk = Ik−1

0 − E
[
Ik−1
0 |Jk−1

0

]
(43)

and wk is a white Gaussian noise, independent of Y T
0 and Jk−1

0 .

Proof. Let (JT
0 , Y

T
0 ) be the Gaussian distribution defined by the moments of (J T

0 , Y
T
0 ) up to second

order. We observe that from Theorem B.1 above, Jk is independent of all future innovations Ik+n,
namely it is based only on measurements up to time k. Using the notions of Theorem B.1’s proof,

E
[
(Jk − Ĵk)(yk+n − ŷkk+n)

⊤|Y k
0

]
= E

[
(Jk − Ĵk)

k+n∑
t=k+1

I⊤
t H

⊤
k+n,t|Ik

0

]

=

k+n∑
t=k+1

[
E
[
JkI⊤

t |Ik
0

]
− ĴkE

[
I⊤
t |Ik

0

]]
H⊤

k+n,t

=

k+n∑
t=k+1

E
[
E
[
JkI⊤

t |It, Ik
0

]
|Ik

0

]
H⊤

k+n,t

=

k+n∑
t=k+1

E
[
E
[
Jk|It, Ik

0

]
I⊤
t |Ik

0

]
H⊤

k+n,t

=

k+n∑
t=k+1

E
[
E
[
Jk|Ik

0

]
I⊤
t |Ik

0

]
H⊤

k+n,t

=

k+n∑
t=k+1

E
[
Jk|Ik

0

]
E
[
I⊤
t |Ik

0

]
H⊤

k+n,t

= 0. (44)

This means that Jk and yk+n are independent given Y k
0 , which proves (ii).

From (17) we see that the cost functional depends only on the second order statistics of (J T
0 , IT

0 )
which are identical to those of (JT

0 , IT
0 ), hence (iii) holds:

T∑
k=0

αkE
[
∥xk − x̂k∥2

]
=

T∑
k=0

αkE
[
∥xk − χk∥2

]
= C. (45)

To prove (42), we now write
Jk = εk + wk, (46)

where εk = E
[
Jk|Y T

0 , J
k−1
0

]
, and wk = Jk − E

[
Jk|Y T

0 , J
k−1
0

]
is independent of Y T

0 and Jk−1
0 .

Now, since both Jk and Jk−1
0 are independent of IT

k+1,

εk = E
[
Jk|Y T

0 , J
k−1
0

]
= E

[
Jk|Ik

0 , J
k−1
0

]
=

k∑
t=0

ϕk,tIt +
k−1∑
t=0

ψk,tJt. (47)

Jk is independent of Jk−1
0 , thus

E
[
Jk|Jk−1

0

]
= E

[
E
[
Jk|IT

0 , J
k−1
0

]
|Jk−1

0

]
= 0. (48)
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Conditioning both sides of (47) on Jk−1
0 and taking expectations,

0 =

k∑
t=0

ϕk,tE
[
It|Jk−1

0

]
+

k−1∑
t=0

ψk,tJt. (49)

Note that E
[
Ik|Jk−1

0

]
= 0, which together with (49) implies

εk = ϕk,kIk +

k−1∑
t=0

ϕk,t
[
It − E

[
It|Jk−1

0

]]
= πkIk + ϕkυk. (50)

Now, all we have left to show is that wk is a white sequence. Since wk+n (n ≥ 1) is independent of
Jk
0 and IT

0 (which also constitute υk), it is easy to obtain

E
[
wk+nw

⊤
k

]
= E

[
wk+n [Jk − πkIk − ϕkυk]

⊤
]
= 0. (51)

Corollary B.3. Given a cost objective of the form C =
∑T

k=0 αkE
[
∥xk − x̂k∥2

]
, there exists a

linear filter of the form
Jk = πkIk + ϕkυk + wk, (52)

such that

x̂0 = J0 (53)
x̂k = Akx̂k−1 + Jk, k = 1, . . . , T (54)

is an optimal estimator under the perfect perceptual quality and causality constraints (6-7).

Proof. Under the perfect perceptual quality constraint, an estimate sequence χk must satisfy that

Jk = χk −Akχk−1 (55)

is a white Gaussian process with covariances Qk. If, in addition, χk satisfies the causality condition
(6), so does Jk. We conclude from Theorem B.2 that there exists a causal linear filter Jk that achieves
the same expected objective C as χk.

Now, note again that from (17), for perfect-perceptual quality causal filters, the objective C is a
continuous function of the covariance matrix

E
[
J T
0

(
IT
0

)⊤]
=

[
diag{P0, Q1, . . . , QT } L

L⊤ diag{S0, S1, . . . , ST }

]
⪰ 0, (56)

where, due to the causality demand, L is a quasi lower triangular matrix. The set of such feasible
matrices is non-empty, closed (since it is the intersection of the closed cone of PSD matrices with a
finite set of hyperplanes) and bounded. Hence, C attains a minimal value on some joint distribution
pJ T

0 ,Y T
0

, which can be chosen to be joint-Gaussian as we have seen.
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C A Direct optimization approach to perfect-perceptual quality filtering

For the sake of completeness, we now discuss a method for optimizing non-recursive perfect-
perceptual quality filter coefficients. This approach leads to convex programs. However, as we will
see next, it might become impractical for large configurations.

Let J = JT
0 ∼ N (0, Q), where Q = diag

{
{Qk}Tk=0

}
, be a causal function of the measurements,

J = ΦI +W , where I = IT
0 is the innovation process with covariance S = diag {Sk} and W is an

independent noise. Now, X̂ = X̂T
0 = AJJ is the filter’s output, where

AJ =


I 0 . . . 0
A1 I . . . 0
...

...
. . .

...∏T−1
k=0 AT−k

∏T−1
k=1 AT−k . . . I

 . (57)

Recall X∗ is the Kalman filter output given by X∗ = AJKI, where K = diag {Kk}. Let W =
diag {αk} ⊗ Inx be a weighting matrix. The objective (5) is now given by

C(X̂) = E
[
(X̂ −X∗)⊤W (X̂ −X∗)

]
= Tr

{
W E

[
X̂X̂T

]
+ W E

[
X∗X∗⊤]− 2W E

[
X̂X∗⊤

]}
. (58)

Hence, we have to maximize

C(Φ) = 2Tr
{

W E
[
X̂X∗⊤

]}
= 2Tr

{
W AJΦSK

⊤A⊤
J

}
= 2Tr

{
(ΦS)K⊤A⊤

J W AJ

}
= 2Tr

{
ΦSK⊤B

}
, (59)

where B ≜ A⊤
J W AJ . This is subject to the perfect perceptual-quality constraint

Q− ΦSΦ⊤ ⪰ 0, or equivalently
[
Q ΦS
SΦ⊤ S

]
⪰ 0, (60)

where Φ is a lower quasi-triangular matrix (causality constraint)

Φ =


Φ0,0 0 . . . 0
Φ1,0 Φ1,1 . . . 0

...
...

. . .
...

ΦT,0 ΦT,1 . . . ΦT,T

 . (61)

Again, under this formulation,
J = ΦI +W, (62)

where W ∼ N
(
0, Q− ΦSΦ⊤) is a Gaussian noise independent of I. Note that WT

0 might not
be a white sequence in this case, since its covariance might not be a block-diagonal matrix. As a
result, the noise sequence has to be sampled dependently. Also note that this problem possesses the
same memory complexity as (14). To conclude, this method leads to convex, but large optimization
programs, and is impractical for high dimensional settings or long temporal sequences.
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D Derivation of eq. (17)

Recall x̂∗k is the optimal Kalman state at time k, achieving MSE given by

d∗k = E
[
∥x̂∗k − xk∥2

]
= Tr

{
Pk|k

}
. (63)

Pk|k is the error covariance, given explicitly in Algorithm 2. By the orthogonality principle, for any
estimator x̂k based on the measurements y0, . . . , yk we have

E
[
∥xk − x̂k∥2

]
= E

[
∥xk − x̂∗k∥2

]
+ E

[
∥x̂∗k − x̂k∥2

]
= d∗k + E

[
∥x̂k − x̂∗k∥2

]
. (64)

Now, consider an estimator x̂k of the form (12), and recall

Dk ≜ E
[
[x̂∗k − x̂k] [x̂

∗
k − x̂k]

⊤
]
. (65)

Since we choose Jk ∼ N (0, Qk) to be independent of x̂k−1 and Ik is indepenedent of x̂k−1 and
x̂∗k−1, we write

Dk = E [x̂∗k − x̂k] [x̂
∗
k − x̂k]

⊤

= E
[
Akx̂k−1 −Akx̂

∗
k−1 + Jk −KkIk

] [
Akx̂k−1 −Akx̂

∗
k−1 + Jk −KkIk

]⊤
= AkE

[[
x̂∗k−1 − x̂k−1

] [
x̂∗k−1 − x̂k−1

]⊤]
A⊤

k + E
[
JkJ

⊤
K

]
+KkE

[
IkI⊤

k

]
K⊤

k

−E
[
Jk
[
Akx̂

∗
k−1 +KkIk

]⊤]− E
[[
Akx̂

∗
k−1 +KkIk

]
J⊤
k

]
= AkDk−1A

⊤
k +KkSkK

⊤
k +Qk

−E
[
JkI⊤

k

]
K⊤

k −KkE
[
IkJ⊤

k

]
−AkE

[
x̂∗k−1J

⊤
k

]
− E

[
Jkx̂

∗⊤
k−1

]
A⊤

k . (66)
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E Derivation of recursive perfect-perceptual quality filters

We now derive the recursive expression (21)-(22) for the filter given in (18),

x̂k = Akx̂k−1 + Jk, (67)
Jk = ΦkAkΥk +ΠkKkIk + wk, wk ∼ N (0,Σwk

) , (68)

defined by the coefficients {Πk, Φt}Tt=0 fulfilling the constraints (20). Recall

Υk ≜ x̂∗k−1 − E
[
x̂∗k−1|x̂0, . . . , x̂k−1

]
= x̂∗k−1 − E

[
x̂∗k−1|J0, . . . , Jk−1

]
(69)

where x̂∗k is the Kalman state. Jk−1
0 , Υk, Ik, wk are jointly-Gaussian and independent, and we have

E
[
JnJ

⊤
k

]
= Qkδn=k, (70)

E
[
IkJ⊤

k

]
= SkK

⊤
k Π⊤

k , (71)

E
[
ΥkJ

⊤
k

]
= ΣΥk

A⊤
k Φ

⊤
k . (72)

We can write

Υk+1 −AkΥk = x̂∗k −Akx̂
∗
k−1 −

[
E
[
x̂∗k|Jk

0

]
−AkE

[
x̂∗k−1|Jk−1

0

]]
= KkIk −KkE

[
Ik|Jk

0

]
−Ak

[
E
[
x̂∗k−1|Jk

0

]
− E

[
x̂∗k−1|Jk−1

0

]]
(73)

Since Jk
0 is an independent sequence, and since Ik depends only on Jk,

KkE
[
Ik|Jk

0

]
= KkE [Ik|Jk] = KkSkK

⊤
k Π⊤

k Q
†
kJk. (74)

We also have that Υk, Jk are independent of Jk−1
0 , implying

E
[
x̂∗k−1|Jk

0

]
− E

[
x̂∗k−1|Jk−1

0

]
= E

[
x̂∗k−1 − E

[
x̂∗k−1|Jk−1

0

]
|Jk

0

]
= E

[
Υk|Jk

0

]
= E [Υk|Jk]

= ΣΥk
A⊤

k Φ
⊤
k Q

†
kJk. (75)

Hence,
Υk+1 = AkΥk +KkIk − ΨkQ

†
kJk, (76)

where we denote
Ψk ≜MkΠ

⊤
k +AkΣΥk

A⊤
k Φ

⊤
k . (77)

The covariance is then given by the recursive form

ΣΥk+1
= AkΣΥk

A⊤
k +Mk + ΨkQ

†
kΨ

⊤
k

−AkΣΥk
A⊤

k Φ
⊤
k Q

†
kΨ

⊤
k −KkSkK

⊤
k Π⊤

k Q
†
kΨ

⊤
k (78)

−
[
AkΣΥk

A⊤
k Φ

⊤
k Q

†
kΨ

⊤
k

]⊤
−
[
KkSkK

⊤
k Π⊤

k Q
†
kΨ

⊤
k

]⊤
(79)

= AkΣΥk
A⊤

k +Mk − ΨkQ
†
kΨ

⊤
k . (80)

At time k = 0 we have Υ0 = 0 and ΣΥ0 = 0.
Remark E.1 (The non-reduced case). For the full, non-reduced linear filter (14)- (15) , we have the
following similar formula

υk =

[
Ik−1

υk−1

]
−
[
Sk−1 0
0 Συk−1

] [
π⊤
k−1

ϕ⊤k−1

]
Q†

k−1Jk−1 (81)

and

Συk
=

[
Sk−1 0
0 Συk−1

]
−
[
Sk−1 0
0 Συk−1

] [
π⊤
k−1

ϕ⊤k−1

]
Q†

k−1

[
π⊤
k−1

ϕ⊤k−1

]⊤ [
Sk−1 0
0 Συk−1

]
. (82)

Notice, however, that the dimension of υk grows with time k.
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F A Generalized extremal problem with semidefinite constraints (proof of
Thm. 4.3)

In this section we prove Theorem 4.3. We start with a brief overview of the extremal problem of
finding a minimal distance between distributions, and of general semi-definite programs.

To prove the Theorem we observe that (28), is a generalization of the extremal problem, and suggest
a non-trivial dual form where, under our assumptions, strong duality holds.

F.1 Minimal distance between distributions

Consider two Gaussian distributions on Rn with zero means and PSD covariance matrices Σ1,Σ2

respectively. We consider the problem of constructing a Gaussian vector [X,Y ] minimizing E∥X −
Y ∥2 while inducing the given marginal distributions, X ∼ N (0,Σ1) , Y ∼ N (0,Σ2). This problem
is equivalent to the following maximization of correlation [13]

Tr {2Π} → max
Π
, s.t.Σ =

[
Σ1 Π
Π⊤ Σ2

]
⪰ 0. (83)

We have the following results of Olkin and Pukelsheim [13].
Lemma F.1. [13, Lemma 1]. Let Σg

2 be any generalized inverse of Σ2. Then Σ ⪰ 0 iff

Σ2Σ
g
2Π

⊤ = Π⊤ andΣ1 −ΠΣg
2Π

⊤ ⪰ 0. (84)
Theorem F.2. [13, Thm. 4]. If Im {Σ2} ⊆ Im {Σ1}, then an optimal solution to (83) is given by

max
Π

Tr {2Π} = 2Tr

{(
Σ

1/2
2 Σ1Σ

1/2
2

)1/2}
, (85)

achieved by the argument

Π∗ = Σ1Σ
1/2
2

[(
Σ

1/2
2 Σ1Σ

1/2
2

)1/2]g
Σ

1/2
2 . (86)

In the case where Im {Σ2} = Im {Σ1}, Π∗ is a unique optimal argument.

Under the setting discussed in Sec. 2, Theorem F.2 implies that in the more general case where
Σx ⪰ 0, the MSE-optimal perfect perceptual-quality estimator (2) is obtained by

x̂ = T ∗x∗ + w, T ∗ ≜ ΣxΣ
1
2
x∗(Σ

1
2
x∗ΣxΣ

1
2
x∗)

1
2 †Σ

1
2 †
x∗ . (87)

Here again, w is a zero-mean Gaussian noise with covariance Σw = Σx−T ∗Σx∗T ∗⊤, independent
of y and x, and Σ†

x∗ is the Moore-Penrose inverse of Σx∗ .

F.2 SDP Setting and duality - background

Semi-definite programming (SDP) [9, 17] is an optimization problem in X ∈ Rn×n of the form
C •X → max

X
(88)

s.t. Ai •X = bi , i = 1, . . . ,m, (89)
X ⪰ 0. (90)

Here, C,Ai are real symmetric matrices of appropriate dimensions, and A •X = Tr{A⊤X} is the
Frobenius product. SDPs yield the Lagrangian

L(X,λ, ν) = ν⊤b+

(
C −

m∑
i=0

νiAi

)
•X + λρmin(X)

= ν⊤b+

(
C −

m∑
i=0

νiAi

)
•X + min

Y⪰0,TrY=λ
Y •X, (91)

where λ ≥ 0 and ρmin is the minimal eigenvalue. The Dual problem (DSP) is given by

ν⊤b→ min
ν
, s.t. C −

m∑
i=0

νiAi ⪯ 0. (92)

In this case, strong duality exists iff the SDP is strictly feasible, i.e. it has a feasible solution interior
to the feasible set, X ≻ 0. This condition is sometimes referred to as the Slater condition.
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F.3 A generalized extremal problem with strong duality

Recall Qk,Mk, Bk are real, symmetric positive semidefinite nx × nx matrices, and the optimization
problem (28),

Tr
{
Π̃kMkBk

}
= Tr

{
Π̃kMkM

†
kMkBk

}
→ max

Π̃k

, s.t. Qk − Π̃kMkΠ̃
⊤
k ⪰ 0. (93)

Since (93) involves a single time step, we will omit the index k.

We consider Π = Π̃M , hence Π⊤ =MM†Π⊤, and since M =MM†M we rewrite (93) as

Tr {ΠB} = Tr {BΠ} → max
Π
, s.t., Q−ΠM†Π⊤ ⪰ 0, Π⊤ =MM†Π⊤. (94)

By Lemma F.1, the constraints in (94) are equivalent to

X ≜

[
Q Π
Π⊤ M

]
⪰ 0. (95)

This can be formulated as the semi-definite program,

C •X → max
X
, s.t.

{
AQ

ij •X = Qij

AM
ij •X =Mij

, 0 ≤ i ≤ j ≤ n− 1, X ⪰ 0, (96)

where C = 1
2

[
0 B
B 0

]
, and AQ

ij =

[
Λij 0
0 0

]
, AM

ij =

[
0 0
0 Λij

]
, Λij =

1
2 (eij + eji).

Note that when B is a scalar matrix, (94) is similar to the problem studied in Olkin and Pukelsheim
[13]. Their approach was later extended by Shapiro [15] to general linear objectives, where the Slater
condition holds.

F.3.1 Strong duality

The SDP (96) yields the standard dual formulation

Q • νQ +M • νM → min
νQ,νM

, s.t.

[
νQ − 1

2B
− 1

2B νM

]
⪰ 0, νQ, νM ∈ Rnx×nx . (97)

This should give us a hint about the optimal solution to (94). Pay attention, however, that according
to the theory, strong duality in (97) is guaranteed only if Q,M ≻ 0, which might not be the case (see
e.g. [15]). To get a tight bound for the general case Q,M ⪰ 0, we now provide an alternative form
of duality to (94).

The following is an adaptation of techniques used in Olkin and Pukelsheim [13]. We start with the
following Lemma.

Lemma F.3. Let Π be a feasible solution to (94), R,G ∈ Rnx×nx are general matrices. Then,

Tr
{
QRR⊤ +BMBGG⊤} ≥ 2Tr

{
ΠBGR⊤} . (98)

Proof. From the non-negativity of X in (95) we have[
R⊤,−G⊤B

] [ Q Π
Π⊤ M

] [
R

−BG
]
=

R⊤QR+G⊤BMBG−R⊤ΠBG−G⊤BΠ⊤R ⪰ 0.
(99)

The trace is nonegative, hence we have the desired result.

Remark F.4. Similarly, we can obtain

Tr
{
QBRR⊤B +MGG⊤} ≥ 2Tr

{
BΠGR⊤} . (100)

Now, we suggest an alternative to (DSP) (97), where strong duality will hold.
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Theorem F.5. [Strong duality]. Let

Ω =
{
Π ∈ Rnx×nx : Q−ΠM†Π⊤ ⪰ 0,Π⊤ =MM†Π⊤} , (101)

S =
{(
S, S−) : S, S− ⪰ 0, SS−S = S, S−SS− = S−, BM = SS−BM

}
, (102)

and denote MB ≜ BMB. Assume Im {MB} ⊆ Im {Q}. Then,

min(S,S−)∈S {Q • S +M • (BS−B)} = maxΠ∈Ω Tr {2ΠB}
= 2Tr

{(
M

1/2
B QM

1/2
B

)1/2}
.

(103)

The extreme value is obtained for

S∗ =M
1/2
B

(
M

1/2
B QM

1/2
B

)1/2†
M

1/2
B , (104)

S−∗ =M
1/2†
B

(
M

1/2
B QM

1/2
B

)1/2
M

1/2†
B , (105)

Π∗ = QS∗M†
BBM = QM

1/2
B

(
M

1/2
B QM

1/2
B

)1/2†
M

1/2†
B BM. (106)

Optimal solution Π∗ is generally not unique.

To prove strong duality, we will use the following lemmas.

Lemma F.6. Assume PSD matrices Q,MB such that Im {MB} ⊆ Im {Q}, then Im {MB} =

Im
{
M

1/2
B QM

1/2
B

}
.

Proof. Recall MB ,M
1/2
B QM

1/2
B are real symmetric matrices.

Let v ∈ Ker{M1/2
B QM

1/2
B }, we have ∥Q1/2M

1/2
B v∥ = 0 hence M

1/2
B v ∈ Ker{Q1/2} ⊆

Ker{M1/2
B }, which yieldsMBv = 0, implying Ker{M1/2

B QM
1/2
B } ⊆ Ker{MB}. Opposite relation

is trivial.

We have

Im {MB} = Ker{MB}⊥ = Ker{M1/2
B QM

1/2
B }⊥ = Im

{
M

1/2
B QM

1/2
B

}
. (107)

Lemma F.7. Im {BM} ⊆ Im {BMB} .

Proof. Let v ∈ Ker{BMB}, then ∥M1/2Bv∥ = 0 and Bv ∈ Ker{M1/2} = Ker{M}. Hence
Ker{BMB} ⊆ Ker{MB} . We have

Im {BM} = Ker{MB}⊥ ⊆ Ker{BMB}⊥ = Im {BMB} . (108)

We are now ready to prove Theorem F.5.

Proof. [Theorem F.5]. Let Π ∈ Ω, then X ⪰ 0 in (95). For any (S, S−) ∈ S we can choose
R = S

1/2

, G = S−R . From the result of Lemma F.3 it follows that

Q • S +M • (BS−B) = Tr
{
QRR⊤ +BMBGG⊤}

≥ 2Tr
{
ΠBGR⊤} = 2Tr {ΠBS−S} = 2Tr {ΠB} . (109)

The last equality holds since BM = SS−BM , and Im
{
ΠT
}
⊆ Im {M}.
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We now prove that Π∗ ∈ Ω.

Q−Π∗M†Π∗⊤

= Q−QM
1/2
B

(
M

1/2
B QM

1/2
B

)1/2†
M

†1/2
B BMM†MBM

†1/2
B

(
M

1/2
B QM

1/2
B

)1/2†
M

1/2
B Q

= Q−QM
1/2
B

(
M

1/2
B QM

1/2
B

)†
M

1/2
B Q

= Q1/2

[
I −Q1/2M

1/2
B

(
M

1/2
B QM

1/2
B

)†
M

1/2
B Q1/2

]
Q1/2

= Q1/2

[
I −Q1/2M

1/2
B

(
M

1/2
B QM

1/2
B

)†
M

1/2
B Q1/2

]2
Q1/2 ⪰ 0.

(110)

The last equality holds since it is easy to see that
[
I −Q1/2M

1/2
B

(
M

1/2
B QM

1/2
B

)†
M

1/2
B Q1/2

]
is a

symmetric (orthogonal) projection.

We further prove that S∗, S−∗ ∈ S. It is easy to show that S∗, S−∗ are symmetric generalized
inverses, reflexive to each other (S−∗ is in fact the Moore-Penrose inverse of S∗):

S∗S−∗ =M
1/2
B

(
M

1/2
B QM

1/2
B

)1/2†
M

1/2
B M

1/2†
B

(
M

1/2
B QM

1/2
B

)1/2
M

1/2†
B (111)

=M
1/2
B

(
M

1/2
B QM

1/2
B

)1/2† (
M

1/2
B QM

1/2
B

)1/2
M

1/2†
B (112)

=M
1/2
B M

1/2†
B =M

1/2†
B M

1/2
B (113)

= S−∗S∗. (114)

The equalities hold since by Lemma F.6,

Im
{
M

1/2
B

}
= Im{MB} = Im

{
M

1/2
B QM

1/2
B

}
= Im

{(
M

1/2
B QM

1/2
B

)1/2}
, (115)

and since for a PSD matrix R, RR† = R†R is an orthogonal projection onto its image. Using Lemma
F.7 we have

S∗S−∗BM =M
1/2†
B M

1/2
B BM = BM. (116)

It is now easy to verify that

Q • S∗ +M •
(
BS−∗B

)
= 2Tr {Π∗B} = 2Tr

{(
M

1/2
B QM

1/2
B

)1/2}
, (117)

which completes the proof.

Corollary F.8. Under the assumption, Im {MB} ⊆ Im {Qk}, the optimal gain in (28) is given by

Π∗
k = QkM

1/2
B

(
M

1/2
B QkM

1/2
B

)1/2†
M

†1/2
B Bk. (118)

Remark F.9. Under the alternative assumption, Im {Mk} ⊆ Im {Qk}, the optimal gain in (28) is
given by

Π∗
k = QkB̃M

1/2
b

(
M

1/2
b QbM

1/2
b

)1/2†
M

†1/2
b B̃, (119)

where B̃ = B
1/2
k , Qb = B̃QkB̃, Mb = B̃MkB̃.

Proof. Recall our goal in (28) is to maximize Tr {ΠMB} = Tr
{
B̃ΠMB̃

}
under the condition

Q−ΠMΠ⊤ ⪰ 0 (we omit the index k). This is equivalent to minimizing E
[
∥B̃X − B̃Y ∥2

]
w.r.t

Π, where (X,Y ) ∼ N (0,Σ) and Σ =

[
Q ΠM

MΠ⊤ M

]
⪰ 0.
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In this case, (B̃X, B̃Y ) ∼ N (0,Σb) where Σb =

[
B̃QB̃ B̃ΠMB̃

B̃MΠ⊤B̃ B̃MB̃

]
. According to Thm. F.2,

under the assumption Im
{
B̃MB̃

}
⊆ Im

{
B̃QB̃

}
, the minimal distance is achieved when

B̃ΠMB̃ = B̃QB̃M
1
2

b

(
M

1
2

b QbM
1
2

b

) 1
2 †
M

1
2

b . (120)

Note that Im {M} ⊆ Im {Q} implies Im
{
B̃MB̃

}
⊆ Im

{
B̃QB̃

}
, and it is straightforward to

verify that Q−Π∗MΠ∗⊤ ⪰ 0.
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G Stationary settings

A note is in place regarding the stationary perceptual Kalman filter. In the Kalman steady-state regime,
where dynamics (31) -(32) are time-invariant and T → ∞, the matrices K and S in Algorithm 2 are
determined by the covariance matrix P ,

K = PC⊤(CPC⊤ +R)−1, S = CPC⊤ +R. (121)

Here, C stands for the time-invariant observation matrix (yk = Cxk + rk) and P is a solution to the
Discrete-Time Algebraic Riccati equation (DARE)

P = APA⊤ −APC⊤(CPC⊤ +R)−1CPA⊤ +Q. (122)

Similarly, under the steady-state regime, (26) becomes{
Tr {D} → minΠ
s.t. D = ADA⊤ +Q+M −ΠM −MΠ⊤,M = KSK⊤, Q−ΠMΠ⊤ ⪰ 0

(123)

where D obeys an (Algebraic) Lyapunov equation. If A is stable,

D(Π) =
∞∑
k=0

Ak(Q+M −ΠM −MΠ⊤)
(
Ak
)⊤
. (124)

Hence, stationary perceptual filter is of the form

x̂k = Ax̂k−1 + Jk, (125)
Jk = ΠKIk + wk, (126)

wk ∼ N
(
0, Q−ΠMΠ⊤) , (127)

and in order to find optimal gain Π, minimizing Tr {D(Π)}, we have to solve

max
Π

Tr {ΠMB} s.t. Q−ΠMΠ⊤ ⪰ 0, (128)

where we define B ≜
∑∞

k=0

(
Ak
)⊤
Ak, and the solution (under the assumption Im {BMB} ⊆

Im {Q}) is given again by (30).

25



H List of notations

We summarize our notations in the following Table.

Table 2: Definitions and Notations

Notation Description Definition Dimensions
nx state dimension
ny measurement dimension
Ak system dynamics nx × nx
Ck measurement function ny × nx

Qk, Rk noise covariances nx × nx,ny × ny
xk system state (ground-truth) nx
yk measurements ny
x̂k state estimator nx
x̂∗k optimal Kalman state see Algorithm 2 nx
x̂k|s best MSE state esimators, up to time s nx
Ik innovation process see Algorithm 2 ny
Sk innovation covariance see Algorithm 2 ny × ny
Kk Kalman gain see Algorithm 2 nx × ny
Πk innovation perceptual gain nx × nx
Mk Kalman update covariance Mk = KkSkK

⊤
k nx × nx

υk unutilized information process see (15) kny

Υk unutilized information process (recursive) see (19) nx
ΣΥk

unutilized information covariance nx × nx
Φk unutilized information perceptual gain nx × nx
Bk weight matrix Bk =

∑T
t=k αt(A

t−k)⊤At−k nx × nx
Dk deviation from MMSE Dk = E [x̂∗k − x̂k] [x̂

∗
k − x̂k]

⊤
nx × nx

T Termination time (horizon)
C(X̂T

0 ) minimization objective C =
∑T

k=0 αkE
[
∥xk − x̂k∥2

]
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I Numerical demonstrations

In this section we provide full details for the experimental settings of Sec. 5, with additional numerical
and visual results. In the following, we compare the performance of several filters; x̂∗kal and x̂tic
correspond to the Kalman filter and the temporally-inconsistent filter (10) (which does not possess
perfect-perceptual quality). The estimate x̂opt is generated by a perfect-perception filter obtained
by numerically optimizing the coefficients in (18), where the cost is the MSE at termination time,
i.e. the terminal cost

CT = E
[
∥x̂T − xT ∥2

]
. (129)

The estimates x̂auc, x̂minT correspond to PKF outputs (Alg. 1) minimizing the total cost (area under
curve)

Cauc =
T∑

k=0

E
[
∥x̂k − xk∥2

]
, (130)

and the terminal cost, respectively. Finally, x̂stat. is the stationary PKF, discussed in App. G. The
filters are summarized in Table 3.

Table 3: List of demonstrated filters.

description definition perfect-perception
per-sample temporal

x̂∗kal Kalman filter Algorithm 2 ✗ ✗

x̂tic
Per-sample perceptual quality (10) ✓ ✗(temporally-inconsistent)
Optimized perfect-perceptual (18) ✓ ✓x̂opt quality filter (18) ✓ ✓

x̂auc PKF with total cost Algorithm 1 ✓ ✓
x̂minT PKF with terminal cost Algorithm 1 ✓ ✓
x̂stat. Stationary PKF (125) ✗ ✗

I.1 Example: Harmonic oscillator

We start with a simple 2-D example, where we demonstrate the differences in MSE distortion between
the optimized perfect-perceptual quality filter x̂opt, the temporally inconsistent filter x̂tic and the
efficient sub-optimal (perceptual) PKF. Consider the harmonic oscillator, where the entries of the
state xk ∈ R2 correspond to position and velocity, and evolve as

xk+1 = Axk + qk, qk ∼ N (0, I) (131)

with

A = I +

[
0 1
−2 0

]
×∆t, (132)

where ∆t = 5× 10−3 is the sampling interval. Assume we have access to noisy and delayed scalar
observations of the position (corresponding to time t− 1

2∆t) so that yk =
[
1 − 1

2

]
xk + rk, where

rk ∼ N (0, 1) and x0 ∼ N (0, 0.8I).

We numerically optimize the coefficients {Πk, Φk}Tk=0 in (18), to minimize the terminal error (129)
(Tr {DT } in (23)) at time T = 255 under the constraints (20). Figure 7 shows the MSE distortion for
the optimized perfect-perception filter x̂opt defined by (18) and {Πk, Φk}Tk=0, and the sub-optimal
PKF outputs x̂auc, x̂minT, minimizing the total cost (130) and the terminal cost (129) (see Table 3).
We observe that PKF estimations are indeed not MSE optimal at time T , However, their RMSE at
time T is only ∼ 30% higher than that of x̂opt and they have the advantage that they can be solved
analytically and require computing only half of the coefficients (Πk).

The estimates x̂∗kal and x̂tic achieve lower MSE than x̂opt, however they do not possess perfect-
perceptual quality. We can see the difference in MSE distortion between the filters x̂opt and x̂tic, with
and without perception constraint in the temporal domain. This is the cost of temporal consistency in
online estimation for this setting.
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Figure 7: MSE distortion on Harmonic oscillator. x̂opt is a numerically optimized perfect-
perceptual quality filter’s output (minimizing error at time T = 255, dashed horizontal line).
x̂auc, x̂minT are PKF outputs minimizing different objectives. Observe that PKF estimations are not
MSE optimal, but require less computations. x̂∗kal and x̂tic are not perfect-perceptual quality filters.
(top) Empirical error, over N = 1024 sampled trajectories. (bottom) Analytical error. The difference
in distortion between the perfect-perceptual state x̂opt, optimized according to (18), and x̂tic is due to
the perceptual constraint on the joint distribution. This is the cost of temporal consistency in online
estimation for this setting. The gap between the MSE of the optimized estimator and x̂minT is due to
the sub-optimal choice of coefficients, Φk = 0.
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I.2 Example: Two coupled inverted pendulums

Next, we demonstrate the quantitative behavior of perceptual Kalman filters, by comparing the MSE
between the PKF outputs when minimizing different cost functions, and between non-perceptual
filters outputs. More specifically, this experiment demonstrates:

1. How minimizing different objectives in Algorithm 1 leads to different filters.
2. The cost of perfect-perceptual quality filtering, given by Algorithm 1, over optimal filters.

We consider a higher-dimensional, well-studied example of two coupled inverted pendulums, mounted
on carts [7, 6]. The cart positions, pendulum deviations, and their velocities (Fig. 8), are given by the
discretized stable closed-loop system with perturbation

xk+1 = Axk + qk, qk ∼ N (0, Q) , (133)

where xk ∈ R8. The initial state is distributed as

x0 ∼ N (0, P0) . (134)

The system matrices are given by
A = I +Acl ·∆t, (135)

where ∆t = 5× 10−4 is the sampling interval and

Acl =

[
A1 +BK1 F

F A2 +BK2

]
, (136)

A1 = A2 =

 0 1 0 0
2.9156 0 −0.0005 0

0 0 0 1
−1.6663 0 0.0002 0

 , B =

 0
−0.0042

0
0.0167

 . (137)

The coupling is given by

F =

 0 0 0 0
0.0011 0 0, 0.0005 0

0 0 0 0
−0.0003 0 −0.0002 0

 , (138)

and stabilizing state-feedback controllers (each acts on a single cart) are

K1 = [11396.0 7196.2 573.96 1199.0] , K2 = [29241 18135 2875.3 3693.9] . (139)

The partial measurements are given by yk = Cxk + rk, where rk ∼ N (0, R), with coefficients

C =

[
C̄1 0
0 C̄2

]
, C̄1 = C̄2 =

[
1 0 0 0
0 0 1 0

]
. (140)

Namely, we observe only position and angle for each cart/pendulum, while velocities are not being
measured.

The perturbation covariances are given by

P0 =

[
P̄0 0
0 P̄0

]
, Q =

[
Q̄ 0
0 Q̄

]
, R =

[
R̄ 1

8 R̄
1
8 R̄ R̄

]
, (141)

where

P̄0 =

 0.154 0.142 −0.143 0.093
0.142 0.144 −0.124 0.058
−0.143 −0.124 0.167 −0.148
0.093 0.058 −0.148 0.192

 · 5× 10−4, (142)

Q̄ = 10−2 ·

 0.642 −0.136 0.78 0.262
−0.136 0.894 −0.248 0.074
0.78 −0.248 1.284 −0.314
0.262 0.074 −0.314 1.766

×∆t, R̄ = 10−2 ·
[
0.375 −0.33
−0.33 0.771

]
×∆t.

(143)
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Figure 9: MSE distortion on Coupled inverted pendulums for perceptual and non-perceptual
filters (near the time T ). x̂auc, x̂minT are PKF outputs minimizing different objectives. Observe that
while both possess perfect-perceptual quality, they yield different estimations. Also, pay attention to
the MSE gap between the MSE-optimal, but not perceptual, Kalman filter and the PKFs.

Pos.1

angle 1

coupling

Pos.2

angle 2

Figure 8: Coupled inverted pendulums.

We simulate the system for 210 time steps (T = 210 − 1), over N = 210 independent experiments. In
Figures 9 and 10 we show the MSE distortion as a function of time, E

[
∥x̂k − xk∥2

]
, for the different

filters of Table 3; x̂∗kal is the optimal Kalman filter. x̂tic is the perceptual filter without consistency
constraints, given in (10). x̂auc is the PKF output minimizing the total cost (130). x̂minT (marked by
‘⋆’) is the PKF output minimizing the terminal cost (129).

We observe that filters satisfying the perfect perceptual quality constraint (x̂auc and x̂minT) achieve
higher distortions compared to the per-sample only perceptual filter x̂tic, which in turn attains MSE
distortion slightly higher than that of the MSE-optimal Kalman filter. This demonstrates again the cost
of temporal consistency in online estimation. Note also that PKFs minimizing different cumulative
objectives, yield different estimations; while x̂minT is optimal at termination time T , x̂auc achieves a
lower MSE on average. As we will see next, both filters attain the same perceptual quality.
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Figure 10: MSE distortion on Coupled inverted pendulums for perceptual and non-perceptual
filters (full view).

In Fig. 11 we estimate the perceptual quality, given by the Wasserstein distance between the ground-
truth distribution and the empirical Gaussian distributions of the different filters outputs. In Fig.
11(top) we estimate the distance between single-sample distributions, while in Fig. 11(bottom) we
consider the joint distributions of 16 state-vectors, xt, t ∈ [k−15, k]. Observe that while each sample
of x̂tic is distributed similarly to its reference sample, it fails to attain perfect perceptual quality where
we measure the distance from the real process distribution. PKF outputs attain low perceptual index
(high quality) in both scenarios. We also present the perceptual quality measured for the ground-truth
signal xgt empirical distribution, as a reference.

Figure 12 shows the asymptotic behavior (empirical error for large horizon T ) of x̂stat., the stationary
PKL (125). The figure also presents the empirical errors for Kalman filter and its stationary version
(multiplied by a factor of 2, which is an upper bound on the MSE distortion of perceptual estimators
without temporal constraints, see [3]), and the theoretical steady-state error of (125), obtained by
optimizing (128) (dashed horizontal line) for comparison. The error of the non-stationary perceptual
filter x̂auc is also shown.

I.3 Dynamic texture

Here we illustrate the qualitative effects of perceptual (temporally consistent) estimation in a sim-
plified video restoration setting. Please see the supplementary video for the full videos. This setup
visually demonstrates how:

1. Filters with no perfect perceptual quality tend to generate non-realistic images or atypical
motion (random or slow movement, flickering artifacts etc.).

2. PKF outputs are natural to the domain, both spatially and temporally.

For this extent, we introduce the ‘Dynamic Texture’ domain. In this domain, video frames are
generated from a latent state which represents their Factor-Analysis (FA) decomposition (see e.g.
Bishop and Nasrabadi [2, Sec. 12.2.4] for more details). The dynamics in the FA domain are assumed
to be linear, with a small Gaussian perturbation,

xFAk = AFAxFAk−1 + qk, xFA0 ∼ N (0, I) , xFAk ∈ R128. (144)
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Figure 11: Perceptual quality measured by estimated Wasserstein distance d̂P (lower is better).
(top) Distance between distributions of single samples pxk

and px̂k
. (bottom) Distance between

distributions of 16-state vectors (at times [k − 15, k]), pXk
k−15

and pX̂k
k−15

. Observe that x̂tic single
samples are distributed similarly to the ground-truth signal, but they fail to attain the reference joint
distribution between timesteps. PKF outputs x̂auc and x̂minT attain high measured quality in both
cases.
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Figure 12: MSE distortion on Coupled inverted pendulums for stationary filters.

The state vector with the given dynamics creates frames of a wavy lake in the video domain 3, through
an affine transformation,

xvidk =WFA→vid

(
xFAk + εFA

)
. (145)

WFA→vid is a linear transformation from R128 latent states to R512×512×3 frames, and εFA is a
constant vector. AFA and the noise qk parameters are estimated similarly to [5]. Linear observations
yk ∈ R32×32 are given in the frame (pixel) domain, by

yk = Ckx
FA
k + rk. (146)

At times where information is being observed,

Ck = C×16WRGB→yWFA→vid, (147)

where WRGB→y is a projection onto the Y -channel (grayscale) and C×16 is a matrix that performs
16× downsampling in both axes. At times where there is no observed information, Ck = 0. Here, rk
is a Gaussian noise.

In our first experiment, measurements are supplied as in (147) up to frame k = 127 and then vanish
(Ck = 0, k ≥ 128), letting the different filters predict the next, unobserved, frames of the sequence.
We pass yk as an input to the various filters (see Table 3); x̂∗kal is the Kalman filter output. x̂tic is the
perceptual filter in the spatial domain, given in (10). x̂auc is our Algorithm (PKF) output reducing
the total cost in the latent space, Cauc =

∑T
k=0 E

[
∥xFAk − x̂k∥2

]
. All filtering is done in the latent

domain, and then transformed to the pixel domain. MSE is also calculated in the FA domain. In
(Fig. 13) we can see that until frame k = 127, all filters reconstruct the reference frames well.
Starting at time k = 128, when measurements disappear, we observe that the Kalman filter slowly
fades into a static, blurry output which is the average frame value in this setting. This is definitely a
non-‘realistic’ video; Neither the individual frames nor the static behavior are natural to the domain.
Our perfect-perceptual filter, x̂auc, keeps generating a ‘natural’ video, both spatially and temporally.
This makes its MSE grow faster.

We now perform a second experiment, where Ck is set to zero until frame k = 512. At times k ≥ 513
measurements are given again by the noisy, downsampled frames as described in (146)-(147). In
Fig. 14 we present the outcomes of the different filters. We first observe that up to frame k = 512,
there is no observed information, hence outputs are actually being generated according to priors.

3Original frames are taken from ‘river-14205’ by OjasweinGuptaOJG via pixabay.com, and are free to use
under the content licence.
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Figure 13: Frame prediction on a dynamic texture domain. In this experiment, measurements are
supplied only up to frame k = 127. The filter’s task here is to predict the unobserved future frames
of the sequence. Observe that the x̂∗kal fades into a blurred average frame, while the perceptual filter
x̂auc generates a natural video, both spatially and temporally. This makes its MSE grow faster,
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Figure 14: Frame generation on Dynamic texture domain. In the first half of the demo (k ≤ 512),
there are no observations, hence the reference signal is restored according to prior distribution. We
observe that filters with no perfect-perceptual quality constraint in the temporal domain generate
non-realistic frames (Kalman filter output x̂∗kal) or unnatural motion (x̂tic). Perceptual filter x̂auc is
constrained by previously generated frames and the natural dynamics of the domain, hence its MSE
decays slower.

The Kalman filter outputs a static, average frame. x̂tic randomizes each frame independently, which
creates the impression of rapid, random movement with flickering features, which is unnatural to
the reference domain. At frame k = 513, when observations become available, we can see that
x̂∗kal and x̂tic are being updated immediately, creating an inconsistent, non-smooth motion between
frames 512 and 513. PKF output x̂auc, on the other hand, keeps maintaining a smooth motion. Since
non-consistent filters outputs rapidly becomes similar to the ground-truth, their errors drop. The
perfect-perceptual filter, x̂auc, remains consistent with its previously generated frames and the natural
dynamics of the model, hence its error decays more slowly.
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