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Abstract

Leveraging massive knowledge from large lan-
guage models (LLMs), recent machine learn-
ing models show notable successes in general-
purpose task solving in diverse domains such as
computer vision and robotics. However, several
significant challenges remain: (i) most of these
models rely on 2D images yet exhibit a limited
capacity for 3D input; (ii) these models rarely
explore the tasks inherently defined in 3D world,
e.g., 3D grounding, embodied reasoning and act-
ing. We argue these limitations significantly hin-
der current models from performing real-world
tasks and approaching general intelligence. To
this end, we introduce LEO, an embodied multi-
modal generalist agent that excels in perceiving,
grounding, reasoning, planning, and acting in the
3D world. LEO is trained with a unified task
interface, model architecture, and objective in
two stages: (i) 3D vision-language (VL) align-
ment and (ii) 3D vision-language-action (VLA)
instruction tuning. We collect large-scale datasets
comprising diverse object-level and scene-level
tasks, which require considerable understanding
of and interaction with the 3D world. Moreover,
we meticulously design an LLM-assisted pipeline
to produce high-quality 3D VL data. Through
extensive experiments, we demonstrate LEO’s re-
markable proficiency across a wide spectrum of
tasks, including 3D captioning, question answer-
ing, embodied reasoning, navigation and manipu-
lation. Our ablative studies and scaling analyses
further provide valuable insights for developing
future embodied generalist agents. Code and data
are available on project page.
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1. Introduction

Building one generalist model that can handle compre-
hensive tasks like humans has been a long-existing pur-
suit in artificial intelligence and neuroscience (Lake et al.,
2015; 2017; Zhu et al., 2020; Mountcastle, 1979; Schmid-
huber, 2018; Huang et al., 2022a). Recent advances in
LLMs (Brown et al., 2020) and “foundation models” (Bom-
masani et al., 2021) emerge as a promising paradigm in
building such generalist models in natural language pro-
cessing (OpenAl, 2022; 2023), computer vision (Kirillov
et al., 2023; Alayrac et al., 2022), and robotics (Brohan
etal., 2022; 2023; Reed et al., 2022; Driess et al., 2023; Li
et al., 2023c). The keys to the success of this paradigm
lie in large-scale internet-level datasets from numerous
tasks and domains, as well as scalable Transformer architec-
tures (Vaswani et al., 2017) that can absorb generalizable
and task-agnostic knowledge from the data. Nonetheless, ex-
isting generalist models primarily thrive within 2D domains,
lacking comprehension of the 3D physical environment that
envelops human-level intelligence. This limitation stands as
an obstacle that prevents current models from solving real-
world tasks and approaching general intelligence. Therefore,
we ask a fundamental question: how to equip the generalist
agent with a comprehensive understanding of and the ability
to interact with the real 3D world?

The development of such generalist agents encounters three
primary challenges: the lack of suitable datasets, unified
models, and effective learning strategies. Despite substan-
tial progress in scaling up image-text models (Tsimpoukelli
et al., 2021; Alayrac et al., 2022) and the curation of corre-
sponding datasets (Radford et al., 2021; Schuhmann et al.,
2022), advancement in 3D scene-level understanding has
significantly lagged behind. This is largely attributed to the
limited scale and manual labeling of 3D datasets (Dai et al.,
2017; Wald et al., 2019; Chen et al., 2020), given the higher
cost associated with collecting 3D data compared to 2D data.
Furthermore, large-scale unified pretraining and efficient
finetuning are under-explored by previous 3D VL models,
which are often designed with strong priors (Zhao et al.,
2021; Chen et al., 2022). Notably, recent works (Zhu et al.,
2023c; Hong et al., 2023) utilize multi-modal Transformer
together with synthetic data to enhance the model’s capa-
bility in grounded 3D scene understanding. Nevertheless,
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Figure 1: The proposed embodied generalist agent LEO. It takes egocentric 2D images, 3D point clouds, and texts as input and
formulates comprehensive 3D tasks as autoregressive sequence prediction. By instruction-tuning LEO, it extends the capability of LLMs

to multi-modal vision-language-action tasks with a unified model.

they fall short in embodied tasks, e.g., acting within 3D
environments. Additionally, there are significant yet rarely
explored problems, e.g., the potential of VLA learning and
efficient adaptation of LLMs for 3D tasks.

In this work, we introduce the generalist agent LEO, which
is generically embodied, multi-modal, and general-purpose.
It can take egocentric 2D images, 3D point clouds, and texts
as task input and handle comprehensive tasks within the
3D environment. As shown in Fig. 1, LEO exhibits the
capability of perceiving, grounding, reasoning, planning,
and acting with a unified task interface, model architecture,
and objective. LEO perceives through an egocentric 2D
image encoder for the embodied view and an object-centric
3D point cloud encoder for the third-person global view.
Such perception modules can be flexibly adapted to various
embodied environments and enhance 3D reasoning. The en-
coded visual tokens are interleaved with text tokens to form
a unified multi-modal task sequence, which further serves
as the input to a decoder-only LLM. Equipped with a vocab-
ulary containing both text and action tokens, the LLM can
generate responses to various tasks simultaneously. Conse-
quently, all the tasks are formulated as sequence prediction,
thereby accommodating a unified training objective.

Following prior experiences (Liu et al., 2023b), we adopt
a two-stage learning scheme, i.e., 3D VL alignment and
3D VLA instruction tuning. We accordingly collect large-
scale comprehensive datasets LEO-align and LEO-instruct,
which comprise diverse object-level and scene-level tasks.
Notably, we meticulously design an LLM-assisted pipeline

to generate high-quality 3D VL data, wherein we propose
to prompt LLMs (OpenAl, 2022) with scene graphs and
Object-centric Chain-of-Thought (O-CoT) method. To fur-
ther enhance quality control, we devise a series of refine-
ment procedures via regular expression matching and scene
graph retrieval. We demonstrate our approach largely en-
riches the data scale and diversity, meanwhile mitigating
hallucination in LLM-generated data.

We quantitatively evaluate and ablate LEO on diverse 3D
tasks, including 3D captioning (Chen et al., 2021), 3D ques-
tion answering (Azuma et al., 2022), situated question an-
swering (Ma et al., 2023), embodied navigation (Ramrakhya
etal., 2022), and robotic manipulation (Shridhar et al., 2021).
The results indicate (i) through task-agnostic instruction tun-
ing with a unified model, LEO achieves state-of-the-art
performances on most tasks, particularly surpassing previ-
ous task-specific models; (ii) LEO shows proficiency in
scene-grounded dialogue and planning, capable of gener-
ating flexible and coherent responses; (iii) LEO achieves
comparable performances to state-of-the-art task-specific
models on navigation and manipulation tasks, and exhibits
remarkable generalization ability; (iv) LEO’s strong per-
formances stem from both data and model aspects, includ-
ing the alignment stage, data diversity, generalist-style in-
struction tuning, and object-centric representation; (v) LEO
manifests the scaling law that echoes prior findings (Kaplan
et al., 2020; Reed et al., 2022; OpenAl, 2023). We also
present qualitative results to illustrate LEO’s versatility and
proficiency in grounded 3D scene understanding.
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In summary, our main contributions are as follows: (i) we
propose LEO, the first embodied generalist agent capable
of following human instructions to perceive, ground, reason,
plan, and act in the 3D world; (ii) we propose a simple yet
effective framework that connects object-centric 3D repre-
sentation and LLM to efficiently bridge the gap between
vision, language, and embodied action; (iii) we collect large-
scale comprehensive datasets for our two-stage generalist
training scheme, and particularly propose an LLM-assisted
pipeline for the generation of high-quality 3D VL data; (iv)
we conduct extensive experiments to demonstrate LEO’s
proficiency across various tasks, and present in-depth anal-
yses to reveal valuable insights; (v) we release the data,
code, and model weights to endow the future research in
embodied generalist agents.

2. Model

The leading design principles of LEO are two-fold: 1)
It should handle the multi-modal input of egocentric 2D,
global 3D, and textual instruction, and the output of textual
response as well as embodied action commands in a unified
architecture; 2) It should leverage pre-trained large language
models (LLMs) as a powerful prior for the downstream tasks.
We therefore convert all data of different modalities into a
sequence of tokens, illustrated below:

(1) (M) (1) (N)

You are... Syy,--8p S3ps--rS3p s

system message 2D image tokens

(optional)

ASSISTANT: s . .s(T).
—_———

object-centric
3D tokens ( 1 )

USER: ...
instruction

With this representation, we formulate the learning of LEO
as GPT-style autoregressive language modeling (Brown
et al., 2020) given the prefix (from system message to in-
struction), i.e. prefix language modeling (Raffel et al., 2020).
Therefore, a pretrained LLM can be used to process such
sequences. Next, we will detail the tokenization of multi-
modal data, model architecture, training loss, and inference
settings. An overview of our model can be found in Fig. 1.

res res

response

2.1. Tokenization

We follow prior practices in 2D VLM (Liu et al., 2023b;
Alayrac et al., 2022) and 3D VLM (Zhu et al., 2023c) to
tokenize the multi-modal data in LEO. We use Sentence-
Piece tokenizer (Kudo & Richardson, 2018) to encode text
with 32k subwords; 2D image tokens for egocentric 2D im-
ages; and object-centric 3D tokens extracted over Mask3D-
based (Schult et al., 2022) object proposals for 3D point
cloud inputs. For embodied action commands, continuous
actions (e.g. in manipulation) are discretized (details in Ap-
pendix D.3) to join the discrete actions (e.g. navigation) and
form a unified discrete action space. We follow (Brohan
et al., 2023) to map these discrete actions to the least used

tokens in SentencePiece. After tokenization, all tokens are
ordered into the format in (1).

2.2. Token Embedding & LLLM

We apply several token embedding functions to process the
tokens in the sequence before sending them to the LLM. The
LLM will then align these tokens of different modalities,
and produce the response. Most of the responses are text
and can be decoded directly. For responses that include
embodied actions, we will map the reserved SentencePiece
text tokens back to action commands.

Text & 2D token embedding. For text tokens (including
embodied actions that have been mapped to the reserved text
tokens), an embedding look-up table is used to map them
into vectors. While the egocentric 2D image is encoded
by a pretrained OpenCLIP ConvNext (Liu et al., 2022) for
obtaining image token embeddings. We apply MLP adapters
to match the dimensions of all token embeddings.

Object-centric 3D token embedding. Each 3D object
token (i.e., the point cloud of a 3D object) is first encoded
by a pretrained point cloud encoder (e.g., PointNet++ (Qi
et al., 2017)). We then adopt the Spatial Transformer in-
troduced in (Chen et al., 2022) to further process the point
cloud embedding of all objects into object-centric 3D to-
ken embeddings. In a nutshell, Spatial Transformer biases
the standard attention score with relative position and size
for capturing 3D relations between objects. Due to space
limit, the readers are referred to (Chen et al., 2022) and
Appendix D.2 for more details.

Pretrained LLM. We choose Vicuna-7B (Chiang et al.,
2023) to process the token sequence. In order to tackle
the challenging alignment and grounding problem of multi-
modal tokens (2D, 3D, text, embodied action) while preserv-
ing the LLM pretrained knowledge, we employ LoRA (Hu
et al., 2022) to introduce additional tunable parameters to
the frozen pretrained LLM.

2.3. Training & Inference

We formulate the learning objective of LEO follow-
ing (Brown et al., 2020; Raffel et al., 2020) in a prefix
language modeling fashion. For a batch B of token sequence
s, we optimize LEO via:
Bl T
L£(0.8) =~ 3> logpa(s & sl sl ()
b=1t=1
where sprex denotes the prefix tokens (from system mes-
sage to instruction) in (1). During training, we freeze the
pretrained 3D point cloud encoder and the LLM and fine-
tune the 2D image encoder, the Spatial Transformer, and
the LoRA parameters. In total, LEO has ~7B parameters
and ~142M of them will be tuned. During inference, we
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Table 1: Datasets statistics. We illustrate key statistics of datasets for 3D VL alignment Table 2: Answer accuracy of LLM-generated
(LEO-align) and 3D VLA instruction tuning (LEO-instruct). res. (response) denotes data on three types of questions.

tokens to be predicted, while prefix denotes those in the context.

Counting Existence Non-existence

Dataset Task 2D input 3D assets #data #(t;)el;e)n (prtjt;)xl:—e;s ) 3D-LLM 36.5 96.8 400
: : Ours 57.4 91.3 27.4
object captioning X Objaverse 660K 10M 27TM + O-CoT 78.0 93.4 30.5
LEO-align  object referring X ScanNet + 3RScan 354K 15M 39M + refinement  100.0 100.0 100.0
scene captioning X 3RScan 20K 3.3M 4.4M Table 3: The amount of examined data in
3D captioning X ScanNet 37K 821K 3M Tab. 2. 3D-LLM data (Hong et al., 2023) is
3D QA X ScanNet + 3RScan 83K 177K aM much less since we can only access a subset.
LEO-instruct ti]s)l:::)]ldalt?r%il:; ; gﬁggjﬁ :iﬁ }éﬁ g% Counting Existence Non-existence
navigation v MP3D 60K 11.4M 272M 3D-LLM 434 95 10
manipulation v CLIPort 300K 7.2M 734M Ours 2666 6766 3314

use beam search to generate textual responses. For tasks
that require action commands, we map the textual outputs
to action commands as discussed in Sec. 2.1. More details
on the model and training can be found in Appendix D.

3. Datasets

Since LEO is a generalist agent that receives multi-modal
inputs and follows instructions, we adopt the two-stage train-
ing proposed by Liu et al. (2023b) and split the data into
two sets: (i) LEO-align (Sec. 3.1) that focuses on 3D vision-
language (VL) alignment to bridge the gap between 3D
scene representation and natural language; and (ii) LEO-
instruct (Sec. 3.2) that targets at 3D VLA instruction tun-
ing to endow LEO with various capabilities. The statistics
and examples of these datasets can be found in Tab. 1 and
Appendix C, respectively. Due to the data scarcity, we adopt
LLMs to facilitate the data generation process and outline
the details in Sec. 3.3.

3.1. LEO-align: 3D Vision-Language Alignment

In LEO-align, we focus on 3D VL alignment. Similar to
BLIP-2 (Liet al., 2023d), we train LEO to generate captions
given various 3D inputs. Specifically, we collect three types
of 3D captioning data: 1) object-level captions, where we
align 3D individual objects with their descriptions (Luo
et al., 2023); 2) object-in-the-scene captions, where the
goal is to generate the referring expressions of objects in a
3D scene context (Achlioptas et al., 2020; Zhu et al., 2023c¢);
and 3) scene-level captions, which focuses on depicting
global 3D scene using natural language. Due to the space
limit, we defer details including data source and components
to Appendix B.1.

3.2. LEO-instruct: Instruction Following in 3D world

In LEO-instruct, LEO will be tuned to follow instructions
and accomplish various 3D VLA tasks. We curate a com-
prehensive set of tasks that covers a broad spectrum from
grounded scene understanding and reasoning (Chen et al.,

2021; Ma et al., 2023), to dialogue, planning, and embodied
acting (Savva et al., 2019; Shridhar et al., 2021). Specifi-
cally, we introduce 1) 3D captioning and question answer-
ing — given 3D scene input, the agent needs to generate a
natural language response to describe the scene or answer
questions; 2) 3D dialogue and task planning, where the
agent is expected to generate flexible and coherent responses
to complex instructions with respect to the given 3D scene,
and 3) navigation and manipulation, which require the
agent to accomplish a variety of embodied acting tasks in
the 3D scene. We defer details to Appendix B.2.

3.3. LLM-assisted 3D-language Data Generation

As mentioned above, at the core of producing a large pro-
portion of LEO-align and LEO-instruct is the assistance
of LLMs. We now detail the key techniques of prompting
LLMs (i.e., ChatGPT) to generate 3D-text paired data. An
overview can be found in Fig. 2.

Scene-graph-based prompting. Our data generation
pipeline starts with 3D scene graphs from 3DSSG (Wu
et al., 2021), which provide scene contexts for prompting.
Compared to counterparts that utilize object boxes (Yin
et al., 2023; Hong et al., 2023; Wang et al., 2023e), it offers
both rich object attributes and accurate spatial relation in-
formation among objects, allowing LLMs to generate data
with high-quality 3D details (comparisons in Appendix B.8).
Next, we manually design some examples as seed tasks (Liu
et al., 2023b), including scene and object captioning, QA,
dialogue, and planning, and ask LLM to produce more tasks
as well as the responses. Details for designing the seed tasks
can be found in Appendix B.3.

Object-centric CoT. To further combat the hallucination
of LLMs (Bang et al., 2023) in open-ended generation as in
our pipeline, we propose the object-centric chain of thought
(O-CoT) prompting that requires the LLM to explicitly pro-
vide the label and ID of object candidates as thoughts during
text generation. We also utilize subgraph sampling to fur-
ther enhance the diversity of 3D scene graphs (see details in
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4 Scene-Graph-based Prompting

Messages Responses

1. System Message
You are an Al visual assistant in a 3D scene...

2. Demonstrations
Scene Graph Context:
{'sofa-1" {"attributes": {'color": 'red"}, 'relations": ['to
the right of chair-2', 'in front of table-3'}, ‘chair-2":
{‘attributes": {'color": ‘brown'}, 'relations": [J}}
Human-labeled Responses

3.Query(a new scene)
\ Scene Graph Context

1) Object scene caption
2) Scene caption

3) Dialogue(O-CoT)

4) QA(O-CoT)

5) Planning

Potential Issues:

1) Wrong Answers

2) Negative Responses
3) Responses with IDs
3) Others

Y4

Refinement Procedures
Raw Responses Refined Responses

|
( 1. Answer Refinement \
: There are 3 curtains in the room.

( 1. Wrong Answers

| There are two curtains in the room.
| 2. Negative Responses : B

| Question: Where is the football table7I : %5?‘20;;:/% ’:‘:Sa;::’:e?;zﬁ%r:es
| Thought: football table-17 Answer: | remove% P

I unknown .

|
|
|
|
|
|
|
|
: 3. GPT-based rewriting i
|
|
|
|
|
J

: 3. Responses with ID |

| The kitchen cabinet-9 and kitchen | | The kitchen features a cabinet and
: counter-10 are parts of the kitchen. : : a counter.

| 4. Others I | 4. Others

! Unnecessary content (Thought, etc) | ' Remove unnecessary content.

(Dialogue(O-CoT):
Dialogue Context: high level task: organize the bedroom. low level task:
check some objects
Human: | need help organizing my bedroom. Can you assist me? Thought
no specific objects
Assistant: Of course! What specifically do you need help with?
Human: Can you check if there are any clean clothes hanging on the wall?
Thought: clothes-13
Assistant: I'm sorry, but the clothes hanging on the wall are messy.
Human: Thanks for your help! Thought: no specific object

stistant: You're welcome! If you need any further assistance, feel free to asy

[Scene Caption:
In this room, there is a wooden floor that is
clean and flat. A tall wardrobe stand on the
right side of a desk, close to a basket. The
wardrobe is in front of a chair, a bed, and
behind a bedside table. Clothes are hanging
on a white wall, to the right of a closed
curtain. The bed is wide, clean, and covered
with blue blanket. The room has a
comfortable and organized setting with

anctional furniture.

(Object Scene Caption:
The showcase is supported by
the wall and positioned behind,
close to, and to the left of the
shelf. The wall is flat, architectural,
and dark in color. The shelf is
\made of wood and has a low size.

QA(O-CoT):
Question: Where is the printer located? T}
Answer: standing on the desk

blanket-16, blanket-17 Answer: 2

ought: printer-8
Question: How many blankets are on the bed? Thought:

Question: What is the type of the room? Thought:wardrobe
2, desk-7, chair-11, bed-15 Answer: bedroom

J
Planning: )
High-Level Task: Organize and tidy up the bedroom.
Low-Level Actions:

1. Clean the floor by sweeping to remove any dirt.

2. Make the bed by arranging the blanket and pillows.
3. Place any loose items or belongings into the basket.
4. Arrange items on the shelves and showcase in a tidy wayJ

Figure 2: Our proposed LLM-assisted 3D-language data generation pipeline and data examples.. (Top-left) Messages with 3D scene
graphs, including object attributes and relations in a phrasal form, used for providing scene context when prompting LLM. (Top-right)
The human-defined refinement procedures were conducted over raw LLM responses to improve data quality. (Bottom) Examples of
LLM-assisted generation in LEO-align and LEO-instruct. Thoughts, colored in gray, will be removed after refinements.

Appendix B.7). We provide examples of O-CoT in Fig. 2.

Refinement procedures. Upon the scene graph and O-
CoT prompting, we introduce refinement as an additional
safeguard to the quality and reliability of our generated
data. Specifically, we send raw LLM responses to sev-
eral human-defined filters based on the 3D scene graphs:
negative responses (e.g., lacking the necessary information
to answer) will be removed; unnatural narratives will be
rewritten, efc. Further, we detect text that involves logical
reasoning (e.g., counting) or hallucination, and manually fix
the wrong responses according to the ground truth provided
by scene graphs. We provide illustrative examples in Fig. 2
and Appendix B.6, and quantitative analysis on the impact
of data refinement procedures in Appendix I.1.

Assess the quality of generated data. In addition to
data examples, we propose to assess the quality of gen-
erated data quantitatively. We focus on the LLM-produced
question-answer pairs about objects (questions starting with
How many/Is there and ending with in the room/bedroom/k-
itchen/living room/bathroom). We first divide these pairs
into three categories: counting, existence, and non-existence,
which examines the number of certain objects/whether an
object exists/whether an object does not exist in the scene,
respectively. We manually check if the answers in these

pairs are correct, and report the overall accuracy. Results
in Tab. 2 demonstrate that our proposed scene-graph-based
prompting, O-CoT prompting and refinement bring con-
sistent improvement to data quality and the complete data
generation pipeline outperforms a recent counterpart (3D-
LLM). We also demonstrate how we help address the gram-
matical errors compared to counterparts in Appendix B.9.
Finally, we provide the data distribution in Appendix B.10
to illustrate the diversity of our generated data.

4. Capabilities and Analyses

We demonstrate LEO’s capabilities by a comprehensive
evaluation on the full spectrum of embodied 3D tasks en-
compassing perceiving, grounding, reasoning, planning, and
acting. In Sec. 4.1, we present quantitative comparisons be-
tween LEO and state-of-the-art models on various 3D VL
tasks, underscoring LEO’s proficiency in 3D VL under-
standing and reasoning. In Sec. 4.2, we highlight LEO’s
strength in scene-grounded dialogue and task planning. In
Sec. 4.3, we extend LEO to embodied acting tasks wherein
LEO exhibits remarkable versatility. In Sec. 4.4, we conduct
ablative studies to reveal more insights into LEO, including
data and model aspects. In Sec. 4.5, we probe the scaling
effect and manifest the potential for further development.
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Table 4: Quantitative comparison with state-of-the-art models on 3D VL under-
standing and embodied reasoning tasks. “C” stands for “CIDEr”, “B-4” for “BLEU-
47, “M” for “METEOR”, “R” for “ROUGE”, “Sim” for sentence similarity, and “EM@1”
for top-1 exact match. The n-gram metrics for Scan2Cap are governed by IoU@0.5. |

Table 5: Results on robot manipulation. seen
indicates in-domain tasks. unseen marks OOD
tasks with novel colors or objects.

separating-piles packing-google put-blocks-in

indicates answering questions via prompting GPT-3 with the generated scene caption. -objects-seq  -bowls
Gray indicates evaluation results with refined exact-match protocol. seen unseen seen unmseen seen unseen
CLIP-only 902 710 958 57.8 977 445
Scan2Cap (val) ScanQA (val) SQA3D (test) CLIPort (single) 98.0 752 962 719 100 250
C B4 M R Sm C B4 M R EM@l EM@l CLIPort (multi) 89.0 628 844 703 100 458
Task-specific models LEO 988 752 766 798 862 352
Scan2Cap 352 224 214 435 410t . .. .
3IDICG 477 315 243 518 , Table 6: Results on object navigation. 1 indi-
Vote2Cap-DETR 61.8 345 262 544 - - - - - cates zero-shot evaluation.
ScanRefer+MCAN - - - - 55.4 79 115 300 18.6 -
ClipBERT _ _ _ _ _ 433 MP3D-val HM3D-val
ScanQA 649 10.1 131 333 21.1 472 Success(1) SPL(T) Success(T) SPL(1)
Task-specific fine-tuned Habitat-web (shortest) 4.4 22
3D-VisTA 669 340 27.1 543 538 696 104 139 357 224 485 Habitat-web (demo) ~ 35.4 102 -
3D-LLM (FlanT5) - - - - 694 120 145 357 205 - ZSON 1530 48t 255 12.6
LEO 724 382 279 581 553 1014 132 200 492 245(47.6) 50.0 (52.4) LEO 23.1 15.2 2311 194t

4.1. 3D Vision-Language Understanding and Reasoning

Overview. Understanding and reasoning about object at-
tributes, object relations, and other facets of 3D scenes from
an agent’s egocentric perspective is a fundamental capabil-
ity of an embodied generalist agent in the 3D world. We
investigate how well can LEO perform 3D VL understand-
ing and embodied reasoning tasks, especially when being
compared against task-specific models and existing gener-
alist agents. Specifically, we consider three renowned 3D
tasks: 3D captioning on Scan2Cap (Chen et al., 2021), 3D
QA on ScanQA (Azuma et al., 2022), and 3D embodied
reasoning on SQA3D (Ma et al., 2023). Our evaluation met-
rics include conventional scores (e.g., CIDEr, BLEU, ME-
TEOR, ROUGE) and other metrics adapted for open-ended
generation, e.g., sentence similarity (Reimers & Gurevych,
2019) and refined exact-match accuracy (see details in Ap-
pendix H.1). Following 3D-VisTA (Zhu et al., 2023c), we
use object proposals from Mask3D (Schult et al., 2022)
instead of ground-truth object segments for evaluation.

Baselines. For quantitative comparisons, we include both
task-specific approaches and generalist models: 1) state-
of-the-art specialists in 3D dense captioning (Chen et al.,
2021; Cai et al., 2022; Chen et al., 2023); 2) state-of-the-art
specialists in 3D QA (Azuma et al., 2022; Ma et al., 2023);
3) task-specific fine-tuned generalist models like 3D-VisTA
(Zhu et al., 2023c) and 3D-LLM (Hong et al., 2023). To
the best of our knowledge, LEO is the first model that, in
stark contrast to prior models, can directly handle the afore-
mentioned 3D VL tasks in a unified architecture without
task-specific fine-tuning. This lends greater credence to
LEO’s comparative superiority.

Results & analysis. As shown in Tab. 4, LEO surpasses
both state-of-the-art single-task and task-specific fine-tuned
models significantly on 3D dense captioning and 3D QA
tasks. In contrast to the specialist models that utilize task-
specific heads, our LLM-based approach not only affords the
flexibility of generating open-ended responses but also ex-

hibits excellent quantitative results. On the other hand, con-
sidering the complicated feature aggregation in 3D-LLM,
we believe that object-centric 3D representation is a simple
yet effective option to connect 3D scenes with LLM while
harnessing the inherent knowledge of LLM.

4.2. Scene-grounded Dialogue and Planning

Overview. Upon the 3D VL understanding and reasoning,
we anticipate LEO to support more sophisticated interaction
with humans, e.g., responding to complex multi-round user
instructions in the 3D world. To verify these capabilities,
we conduct qualitative studies on 3D dialogue and planning
tasks, with unseen scenarios from the held-out test sets of
LEO-instruct. We defer the quantitative results of dialogue
and planning to our ablation study in Sec. 4.4. Quantitative
comparison with other approaches is infeasible given the
absence of comparable benchmarks.

Results & analysis. As shown in Fig. A.1, LEO is capable
of generating high-quality responses, which encompass two
features: 1) Precisely grounded to the 3D scenes. The task
plan proposed by LEO involves concrete objects related to
the 3D scene, as well as plausible actions regarding these
objects. 2) Rich informative spatial relations. The entities
in LEQO’s responses often accompany detailed depictions.
Such information helps identify specific objects in complex
3D scenes and affords considerable assistance to humans.

4.3. Embodied Action in 3D World

Overview. To probe LEO’s capacity of bridging vision-
language-acting in the 3D world, we select two canonical
embodied Al tasks: embodied navigation (ObjNav) on Al
Habitat (Ramrakhya et al., 2022) and robotic manipulation
on CLIPort (Shridhar et al., 2021). Specifically, for CLI-
Port robotic manipulation, we evaluate LEO on the three
tasks listed in Tab. 5 including their unseen counterparts,
and report the success scores. For ObjNav, we evaluate
LEO on the original MP3D Ob jNav validation split. Ad-
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Table 7: Quantitative results of LEO trained with differ- Table 8: TrueSkill scores with human pref- Figure 3: LEO-instruct test loss
ent data configurations. w/o Align: without alignment erence. Dialg: dialogue and planning data. with the growth of data and model
stage. ScanNet: tuned on ScanNet scenes only. w/o Act: scale, manifesting the scaling law.

tuned without embodied acting tasks. We report the ex-
act match metrics for QA tasks and sentence similarity W Dialg 244£13  23.1+14  23.4+£14

Answerable Unanswerable = NLP

Test Loss

. .1 w/ Dial, 25.6+1.3 268+14 26.6+1.4 ’ Aligned OPT-1.38
for others. Underlined figures indicate zero-shot results 8 Scratoh VicinalB
on novel scenes (3RScan). Table 9: Answer accuracy (EM) on object- 16 Aligned Vicuna-78

ScanNet 3RScan existence questions. Aug: augmented data. Allgned Vicuna-138
Scan2Cap ScanQA  SQA3D 3RQA  3RDialog 3RPlan 3RScan ScanNet (0-shot) 1.2
wlo Align 628 227 (45.0) 509 (332) 49.7(53.7) 730 803 Yes No Overall Yes No Overall
ScanNet 640  24.4(49.2) 468 (49.5) 358(50.0) 255 234
Wo Act 65.4 243 (485) 50.0(52.5) 51.9 (57.4) 733 81.1 w/o Aug 1.00 0.01 034 0.98 0.16 043 0.815 5 A 12 0y
VLA 653  25.0(48.9) 46.2 (48.3) 51.3(55.8) 723 71.2 w/Aug 0.72 091 0.85 0.88 0.81 0.83 ’

#Data

ditionally, we test generalization to the validation split of ~ Following Achlioptas et al. (2020), we use ground-truth
the newly introduced HM3D Ob jNav task (Ramakrishnan object segments in these analyses. We present additional
et al., 2021). We report the success rate and SPL met-  analyses on data in Appendix 1.2 and model in Appendix 1.3.
rics following Ramrakhya et al. (2022). We consider both
Habitat-web (Ramrakhya et al., 2022) (fully supervised) and
ZSON (Majumdar et al., 2022) (zero-shot) as baselines.

Alignment stage. In contrast to complete two-stage train-
ing (w/o Act), we direct instruction-tune a model without
alignment stage (w/o Align). The results in Tab. 7 show the
Results & analysis. We present the results of CLIPort  consistent impact of alignment. In particular, the benefit
manipulation and object navigation in Tabs. 5 and 6. Our  of alignment is significant on Scan2Cap since it concerns
findings are as follows: 1) In robotic manipulation, LEO is detailed scene understanding and captioning, which is a
comparable to state-of-the-art performances and even bet-  primary focus of alignment training.

ter on some challenging unseen tasks. In particular, LEO
directly produces motor commands without inductive bias
(e.g., heatmap) that benefit previous methods, showcasing
LEOQ’s considerable capacity for learning embodied actions.
2) In Ob jNav, LEO achieves a success rate that is compara-
ble to the baselines and has a better SPL on MP3D-val, sug-
gesting that LEO can leverage the object-centric 3D scene
input (potentially offering a coarse global map) and take a
shorter path to the target. Furthermore, results on HM3D- VL vs. VLA. We compare w/o Act and VLA, which differ
val confirm LEQO’s zero-shot generalization to novel scenes.  in whether embodied acting tasks are included for training.
Notably, all baselines are equipped with recurrent modules  The results in Tab. 7 show that incorporating embodied
while LEO only incorporates truncated past actions, which acting tasks could lead to performance drops on 3D VL tasks.
could account for a lower success rate (see discussion in  This may stem from 1) the gap between language generation
Appendix H.2). 3) Overall, the two-stage learning scheme and embodied action prediction, and 2) the imbalanced data
endows LEO with semantic-level generalization (novel ob-  scale of embodied acting tasks. In contrast to the finding that
jects, efc.) in both manipulation and navigation tasks. We VL data benefits embodied acting tasks in VLA co-training
demonstrate the efficacy of tackling embodied acting tasks (Brohan et al., 2023), our observation implies that embodied
with a general framework from 3D VL. acting tasks may harm VL capabilities in turn. How to
continually bridge the gap between VL and embodied acting
tasks is an important direction for further exploration.

Specialist vs. generalist. We train a specialist on ScanNet
scenes (ScanNet). As shown in Tab. 7, ScanNet performs
slightly worse than w/o Act even on ScanNet tasks, and par-
ticularly struggles at generalization across scenes (3RQA)
and tasks (3RDialog and 3RPlan). This demonstrates the
advantage of generalist-style instruction tuning with broad
coverage of scenes and tasks.

Additional results. We further investigate the perception
modules, data regime, and generalization to unseen objects

in Ob jNav task. See the results in Appendix [.4. Dialogue and planning data. In contrast to the default
model (w/ Dialg in Tab. 8), we train LEO without dialogue
4.4. More Insights into LEO and planning data (w/o Dialg). We design an evaluation

set with three types of questions (Answerable, Unanswer-
able, and NLP) and evaluate with TrueSkill (Graepel et al.,
2007) according to human preference (see details in Ap-
pendix G.3). The results in Tab. 8 confirm more halluci-
nations (less preferred by users on “Unanswerable”) and
worse NLP skills for w/o Dialg. This is probably because
1) the diverse conversations in our dialogue data can help
cultivate flexible responses to complex instructions, and 2)

Overview. In this section, we aim to offer deeper insights
into LEO’s characteristics, mainly from the data perspective
(model perspective is deferred to Appendix G.2). Specif-
ically, we evaluate LEO when trained with different data
configurations, including exact match, sentence similarity,
and human rating. We regard LEO instruction-tuned with-
out embodied acting tasks (w/o Act) as the default setting.
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our planning data can offer scene-grounded commonsense
knowledge and also encourage detailed coherent text.

Data balancing. We find imbalanced data could induce
hallucination in LEO, e.g., it tends to respond with “Yes”
when asked “Is there something in this room?”. To address
this, we augment the 3RScanQA data with more negative
samples where non-existent objects are queried. We also
design an evaluation set with different types (Yes and No)
of object-existence questions (see details in Appendix G.4).
Results in Tab. 9 demonstrate that we can effectively mit-
igate the hallucination problem by balancing the tuning
data. Moreover, the benefit of augmenting 3RScan data can
transfer to ScanNet scenes in a zero-shot manner.

4.5. Scaling Law Analysis

Settings. We study the scaling effect (Kaplan et al., 2020;
Reed et al., 2022) of data and model in LEO by tracking the
instruction-tuning loss on the test set with the growth of data
scale. In addition to the default Vicuna-7B, we incorporate
two LLMs at different scales: OPT-1.3B (Zhang et al., 2022)
and Vicuna-13B (Chiang et al., 2023). For Vicuna-7B, we
also probe the influence of alignment (Scratch vs. Aligned).

Results & analysis. From the test loss curves in Fig. 3,
we have the following findings: 1) The instruction tun-
ing of LEO conforms to the scaling law (Kaplan et al.,
2020; Reed et al., 2022). We observe that all curves de-
crease log-linearly with the data scale. 2) Scaling up LLM
leads to consistent improvements. Aligned Vicuna-7B
shows significantly lower losses than Aligned OPT-1.3B.
In contrast, despite the consistent improvements, the gap
between Aligned Vicuna-7B and Vicuna-13B appears less
significant, suggesting potential saturation if we continue to
scale up the LLM. This indicates the scalability of LEO and
the necessity of scaling up data to match the model capacity.
3) Alignment leads to consistent improvements. Aligned
Vicuna-7B shows consistently lower losses than Scratch
Vicuna-7B, which corresponds to the inferior performances
of w/o Align in Tab. 7.

5. Related Work

Generalist agents. The Al community has witnessed the
rising generalist models in both vision (Lu et al., 2023;
Wang et al., 2023b; Kirillov et al., 2023) and language (Ope-
nAl, 2022; 2023) domains. A generalist agent requires
additional embodiment knowledge to interact with the en-
vironment and complete embodied acting tasks. Existing
efforts towards generalist agents include: grounded reason-
ing and task planning in the real world (Ahn et al., 2022;
Huang et al., 2022b), skill generalization in open-world en-
vironment (Fan et al., 2022; Cai et al., 2023a; Wang et al.,
2023d;a; Cai et al., 2023b; Gong et al., 2023b), general

robotic manipulation (Brohan et al., 2022; Jiang et al., 2023;
Gong et al., 2023a), and unified vision-language-action
(VLA) models such as Gato (Reed et al., 2022), PaLM-
E (Driess et al., 2023), EmbodiedGPT (Mu et al., 2023),
and RT-2 (Brohan et al., 2023). LEO belongs to the VLA
model, however, its goal is to build a generalist agent that
can understand the real 3D world beyond 2D images, which
is absent in existing works.

Multi-modal instruction tuning. Pre-trained LLMs
demonstrated practical for solving vision-language
tasks (Tsimpoukelli et al., 2021; Alayrac et al., 2022; Guo
et al., 2023; Li et al., 2023d; Zhao et al., 2023). Meanwhile,
the instruction-tuning paradigm exhibited strong zero-shot
generalization in NLP tasks (Wei et al., 2022; Sanh et al.,
2022; Ouyang et al., 2022; Chung et al., 2022). The two
streams merged into instruction-tuned LVLMs (Liu et al.,
2023b; Zhu et al., 2023b; Ye et al., 2023; Gao et al., 2023;
Li et al., 2023b; Gong et al., 2023c; Dai et al., 2023).
Despite the burst, these models are confined to 2D visual
modalities, e.g., image or video. Concurrent works (Yin
et al., 2023; Hong et al., 2023; Wang et al., 2023e; Xu et al.,
2023) extend to 3D vision tasks, but these models either
lack the acting capability or unified efficient architecture.

Grounded 3D scene understanding. One key obstacle
to building LEO is grounding the 3D world with natural
languages. There exist diverse methods of grounded scene
understanding, e.g., spatial relation modeling (Zhao et al.,
2021; Chen et al., 2022; Zhu et al., 2023c) and fine-grained
open-scene understanding (Peng et al., 2023b; Kerr et al.,
2023). However, due to data scarcity, how to utilize LLMs to
ground the 3D scene is rarely explored. Recently, 3D-LLM
(Hong et al., 2023) leverages multi-view images and Chat-
3D (Wang et al., 2023e) uses object-centric point clouds
to enable the LLMs with 3D grounding. In this work, we
devise both 2D and 3D encoders for grounding various
visual representations and employ LoRA (Hu et al., 2022)
to efficiently fine-tune the LLMs.

3D data prompting from LLMs. LLM:s exhibit extraordi-
nary capabilities of text generation and serve as a source for
collecting diverse instruction-following data (Wang et al.,
2023c; Taori et al., 2023; Peng et al., 2023a). However, the
lack of access to visual modalities makes it troublesome
to collect visual instruction-tuning data. To address this
issue, existing methods provide bounding boxes (Liu et al.,
2023b) and add dense captions (Li et al., 2023a; Liu et al.,
2023a) as image descriptions or directly use off-the-shelf
large vision-language models (LVLM) (Zhu et al., 2023a;
Luo et al., 2023) to help collect such data. Unlike concur-
rent attempts (Yin et al., 2023; Hong et al., 2023; Wang
et al., 2023e) in collecting 3D instruction-tuning data, our
approach features a scene-graph-based prompting and re-
finement method to prompt and correct the data.
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6. Conclusions

The proposed agent LEO extends the current generalist abil-
ity of LLMs from text towards the 3D world and embodied
tasks. It is a crucial initial step towards building embodied
generalist agents. Nonetheless, there are also limitations,
e.g., generalization to novel scenes, and a notable gap be-
tween VL learning and embodied action control. In light of
this work, we identify several promising directions that hold
the potential for substantial advancement: (1) enhancing the
3D VL understanding capability by leveraging larger-scale
VL data from richer 3D domains; (2) continually bridg-
ing the gap between 3D VL and embodied action, as our
experiments reveal the efficacy of their joint learning; (3)
investigating the issues of safety and alignment in the con-
text of embodied generalist agents, particularly given that
our scaling law analysis suggests significant enhancements
through scaling on data and model.

Impact Statement

This work introduces LEO, an embodied multi-modal gener-
alist agent designed to extend machine learning capabilities
into the 3D realm, marking a significant advance in the
field. The potential societal implications of LEO are mani-
fold, touching on robotics, AR/VR, assistive technologies,
and environmental planning. Ethically, it underscores the
importance of responsible Al development, emphasizing
safety, privacy, and fairness in automated decision-making.
As LEO ventures into new territories of human-machine
interaction, it prompts a re-evaluation of ethical frameworks
to ensure that advancement contributes positively to society.
While the immediate societal consequences of our work
align with the goals of advancing machine learning, we ac-
knowledge the necessity of ongoing ethical consideration as
applications of LEO evolve.
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A. Qualitative Results
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Figure A.1: Qualitative results of interacting with LEO on unseen scenarios from a held-out test set of LEO-instruct. LEO’s responses
and actions can be grounded in novel scenes.

B. Data
B.1. More Details on LEQO-align

Object-level caption. To facilitate object-level grounding of detailed object attributes, we leverage Cap3D (Luo et al.,
2023), which contains language descriptions for objects in Objaverse (Deitke et al., 2023). Given a single 3D object as input,
LEO will be asked to predict its caption.

Object-in-the-scene caption. For a better understanding of how an object can be related to others (spatial relations,
etc.) when situated in a 3D scene, we collect referring expressions of objects in scenes from existing datasets, including
ScanScribe (Zhu et al., 2023c) and Referlt3D (Achlioptas et al., 2020). Further, we generate additional object-referring
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expressions on 3RScan (Wald et al., 2019) scenes by prompting LLMs (details in Appendix B.4). During alignment, LEO
needs to predict these referring expressions given the object-centric 3D input of the scene and the referred object.

Scene-level caption. Finally, we encourage LEO to capture scene-level descriptions of a 3D scene. These scene-level
captions focus on global information depicting key objects in the scene as well as their attributes and functionalities, relations
among multiple objects, and room types and styles. We leverage scene graph annotations (Wald et al., 2019) and prompt
LLMs to produce a total of ~20K captions. To further increase caption diversity, we propose a subgraph sampling strategy
to prevent LLMs from always attending to certain notable facets of the scene (details in Appendix B.7). Similar to previous
settings, LEO needs to predict these captions given the corresponding 3D input.

B.2. More Details on LEO-instruct

Below, we provide a comprehensive illustration of the data preparation process for these tasks and an overview of generated
data in Fig. 2. We list the corresponding instructions in Appendix C.

3D captioning. The task is to produce a generic caption given 3D input. We adopt the Scan2Cap dataset (Chen et al.,
2021), which is based on the ScanNet (Dai et al., 2017) 3D scenes and covers various levels (object-level and scene-level)
and aspects (attributes, relations, efc.) of scene details.

3D question answering. The 3D-QA task is an extension of VQA (Antol et al., 2015) to 3D scenes with a focus on 3D
knowledge, ranging from spatial relations to functionalities of objects. For this task, we first aggregate two existing 3D-QA
datasets: ScanQA (Azuma et al., 2022) and SQA3D (Ma et al., 2023). To further generate questions concerning rich 3D
knowledge, we prompt LLMs to generate ~35K QA pairs on 3RScanQA with our quality refinement techniques discussed
in Sec. 3.3.

3D dialogue. The goal of this task is to support natural conversations between LEO and users about a given 3D scene. This
task necessitates coherence and continuity across multiple rounds of conversational interactions. We build such dialogues
on 3RScan scenes by prompting LLMs with a variant of the Chain-of-Thought prompting method discussed in Sec. 3.3 to
facilitate diverse dialogues about relevant and accurate details about the 3D scene. In total, ~11K dialogues are collected.

Scene-aware task planning. In this task, LEO is required to decompose high-level tasks into step-by-step low-level plans
given 3D scenes. We expect LEO to generate feasible plans based on the current 3D scene and ground its inherent common
sense knowledge about procedures to the scene configurations, including, objects, their attributes, relations, and functional
characteristics, etc. By prompting LLMs, we end up collecting ~14K task-plan pairs on 3RScan scenes.

Embodied navigation. We follow imitation learning setting in Habitat-web (Ramrakhya et al., 2022) for the embodied
navigation task. We choose Ob jNav, where LEO needs to map navigation instructions (e.g. “find bed”), object-centric 3D
input, and an egocentric 2D input into discrete habitat motor commands. For simplicity, we use shortest path navigation
trials rather than human demonstrations for learning as they are less noisy and therefore easier to learn when provided with
the 3D scene. In total, we generate ~60K navigation episodes out of the MP3D Ob jNav training scenes (Savva et al., 2019)
for this task.

Robotic manipulation. We employ a subset of the manipulation tasks introduced in CLIPort (Shridhar et al., 2021).
The input of this task includes instructions, egocentric 2D observations, and object-centric 3D information. As discussed
in Sec. 2.1, we discretize the continuous action space of CLIPort into bins to unify the action decoding of navigation and
manipulation (more details in Appendix D.3). We generate 100K demonstrations for each selected manipulation task.

B.3. Design of Seed Tasks for LLM-assisted 3D Data Generation

Object Scene Caption & Scene Caption. To align the 3D scene/object with language, we prompt ChatGPT to curate
these two types of caption data. Object Scene Caption includes the spatial relationships of the object with some adjacent
objects in the scene. Scene Caption is the comprehensive description for the whole 3D scene, including some key objects
and their spatial relationships.

QA & Dialogue. For QA, we design several question-answer pairs given a scene graph. A diverse set of questions are
asked about the 3D scene, including the object attributes, object counting, object existence, spatial relationships between the
objects, object types, object affordance, room type and so on. For dialogue, we design a conversation between the assistant
and a person asking questions about this scene. The answers are in a tone as if the assistant is understanding the scene and
helping the person. Different from single-round QA, dialogue has some high-level tasks such as ’searching for specific
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(messages = [{''role'': ''system'', ''content'': ''Youarean Al visual assistant in a 3D scene. The scene
contains some objects, which compose a scene graph in json format. Each entity in the scene graph denotes an object instance,
with a class label and an object id. The ‘attributes' describes the attributes of the object itself, such as ‘color ', 'material’, etc.
The 'relations' describes the spatial relations with other objects.

For example, from the scene graph

{'sofa-1". {'attributes": {'color": 'red'}, 'relations': ['to the right of chair-2', 'in front of table-3'}, ‘chair-2": {'attributes': {'color":
'brown'}, 'relations': ['to the left of sofa-1'1}, 'table-3": { ‘attributes’: {'material’: 'wood'}, 'relations": [1}}

we can know that 1) the sofa is red, 2) the chair is brown, 3) the football table is made of wood, 4) the chair is on the left of
the sofa, 5) the chair is in front of the table.

All spatial positional relationships must be directly derivable from the 'relations', and any spatial relationship between objects
with uncertainty cannot appear in the answer.

You need to generate meaningful conversations based on the scene information. The conversations include questions
from human and responses from an Al assistant. Ask questions about the object types, counting the objects, object attributes,
relative positions between objects. Also ask questions concerning commonsense, e.g., how the objects can be used by human
and human activity in the scene. You can ask questions about the affordance of the objects in the scene. The questions should
conform to the given scene information. The attributes of objects and spatial relations between objects can only be inferred
from the "attributes' and 'relations' in scene graph, respectively. The questions should contain interrogative sentences and
declarative sentences to cover diverse tones. You need to first provide the context of the dialogue. The context can be high
level or low level tasks. The dialogue should be related to the context. Then you need to provide the clues about the question.
Then the robot answers the question according to the thought. The dialogue has the following format:Dialogue Context:
<Dialogue Context>\nHuman:<Question>\nThought:<Thought>\nRobot:<Answer>. Do not use 1Ds of the objects('<object>-
<ID>' or '<object> <ID>') in <Question> and <Answer>. The IDs of the objects can appear in the <Thought>" "'} ]

for sample in fewshot_samples:

messages.append({''role'': "'user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', ''content'': sample['response']})
\messages.append ({"'role'': '"'user'', ''content'': '\n'.join(sample['query'])}) )

Figure A.2: The prompt for generating 3D Dialogue.

Table A.1: The effect of O-CoT on the answer accuracy for Object Counting questions.

Settings \ Seed1 Seed2 Seed3 Seed4 Average Avg. Gain
w/o O-CoT | 0.5838 0.5349 0.5962 0.5816  0.5741
O-CoT | 07647 08117 0.7778 0.7667  0.7802

0.2061

objects’ that require multi-round conversations.

Planning. To include a deeper understanding of the global 3D scene information, we prompt ChatGPT to generate a
high-level task and 5-10 action steps(interaction between the assistant and the objects in the scene) to finish the task.

B.4. Prompts for LLM-assisted 3D Data Generation

In Fig. A.2—-A.6, we show the prompts for five types of LLM-assisted 3D-language data generation. We provide few-shot
examples as the context. In each example, the “content” contains a scene graph, and the “response” refers to a human-labeled
response. The query is a new scene graph, based on which ChatGPT (OpenAl, 2022) generates responses.

Fig. A.2 shows the prompt for generating 3D dialogue data. Red fonts outline our requirements of the dialogue content,
including object attributes, spatial relations, and commonsense topics. Purple fonts formulate the template of the response.
We require the response generated by the ChatGPT should include the dialogue context as well; the “thought” contains
the involved objects in the question, which is used to enhance the reliability of the answer. These two components will be
removed after the refinement procedures.
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messages = [{''role'': ''system'', '‘content'': ''YouareanAl visual assistantin a 3D scene. The scene
contains some objects, which compose a scene graph in json format. Each entity in the scene graph denotes an object instance,
with a class label and an object id. The ‘attributes' describes the attributes of the object itself, such as 'color ', 'material’, etc.
The 'relations' describes the spatial relations with other objects.

For example, from the scene graph

{'sofa-1": {'attributes': {'color": 'red'}, 'relations": ['to the right of chair-2', 'in front of table-3']}, 'chair-2": {'attributes': {'color":
‘brown'}, 'relations’: ['to the left of sofa-17}, ‘table-3": { 'attributes': {'material’: ‘wood'}, 'relations': []}}

we can know that 1) the sofa is red, 2) the chair is brown, 3) the football table is made of wood, 4) the chair is on the left of
the sofa, 5) the chair is in front of the table.

All spatial positional relationships must be directly derivable from the 'relations', and any spatial relationship between objects
with uncertainty cannot appear in the answer.

You need to generate 10-15 question-answer pairs based on the scene information. The question-answer pairs include the
object types, counting the objects, object attributes, relative positions between objects. The questions should conform to the
given scene information. The attributes of objects and spatial relations between objects can only be inferred from the
‘attributes’ and 'relations' in scene graph, respectively. The questions must be able to be answered correctly based on the scene
graph. You need to provide the queried object. Note that all answers to the questions must be single words or phrases. The
question answer pair should be following format:\nQ: <question>\nT: <queried object(s)>\nA: <Answer>. You can answer
the question according to the queried object(s). If there is no information about the question, the <Answer> should be
‘unkown'." ' }]

for sample in few_shot_samples:

messages.append({''role'': ''user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', '‘'content'': sample['response']})
\messages.append ({"'role'': "'user'', ''content'': '\n'.join(sample['query'])}) )

Figure A.3: The prompt for generating 3D QA.

(messages = [{''role'': '"'system'', ''content'': ''You arean Al visual assistant that can analyze a 3D
scene. The scene contains some objects, which compose a scene graph in json format. Each entity in the scene graph denotes
an object instance, with a class label and an object id. The "attributes' describes the attributes of the object itself, such as ‘color’,
‘'material’, etc. The 'relations' describes the spatial relations with other objects.

For example, from the scene graph:

{'sofa-1": {'attributes’: {'color": 'red'}, 'relations": ['to the right of chair-2', 'in front of table-3'}, ‘chair-2": {'attributes": {'color":
'brown'}, 'relations': ['to the left of sofa-1'}, 'table-3'": { ‘attributes': {'material’: 'wood'}, 'relations": [1}}

We can know that 1) the sofa is red, 2) the chair is brown, 3) the football table is made of wood, 4) the chair is on the left of
the sofa, 5) the chair is in front of the table.

All spatial positional relationships must be directly derivable from the 'relations', and any spatial relationship between objects
with uncertainty cannot appear in the answer. Do not use the id of the object in the dialogue, use ordinal words and attributes
to refer to different objects with the same label.

Using the provided scene graph, design a high-level task that can be performed in this 3D scene. Besides, decomposing
this high-level task into a sequence of action steps that can be performed using the instances in this3D scene.

Remeber, the high-level task and action steps must be able to be performed in the 3D scene using the given object instances.
Do not use IDs of the objects('<object>-<ID>' or '<object> <ID>'") in the planning." ' }]

for sample in fewshot_samples:

messages.append({' 'role'': ''user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', ''content'': sample['response’']})
 messages.append ({''role'': "'user'', "''content'': '\n'.join(sample['query'])}) )

Figure A.4: The prompt for generating 3D planning.

B.5. Analysis of the Object-Centric Chain-of-Thought

To further investigate the impact of Object-centric Chain-of-Thought (O-CoT) on data quality, we analyze the answer
accuracy for Object Counting questions. Specifically, we collect several demonstrations, and for each run, we select two of
them as the prompt seed. With these seeds, we generate dialogues across all scenes in 3DSSG (Wu et al., 2021) and then
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(messages = [{''role'': ''system'', '‘'content'': ''Youarean Al visual assistant in a 3D scene. The scene
contains some objects, which compose a scene graph in json format. Each entity in the scene graph denotes an object instance,
with a class label and an object id. The ‘attributes' describes the attributes of the object itself, such as ‘color', 'material’, etc.
The 'relations' describes the spatial relations with other objects.

For example, from the scene graph:{'sofa-1": {'attributes": {'color": 'red'}, 'relations": ['to the right of chair-2', 'in front of table-
31}, ‘chair-2": {"attributes': {'color": 'brown'}, 'relations': ['to the left of sofa-1'1}, ‘table-3": { ‘attributes': {'material': ‘wood'},
'relations": [1}}

We can know that 1) the sofa is red, 2) the chair is brown, 3) the football table is made of wood, 4) the chair is on the left of
the sofa, 5) the chair is in front of the table.

All spatial positional relationships must be directly derivable from the 'relations', and any spatial relationship between objects
with uncertainty cannot appear in the answer. Don't use IDs of the objects('<object label>-<ID>' or '<object label> <ID>') in
the summary.

You need to provide a summary for a scene. The summary should be about the object types, object attributes, relative
positions between objects. Also describe the scene concerning commonsense, e.g., how the objects can be used by human and
human activity in the scene. The description should conform to the given scene information. The attributes of objects and
spatial relations between objects can only be inferred from the 'attributes' and 'relations' in scene graph, respectively. You
don't need to describe each object in the scene, pick some objects of the scene for summary. You can also summarize the
room's function, style, and comfort level based on the arrangement and color of objects within the room. Your summary must
not exceed 110 words. " ' }]

for sample in few_shot_samples:

messages.append({' 'role'': ''user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', ''content'': sample['response']})
(messages.append ({''role'': ''user'', ''content'': '\n'.join(sample['query'])})

Figure A.5: The prompt for generating 3D scene caption.

messages = [{''role'': ''system'', '‘content'': ''You are ahelpful assistant. You will receive a dictionary
of an object. This dictionary provides information about a node in a scene graph, as well as its adjacent nodes. The value of
the key 'object’ is the object represented by the node. The value of 'relations' includes the spatial relationships with the
adjacent nodes . The value of the key ‘attribute’ provides the attributes of the object. The value of ‘edge attribute' provides a list
of object attributes for the adjacent nodes. You need to describe the object according to the information of the target
object node. The IDs of objects cannot appear in the summary." '} ]

for sample in few_shot_samples:

messages.append({''role'': ''user'', ''content'': sample['content']})
messages.append({''role'': ''assistant'', ''content'': sample['response’']})
messages.append ({''role'': ''user'', ''content'': '\n'.join(sample['query'])})

Figure A.6: The prompt for generating 3D object-in-the-scene caption.

assess the answer accuracy for Object Counting questions. The results are presented in Tab. A.1.

The results in Tab. A.1 indicate that O-CoT consistently improves the answer accuracy for Object Counting questions.
Though there remain errors after applying O-CoT, we will conduct refinement to fix them. Examples of Object Counting
questions are provided in Appendix B.6.

B.6. Refinement Details

We conduct refinement by passing raw LLM-generated responses into several human-defined filtering procedures based on
the 3D scene graph. The refinement considers five raw response categories:

* Object Counting. The question concerns counting the target object.

* Object Existence. The response claims the existence of objects, which can be actually either existent or non-existent.

* Object Non-existence. The response claims the non-existence of objects, which can be actually either existent or
non-existent.

» Negative Response. The scene graph cannot provide a solid response to the question, which means the question cannot be
answered and will be discarded.
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Table A.2: Examples of dialogue refinement.

Types | Raw Responses | Refined Responses

Object Counting There are 3 chairs in the room. There are 4 chairs in the room.
I see there are two washing ma- | I see there are 4 washing machines
chines in the bathroom. in the bathroom.

Object Existence Yes, there is a cutting board in the | No, there is no cutting board in the

kitchen.

Yes, there is a computer and a moni-
tor on the desk. However, the moni-
tor is currently off.

room.
No, there is no computer in the
room.

Object Non-existence

No, there is no stereo equipment in
the room.

I’'m sorry, but I couldn’t find a hair
dryer in the bathroom.

Yes, there is a stereo equipment in
the room.
Yes, I found a hair dryer in the room.

Negative Response

No, there is nothing else mentioned
in the scene graph.

I'm sorry, but there is no mention of
a mirror in the scene graph for the
bathroom.

The negative responses will be re-
moved.

Response with ID You can place your backpack on the | You can place your backpack on the
floor, to the left of the dining table- | floor, to the left of the dining table.
33. As for your bag, you can place it | As for your bag, you can place it on
on the floor, to the left of the bed-10. | the floor, to the left of the bed.

Table A.3: Examples of QA refinement.

Types | Raw Responses | Refined Responses

Object Counting Q: How many chairs are in the | Q: How many chairs are in the
room? room?
A:3 A: four

Object Existence Q: Is there a mirror in the room? Q: Is there a mirror in the room?

A:yes

A: no

Object Non-existence

Q: Is there an ironing board in the
room?
A:no

Q: Is there an ironing board in the
room?
A:yes

Negative Response

Q: What is the material of the bath-
tub? A: unknown

Q: Where is the shampoo dispenser?
A: unknown

The negative responses will be re-
moved.

Response with ID

Q: Where is the mirror located?
A attached to wall-3, behind heater-
18, to the left of shelf-19

Q: Where is the mirror located?
A: attached to a wall, behind a
heater, to the left of a shelf

» Response with ID. The response contains unexpected object IDs.

Specifically, we employ regular expression matching to detect errors in these five categories. We also employ this method
to correct the responses except for Response with ID, which will be rewritten by ChatGPT instead. The QA pair will
be eliminated if multiple rounds of rewriting fail to remove the IDs. Tab. A.2 and Tab. A.3 show some examples of the

responses subject to the above five categories as well as the effect of our refinement.

B.7. Subgraph Sampling

To enhance the diversity of the 3D scene graphs used for prompting, we perform subgraph sampling on the 3DSSG according
to a sampling rate, which denotes the ratio of preserved nodes. The sampled subgraphs are used for generating scene
captions and planning data. We analyze the distribution of node numbers across the 3DSSG dataset in Fig. A.7 and set
different sampling rates for scenes with different numbers of nodes in Tab. A.4. For each sampling rate, we set 4 random
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Figure A.7: The distribution of node numbers for 3DSSG scenes. The node number represents the number of objects in a scene.

Table A.4: Sampling rates for scenes with different node numbers. The hyphen denotes a sweep of sampling rates, e.g., “0.7-0.9”
means “0.7,0.8,0.9”.

Node Number | 10-20  20-30  30-40  40-50  50-60  60-70 >70
Sampling Rate | 0.8,09 0.7-0.9 0.6-09 0.6-09 0.5-09 0509 04-0.9

Box-based Content
wall:[-0.66, 0.853, -0.329], floor:[0.291, 0.454, -1.533], ceiling:[0.3, 0.955, 0.9], wall:[0.997, 0.577, -0.353], light:[0.213, 0.59,
0.905], wall:[0.971, 3.168, -0.351], window:[0.943, 3.385, 0.074], board:[-0.649, -0.117, -1.183], desk:[0.696, 2.259, -0.987],
box:[-0.395, 0.64, -1.33], bowl:[0.631, 3.071, -0.803], box:[0.797, 3.121, -0.91]
4 )
Scene-Graph-based Content
{'wall-1": {'relations": ['attached to floor-2], ‘attribute": {'shape’: 'flat', 'lexical’: ‘architectural’, 'color": ‘white'}}, 'floor-2": {'relations":
[, ‘attribute": {'material’: 'plastic', 'shape": 'flat', 'lexical': 'inside', ‘color": 'blue'}}, ‘ceiling-3": {'relations': ['attached to wall-1',
‘attached to wall-4', ‘attached to wall-7'], 'attribute": {'shape’: 'flat', 'lexical': ‘overhead', 'color": ‘white'}}, ‘wall-4": {'relations':
['attached to floor-21, ‘attribute’: {'shape': 'flat', ‘lexical’: 'architectural’, ‘color': 'white'}}, 'light-6": {'relations': ['hanging on ceiling-
31, 'attribute': {'state": 'off'}}, 'wall-7": {'relations": ['attached to floor-21, 'attribute': {'shape': ‘flat’, 'lexical': ‘architectural’, ‘color":
‘white'}}, 'window-8'": {'relations": ['attached to wall-7', 'behind desk-107, ‘attribute": {material’: 'glass’, 'color": ‘dark’, 'shape':
‘rectangular', 'state': ‘closed'}}, 'board-9": {'relations": ['lying on floor-2', 'to the left of desk-10', ‘close by box-1117, ‘attribute':
{'shape": flat’, 'lexical’: ‘flat', 'color': 'borown'}}, 'desk-10": {'relations': ['standing on floor-2', 'in front of window-8', 'to the right of
board-9', 'to the right of box-11", ‘close by box-11'], ‘attribute": {'other": 'rigid’, 'size": 'narrow'}}, 'box-11": {'relations": ['standing on
floor-2', ‘close by board-9', ‘close by desk-10', 'to the left of desk-10', 'in front of box-15', 'to the left of box-15'], ‘attribute":
{'state’: ‘written on', 'shape': 'rectangular', 'lexical': 'rectangular’, ‘other": 'rigid', 'size": 'tall’}}, 'bowl-14": {'relations": [], ‘attribute":
{}}, 'box-15": {'relations'": ['standing on desk-10', 'to the right of box-11', 'behind box-11"], ‘attribute": {'color": 'dark’, 'shape':
‘rectangular’, 'lexical’: 'rectangular’, 'size": 'small'}}}

Figure A.8: Comparison of the content between box-based and scene-graph-based prompting.

prompt seeds to further enhance the diversity of prompted data.

To verify whether the subgraph sampling strategy can maintain the consistency and diversity of scene captions, we generate
scene captions for the same scene using both the full graph and subgraph. We then employ GPT-4 (OpenAl, 2023) to
evaluate the similarities and differences between the two captions. The results in Tab. A.5 indicate that our subgraph
sampling strategy can maintain both consistency and diversity.

B.8. Scene-graph-based Prompting vs. Box-based Prompting

In this section, we provide a comparative analysis of scene-graph-based prompting and box-based prompting (Hong et al.,
2023). We refer the readers to Figure 6 in 3D-LLM (Hong et al., 2023) for details of the box-based prompting method.
Fig. A.8 shows the contents of two methods. To present a fair comparison between the two methods, we prompt with 1)
demonstrations that have similar content under the same scene (see Fig. A.9) and 2) identical new scene queries. Since
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Table A.5: The comparative analysis of full graph prompting and subgraph prompting.

Settings
Full Graph

Generated Scene Captions

In this scene, there is a colorful and flat white wall. A small TV stand is
positioned in front of a low upholstered couch, to the left of a brown lamp, and
to the right of a wooden table. The couch is covered with a pink padded square
pillow and a patterned blanket. A light hangs on the wall and another light is
supported by the table. There is a rectangular glass window attached to the
wall, behind which is a yellow curtain. The room has a comfortable and cozy
atmosphere, suitable for relaxation and entertainment.

In this scene, there is a colorful white wall attached to a brown wooden floor. The
couch is upholstered and low in size, located to the right of a small TV stand and
a table. A red blanket covers the couch, and there are patterned, padded square
pillows on the couch. A black glass window is attached to the wall, and there are
artificial lamps standing on the floor and close to the couch. The lamps are also
near a table and to the right of the TV stand. The scene suggests a comfortable
living room with a cozy couch, pillows, and a blanket, suitable for relaxation and
entertainment.

Sampling Rate 0.6

GPT-4 Evalutaion | Similarities: 1. Both scenes describe a living room setting, emphasizing comfort
and coziness suitable for relaxation and entertainment. 2. Both rooms have a
white wall. 3. Each scene features a couch and a TV stand. 4. Both scenes
describe a blanket and a padded square pillow on the couch.

Differences: 1. The first scene has a brown wooden floor, while the floor is not
mentioned in the second scene. 2. The first scene has a red blanket on the couch;
the second has a patterned blanket but doesn’t specify the color. 3. The first
scene describes the lamps as “standing on the floor”, while the second mentions
one light hanging on the wall and another supported by the table. 4. The second
scene includes a yellow curtain behind the window, which the first scene does
not mention.

Summary: Overall, both summaries provide a similar thematic view of a com-
fortable living room but differ in the specific arrangement and color details of
the items within the room.

\/

é Box-based Prompting
Demonstration #1:

Human: Do you think the room is suitable for
me to read a book?

Robot: Let me check the arrangement of the
room. There is a light in the room, which can

Scene-Graph-based Prompting

Demonstration #1:

Dialogue Context: high level task: verify if the furniture arrangement is suitable for
reading. low level task: check specific object.

Human: Do you think the room is suitable for me to read a book?
Thought:light-6,desk-10

provide adequate lighting. There is a desk for
you to put your book. However, there is no
chair of sofa in the room. It means you
cannot seat down and rest in the room.
Human: Thanks a lot. Can you describe the
position of the desk?

Robot: Sure! The desk is in front of the
window.

Human: Thanks a lot.

Robot: You are welcome!

Demonstration #2:

Human: Can you help me print a document?
Robot: Sure! There is a printer in the room.
You can use it for printing.

Human: Ok. | also need a laptop to download
the document.

Robot: Let me check the arrangement of the room. There is a light in the room, which
can provide adequate lighting. There is a desk for you to put your book. However, there
is no chair of sofa in the room. It means you cannot seat down and rest in the room.
Human: Thanks a lot. Can you describe the position of the desk?

Thought: desk-10

Robot: Sure! The desk is in front of the window.

Human: Thanks a lot.

Thought: no specific object

Robot: You are welcome!

Demonstration #2:

Dialogue Context: high level tasks: find proper objects to print a document.

Human: Can you help me print a document?

Thought: printer-30

Robot: Sure! There is a printer in the room. You can use it for printing.

Human: Ok. | also need a laptop to download the document.

Thought: laptop-28

Robot: Ok. | find a laptop on the table. Do Robot: Ok. | find a laptop on the table. Do you need any other help?
you need any other help? Human: Thanks a lot.
Human: Thanks a lot. Thought: no specific object

\Robot: You are welcome! Y, \Robot: You are welcome!

Figure A.9: The demonstrations for prompting, which are designed to be similar for a fair comparison.

3D-LLM does not elaborate on attribute-related prompts, we mainly compare the spatial relations in the responses. As
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e N\ ( )
Box-based Prompting Scene-Graph-based Prompting

Response: Response:

Human: Can you help me find a towel? Dialogue Context: high level task: describe the objects in the bathroom.

Robot: Of course! | found three towels in the room. || Human: Can you describe the objects in the bathroom?

One is near the bathtub, one is near the sink, and || Thought: bathtub-8, sink-12, toilet-15, mirror-4

another one is near the stool. Which one would you Robot: Sure! In the bathroom, there is a bathtub made of ceramic, with a shiny

like to use? texture and a white color. There is also a sink with an oval shape and a shiny
Human: The one near the sink, please. texture. The toilet is white and seat down. There is a mirror attached to the wall,
Robot: Alright. | will fetch the towel near the sink for || which is polished. Is there anything specific you want to know about these objects?
you. Is there anything else | can assist you with? Human: Is there a towel in the bathroom?

Human: No, thank you. That's all. Thought: towel-10

Robot: You're welcome! If you need any further Robot: Yes, there is a folded together rectangular towel in the bathroom. It is

located to the right of the door.

¥assistance, feel free to ask.

J \\ J

Figure A.10: The responses of two prompting methods. Descriptions highlighted in red show our method leads to more flexible and
reliable spatial relations.

shown in Fig. A.10, we highlight some spatial relations in red. The comparison shows that our method provides more
diverse and reliable spatial relations, which are important for 3D scene understanding.

B.9. Additional Comparision Regarding Dataset Quality

In addition to assessing the factual accuracy of responses compared to 3D-LLM, we also compared the grammatical
correctness of the responses with ScanScribe(Zhu et al., 2023c), a template-based synthetic dataset that focuses on 3D
object caption. We observed that their dataset exhibited some grammar errors, whereas our dataset did not manifest such
issues. We provide some data examples in Tab. A.6 and Tab. A.7. We highlighted the grammar errors present in ScanScribe
dataset in red. Through comparison, it is evident that our sentences exhibit accurate and natural syntax, and also surpasses
ScanScribe in the diversity and complexity of object descriptions.

Table A.6: Object captions in the 3Rscan scene 8f0f144b-55de-28ce-8053-2828b87a0cc9.

object label-id | method response id | caption

microwave-8 ours 1 The microwave is black in color and is standing on the table. It is located
behind and to the left of the toaster.

2 The microwave is black in color. It is standing on a table and is positioned
behind and to the left of a toaster.

ScanScribe | 1 This is a black microwave. It is standing on the table. It is close by the
toaster. A black microwave is in front of the this microwave.

2 This is a black microwave. It is behind the toaster. It is standing on the
table. A black microwave is in front of the this microwave.

B.10. Dataset Statistics

We provide statistics on the instruction-tuning datasets. We visualize the distribution of the question types in 3RQA
(Fig. A.11) and 3RDialog (Fig. A.12). The pie chart’s inner circle represents the first word of the questions, while the outer
circle accounts for the second or third word in the corresponding questions. The results show that the questions cover the
attributes and spatial relations of the objects, as well as high-level topics such as room types and functionalities.

We also provide statistics of the root noun-verb pairs for instructions and responses in 3RDialog and 3RPlan, as shown in
Fig. A.13-A.16.

C. Data Examples

Please refer to Tabs. A.25-A.27 for examples of our dataset.

22



An Emb

odied Generalist Agent in 3D World

Table A.7: Object captions in the 3Rscan scene Ocac753c-8d6f-2d13-8e27-e0664{c33bbI.

object label-id | method response id | caption

counter-4 ours 1 The counter is standing on a wooden floor. It is close to 4 stools and an
armchair. The stools are simple and wide in size, while the armchair is
narrow in size. The floor is wooden and flat, and it is clean.

2 The counter is standing on the wooden floor. It is close to 4 stools and
an armchair. The floor is made of wooden material and is flat in shape. It
is also clean. The armchair is narrow in size while the stools are simple
in design. Three of the stools are wide in size.

ScanScribe | 1 This is a counter. It is close by the armchair. It is close by the stool.
A counter is close by the this counter. A counter is close by the this
counter.
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Figure A.11: Question types: 3RQA.

D. Model Details

D.1. Prompts

Figure A.12: Question types: 3RDialog.

The first portion of prompts sent into the LLM is a system message. It consists of two parts: a role prompt and a situation
prompt. The role prompt is the same for all tasks:

You are an Al visual assistant situated in a 3D scene. You can perceive (1) an ego-view image (accessible when
necessary) and (2) the objects (including yourself) in the scene (always accessible). You should properly respond to
the USER’s instructions according to the given visual information.

The situation prompt begins with a common sentence:

.

You are at a selected location in the 3D scene.

.

For SQA3D (Ma et al., 2023), the situation prompt is further extended with the situation description in the dataset. The
situation prompt is only used jointly with the embodiment token to support tasks that require information about the
embodiment. Details can be found in Appendix D.2.1.

Next are the visual tokens, including 2D image tokens and object-centric 3D tokens. Each token sequence is interleaved
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Figure A.14: Noun-verb pairs: 3RPlan instruction.

Figure A.15: Noun-verb pairs: 3RDialog response. Figure A.16: Noun-verb pairs: 3RPlan response.

within text tokens and starts with a text prefix.

Ego-view image: { IMAGE_TOKENS}
Objects (including you) in the scene: {OBJECT_TOKENS }

The last portion of prompts is a task-specific instruction. For object-level caption and object-in-the-scene caption, we
randomly chose one sentence from 151 sentences to be the instruction. Some examples can be found in Tab. A.8. For
scene-level caption, we randomly choose one from 183 instructions. Examples can be found in Tab. A.9. For 3D question
answering task, we simply use the question as the instruction. The dialog history is used as the instruction for 3D dialogue
to provide continuity across multiple rounds of interactions. A planning instruction pool consisting of 202 instructions is
introduced for scene-aware task planning and we randomly choose one from it as done in the caption tasks. Examples
from the pool can be found in Tab. A.10. The chosen instruction is further followed by an instruction that specifies the task,
e.g., set up a home office.
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Table A.8: Examples from our object-level caption instruction set.

"Produce a description for the object at the chosen spot in the 3D scene.",

"How would you depict the object located at the selected point in the 3D environment?",
"Formulate a description of the item at the picked position within the 3D scene.",
"How would you describe the entity at the designated location in the 3D backdrop?",
"Can you detail the object situated at the selected point in the 3D setting?",

"Compose a narrative for the object at the chosen locale within the 3D environment.",
"What does the object at the specified position in the 3D visualization look like?",
"Provide a description for the item located at the marked site in the 3D world.",

"How would you illustrate the object placed at the selected spot in the 3D landscape?",
"Craft a depiction of the object at the pinpointed location within the 3D territory.",
"What kind of object is illustrated at the identified site in the 3D tableau?",

"Develop a description of the object at the specified position in the 3D backdrop.",
"What is the entity’s detail at the highlighted site in the 3D view?",

"Write up a description of the entity at the selected spot in the 3D realm.",

"What does the object look like at the pinpointed location in the 3D space?",

"Detail the entity located at the chosen position within the 3D scene.",

"Can you explain the essence of the object at the selected spot in the 3D zone?",

With past action tokens {PAST_ACTIONS} appended at the end, the instruction for embodied navigation is as follows,
where { GOAL} stands for the goal specified by the target object name:

The task is navigation. Your goal is to find {GOAL} by moving around in the scene. Past actions:
{PAST_ACTIONS]).

The instruction for robotic manipulation is similar to the one in embodied navigation. Here { GOAL} is the task description
in CLIPort:

The task is manipulation. Your goal is to { GOAL}. Past actions: {PAST_ACTIONS}.

D.2. Feature Encoding

We have several modules to encode the multi-modal features.

* Object-centric 3D token embedding. The encoder for 3D object-centric point clouds is a PointNet++ (Qi et al., 2017)
pre-trained on ScanNet (Dai et al., 2017) with object-classfication task. We sample 1024 points for every object as
in (Chen et al., 2022). The architecture parameters all remain the same with (Chen et al., 2022). We freeze the PointNet++
for empirically better results.

 Spatial Transformer (Chen et al., 2022). Spatial Transformer is a modified transformer architecture that explicitly
encodes spatial relations between object pairs. Specifically, consider the vanilla self-attention (Vaswani et al., 2017)
mechanism which takes as input a feature matrix X € RN*4 where N stands for the number of tokens and d is the
feature dimension. Vanilla self-attention first compute Q = XWg, K = XWg,V = XWy, from X using learnable
projection matrices Wg, Wi, Wy € R4 where dj, stands for the output feature dimension. Then the attention weight
matrix is computed by (wf;)nxn = Q2 = s0 ftmax(%) and finally used for re-weighting Q°V. The intuition of
Spatial Transformer is that we can re-scale the elements wij in the weight matrix 2°.
In the object-centric reasoning setting, the input feature matrix is O € R *?, Consider an object pair (O;, O;) with their
geometric centers ¢;, ¢;. Spatial Transformer (Chen et al., 2022) computes the Euclidean distance d;; = ||¢; — ¢;||2 and

the horizontal and vertical angles §},, 0, of the line connecting c; and ¢;. The spatial feature between the two objects
(04, 0;) is a 5-dimensional vector f;; = [d;;,sin (6),cos (01),sin (6,), cos (6,)]. To combine this feature with objects,
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Table A.9: Examples from our scene-level caption instruction set.

"Describe this scene.",

"Generate a description of this scene.",
"Generate a caption of this scene.",

"Can you describe the scene?",

"Can you generate a description of the scene?",
"Can you generate a caption of the scene?",
"Summarize this scene.",

"How would you describe the 3D scene?",
"How would you summarize this scene?",

"How would you interpret this 3D scene?",
"Offer a summary of the 3D scene.",

"Can you describe this scene in detail?",

"I’m interested in this scene, can you explain?",
"What is this scene made of?",

"Could you provide more info about this scene?",

"Provide an outline of this 3D scene’s characteristics.",

"Convey a summary of the 3D structure of this scene.",

Table A.10: Examples from our planning instruction pool.

"Plan for the task",
"Can you come up with a plan for this task",

"Draft a plan for completing this task",
"Detail a strategy for the task",
"What’s the best plan for this task",
"Draw out a procedure for the task",
"Lay out the steps for this task",
"Could you devise a plan for the task",
"Show me a plan for this task",

"I need a plan for the task",

"Sketch a plan for the task at hand",
"Set up a plan for this",

"Recommend a plan for this task",
"Offer a strategy for this task",
"Design a blueprint for the task",
"Outline the approach for this task",

"How can we do this task, provide a step-by-step plan",

the spatial attention computes wfj = g;fi; where g; = WST 0; 1s a 5-dimensional vector. The spatial attention further

reweights the original self-attention weight matrix as

o (wij)exp(wi;)

wij

= N S o ’
21=1 0(wi)exp(wg)

Readers are referred to (Chen et al., 2022) for more details. In summary, Spatial Transformer explicitly computes pairwise
spatial relations and fuses them with vanilla self-attention to provide better spatial reasoning ability. We use a three-layer
Spatial Transformer with 8 heads to process the object-centric features produced by PointNet++ and output object tokens
for LLM. For other settings, We follow all the default hyperparameters in (Chen et al., 2022).

* 2D token embedding. We use OpenCLIP ConvNext-base model (Liu et al., 2022) pre-trained on LAION2B (Schuhmann
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et al., 2022) to process the egocentric 2D image.

* CLIP semantic guidance. To inject more semantics into visual tokens, we use the text encoder from CLIP (Radford
et al., 2021) to process the instruction tokens to obtain a global semantics feature. Next, we update the visual tokens via
element-wise product between the CLIP semantics feature and each image & object token embedding.

D.2.1. EMBODIMENT ENCODING

In addition to the egocentric 2D input, we introduce an embodiment token to help LEO reason in an embodiment-aware
fashion. We find it useful to use it together with the situation prompt and 2D egocentric input. Specifically, an embodiment
token e is introduced in embodied navigation, embodied reasoning, and object-in-the-scene caption tasks. Specifically, e
is a learnable embedding that will be inserted into the 3D object list.

So what does embodiment information mean in these tasks? In embodied navigation, it means the agent’s position and
orientation in the scene, which can be derived from a GPS and a compass sensor. The orientation of the agent is further
represented by a rotation which is Fourier-embedded and mapped to a feature vector r by a linear layer. It is the same in
embodied reasoning task. In the object-in-the-scene caption task, we assume the agent is situated at the location of the
object that is being referred to. Therefore, embodiment information also means the location of the referred object. We obtain
this location by randomly choosing a spot inside the referred object bounding box. To sum up, we could simply treat the
embodiment token as a special self object, where its object embedding is learnable, and its location/orientation corresponds

to the actual or assumed “agent”.

After inserting the embodiment token, we obtain a new 3D object token list: e, s_g]l)), ngD)’ e sgg), where sgg,i €
{1,2,..., N} are 3D object token embeddings produced by PointNet++, along with location specified for each object
(including the self-object). We can concatenate them together to get a feature matrix O € R+ >4 and send them to the
Spatial Transformer to explicitly fuse the spatial information of all the 3D objects and the self-object.

D.3. Action Tokenization

To empower LEO to exert control over an embodiment or a robot, we encode all actions within the context of Object
Navigation (Ramrakhya et al., 2022) and CLIPort (Shridhar et al., 2021) tasks using the least frequently employed language
tokens. Specifically, for the Object Navigation task, we allocate 4 tokens to represent actions of move forward, turn right,
turn left, and stop. For the CLIPort task, we use a total of 516 tokens to discretize action poses, with 320 tokens dedicated to
the x-axis pose bins, 160 tokens for the y-axis pose bins, and 36 tokens for the z-rotation bins.

D.4. LLM Hyperparameters

We set the maximum output length of our Vicuna-7B to be 256. The maximum context length is also set to 256 and if the
length of the input is greater than 256, we truncate it to 256 by deleting tokens from the left (i.e., only the rightmost 256 tokens
are preserved). We set rank and « in LoRA (Hu et al., 2022) to be 16 and the dropout rate to be 0. LoRA is implemented for
all the projection matrices in the LLM, i.e., (W, W, W,, W,) in attention modules and (Wyate, Wup, Waown) in MLPs.

The hyperparameters for inference are listed in Tab. A.11.

E. Alignment Setup
The hyperparameters for 3D VL alignment are presented in Tab. A.12.

F. Instruction-tuning Setup

The hyperparameters for 3D VLA instruction tuning are presented in Tab. A.13.
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G. Ablation Details
G.1. Object-centric Mask

Table A.11: Hyperparameters for LEO inference.

Hyperparameters Value
Number of beams 5
Maximum output length 256
Minimum output length 1

Top p 0.9
Repetition penalty 3.0
Length penalty 1.0
Temperature 1.0

Table A.12: Hyperparameters for the alignment stage.

Hyperparameter Value
Optimizer AdamW
Weight decay 0.05

Betas [0.9, 0.999]
Learning rate 3x 107"
Warmup steps 400
Number of workers 4

Parallel strategy DDP

Type of GPUs NVIDIA A100
Number of GPUs 4
Accumulate gradient batches 5

Batch size per GPU (total) 4 (80)
Training precision bfloat16
Gradient norm 5.0

Epochs 5

Table A.13: Hyperparameters for the instruction-tuning stage.

Hyperparameter Value
Optimizer AdamW
Weight decay 0.05

Betas [0.9, 0.999]
Learning rate 3x107°
Warmup steps 400
Number of workers 4

Parallel strategy DDP

Type of GPUs NVIDIA A100
Number of GPUs 4
Accumulate gradient batches 5

Batch size per GPU (total) 4 (80)
Training precision bfloat16
Gradient norm 5.0

Epochs 10

Ground truth vs. object proposals. As we adopt an object-centric 3D representation, the object-centric masks are
necessary to segment the scene point cloud. For scenes that lack annotations of object-centric masks, we can utilize
off-the-shelf detection or segmentation models to generate object proposals and thus obtain the masks. We compare the
performances of LEO (w/o Act) between using ground-truth masks and Mask3D (Schult et al., 2022) proposals. The results
in Tab. A.14 indicate that using Mask3D proposals leads to a moderate performance drop on Scan2Cap (mainly due to the
IoU@0.5 metrics) and comparable performances on QA tasks.
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Table A.14: Quantitative comparison between LEO (w/0 Act) using ground-truth masks and Mask3D proposals. Metrics follow Tab. 4.

Scan2Cap (val) ScanQA (val) SQA3D (test)
C B4 M R Sim C B4 M R EM@I EM@I1
w/o Act (Mask3D) 724 382 279 581 553 1014 132 20.0 492 24.5(47.6) 50.0 (52.4)
w/o Act (GT) 874 445 308 657 654 103.0 14.6 20.1 49.7 24.3(48.5) 50.0 (52.5)

Table A.15: Quantitative results of LEO equipped with LLMs at different scales. Metrics follow Tab. 7.

ScanNet 3RScan
Scan2Cap ScanQA SQA3D 3RQA  3RDialog 3RPlan

w/o Act (OPT-1.3B) 64.6 20.3 (44.2) 45.5 (47.6) 50.0 (54.5)  71.1 78.3
w/o Act (Vicuna-7B) 654 243 (485) 50.0 (52.5) 51.9(57.4) 173.3 81.1
w/o Act (Vicuna-13B) 65.2 23.4(48.9) 49.7 (52.3) 56.2(60.4)  72.5 80.5

G.2. Model Ablation

LLM. Following the setting of LEO (w/o Act), we ablate the default LLM (Vicuna-7B) with OPT-1.3B (Zhang et al.,
2022) and Vicuna-13B (Chiang et al., 2023), respectively. We report the evaluation results on ScanNet and 3RScan tasks in
Tab. A.15. The results show a significant gap between OPT-1.3B and Vicuna-7B and comparable performances between
Vicuna-7B and Vicuna-13B. This indicates the notable improvements when scaling from smaller LLM to 7B scale and the
potential saturation if we continue to scale up, resembling the finding in Sec. 4.5.

Point cloud backbone. We have tried substituting PointNet++ (Qi et al., 2017) with Point-BERT (Yu et al., 2022) as the
point cloud backbone. Specifically, we utilize the Point-BERT checkpoint from PointLLM (Xu et al., 2023), which has
adapted Point-BERT to 6-channel (XYZRGB) input and learned a language-aligned representation for 3D objects. We have
not observed notable difference between the performances of using Point-BERT and PointNet++ so we omit the results here.

G.3. Dialogue and Planning Data

To evaluate w/o Dialg, we design an evaluation set with three types of questions: 1) Answerable: general questions that can
be answered based on the given 3D scenes; 2) Unanswerable: questions that cannot be answered given the 3D scenes due
to a lack of information, e.g., “Tell me about the elephant in the room”; 3) NLP: questions that solely examine the language
functionality of LEO in term of factual knowledge, reasoning, and text coherence. We collect 30 representative questions
for each subset and generate LEO’s responses for each question. We then ask humans to choose their preferred responses
between w/o Dialg and w/ Dialg Based on the human preferences, we evaluate the two models with TrueSkill (Graepel
et al., 2007), which is an algorithm that quantifies players’ rating scores by Bayesian inference. The scores are estimated by
Gaussian distribution and expressed as p + o.

G .4. Data Balancing

To investigate the hallucination problem, we collect 150 questions querying object existence on 3RScan and ScanNet
respectively. We split three subsets according to the category of queried object. The queried object can exist in the given
scene (Yes), exist in other scenes instead of the given scene (No-1), or not exist in all the scenes (No-2). Each subset
comprises 50 questions. We merge No-1 and No-2 when reporting the exact-match accuracy, as shown in Tab. 9.

H. Evaluation Details
H.1. 3D Question Answering

Rationality of QA evaluation protocol. We argue that exact match (EM), as a conventional metric for 3D QA, is
unsuitable for evaluating the open-ended answer generated by LLMs. For example, given the question “On what side of the
towel is a bathroom curtain?” with ground-truth answer “left side of towel”, it is never wrong to answer “left”. However,
this will be deemed incorrect if we adopt the strict exact match protocol. Such a misjudgment is quite likely to occur when
evaluating the answers from LLMs. By contrast, the classifier heads for QA (e.g., MCAN) are less affected because they
collect all possible answers in advance to formulate the QA as a close-set classification problem. Hence, we refine the strict
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Table A.16: Examples from ScanQA validation set manifest the rationality of our refined exact match protocol.

Question Ground-truth answer Predicted answer Strict EM  Refined EM
‘What color is the chair in the kitchen? dark brown brown X V(case 2)
‘What is under the long kitchen counter? kitchen cabinets brown rectangular kitchen cabinets X v (case 2)
What type of refrigerator is on the right of a kitchen counter? stainless steel refrigerator  stainless steel X v (case 2)
Where is the beige wooden desk placed? up against wall against wall X v (case 2)
What color does the sofa look? it looks black black X v (case 2)
Where is the black office chair located? in front of desks in front of desk X V(case 2)
What is in the corner by windows? book shelf bookshelf X v (case 2)
Where is the chair pulled into? table under table X v (case 3)
How many chairs are to the left of the table? 4 4 chairs X v (case 3)
‘What objects are sitting on the black couch? pillow pillows X v (case 3)
Where are the two different size tables located in room? in center in center of room X v (case 3)
Where is the laptop located? desk on desk X v (case 3)
Where is the soap dispenser mounted above sink on wall above sink X v (case 3)

exact match protocol as follows.

nwn

code for QA protocols

3 pred: str

gts: List([str]

nmwn

def strict_em(pred, gts):
for gt in gts:
if pred == gt:
# case 1
return True

def refined_em(pred, gts):
for gt in gts:
if pred == gt:
# case 1
return True
elif 7’ .join(pred.split()) in '’ .join(gt.split()):
# case 2
return True
elif 7’ .join(gt.split()) in ’’.Jjoin(pred.split()):
# case 3
return True
return False

In a nutshell, we squeeze the pred and gt, and then check whether one is a subset of the other. To justify our refined
exact match protocol, in Tab. A.16 we provide some representative examples in the ScanQA validation set. Despite the
improvements, we speculate such a simple refinement is still insufficient for a sound evaluation metric considering the
flexibility of human language.

H.2. Embodied Navigation

To construct our training set, we adopt all 57 scenes in the MP3D Ob jNav training split (Savva et al., 2019; Ramrakhya
et al., 2022) and generate ~60K shortest-path navigation episodes. The evaluation is conducted on the original validation
split of the MP3D Ob jNav task and the newly introduced HM3D Ob jNav task (Ramakrishnan et al., 2021).

In contrast to most ObjNav agents that utilize recurrence through either RNN (Ramrakhya et al., 2022) or DT-style
Transformer (Suglia et al., 2021), LEO only employs a simplistic feed-forward policy, i.e., the Transformer in LEO only
takes in the instruction, current state (2D and 3D observation), and past 4 actions, and predicts the next action, similar to
RT-2 (Brohan et al., 2023). Therefore, the only information relayed from the past is past actions. The absence of recurrence
in LEO’s acting policy is indeed the result of a trade-off between better performances and training efficiency. We will
commit to exploring the possibility of looping in more sophisticated policy architectures (e.g., recurrence) in future work.
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Table A.17: Quantitative comparison between LEO pretrained on the generated data before/after refinement. Metrics follow Tab. 4.

Scan2Cap (val) ScanQA (val) SQA3D (test)
C B-4 M R Sim C B-4 M R EM@1 EM@1
Before refinement 84.1 45.8 309 66.1 653 994 126 194 48.6 24.5(49.1) 48.2 (50.5)

After refinement  87.1 452 31.1 66.1 65.7 1057 149 20.5 50.7 24.7(49.8) 52.4(55.0)

Table A.18: Quantitative comparison between LEO trained on the LL3DA data and our data. Metrics follow Tab. 4.

Scan2Cap (val) ScanQA (val)
C B4 M R Sim C B4 M R EM@1

LL3DA data 739 435 302 650 634 997 148 197 478 229 (464)
Our data 864 444 309 658 65.6 1049 138 204 503 24.5(49.2)

Table A.19: Quantitative comparison between LL3DA and LEO when both trained on LL3DA data. Metrics follow Tab. 4.

Scan2Cap (val) Nr3D (val) ScanQA (val)
C B-4 M R C B-4 M R C B-4 M R

LL3DA 63.0 360 257 547 239 134 223 458 757 133 154 37.0
LEO 649 372 274 575 2211 109 229 463 992 149 194 473

I. Additional Results
I.1. Impact of Data Refinement

Settings. We investigate the impact of data refinement by comparing the downstream performances between pretraining
on the generated data before/after refinement. Specifically, since our generated data (where the refinement occurs) pertains
to 3RScan scenes, we first pretrain the LEO after the alignment stage on a mix of 3RScan datasets, and then train on a mix
of ScanNet datasets (Scan2Cap, ScanQA, and SQA), where we report the quantitative results as downstream performances.

The results in Tab. A.17 demonstrate that data refinement elicits consistent improvements. In particular, data refinement
primarily benefits reasoning (QA) tasks, probably because the refinement operation mainly concerns QA and dialogue data.

I.2. Data Comparison

Settings. We collect the training data of LL3DA (Chen et al., 2024) to train LEO and compare the quantitative results
with LEO trained with our original data to showcase the impact of training data. We report the performances on Scan2Cap
and ScanQA, where their data overlaps ours.

The results in Tab. A.18 exhibit a consistent performance gap between training on LL3DA data and our original data,
underscoring the advantage of our collected training data.

L.3. Model Comparison

Settings. LEO adopts an object-centric 3D representation to encode 3D scenes, which is a novel approach compared with
recent works. For example, 3D-LLM (Hong et al., 2023) leverages 2D foundation models to obtain dense semantic features
and lift them to 3D space, and LL3DA (Chen et al., 2024) adopts scene-level encoding. They both use learnable queries to
extract 3D features. Here we investigate the influence of model design with the same training data. For a fair comparison,
we use Mask3D (Schult et al., 2022) object proposals instead of ground-truth masks for the evaluation results of LEO.

LL3DA vs. LEO. We train LEO on the LL3DA training data and compare the performances with LL3DA generalist
results (without task-specific fine-tuning). From the results in Tab. A.19, we highlight two takeaways: 1) with the same
training data, LEO outperforms LL3DA on most metrics; 2) the gap between LL3DA and LEO is significant on ScanQA,
which indicates a major advantage of object-centric 3D representation lies in handling the reasoning task.

3D-LLM vs. LEO. As LL3DA collects a subset (ScanNet part) of 3D-LLM training data, we leverage this subset to
pretrain LEO and compare the downstream performances with 3D-LLM. In contrast to the task-specific fine-tuning results
of 3D-LLM, we report LEO’s evaluation results after instruction tuning without task-specific fine-tuning. The results in
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Table A.20: Quantitative comparison between 3D-LLM and LEO when both trained on 3D-LLM data. Metrics follow Tab. 4.

ScanQA (val) SQA3D (test)
C B4 M R EM@I1 EM@1
3D-LLM 745 129 15.1 375 21.2 49.8
LEO 974 14.6 19.1 46.8 23.2(454) 50.6 (52.9)

Table A.21: Results on object navigation with OOD objects and human demonstrations. Note that the baseline Habitat-web is unable
to generalize to MP3D-unseen as it uses categorical embedding rather than natural language to represent object goals.

MP3D-seen MP3D-unseen
Success(1) SPL(T) Success(1) SPL(T)

Habitat-web (shortest) 4.4 2.2 - -
Habitat-web (70k demo) 354 10.2 - -
LEO (shortest, w/o 2D) 7.8 4.6 - -
LEO (shortest, w/o 3D) 8.6 6.8 - -
LEO (shortest) 23.1 15.2 11.1 9.6
LEO (70k demo) 7.1 5.3 8.9 8.6

Tab. A.20 show that LEO consistently outperforms 3D-LLM when adopting the same training data. Notably, the magnitude
of this subset is much smaller than their original training data, which further underscores the efficiency of our model.

L4. Embodied Acting

Quantitative results of ObjNav. We provide additional results of LEO 1) generalizing to unseen objects on MP3D
(below is a list of the objects used during training (seen) and for OOD evaluation (unseen)), 2) learning with 70K human
demonstrations provided by Habitat-web (Ramrakhya et al., 2022) instead of shortest path, and 3) learning without one
modality (full vs. w/o 3D vs. w/o 2D). Evaluation results are shown in Tab. A.21. Note that the baseline Habitat-web is
unable to generalize to novel objects as it uses categorical embedding rather than natural language to represent object goals.

#0Objects (seen)

“gym_equipment”, “tv_monitor”, “picture”, “counter”, “chair”, “cabinet”,
“table”, “stool”, “plant”, “towel”, “sofa”, “cushion”, “sink”, “fireplace”,
“toilet”, “seating”, “chest_of_drawers”, “bed”, “shower”, “bathtub”,
“clothes”

#Objects (unseen)
“shelf”, “pillow”, “lamp”, “box”, “desk”, “refrigerator”, “wvase”, “armchair”

The results show that LEO can generalize to novel objects. On the other hand, human demonstrations include more
explorations, compared with shortest-path data. Therefore, it will be much harder for agents without a recurrent module
(e.g., LEO) to learn from human demonstrations (see Appendix H.2), leading to significantly weaker performances. Finally,
more modalities (2D + 3D) are indeed crucial to the success of mastering object navigation skills.

Qualitative results. We provide more qualitative results of robotic manipulation and embodied navigation in the supple-
mentary video.

L.5. Scan2Cap

We provide additional qualitative results on Scan2Cap validation set in Tab. A.22. The results show that LEO can correctly
refer to the queried object and provide accurate descriptions, including spatial relationships with other objects. However,
LEO’s responses are confined to simple formats that lack diversity. How to unlock more flexible responses while maintaining
accuracy can be a direction for future research.
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1.6. ScanQA
We provide additional qualitative results on ScanQA validation set in Tab. A.23 and categorize the responses into several

types:

* Wrong. The response is inaccurate and deemed wrong.

» Wrong but reasonable. The response is deemed wrong but is reasonable to some extent, probably due to ambiguities in the
scene. Consider the second case in Tab. A.23. There are many objects such as a coat rack, a coat, and a mini fridge-shaped
cabinet on the right side of the organizer. Though LEO’s response “mini fridge” does not match the ground truth “coat
rack”, it is consistent with the 3D scene layout.

» Wrong but accurate. The response is accurate according to the scene but is deemed wrong due to imperfect ground truth
annotations.

* Correct. The response is accurate and deemed correct.

* Correct and more accurate. The response is more accurate than the ground truth annotations.

L7. SQA3D

We provide additional qualitative results on SQA3D test set in Tab. A.24 and follow the aforementioned response types. The
embodied reasoning in SQA3D requires the understanding of not only the scene but also the situation of embodiment. In
Tab. A.24, answering “What am [ sitting at?” necessitates that LEO accurately identifies the objects at its current location.
And the response to “How many beds are in front of me?” indicates that LEO can reason based on the understanding of its
orientation.
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Table A.22: Additional qualitative results on Scan2Cap validation set.

Scene

Instruction

| Response

Ground Truth

Develop a descrip-
tion of the object
at the specified posi-
tion in the 3D back-
drop.

This is a black key-
board. It is in front
of two monitors.

The keyboard sits atop
the workstation desk. It
is located in front of the
left-side monitor.

Focus on the object
at the given 3D loca-
tion and describe it.

This is a white pil-
low. It is on the
couch.

It is a small pillow lo-
cated on the couch. You
can notice it directly on
your left when walking
through the door into the
room.

Provide a clearer de-
scription of the ob-
ject at that specific
3D spot.

This is a white cabi-
net. It is to the right
of a couch.

This is a white ottoman.
It is located to the right
of the black couch.

What does the ob-
ject at the specified
position in the 3D
visualization look
like?

There is a rectangu-
lar brown door. It is
next to a couch.

There is a door in the mid-
dle of the northern wall
next to a metal cabinet.
The door is shaped like a
brown rectangle and as a
dark yellow colored door-
knob.
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Table A.23: Additional qualitative results on ScanQA validation set.

Scene

Question

| Response

Ground Truth |

Response Type

What is placed
on the black
chair out of
the three chairs
present in the
room?

pillow

tan jacket, guitar
box like object

Wrong

What is next to | mini fridge coat rack Wrong but rea-
the organizer sonable
shelf?
Where is | toright of door | underneath televi- | Wrong but ac-
the dresser sion next to black | curate
located? guitar case and

green guitar case,

under tv set next to

guitar cases
What kind of | wooden desk wooden desk Correct
desk is the elec-
tric piano on?
How many | 2 2 Correct
monitor  sits
on top of the
desk?
What is on the | black computer | monitor / computer | Correct and
left side of the | monitor monitor more accurate

brown desk?
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Table A.24: Additional qualitative results on SQA3D test set.

Question

| Response

| Ground Truth

Response Type

What is the
only orange
object on my
left side?

backpack

jacket

Wrong

Is there any-
thing on the
desk?

yes

laptop

Wrong but ac-
curate

What type of
bed is the one
on the right?

loft bed

loft bed

Correct

What am I sit-
ting at?

desk

desk

Correct

How many
beds are in
front of me?

one

one

Correct
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Table A.25: Examples from our datasets. We provide the tasks, 2D images (optional), 3D point clouds, and instructions as the input of

LEO, as well as the expected responses of LEO.

Dataset & Task | 2D & 3D input

Instruction

Response

LEO-align
object captioning

USER: Ex-
plain the
object at the
pinpointed
location in
the 3D setting.
ASSISTANT:

a yellow metal cage with a
fence around it.

LEO-align
object referring

USER: Give
me a snapshot
of the object
at the chosen
3D location.
ASSISTANT:

find the office chair that is near
the copier

LEO-align
scene captioning

USER: Relay a
brief summary
of this scene’s
elements. AS-
SISTANT:

In this scene, there is a gray
flat picture hanging on the
wall, standing in front of a win-
dowsill. There is also a rectan-
gular white padded pillow ly-
ing on the bed, close to a big
rectangular white padded pil-
low. The room has a white ar-
chitectural wall and a flat over-
head ceiling. The bed is tidy
and white, located in front of a
narrow tall commode. The cur-
tains are hanging on the wall.
The room has a calm and com-
fortable atmosphere, suitable
for relaxation and sleep.
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Table A.26: Examples from our datasets. Continued.

LEO-instruct
3D captioning

USER: What does
the object at the
specified position in
the 3D visualization
look like? ASSIS-
TANT:

there is a door in the mid-
dle of the northern wall
next to a metal cabinet.
the door is shaped like a
brown rectangle and as a
dark yellow colored door-
knob.

LEO-instruct
3D QA

USER: What is in
the right corner of
room by curtains?
ASSISTANT:

brown cabinet with tv sit-
ting in it

LEO-instruct
3D dialogue

USER: I'm redec-
orating my living
room. Can you
give me some sug-
gestions on how to
arrange the furni-
ture?

ASSISTANT: Of
course! I'd be
happy to help. What
furniture do you
have in your living
room?

USER: I have a sofa,
a table, a chair, and
a couch table. AS-
SISTANT:

Great! Here’s a sug-
gestion: you can place
the sofa against the wall,
with the table in front
of it. The chair can be
placed to the right of the
table, and the couch table
can be placed to the right
of the chair. This arrange-
ment creates a cozy seat-
ing area.

LEO-instruct
task planning

USER: Develop a
plan for this: Ar-
range and embel-
lish the family room.
ASSISTANT:

1. Arrange and fluff the
cushions and pillows on
the armchair.

2.  Place decorations,
such as figurines or vases,
on the cabinet or shelf.

3. Place hygiene prod-
ucts, such as wipes or lo-
tions, on the commode.
4. Turn on the lights and
adjust their brightness if
needed.

5. Arrange diapers in a
designated storage area.
6. Place a blanket or pil-
low on the armchair for
added comfort.

7. Adjust the festoon or
other decorative elements
if desired.
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Table A.27: Examples from our datasets. Continued.

LEO-instruct

. Lo USER: The task is | <31996>
embodied navigation

navigation.  Your
goal is to find
counter by mov-
ing around in the
scene. Past actions:
<31999> <31999>
<31999> <31999>.
ASSISTANT:

LEO-instruct

. . . USER: The task is | <31748> <31644> <31511>
robotic manipulation

manipulation. Your | <31736> <31595> <31500>
goal is to put the
blue blocks in a
green bowl. Past
actions: <31991>
<31671> <31511>
<31991> <31671>
<31511> <31991>
<31671> <31511>
<31991> <31671>
<31511> <31991>
<31671> <31511>
<31991> <31671>
<31511> <31991>
<31671> <31511>
<31991> <31671>
<31511>. ASSIS-
TANT:
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