
A Supplementary Material463

A.1 Implementation Details464

Decay pruning rate with cosine annealing. In our subspace pruning/recovery process, we let the465

clients prune out αt percentage of parameters and recover the same amount of parameters to search466

for the subspace that fits their data. The parameter αt is decayed with the initial rate α0 with cosine467

annealing, which can be formalized as follows:468

αt = 0.5× α0 ×
(
1 + cos

(
t

Tend
π

))
(7)

where t is the number of communication round, and Tend is the round that the mask searching is469

ended (notice that αTend
= 0). In our implementation, we set Tend = T .470

ERK sparsity initialization. We use Erdős–Rényi Kernel (ERK) (Evci et al., 2020), an empirical471

sparsity distribution technique, to distribute sparsity to different layers of a model. Specifically, the472

active parameters of the convolutional layer initialized by ERK are proportional to 1n1−1+nl+wl+hl

nl−1∗nl∗wl∗hl ,473

where nl−1, nl w
l and hl respectively specify the number of input channels, output channels and474

kernel’s width and height in the l-th layer. For the linear layer, the number of active parameters scale475

with 1nl−1+nl

nl−1∗nl where nl−1 and nl are the number of neurons in the (l − 1)-th and l-th layer. ERK476

initialization, in essence, gives more sparsity to those layers with a larger number of parameters while477

pruning less on those small layers.478

Subspace pruning. In the mask searching process, we use parameter’s magnitude to guide the479

pruning of model parameters. We present the PyTorch style code in Algorithm 2 to illustrate the480

pruning process and, correspondingly, the update of mask. Note that we only prune out parameters481

that are within the current subspace. Therefore, in line 6, we set the parameters that are out of482

the subspace to a very large value to prevent from selecting them. After that, we filter out those483

parameters with the smallest αt percentage of magnitude and prune them out of the subspace.484

Algorithm 2 PyTorch style code for pruning and recovery
1: function Prune_subspace( αt, wi,t,K , mi,t+ 1

2
)

2: Init layer sparsity {sl} given overall sparsity s with ERK
3: mi,t+1 = mi,t+ 1

2

4: for l = 0, 1, . . . , L− 1 do
5: numprune = αt × # of params in the l-th layer
6: sort = torch.where(m(l)

i,t == 1, torch.abs(w(l)
i,t,K ), 1000×torch.ones_like(w(l)

i,t,K ))
7: _, idx = torch.sort((sort).view(−1))

8: m
(l)
i,t+1.view(−1)[idx[: numprune]] = 0

9: end for
10: Return mi,t+1

11: end function
12:
13: function Recover_subspace( αt, wi,t,0, mi,t )
14: Derive gradient ∇fi(wi,t,0 ⊙mi,t) with one pass of local data
15: mi,t+ 1

2
= mi,t

16: for l = 0, 1, . . . , L− 1 do
17: numprune = αt × # of params in the l-th layer
18: sort = torch.where(m(l)

i,t+ 1
2

=0, torch.abs(∇f
(l)
i (wi,t,0⊙mi,t)), −1000×torch.ones_like(w(l)

i,t,K ))

19: _, idx = torch.sort((sort).view(−1), descending=True)
20: m

(l)

i,t+ 1
2

.view(−1)[idx[: numprune]] = 1

21: end for
22: Return mi,t+ 1

2

23: end function

Subspace recovery. After pruning and before the next round training, we recover the same amount485

of parameters to explore other parameters outside the subspace. Following (Evci et al., 2020), we use486

gradient information of the pruned model to guide the recovery process. Here we only recover the487
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Figure 7: Examples of BadNet, DBA, and Sinusoidal attack. Labels of poison samples are manipu-
lated to the target label (e.g., a horse).

parameters out of the current subspace, and therefore we set the sort_value of the parameters within488

the current subspace to a sufficiently small value, as shown in Algorithm 2. Subsequently, we sort in489

descending to obtain the parameters with the largest-αt percentage gradient magnitude, and recover490

them by updating masks.491

A.2 Attack Methods492

Table 10: Application of attack methods in threat models. "✓" corresponds to be applicable while "
✗" corresponds to be not applicable.

Attack methods Threat models

/ weak medium strong

BadNet ✓ ✓ ✓
DBA ✓ ✓ ✓

Sinusoidal ✓ ✓ ✓

Scaling ✗ ✓ ✓
FixMask (adaptive) ✗ ✓ ✓

Neurotoxin ✗ ✗ ✓
Omniscience (adaptive) ✗ ✗ ✓

As we mention in the main body, we classify the attack model into data-level attack and algorithm-493

level backdoor. We in the following give brief description of each data-level backdoor that we494

simulate in federated learning setting.495

• BadNet. BadNet is the earliest, and also the simplest backdoor attack first proposed in (Gu et al.,496

2017). To perform BadNet attack, the malicious client simply add the same backdoor trigger on497

some of the data samples, and modify the label of these poisoned samples to the target label. In test498

time, the malicious clients can place the backdoor trigger on the test samples, such that the victim499

model can produce the target output no matter what the original test samples are.500

• DBA. DBA (Xie et al., 2019) is a backdoor attack specifically targeted on FL. To perform DBA501

attack, the authors decompose the backdoor trigger into several local pattern, and assign the local502

pattern to different clients to poison their local data. For test time, the attacker will interpose the503

completed trigger on top of the test samples they want to manipulate. It is suggested by the authors504

that DBA is substantially more persistent and stealthy against FL. In our simulation, we decompose505

the "plus“ trigger into 4 local patterns, and let each malicious client to be assigned each local506

pattern.507

• Sinusoidal attack. Sinusoidal attack (Barni et al., 2019) shares a similar perspective with BadNet,508

which also utilize the same trigger for all the malicious clients to poison their samples. However,509

the backdoor trigger they use is a horizontal sinusoidal signal defined by v(i, j) = ∆ sin(2πjf/m),510

1 ≤ j ≤ m, 1 ≤ i ≤ l, for a certain frequency f . The authors claim that this design of trigger i)511

is weal enough to ensure the stealthiness of the attack, but also ii) be detectable in the same (or512

similar) feature space used by the network to classify the pristine samples. In our simulation, we513

adopt the default hyper-parameter δ = 20 and f = 6 for performing this attack.514
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Examples of these data-level attacks are visually shown in Figure 7.515

In the following we give brief description on the algorithm-level backdoor that has been simulated in516

this paper.517

• Scaling. The basic idea of Scaling (Bagdasaryan et al., 2020) is to enlarge the gradient update518

when a malicious client return its update to server. This mechanism allows the malicious client to519

enlarge its gradient’s impact on the global model, and therefore is effective when the poison ratio520

and attacker number are small.521

• FixMask. FixMask is an adaptive attack method specifically targeting Lockdown. In Lockdown,522

the malicious clients are assumed to faithfully search for their subspace using their local data. For523

FixMask attack, the malicious clients freeze their mask to be the initial mask that is shared by all524

the clients in round t = 0, and refuse to change afterwards.525

Particularly, we want to emphasize that the data-level and algorithm-level backdoor can potentially526

be combined together to produce better attack performance. However, since this paper focus on the527

defense aspect, we leave a more thorough study of the attack model future work. We also include two528

advanced attack algorithms that can only be conducted given extra server information in addition to529

permission on manipulation of the attacker’s own training process and data.530

• Neurotoxin. Neurotoxin proposed in (Zhang et al., 2022) explores a durable attack method in531

the scenario that the attackers can only participate limited rounds. Their main observations in the532

limited participation case are that i) the benign update can recover the global model after attacker533

ceases attack. ii) the majority of the l2 norm of the aggregated benign update is contained in a small534

number of coordinates (Let’s call these benign coordinates). Utilizing the above observations, the535

authors propose Neurotoxin, which is to let the malicious clients project their gradient update to the536

subspace excluding the global coordinates. By this means, the projected updates from the malicious537

clients are mostly embedded to the coordinates that have less perturbation by the benign updates538

(which focus on the benign coordinates) after ceasing attack. However, Neurotoxin cannot escape539

Lockdown defense in principle. There are mainly two reasons. i) Lockdown only broadcast to the540

clients some coordinates weights (equivalently, some coordinates of gradient update) as per their541

subspace. Therefore, Neurotoxin cannot obtain the top-k coordinate of the server gradient as benign542

coordinates. ii) Lockdown requires clients to report the subspace that they want to update, and the543

subspace that are substantially different from others will be pruned afterwards. In other words, if544

the attackers adopt neurotoxin to choose the subspace that excludes the benign coordinates, their545

subspace can be easily identified by comparing with other benign client’s subspace, and therefore546

will be pruned out. In our simulation, we assume Neurotoxin can acquire the server gradient update547

by some means. Therefore, it is classified as an attack method for strong threat model. In our548

simulation, we set its hyper-parameter mask ratio to be 0.25.549

• Omniscience. This is an adaptive attack that assumes the knowledge of Lockdown and try to break550

it. The main idea is to assume the client’s has knowledge of the consensus subspace after going551

through consensus fusion, and project their gradient update into this subspace. This efficiently552

avoids the malicious weights to be pruned out by the consensus fusion operation. However,553

the requirement of conducting this attack is very stringent. The malicious client needs to have554

knowledge of the consensus subspace, which either is leaked from server, or is computed if other555

clients’ subspace is known by the attacker. Neither of this condition is easy to establish for an556

attacker in a federated learning system.557

In summary, we show in Table 10 the attack methods we can perform with specific threat models.558

A.3 Defense Methods559

In this section, we give a brief description of the defense baseline we compare against.560

• RLR. RLR proposed in (Ozdayi et al., 2021) utilizes coordinate-wise server learning rate to inverse561

the gradient coordinates in which different clients have different sign. Their observation is that the562

malicious coordinates tends to be those coordinates that have conflicting sign in gradient while563

for the benign coordinates that are not poisoned, most of the clients will agree with their sign.564

Therefore, by looking at the gradient update from clients, the server is able to identify the malicious565

coordinates and subsequently inverse its sign in the aggregation phase. However, the malicious566

clients are able to launch adaptive attack if he knows the gradient update downloaded from server.567
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• RFA. Aiming at defense against corrupted updates from clients, RFA (Pillutla et al., 2022) utilizes568

the concept of geometric medium to aggregate the gradient update from clients. Geometric medium569

avoids the gradient that has excessively large norm (usually is the malicious one) to impact too570

much on the averaging process. Specifically, when doing aggregation, instead of directly averaging571

the uploaded gradient, the server aims to obtain global model v that minimizes:
∑m

i=1 ∥v − wi∥,572

and wi is the uploaded local model. This problem is solved by the Smoothed Weiszfeld Algorithm.573

Similar techniques are studied in (Sifaou & Li, 2022), (Ghosh et al., 2019) and (Cao et al., 2020).574

• Krum. Targeting Byzantine attack, Krum (Blanchard et al., 2017) adopts the idea of finding575

the gradient update that is closest to its n − f − 2 neighbours such that it can ensure (α, f )-576

Byzantine resilience where α is the angle depends on the ratio of the deviation over the gradient577

,f is the number of attackers. Specifically, Krum aims to find the the i∗-th client that minimize578

s(i) =
∑

i→j ∥Vi − Vj∥2 where i → j denotes the set of i’th client’s n− f − 2 closest neighbours,579

and Vi denotes the gradient update from client i. After identifying i∗, Krum returns Vi∗ as the580

robust gradient used for aggregation.581

• Trimmed mean. Trimmend mean is proposed in (Yin et al., 2018) to counter byzantine failures in582

the distributed machine learning scenario. Their high level idea is to exclude the outlier gradient583

value when doing aggregation. Specifically, before aggregation, the server coordinate-wise trims584

the TopK gradient and the bottomK gradient among those uploaded gradient. After trimming,585

the server assume the outlier has been trimmed, and directly average the clean gradient. In our586

simulation, we set the trim ratio to be 0.1.587

A.4 Security Analysis588

We make the following observations on Lockdown’s security performance. Lockdown can success-589

fully defend all the data-level attack, i.e., the attack falls in to the scope of weak threat models. For590

the algorithm-level attacks, we have incorporated an adaptive attack targeting on Lockdown and a591

gradient scaling method into study. Our results show that Lockdown can also defend all the attacks we592

have tested. However, since the algorithm-level attacks are more adaptive, we cannot make guarantee593

that Lockdown is unbreakable by any algorithm-level attacks, especially those that are specially594

designed for Lockdown. For advanced attack that allows attacker to acquire server’s information, we595

create another adaptive attack Omniscience that can successfully circumvent Lockdown’s defense.596

Performing Omniscience attack needs the attacker to know about the consensus subspace. However, it597

is challenging, if not impossible, for the attacker to infer the consensus subspace, since only a subset598

of the server gradient update is distributed to clients, further constraining the global information599

access of the attackers.600

A.5 More Visualization601

Input-level visualization. In Figure 8, we add additional experiments to visualize the gradient w.r.t602

the input of the first layer, which visually explains how different semantic information within the603

input image contributes to activating the target output neuron.

Backdoor Input clean model 
FedAvg

(no defense) 
Lockdown
(after CF) 

Lockdown 
(before CF) 

Figure 8: Smooth grad (Smilkov et al., 2017) visualization of models given backdoor input. The
first column is data input with backdoor trigger. The subsequent columns demonstrate the gradient
with respect to the input of i) a model without being poisoned. ii) a model trained by FedAvg with
poisoned data, iii) Lockdown’s global model under poisoning before going through consensus fusion
(CF) and iv) Lockdown’s final model. A clean model emphasize the correct semantic within the input,
e.g., wing of a plane, while a poisoned model emphasizes the yellow "plus" backdoor trigger.
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Parameters-level visualization. In Figure 9, we visualize the projected parameters produced by604

Lockdown. The experiment is conducted on MNIST with a two-layer MLP model. After reducing its605

output dimension and reshaping it into the original input, we plot the projected absolute weights of the606

first layer of MLP. As found, by projecting the global weights into malicious client’s subspace (left),607

the corresponding connectivity that joint the backdoor trigger still present. However, by projecting608

the global weights into one of the benign client’s subspace (middle), the backdoor trigger no longer609

connects with large absolute weights. The same phenomenon is observed for the consensus subspace610

after going through consensus fusion (right).611

Client #0 (malicious) Client #12 (benign) Global after CF

Figure 9: Visualization of absolute global weights after projecting into the local or global subspace.
Left: projecting into local subspace of a malicious client. Middle: projecting into local subspace of a
benign client. Right: projecting into consensus subspace produced by consensus fusion. The brighter
the color is, the feature locates in that part is more important. The bright backdoor trigger "+" is not
visible in the middle and right image. See more details in the main text.

A.6 Ablation study612

We perform ablation study of Lockdown on CIFAR10. BadNet is the default attack method.613

Gradient-based recovery vs. random recovery. In subspace recovery process, we use gradient614

magnitude to guide the recovery of parameters. In Table 11, we show the empirical comparison615

between the gradient-based recovery and random recovery. The results showcase that recovery with616

the gradient can significantly reduce the ASR (by up-to 78.3% reduction) though the benign acc of617

the model suffered a little bit (by up-to 2.3% drop). This is because gradient magnitude tends to618

guide the subspace searching process to acquire heterogeneous subspaces for clients with different619

training data. With more heterogeneous subspaces, the knowledge transferring between clients will620

be deterred since their the subspace overlap is small, which leads to the degradation of benign acc. On621

the other hand, small subspace overlap can also facilitate the process of de-poisoning by consensus622

fusion, which leads to a reduction of ASR.623

Table 11: Ablation study for parameters recovery implementation.
Methods (IID) Benign Acc(%) ↑ ASR(%) ↓ Backdoor Acc(%) ↑

Random recovery 91.1 13.0 79.7
Recovery w/ gradient (ours) 90.7 1.4 87.8

Methods (Non-IID) Benign Acc(%) ↑ ASR(%) ↓ Backdoor Acc(%) ↑
Random recovery 88.9 17.2 74.3

Recovery w/ gradient (ours) 84.9 2.2 78.4

ERK initialization vs. uniform initialization. In the SubspaceInit() function, we use ERK to624

allocate the sparsity of each layer in a model. To justify the necessity of ERK initialization, we625

replace the ERK initialization with uniform initialization, which uniformly allocates sparsity to each626

layer. As shown in Table 12, uniform initialization will largely compromise the benign accuracy627

and slightly increase the ASR. This justifies that the sparsity should be set larger for the layer with a628

larger number of parameters (which essentially is what ERK does).629

Consensus fusion (CF). In Figure 10, we demonstrate the necessity of consensus fusion under630

different poison ratios. With consensus fusion, benign accuracy is significantly increased by up-to 60%631

while the ASR is reduced by up-to 80%. This result shows that masking out some malicious/dummy632

parameters can perturb the backdoor function and thereby curing the poisoned model.633
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Table 12: Ablation study for sparsity initialization.
Methods (IID) Benign Acc ↑ ASR ↓ Backdoor Acc ↑

Uniform 81.7 5.7 75.9
ERK (ours) 90.1 7.1 83.7

Methods (Non-IID) Benign Acc ↑ ASR ↓ Backdoor Acc ↑
Uniform 75.5 3.1 70.6

ERK (ours) 86.1 3.4 82.2

Figure 10: Impact of consensus fusion of Lockdown.

A.7 Hyper-parameter Sensitivity Analysis634

In this section, we perform hyper-parameter sensitivity analysis for lockdown. The evaluation is635

conducted on CIFAR10 under the default simulation setting in Table 2 unless otherwise specified.636

Sparsity s. In Table 13, we set other hyper-parameters as default and tune the sparsity to different637

levels. As shown, Lockdown loses its defense efficacy when sparsity is low. This phenomenon is638

understandable since Lockdown reduces to FedAvg when sparsity is 0. On the other hand, with639

larger sparsity, the benign accuracy of the model suffers due to the reduction of trainable parameters.640

Therefore, there exists a tradeoff for the sparsity of Lockdown. Larger sparsity promises lower model641

complexity, smaller comm overhead, and also lower ASR, but at the cost of losing benign accuracy.

Table 13: Performance of Lockdown under different sparsity s.
s (IID) Benign Acc ↑ ASR ↓ # of params ↓

0 91.0 68.4 6.57M
0.2 90.9 61.1 5.26M
0.5 91.0 10.9 3.29M

0.75 90.1 7.1 1.65M
0.9 88.3 3.0 0.66M

s (Non-IID) Benign Acc ↑ ASR ↓ # of params ↓
0 89.1 70.3 6.57M

0.2 88.4 52.6 5.26M
0.5 87.1 14.1 3.29M

0.75 86.1 3.4 1.65M
0.9 85.0 2.9 0.66M

642

Initial pruning/recovery rate. We also show the effect of initial pruning/recovery for the learning643

performance. As shown, larger pruning rate would typically results in the drop of benign accuracy644

but also enhance the ASR under poisoning attack. Specially, when a0 = 0, lockdown reduces to645

train a sparse subnetowrk from scratch, without evolving the sparse coordinate. This setting cannot646

eliminate the "poison-couple" effect, therefore the ASR is as high as FedAvg with no defense. On the647

other hand, setting α0 will also result in isolation of subspace for different clients, resulting in lack of648

consensus in the global space and therefore leading to drop of benign accuracy.649

Consensus fusion threshold θ. In Figure 11, we tune the CF threshold θ to see its impact on650

different settings of attacker number N . In all settings of N , we see that: i) θ should not be set to651

be too small; otherwise, the benign accuracy would be lower, and the ASR will be higher. ii) θ also652

should not be set too large; otherwise, it will severely compromise benign accuracy, but the reduction653
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Table 14: Performance of Lockdown under different initial pruning/recovery rate a0.
a0 (IID) Benign Acc ↑ ASR ↓ Backdoor Acc ↑

0 90.5 49.4 47.7
1e-5 90.5 5.2 84.3
1e-4 90.1 7.1 83.7
1e-3 88.1 3.7 84.7
1e-2 87.2 3.5 83.7
1e-1 87.0 3.1 83.4

a0 (Non-IID) Benign Acc ↑ ASR ↓ Backdoor Acc ↑
0 88.5 85.3 14.0

1e-5 87.4 8.5 78.8
1e-4 86.1 3.4 82.2
1e-3 84.9 2.1 80.4
1e-2 83.4 5.3 76.4
1e-1 83.7 5.2 77.6

of ASR will not be too significant. Per our results, the consensus threshold should be chosen carefully654

according to the number of attackers, which of course, is unknown in most cases. However, given that655

the attackers within the system should not take up a large portion, θ set to be 50% of the total number656

of clients will be sufficient to counteract the effect of backdoor attack in a general attack scenario.

Figure 11: Impact of consensus fusion threshold of Lockdown in different # of attackers setting.
657

A.8 Limitations658

Our method utilizes sparsity of model to counter backdoor attack. However, we are aware that sparsity659

in its current stage can hardly guarantee acceleration of the training/inference speed. At present, the660

current sparse acceleration technique requires 2:4 sparse operation. More specifically, the 2:4 sparse661

operation requires that there are at most two non-zero values in four contiguous memory, which662

may not hold for the sparse model produced by Lockdown. But we insist that our method has great663

potential to achieve truly training acceleration with development of sparse technique.664

There are potentially other adaptive backdoor attacks that can break the defense of lockdown,665

especially under the assumption that attackers have full control over its local training process and666

has knowledge of the defense. We leave the research of potential attacks against Lockdown as future667

works.668

A.9 Broader Impact669

The poison-coupling effect we discover in this paper might be mis-used to guide the design of670

backdoor attack method in centralized learning/FL scenario. We will continue this line of research671

and further propose attack/defense method to better study/mitigate such an effect. We also open-672

source our code to facilitate researchers/machine learning engineer in academy/industry to study and673

understand the discovered phenomenon.674
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