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ABSTRACT

It has recently been discovered that the conclusions of many highly influential
econometrics studies can be overturned by removing a very small fraction of
their samples (often less than 0.5%). These conclusions are typically based on
the results of one or more Ordinary Least Squares (OLS) regressions, raising the
question: given a dataset, can we certify the robustness of an OLS fit on this
dataset to the removal of a given number of samples? Brute-force techniques
quickly break down even on small datasets. Existing approaches which go beyond
brute force either can only find candidate small subsets to remove (but cannot
certify their non-existence) Broderick et al. (2020); Kuschnig et al. (2021), are
computationally intractable beyond low dimensional settings Moitra & Rohatgi
(2022), or require very strong assumptions on the data distribution and too many
samples to give reasonable bounds in practice Bakshi & Prasad (2021); Freund &
Hopkins (2023). We present an efficient algorithm for certifying the robustness
of linear regressions to removals of samples. We implement our algorithm and
run it on several landmark econometrics datasets with hundreds of dimensions and
tens of thousands of samples, giving the first non-trivial certificates of robustness
to sample removal for datasets of dimension 4 or greater. We prove that under
distributional assumptions on a dataset, the bounds produced by our algorithm are
tight up to a 1 + o(1) multiplicative factor.

1 INTRODUCTION

Consider a supervised learning problem with feature vectors X1, . . . , Xn ∈ Rd and labels
Y1, . . . , Yn ∈ R, to which we fit a model f : Rd → R. Robustness auditing addresses the question:

How would f have differed if we had been missing a small fraction of the data?

We study this question in the context of ordinary least squares (OLS) linear regression, where
f(X) = ⟨β,X⟩ is the linear function minimizing the mean squared error 1

n

∑
i≤n(f(Xi) − Yi)

2.
We focus on OLS for two reasons. First, OLS is a statistics workhorse, with widespread use across
economics, social science, finance, machine learning, and beyond. Second, its relative simplicity
affords us the opportunity to design algorithms with provable guarantees, and offers a stepping stone
to more complex models (logistic regression, kernel methods, neural networks).

Problem 1 (Robustness Auditing for OLS Regression). Given a linear regression instance
(X1, Y1), . . . , (Xn, Yn) ∈ Rd+1, a direction e ∈ Rd, and an integer k ≤ n, what is

∆k(e) = max
S⊆[n]

|S|=n−k

⟨β[n] − βS , e⟩ (1)

where for T ⊆ [n], βT ∈ Rd denotes the vector of OLS coefficients for the dataset {(Xi, Yi)}i∈T ?

In particular, for a threshold θ ∈ R what is the minimal number of removals kθ(e) for which
∆k(e) > θ?
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Context and Applications for Robustness Auditing Problem 1 was introduced in this form by
Broderick, Giordano, and Meager Broderick et al. (2020), who use a heuristic algorithm, AMIP, to
identify very small subsets of landmark datasets from econometrics which can be removed to overturn
important conclusions of the respective studies Finkelstein et al. (2012); Angelucci & De Giorgi
(2009); often this can be achieved by removing less than 0.5% of a dataset. Researchers have
subsequently used AMIP to audit a wide range of recent studies in economics Martinez (2022); Di
& Xu (2022); Davies et al. (2024); Zachmann et al. (2023); Burton & Roach (2023); Beuermann
et al. (2024); Bondy et al. (2023). Subsequent algorithmic works Kuschnig et al. (2021); Moitra &
Rohatgi (2022); Freund & Hopkins (2023) develop additional algorithms for auditing a similar notion
of robustness; we discuss prior work in detail below.

It is important that, similar to these prior works, we focus on robustness to a shift of β in only a single
user-specified direction e. This is because the main conclusion of a regression is often determined by
the projection of its result on a particular axis. For instance:

ROBUSTNESS OF PARAMETER ESTIMATE A researcher may want to estimate the correlation ⟨β, e⟩
between a specific explanatory variable and a target variable, controlled for additional factors, where
e is the indicator vector corresponding to the explanatory variable. Moreover, the sign and statistical
significance of ⟨β, e⟩ is often of greatest interest.

This correlation can have a causal interpretation. For instance, in a randomized control trial, where e
is the indicator for the treatment variable, the projection ⟨β, e⟩ can be used to estimate the “average
treatment effect” (ATE) of a new drug or policy on the outcome Y , while including the control
variables in the regression can help reduce the variance of this estimate. Even more complex causal
inferences (e.g., instrumental variables regression) can often be decomposed into a small number of
OLS regressions, where the result of the causal inference depends on a single coefficient from the
result of each regression.

Conclusions from a study where this shift ∆k(e) is large when k ≪ n are therefore driven by a small
number of data points, meriting at minimum reinspection of a dataset, and perhaps casting doubt on
generalizability. In many real world regressions, the sign of ⟨β, e⟩ is not robust to a small number of
removals, even though it is statistically significant Broderick et al. (2020). Non-existence of a small
set of highly influential samples indicates robustness of the measured effect to an interesting class of
distribution shifts – any removal of a small fraction of the population.

DATA ATTRIBUTION Suppose that instead of looking for the effect of a particular feature on the
label Y , instead we use the linear model f to predict the label of a fresh point Xnew, and we want
to identify what part of the training data led to the prediction that Ynew ≈ f(Xnew). Following the
counterfactual formulation of this data attribution problem from Koh & Liang (2017); Ilyas et al.
(2022), we arrive again at robustness auditing: using e = Xnew, we can find the smallest set of
whose removal would significantly shift f(Xnew). We can evaluate the brittleness of the prediction
by measuring the size of the smallest set of samples we could remove to cause f(Xnew) to cross a
decision boundary.

Intractability, Heuristics and Upper Bounds As soon as k exceeds single digits, robustness
auditing by brute-force search over all |S| = n − k takes times

(
n
k

)
, which is computationally

intractable.

The works Broderick et al. (2020); Kuschnig et al. (2021) relax the goal to finding upper bounds on
kθ(e), for which they use greedy/local search algorithms. This approach leaves open the risk that
kθ(e) might be much smaller than the upper bound suggests. Indeed, later experiments by us (see
Figure 1), Moitra & Rohatgi (2022), and Freund & Hopkins (2023) uncover numerous real-world
examples where local search techniques give loose upper bounds.

Following Moitra & Rohatgi (2022), we aim for algorithms which provide unconditionally valid
upper and lower bounds on kθ(e) for every dataset {(Xi, Yi)}i∈[n], and which return high-quality
upper/lower bounds (as close to matching each other as possible) under reasonable assumptions on
{(Xi, Yi)}i∈[n]. Prior approaches to go beyond greedy algorithms and provide lower bounds on kθ(e)
Klivans et al. (2018); Bakshi & Prasad (2021); Moitra & Rohatgi (2022); Freund & Hopkins (2023)
so far don’t yield results in practice for datasets of dimension 4 or greater, due to running times which
scale exponentially in d and/or prohibitively strong assumptions on X1, . . . , Xn.
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(a) A robust dataset whose robustness cannot be
certified by continuous algorithms such as Bakshi
& Prasad (2021); Freund & Hopkins (2023).
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(b) A small perturbation on 1a creates brittleness
which is not detected by AMIP (Broderick et al.
(2020)) or Kuschnig et al. (2021).

Figure 1: A comparison of two regressions. Figure 1a shows a regression from a main variable X1

and an indicator variable X2 which is set to 1 on only a very small subset of the samples (≈ 1%).
The labels Y are drawn from a normal distribution around X1, resulting in an OLS vector β whose
first coefficient is positive and whose sign is robust to removing ≥ 15% of its samples. As shown
in Claim G.1, we can perturb only the X2 values of the inlier samples to produce an extremely
brittle regression (Figure 1b). Because most current approaches to estimating the robustness of
a linear regression produce outputs which vary smoothly with the input dataset (such as gradient
descent Broderick et al. (2020), semidefinite programming Bakshi & Prasad (2021), or spectral
decompositions Freund & Hopkins (2023)), they cannot differentiate between these cases.

1.1 OUR CONTRIBUTIONS

We present and analyze two new algorithms, ACRE and OHARE , which provide lower bounds on
kθ(e), certifying robustness of OLS regression. Our algorithms provide the first nontrival bounds on
the number of samples which must be removed to flip the signs of important parameter estimates for
benchmark datasets studied in prior work (including regressions with dimension d > 200 and with
n > 30000 samples). We evaluate our algorithms experimentally and in theory.

ACRE (Algorithm for Certifying Robustness Efficiently) takes as input a dataset X ∈ Rn×d, Y ∈ Rn

and a vector e ∈ Rd, runs in time O
(
n2d+ n2 log(n)

)
, and outputs a set of upper and lower bounds

U,L ∈ Rn on the removal effects such that Uk ≥ ∆k(e) ≥ Lk. In particular, this runtime avoids
exponential dependence on k, d, and n. The upper and lower bounds ACRE provides are valid even
making no assumptions whatsoever on X and Y . When X and Y are drawn from a sufficiently “nice”
distribution (such as a linear model with subgaussian features and labels), then the bounds are also
good, meaning that the upper and lower bounds are close to matching (see Theorem 1.2). We present
ACRE in Section 3.

However, there is a very important class of datasets on which ACRE still provides very loose bounds:
those using one-hot encodings (also known as indicator or dummy variables) to express categorical
features. Even though one-hot encoded datasets can yield robust regressions, certifying this is
challenging because of singularities which emerge in the covariance when samples are removed (see
Figure 1).

OHARE (One-Hot aware Algorithm for certifying Robustness Efficiently) extends ACRE to certify
robustness of datasets with a mix of continuous and categorical features. It uses dynamic programming
in conjunction with a fine-grained linear-algebraic analysis of the contribution of categorical features.
OHARE takes as input a dataset X ∈ Rn×(d+m) (where m of the features represent a one-hot
encoding and the other d are some continuous features) and a direction of interest e ∈ Rd within the
continuous features, runs in time O

(
n2(d+m) + n2m log(n)

)
and outputs upper and lower bounds

on the removal effect along the axis e. We present an overview of OHARE in Section 3.5, with a
detailed description deferred to Appendix F.
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The most important property of both ACRE and OHARE is that the bounds they produce are valid
regardless of any assumptions on the dataset:
Theorem 1.1 (Correctness). Given e,X , and Y , ACRE and OHARE output lists of upper/lower
bounds U,L ∈ Rn s.t.

∀k ∈ [n] Lk ≤ ∆k(e) = max
S⊆[n]

|S|=n−k

⟨β − βS , e⟩ ≤ Uk

The proof of Theorem 1.1 is given in Section 3.3 for ACRE and Section A for OHARE . On its own,
Theorem 1.1 says little about the usefulness of the upper and lower bounds Lk, Uk. We provide
two types of evidence that the bounds produced by ACRE and OHARE are interesting. First, we
demonstrate on real-world econometric datasets studied in prior work on robustness auditing that
ACRE and OHARE produce significantly better lower bounds bounds than were previously known
(see Figure 2 and Table 1). Second, we prove that both ACRE and OHARE produce nearly-matching
upper and lower bounds under relatively mild distributional assumptions on X and Y , for the
interesting range of k.

INTERESTING VALUES OF k For a direction e, we emphasize two values of k: k2σ(e), the number
of removals needed to shift ⟨β, e⟩ outside its 95% confidence interval, and ksign(e) = k⟨β,e⟩, the
number to flip the sign of ⟨β, e⟩. In the parameter estimation setting, ⟨β, e⟩ and 2σ are often of
similar magnitude, because rejecting a null hypothesis often involves placing the estimator ⟨β, e⟩ in a
confidence interval which does not contain 0.

Experimental Results For comparison with prior works, we focus our experiments on ksign(e). We
provide lower bounds on ksign(e) for benchmark datasets drawn from important studies in economics
and social sciences, first investigated in the context of robustness auditing by Broderick et al. (2020).

We study real-world datasets corresponding to each of the parameter estimation use-cases listed above:
Nightlights Martinez (2022) (correlation controlled for additional features), Cash Transfer Angelucci
& De Giorgi (2009) (randomized control trial), and the Oregon Health Insurance Experiment (OHIE)
Finkelstein et al. (2012) (IV regression), with 14 distinct linear or instrumental-variables regressions
drawn from the corresponding papers, all of which appeared in top econometrics journals. In many
cases, our lower bounds match known upper bounds up to a factor of 2 or 3, where no nontrivial
lower bounds were previously known; see Figure 2 and Table 1.

To illustrate, consider Nightlights: Martinez (2022) studies whether democractic countries publish
more accurate economic growth estimates than dictatorships, after controlling for variables like
regional stability and wealth in natural resources. Martinez formulates this as a linear regression with
dimension d = 209, over 200 of which correspond to one-hot encoded categorical variables. The sign
and statistical significance of a single coordinate of β govern the conclusion of the study. Algorithms
from prior work find a subset of 2.8% of the samples which can be removed to reverse Martinez
(2022)’s main conclusion, but prior algorithms could not rule out the existence of much smaller
subsets. Our algorithm OHARE provides a certificate that no subset of ≤ 0.7% of the samples would
reverse the study’s conclusion. See Table 1 and Appendix C for our results on Nightlights and the 13
other regressions we audit, and a detailed discussion of our experiments.

An implementation of our algorithms is available via Github. Our implementation is efficient enough
to run our algorithms with n up to 3× 104 and d up to 103 on a single CPU core with < 64GB of
RAM. The main bottleneck in practice is storing 3 floating-point matrices of size n× n each.

Theory for ACRE Without some assumptions on X,Y , finding matching upper and lower bounds
on ∆k(e) is computationally intractable, under standard complexity assumptions Moitra & Rohatgi
(2022). So, we analyze tightness of the bounds produced by ACRE and OHARE under some relatively
mild distributional assumptions on X and Y . Our main assumption for ACRE will be that the samples
X1, . . . , Xn are drawn iid from a well-behaved distribution:
Definition 1 (Well-Behaved Distribution). We say that a mean-zero distribution X on Rd with
covariance Σ = EX∼X [XX⊺] is well-behaved if it has exponentially decaying tails in the sense that

∃C > 0 ∀v ∈ Sd−1, t > 0 Pr
X∼X

[∣∣∣〈v,Σ−1/2X
〉∣∣∣ > t

]
≤ exp

(
−Ω

(
tC
))

.
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(a) A comparison of OHARE and known upper
bounds on benchmark datasets.
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(b) A comparison of ACRE and known bounds on
a synthetic dataset (AMIP and KZC coincide).

Figure 2: A comparison of our ACRE and OHARE algorithms with previous techniques. In Figure 2a,
we plot the number of removals required to flip the sign of several linear regressions from landmark
econometrics studies Martinez (2022); Angelucci & De Giorgi (2009); Finkelstein et al. (2012).
Each of these studies contains a number of linear regression central to their analyses, which include
several applications of linear regression, such as estimating correlation controlled for additional
covariates, treatment effects, and instrumental variables regression. For each regression, we run
AMIP Broderick et al. (2020) and KZC Kuschnig et al. (2021) to obtain base-line upper bounds on
ksign and compare the results to lower bounds produced by OHARE . We list the number of samples
and the dimension of each regression below the plot. In Figure 2b, we consider a synthetic dataset
comprised of n = 4000 samples in dimension d = 50, and plot bounds on the removal effects ∆k(e).
In this plot, the roles are reversed, with AMIP and KZC representing lower bounds on the removal
effects, while our ACRE algorithm gives the first practical upper bound. We compare the bounds
produced by ACRE to the previous state-of-the-art for efficiently computable upper bounds Freund &
Hopkins (2023). Moreover, to ground the scale of the plot, consider the different bounds on k2σ (the
number of removals required to shift the regression results outside of their 95% confidence intervals).
The ACRE algorithm has two possible backends – spectral or RTI (see Section 4). RTI is more
efficient and performs better in practice, while the spectral analysis which uses ideas from Freund
and Hopkins’ algorithm has a somewhat slower runtime (Õ

(
n3
)
) and offers a logarithmic advantage

in some synthetic datasets. The bound produced by ACRE is almost tight on this range of values of k,
while Freund and Hopkins’ algorithm yields a trivial bound.

Note that the class of well-behaved distributions contains all subgaussian (C = 2) and all subexpo-
nential distributions (C = 1), but is not limited to these sets.

We will assume that the labels Y1, . . . , Yn are drawn according to a ground-truth linear model specified
by an unknown vector βgt ∈ Rd. Concretely, we assume Yi = ⟨βgt, Xi⟩+ ϵi, where ϵ1, . . . , ϵn are
iid from N (0, σ2) for an unknown variance parameter σ2 > 0.
Theorem 1.2 (Tightness of ACRE , Proof in Section E). Let n, d ∈ N, e, βgt ∈ Rd, X, Y , and

σ > 0 be as above. There exists kthreshold = Θ̃
(
min

{
n√
d
, n2

d2

})
such that for all k ≤ kthreshold, the

bounds Lk, Uk produced by ACRE satisfy

Uk

Lk
= 1 + Õ

(
d+ k

√
d

n

)
. (2)

Note that this theorem holds even when the covariance Σ of X is unknown a priori.

RELATIONSHIP OF k, d, AND n Theorem 1.2 guarantees that ACRE gives nearly optimal bounds
so long as n≫ d and the number of removals is at most k ≤ Θ̃(min{n/

√
d, n2/d2}); note that in

this regime the RHS of (2) is 1+o(1). First of all, OLS is only appropriate when n ≥ d, and all of the
datasets on which we perform experiments have n well in excess of d. The range of interesting values
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of k is more subtle – to illustrate, consider k2σ(e). Assuming reasonably well-behaved samples, we
expect k2σ(e) = O(

√
n), so as long as we also have n ≫ d4/3, ACRE gives nearly tight bounds

on k2σ(e). This represents a mild multiplicative overhead of d1/3 samples compared to the n ≥ d
required anyway to use OLS regression.

Theory for OHARE Even though they are mild, the assumptions for ACRE are not satisfied by the
real-world datasets used in our experiments, because of the presence of one-hot encoded categorical
features, which is the reason we design OHARE in the first place. We also prove a tightness theorem
for OHARE – we now turn to the assumptions on X,Y which underlie it.

We study regression in d +m dimensions – that is, X ∈ Rn×(d+m). The block of m coordinates
will be a one-hot encoding of a categorical variable, while the block of d coordinates will act
as in the ACRE setting. Formally, let n ∈ N and let B1, . . . , Bm partition [n] into m buckets.
Let e, βgt ∈ Rd+m, with e supported only on the first d coordinates, and σ > 0. For i ∈ [n],
let X ′

1, . . . , X
′
n be iid draws from a d-dimensional well-behaved distribution and let Xi be X ′

i
concatenated with the j-th indicator vector, where j = j(i) is such that i ∈ Bj . Finally, let
Yi = ⟨βgt, Xi⟩+ ϵi where ϵ1, . . . , ϵn ∼ N (0, σ2).
Theorem 1.3 (Tightness of OHARE , informal, see Section F). Let X,Y, e be as described above.
For any arbitrarily small ε > 0, if all buckets have sizes nε

√
d < |Bj | < 0.49n, and n ≥ d5/4+o(1),

then with high probability, for all k < kthreshold, where kthreshold = Θ̃
(
min

{
n√
d
, n2

d2 , n
1−ε
})

, the
upper and lower bounds produced by OHARE satisfy

Uk

Lk
= 1 +O

(
1√
log n

)
.

Careful analysis is needed to prove Theorem 1.3 under the relatively weak assumptions |Bj | > nε
√
d

and n ≥ d5/4+o(1). The stronger assumptions |Bj | > d or n ≥ d2 would simplify the analysis. But
neither assumption would be valid for all of our real-world datasets. Getting away with such weak
assumptions ultimately requires us to put together a number of technical tools, including novel matrix
concentration arguments (e.g. Lemma F.12).

Additionally, the error term 1/
√
log n, which we believe is nearly tight, goes to zero slowly compared

to the error term in Theorem 1.2 – to capture this fine-grained behavior of Uk/Lk, our proof carefully
exploits Gaussian anticoncentration.

2 PRELIMINARIES

Let (X1, Y1), . . . , (Xn, Yn) ∈ R(d+1) represent features/covariates and labels/target variables of
a linear regression instance. We always assume n ≥ d. Let Σ = X⊺X ∈ Rd×d denote the (un-
normalized) empirical second moment of X , let β denote the OLS fit β = Σ−1X⊺Y ∈ Rd, and
let R = Y − βX ∈ Rn denote the residuals on the complete regression. Finally, let e ∈ Rd be
some “direction of interest” along which we wish to certify the robustness of β. Using standard
normalization techniques, we may ensure that e ∈ Sd−1 has norm 1 and Σ = I .

For any S ⊆ [n] representing some subset of the samples, let XS , YS represent the samples limited
to only those whose indices lie in S. Similarly, let ΣS , βS denote the empirical second moment and
regression when using only the samples in S = T . Note that while we could set Σ = I , removing
some of the samples may change the covariance matrix ΣS = Σ− ΣT ̸= Σ.

Finally, we use standard asymptotic notation O(·),Θ(·), and we write f(n) = Õ(g(n)) if there is a
constant C such that f(n) = O(g(n) · logC n), and similarly for Θ̃.

3 ACRE: CERTIFYING ROBUSTNESS WITHOUT CATEGORICAL FEATURES

In this section we present ACRE (Algorithm for Certifying Robustness Efficiently), our algorithm for
certifying robustness of regressions without categorical features. At the end of this section we give an
overview of OHARE , but due to space constraints we defer the details of OHARE to Appendix A.
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3.1 SEPARATING FIRST ORDER AND HIGHER ORDER EFFECTS ON THE OLS FIT β

We split the effect of data removal on β into a first order term and a higher order correction. The first
order term is linear in the datapoints Xi, allowing us to analyze it exactly. For well-behaved datasets,
the higher order term is smaller in magnitude, so even loose bounds on the higher order will suffice
to generate tight bounds on the overall removal effect.

More concretely, let T ⊆ [n] be a set of k = |T | ≪ n samples we might remove from the regression
data, and set S = [n] \ T . A simple analysis yields the identity

β − βS = Σ−1
S

∑
i∈T

RiXi (3)

where R denotes the residuals of the original regression and ΣS denotes the empirical 2nd moment
of the retained samples ΣS = X⊺

SXS =
∑

i∈S XiX
⊺
i .

The difficulty in analyzing equation (3) is the effect induced by the non-linear matrix inversion
operation. Recall that we normalized our datasets so that the empirical second moment over the entire
dataset Σ is the identity matrix. ΣS is generated by removing some of the samples, so it is no longer
normalized.

Because only a very small number of samples were removed, we might hope ΣS = I − ΣT is still
close to the identity matrix. Therefore, it makes sense to try to develop equation (3) in orders of ΣT .

More concretely, we use the identity (I − ΣT )
−1 = I + (I − ΣT )

−1ΣT to derive:

β − βS = Σ−1
S

∑
i∈T

RiXi =
∑
i∈T

RiXi︸ ︷︷ ︸
first order term

+Σ−1
S ΣT

∑
i∈T

RiXi︸ ︷︷ ︸
higher order correction

(4)

Projecting the first order term onto some axis e ∈ Sd−1 yields the gradients / influence scores used
by the AMIP algorithm of Broderick et al. (2020). Our analysis will focus on bounding the higher
order term.

3.2 MAXIMAL SUBSET SUM NORM (MSN) – THE BACKEND OF ACRE

Under the hood of ACRE is a simple algorithm which places upper/lower bounds on the following
optimization problem.

Problem 2 (Maximal Subset sum Norm (MSN)1). Given a set of vectors v1, . . . , vn ∈ Rd with Gram
matrix G = (⟨vi, vj⟩)i,j∈[n], we define

∀k ∈ [n] MSNk (G) = max
T⊆[n]
|T |=k

{∥∥∥∥∥∑
i∈T

vi

∥∥∥∥∥
2

}
= max

T⊆[n]
|T |=k

{√
1⊺TG1T

}

A constant-factor approximation to MSN would refute the small-set expansion hypothesis Hopkins
& Li (2019), so we aim for MSN-bounding algorithms which place upper and lower bounds on the
optimal value, with the aim that these bounds are close to tight on well-behaved vis. For our purposes,
a simple algorithm in Section 4 gives useful bounds, but ACRE can use any MSN-bounding algorithm
as a subroutine, and improved MSN-bounding algorithms will lead to improved performance for
ACRE .

For now, we treat MSN-bounding as a black-box, and show how ACRE produces its upper and lower
bounds Uk, Lk by making a few calls to an MSN-bounding algorithm.

3.3 REDUCING ROBUSTNESS CERTIFICATION TO MSN-BOUNDING

Recall equation (4) for the effect of removals on an OLS regression. Projecting onto e, we have

1When the vectors have 0 mean (
∑

i∈[n] vi = 0), MSN is equivalent to resilience Steinhardt et al. (2017).
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⟨e, β − βS⟩ =

〈
e,Σ−1

S

∑
i∈T

RiXi

〉
=
∑
i∈T

Ri ⟨Xi, e⟩︸ ︷︷ ︸
first order term

+

〈
Σ−1

S ΣT e,
∑
i∈T

RiXi

〉
︸ ︷︷ ︸

high order term

(5)

We compute the first order term of equation (5) exactly for all k ∈ [n] via a greedy algorithm in time
O(n log(n)). For the rest of our analysis, we focus on bounding the maximum value of the high
order term. We use the following bound:

|high order term| ≤ max(λ(Σ−1
S )) ∥(ΣS − I)e∥

∥∥∥∥∥∑
i∈T

XiRi

∥∥∥∥∥ (6)

where max(λ(Σ−1
S )) is the largest eigenvalue of Σ−1

S . We show that each of the three terms
in the RHS of equation (6) can be upper-bounded by the value of an MSN problem. The last
term, ∥

∑
i∈T XiRi∥, is already corresponds to an MSN problem with the Gram matrix GRX =

diag (R)GX diag (R), so we focus on the other two terms.

MSN bound for max(λ(Σ−1
S )) We start by simplifying the Σ−1

S term. Recall that ΣS = I − ΣT ,
allowing us to use

max
{
λ
(
Σ−1

S

)}
≤ 1

1−max {λ(ΣT )}
(7)

so long as max {λ (ΣT )} < 1. Over the next few lines we bound ∥ΣT ∥, allowing us to verify this
assumption. We apply the inequality

max {λ (ΣT )} ≤
√ ∑

λi∈λ(ΣT )

λ2
i = ∥ΣT ∥F =

∥∥∥∥∥∑
i∈T

Xi ⊗Xi

∥∥∥∥∥
where ∥M∥F is the Frobenius norm of a matrix M (ℓ2 norm of the vector of eigenvalues) and ⊗
denotes tensor product. So we have an MSN problem with the vectors Xi ⊗Xi.

Even though this MSN is represented by n vectors of dimension d2, its Gram matrix represen-
tation GX⊗X can still be computed in time O(n2d), by computing the Gram matrix GX =
(⟨Xi, Xj⟩)i,j∈[n], and squaring its entries to obtain

GX⊗X = (⟨Xi ⊗Xi, Xj ⊗Xj⟩)i,j∈[n] =
(
⟨Xi, Xj⟩2

)
i,j∈[n]

MSN bound for ΣT e Recall ΣT =
∑

i∈T XiX
⊺
i . Let GX⟨X,e⟩ be the Gram matrix of

{Xi⟨Xi, e⟩}i∈[n]. So,

∥ΣT e∥ =

∥∥∥∥∥∑
i∈T

Xi⟨Xi, e⟩

∥∥∥∥∥ ≤ MSN
(
GX⟨X,e⟩

)
,

3.4 ALGORITHM

Combining the results of the analysis above yields the following expression and the corresponding
Algorithm 1:

|∆k(e)− (first-order term)k| ≤
1

1−MSNk (GX⊗X)
·MSNk (GXR) ·MSNk (GXZ)
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Algorithm 1: ACRE (Algorithm for Certifying Robustness Efficiently)

Input: Linear regression problem X ∈ Rn×d, Y ∈ Rd, direction of interest e ∈ Rd,
MSN-bounding algorithmM

Output: Upper and lower bounds U,L ∈ Rn such that Uk ≥ ∆k(e) ≥ Lk

1 Compute the Gram matrix GX = XX⊺ ∈ Rn×n;
2 Compute the projection of the samples on the direction of interest Z = Xe;
3 Define A = cumulative sum (sorted(RZ));

4 GX⊗X = pointwise square of the entries of GX ;
5 GXR = diag (R)GX diag (R);
6 GX⟨X,e⟩ = diag (Z)GX diag (Z);

7 Run the MSN-bound algorithmM on these GX⊗X , GXR, GX⟨X,e⟩ to compute upper bounds
MX⊗X ,MXR,MX⟨X,e⟩ ∈ Rn;

8 return U,L = A± 1
1−MX⊗X

MXRMX⟨X,e⟩ ; // pointwise operations

3.5 OHARE: AWARENESS OF CATEGORICAL FEATURES

We present an overview of OHARE (One-Hot aware Algorithm for certifying Robustness Efficiently),
deferring details to the appendix. Suppose that X1, . . . , Xn ∈ Rd+m consist of d continuous-valued
features and a single categorical feature with m categories, one-hot encoded.

The bounds computed by ACRE are valid for such X1, . . . , Xn. But, consider removing the samples
T comprising any single category, encoded in coordinate i; let S = [n] \ T . The matrix ΣS is
singular, since all variance from category i has been removed. So our approach to bounding the
high-order term from (6) by pulling out max(λ(Σ−1

S )) is doomed to failure once k exceeds the size
of the smallest category, since max(λ(Σ−1

S ))→∞. We will assume that the direction of interest e
lies orthogonal to the one-hot features, so e ∈ Rd.

The key idea in OHARE is to rephrase the OLS algorithm as a two-phase process, first explicitly
controlling for the categorical feature by computing a “controlled” dataset {(X̃i, Ỹi)}i∈[n] ⊆ Rd+1,
then performing OLS on the controlled dataset to arrive at β ∈ Rd. We show that this process yields
the same β which would have been produced by running OLS on the original dataset {(Xi, Yi)}i∈[n]

(Claim A.1) and restricting to the span orthogonal to the one-hot encoding.

We derive explicit formulae for X̃i, Ỹi by analyzing the Gram-Schmidt orthogonalization process
which we call “reaveraging”. The upshot is that we replace each term in (6) as well as the first
order effect, with two terms: one corresponding to the direct effect of sample removals on the
X̃, Ỹ regression, and one corresponding to effects of removing XT , YT on the remaining controlled
samples X̃S , ỸS through reaveraging. Crucially, this process allows us to certify that the matrix Σ̃S

is nonsingular even in cases where ΣS can be singular.

To bound the new correction term coming from the influence of categorical features on the sample-
removal effect, we use a knapsack-style dynamic program to combine bounds on the influence of data
removals from each category into a single bound by searching over partitions k = k1 + . . .+ km.

4 MSN-BOUNDING ALGORITHMS

In this section we discuss the simple MSN-bounding algorithm we use as the backend of ACRE and
OHARE for all our experiemnts on real-world data. We call this algorithm Refined Triangle Inequality
(RTI). We implemented other MSN-bounding algorithms, in particular one based on eigenvalues and
eigenvectors of the Gram matrix G, but found that they improved over RTI only on synthetic data, so
we defer them to the appendix.

RTI relies on the following inequality, evaluating the RHS via a greedy algorithm:

max
|T |=k

∥∥∥∥∥∑
i∈T

Xi

∥∥∥∥∥
2

= max
|T |=k

∑
i,j∈T

⟨Xi, Xj⟩ ≤ max
|T |,|S1|,...,|Sk|=k

∑
i∈T,j∈Si

⟨Xi, Xj⟩ . (8)
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Algorithm 2: Refined Triangle Inequality
Input: Gram matrix G of size n× n where Gij = ⟨Zi, Zj⟩
Output: A vector V of length n, where Vk is an upper bound on the ℓ2 norm of the sum of any k

vectors in Z, for k = 1 to n
1 Sort each row of G in decreasing order;
2 Compute the cumulative sum of the rows of G and store the result in C;
3 Sort the columns of C in decreasing order;
4 Compute the cumulative sums of the columns of C and store the results in S;
5 for k ← 1 to n do
6 Set Vk to be

√
Sk,k;

7 return V ;

Greedy Algorithm for Diagnosing Robustness Failures via MSN We also implement a simple
greedy algorithm to compute lower bounds on MSN, discussed in Section B. This algorithm is not
used in ACRE or OHARE , but can be used to diagnose robustness failures by finding subsets of
influential samples, thereby complementing AMIP.

5 PRIOR WORK AND FUTURE DIRECTIONS

Prior Work Robustness in linear regression is too vast to survey here, so we restrict attention to
recent works in robustness auditing. As previously discussed, our work is preceded by Broderick et al.
(2020); Kuschnig et al. (2021); Moitra & Rohatgi (2022); Freund & Hopkins (2023), all studying
robustness auditing for least-squares regression. Unlike any of these prior works, our algorithms
provide nontrivial lower bounds on kθ in practice for datasets with tens/hundreds of dimensions.
All these algorithms and ours fit into the broader tradition of influence functions as a measure of
robustness in regression, dating at least to Cook & Weisberg (1980).

Our algorithms are partly inspired by recent developments in algorithmic robust statistics – see
Diakonikolas & Kane (2023) and references therein. While the main goal in robust statistics differs
somewhat from robustness auditing, modern algorithms for robust regression typically contain
subroutines for tasks very similar to robustness auditing. But the subroutines in recent breakthroughs
in robust regression Klivans et al. (2018); Bakshi & Prasad (2021) are not practically implementable
due to reliance on semidefinite programming.

Future Directions We propose several directions for future work:

BEYOND OLS Given the prevalence of regression beyond ordinary least squares in machine
learning, an important next step is to design algorithms to certify robustness of other regression
methods which arise by minimizing a convex loss – e.g. logistic regression and LASSO Tibshirani
(1996).

APPLICATIONS TO DIFFERENTIAL PRIVACY (DP) DP Dwork et al. (2006) is the gold-standard
mathematically rigorous approach to protecting privacy of individuals represented in a dataset. Tighter
certificates of robustness for regression have great potential to improve privacy-accuracy tradeoffs in
private regression Dwork & Lei (2009); poor privacy-accuracy tradeoffs are a major roadblock to
widespread adoption of private data analysis techniques.

INTERPRETATIONS OF ROBUSTNESS CERTIFICATES It is an appealing intuition that statistical
conclusions which are robust to removing many samples should generalize better – formalizations
of the relationship between stability and generalization have been highly influential, e.g. Bousquet
& Elisseeff (2002). Can this intuition be formalized? Can robustness certificates yield e.g. tighter
empirical confidence intervals, or out-of-distribution generalization guarantees?

BEYOND SAMPLE REMOVAL Removing a small set of datapoints is just one of many potential
ways to perturb a dataset. Can we certify robustness of OLS or other regression algorithms to other
types of dataset perturbation, e.g. ℓ2 or ℓ∞-bounded perturbations of the feature vectors?
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A CATEGORICAL-AWARE ROBUSTNESS ANALYSIS (OHARE)

ACRE encounters an issue when the regression includes a one-hot encoding of a categorical feature.
This is because removing all the samples from one category of the one-hot encoding could cause
ΣS to have a singularity, making our bound, which depends linearly on max{λ(Σ−1

S )}, effectively
meaningless.

Moreover, as we show in Appendix G, it is possible to perturb datasets with one-hot encodings,
even those which are robust to many sample removals, to make them extremely brittle to sample
removals. Therefore, any “continuous” algorithm which does not somehow utilize the discreteness of
the one-hot encoding is doomed to fail.

A.1 REGRESSING OVER A CATEGORICAL FEATURE

Consider a linear regression over a set of feature vectors, Fi ∈ Rd for i ∈ n, and an additional m
dimensions corresponding to a one-hot encoding with buckets B1 ⊔ · · · ⊔Bm = [n], where we want
to fit our labels Li to a model of the form

Li ≈
∑
j∈[d]

βjFi,j +
∑
j∈[m]

tj1i∈Bj

This linear regression would be represented by a matrix X ∈ Rn×(m+d) whose rows are the samples
Xi = (Fi, 1i∈B1

, . . . , 1i∈Bm
). Then, if we are interested in the correlation between one of the

continuous features F:,j and the labels Y (controlled for the rest of our categorical / continuous
features), we may compute this correlation by running an OLS regression β = (X⊺X)−1X⊺Y and
output the relevant entry βj of the fit.

Analyzing the robustness of this process is challenging, and we proceed by performing the Gram
Schmidt orthogonalization between the dummy variables and the continuous features explicitly.
Before delving into the details of this analysis, we note that OHARE can be used to certify robustness
for a slightly more general class of regressions. Using this more general notation will help motivate
our orthogonalization process and is crucial for certifying the robustness of weighted regressions
with categorical features (such as the ones in the OHIE study - see Appendix C.4).

Indeed, let u1, . . . , um be the columns representing the dummy variables. So long as for any sample
i ∈ [n] there is a unique j = b(i) (representing the bucket to which the ith sample belongs) such that
uj,i ̸= 0 (and for all j ̸= j′, we have uj′,i = 0). This property ensures that for any S ⊆ [n], these
columns are still perpendicular to one another uj,S ⊥ uj′,S .

1. For each bucket Bj ⊆ [n], we compute the weighted averages over the features fj,i =

uu⊺

∥u∥2F =

∑
i∈Bj

uj,ifi,:

∥uj∥2 uj,i and over the labels ℓj =
∑

i∈Bj
uj,iℓi

∥uj∥2 uj,i for samples from this
bucket. When the samples are unweighted uj,i = 1i∈Bj , these are equal to the averages
over the features / labels fj = Ei∈Bj

[Fi,:] and ℓj = Ei∈Bj
[Li], and when the samples are

weighted, these are the projections of the continuous features / labels onto the space spanned
by the indicator columns.

2. Compute the normalized features X ∈ Rd×n obtained by subtracting the feature averages
of each bucket from its samples, and the normalized labels Y ∈ Rn obtained by subtracting
the average label from each bucket:

Xi = Fi,: − fb(i),i

Yi = Li − ℓb(i),i

3. Perform a linear regression on Y as a function of X and output the fit β = (X⊺X)−1X⊺Y .

Claim A.1. The output of the process described above β is equal to the coefficients for the continuous
features on a full OLS with the dummy variables.

The proof of Claim A.1 follows directly by performing the Gram-Schmidt orthogonalization (to
compute Σ−1) explicitly while taking the one-hot encoding columns into account (see Section A.6).
This approach of explicitly writing out a Gram-Schmidt orthogonalization to remove the effects of
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some of the controls could potentially be used whenever we have two sets of features, one of which
is easier to analyze than the other.

Our focus on one-hot encodings is due to their prevalence in econometrics datasets, along with the
fact that, as we will see over the next few pages, the perpendicular structure of the indicator variables
makes them particularly amenable to such a divide and conquer strategy (and much harder to deal
with using previous techniques).

For ease of notation, we will normalize the dummy variables so that ∥uj∥ = 1 for all j ∈ [m].

A.2 FIRST ORDER EFFECTS

Claim A.1 allows us to reduce the problem of performing a regression on d continuous feature and
a categorical feature with m potential values into a regression on just a reaveraged version of the
d continuous features. Using this reduction, we can split the effects of removing samples from the
smaller linear regression into direct removal effects that change the regression fit directly by removing
samples from the d-dimensional regression X,Y , and reaveraging effects that shift the regression fit
by causing the expectation of the data within each bucket to change (effectively shifting the values of
the retained rows of X,Y ).

In particular, we may again write

⟨e, β − βS⟩ = −

〈
e, Σ̂−1

S

∑
i∈S

X̂iR̂i

〉
(9)

where ·̂ is the value of · after the new reaveraging due to the removal of the elements in T . More
concretely, we have

X̂i = Xi − xb(i)ub(i),i where xj =
∑

i′∈Bj∩S

Xiuj,i′

R̂i = Ri − rb(i)ub(i),i where rj =
∑

i′∈Bj∩S

Riuj,i′

(10)

From here, we can derive closed form formula for the new versions of all the terms in the previous
analysis. For instance, the “first order effect” (i.e., the effect we would have seen on the regression,
had ΣS been equal to I), which was previously given by First Ordercontinuous =

∑
i∈T Ri ⟨e,Xi⟩ is

now given by

First Orderone-hot = −

〈
e,
∑
i∈S

X̂iR̂i

〉
= −

〈
e,
∑
i∈S

(Xi − xb(i)ub(i),i)R̂i

〉
=

= −

〈
e,
∑
j∈[m]

∑
i∈Bj∩S

(Xi − xjuj,i)R̂i

〉
=

= −

〈
e,
∑
j∈[m]

∑
i∈Bj∩S

XiR̂i

〉
−

〈
e,
∑
j∈[m]

xj

∑
i∈Bj∩S

uj,iR̂i︸ ︷︷ ︸
=0

〉
=

= −

〈
e,
∑
j∈[m]

∑
i∈Bj∩S

XiRi

〉
+

〈
e,
∑
j∈[m]

rj
∑

i∈Bj∩S

uj,iXi︸ ︷︷ ︸
=−

∑
i∈Bj∩T Xiuj,i

〉
=

=

〈
e,
∑
i∈T

XiRi

〉
︸ ︷︷ ︸

First Ordercontinuous

+
∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈T∩Bj

Riuj,i

 ∑
i∈T∩Bj

⟨e,Xi⟩uj,i


︸ ︷︷ ︸

Correction Term
(11)
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In order to bound the right-hand-side of equation (11), we consider each of the 3 terms∑
i∈T∩Bj

Ri ⟨e,Xi⟩,
∑

i∈T∩Bj
Riuj,i and

∑
i∈T∩Bj

⟨e,Xi⟩uj,i separately. Using a greedy al-
gorithm, we can maximize / minimize each of these terms separately as a function of kj = |T ∩Bj |.
We can then combine these into a bound of the form

bound±j (kj) = dj(kj) +
c±j (kj)

min
Sj∈(Bj

kj
)

{∥∥uj,Sj

∥∥2}
where

dj(kj) = max
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri ⟨e,Xi⟩

c+j (kj) = max


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Riuj,i


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

⟨e,Xi⟩uj,i

 ,

 min
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Riuj,i


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

⟨e,Xi⟩uj,i




c−j (kj) = min


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Riuj,i


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

⟨e,Xi⟩uj,i

 ,

 max
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Riuj,i


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

⟨e,Xi⟩uj,i




For kj = nj , there is no reaveraging effect and bound±j (nj) = dj(nj).

We can then combine these bounds on the individual buckets by using a dynamic programming
algorithm to solve the integer knapsack problem of

max
k1+···+km=k

∑
j∈[m]

bound±j (kj) .

From equation (11), it is clear that these maximizations yield upper and lower bounds on the maximal
first order removal effect

max k1 + · · ·+ km = k
∑
j∈[m]

bound−j (kj) ≤ max
S∈( [n]

n−k)

{
−

〈
e,
∑
i∈S

X̂iR̂i

〉}
≤ max

k1+···+km=k

∑
j∈[m]

bound+
j (kj) .

The upper bound on the overall first order effect tends to be larger than the continuous first order
effect but only by a 1 + o(1) factor. This is because dj tends to be the dominant effect, while cj are
typically much smaller.

For instance, consider an unweighted regression on normally distributed samples (Xi, Yi), and

let σR =
√

1
n

∑
i∈[n] R

2
i denote the root-mean-square (RMS) / scale of the residuals. With high

probability, we can find removal sets that would have dj ≈ kj√
n
σR log(n/k) (by taking only samples

which are on the ε tail end of the distribution of having both large residual and large inner product
with the direction of interest). On the other hand, for sufficiently large buckets |Bj | ≫ log(n), we

expect to have cj = O
(

k2
j

|Bj |
√
n
σR

)
< O

(
kj√
n
σR

)
, so they tend to be somewhat smaller than dj .

Moreover, by using a dynamic programming algorithm, we can enforce the constraint that the
number of samples removed from each bucket kj has to be the same for the direct effects and for the
reaveraging effect. This constraint limits causes the contribution of the reaveraging effects to be even
smaller, as they require taking many samples from the same bucket to enjoy the quadratic scaling of
kj , while the more dominant direct effects are typically optimized by selecting samples evenly from
the buckets.
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Algorithm 3: Dynamic Programming Algorithm for Integer Knapsack
Input: List of bounds {boundj(kj)}mj=1, maximal budget kmax

Output: Array F where F [k] is the highest total score possible for budget k
1 m← |{boundj(kj)}|;
2 kmax ← kmax + 1;
// Adjusting for 0-based indexing in NumPy arrays

3 Initialize F array of size (m+ 1)× kmax with −∞;
4 Set the first column of F to 0;
5 for j ← 1 to m do
6 bound← boundj ;
7 F [j, 0 : len(bound)]← bound[0 : kmax];
8 F [j, :]← max(F [j, :], F [j − 1, :]);
9 for δk ← 1 to min(kmax,len(bound))− 1 do

10 F [j, δk :]← max(F [j, δk :], F [j − 1, : −δk] + bound[δk]);

11 return F [m, : kmax − 1]

A.3 HIGH ORDER TERMS

We continue our analysis of equation (9). As in the continuous analysis, we have

⟨e, β − βS⟩ = −

〈
e, Σ̂−1

S

∑
i∈S

X̂iR̂i

〉
=

= −

〈
e, I

∑
i∈S

X̂iR̂i

〉
−

〈
e,
(
Σ̂−1

S − I
)∑

i∈S

X̂iR̂i

〉
=

= First Orderone-hot +

〈
Σ̂−1

S

(
I − Σ̂S

)
e,
∑
i∈S

X̂iR̂i

〉
≤

≤ First Orderone-hot +max
{
λ
(
Σ̂−1

S

)}
×
∥∥∥(I − Σ̂S

)
e
∥∥∥× ∥∥∥∥∥∑

i∈S

X̂iR̂i

∥∥∥∥∥

(12)

To analyze the first 2 higher order terms, we begin with an analysis of Σ̂S . This analysis shows that
Σ̂S essentially behaves like ΣS with a minor correction for each bucket:

Σ̂S =
∑
i∈S

X̂iX̂
⊺
i =

∑
j∈[m]

∑
i∈Bj∩S

(Xi − xjuj,i)X̂
⊺
i =

=
∑
j∈[m]

∑
i∈Bj∩S

Xi(Xi − xjuj,i)
⊺ −

∑
j∈[m]

xj

∑
i∈Bj∩S

X̂⊺
i uj,i︸ ︷︷ ︸

=0

=

=
∑
j∈[m]

∑
i∈Bj∩S

XiX
⊺
i −

∑
j∈[m]

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Xi

⊺

=

= I − ΣT −
∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Xiuj,i

⊺

(13)

In order to bound max
{
λ
(
Σ̂−1

S

)}
= min

{
λ
(
Σ̂S

)}−1

from above, we begin by bounding
max {λ (ΣT )} from above (using the same MSN-bounding reductions from Section 3). We then
use a MSN-bounding algorithm and the same dynamic programming as above to bound the term in
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equation (14) (MSN-bounding to bound the individual terms and dynamic programming to combine
them).

max

λ

∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Xiuj,i

⊺ =

= max
k1+···+km=k

∑
j∈[m]

1

minSj

{∥∥uj,Sj

∥∥2} max
Tj⊆Bj

|Tj |=kj


∥∥∥∥∥∥
∑
i∈Tj

Xiuj,i

∥∥∥∥∥∥
2


(14)

For each j, we can bound max Tj⊆Bj

|Tj |=kj

{∥∥∥∑i∈Tj
Xiuj,i

∥∥∥} from above by performing a call to an

MSN bounding algorithm. However, we can refine the results of this MSN bounding call (especially
with regards to larger values of kj ≥ nj

2 ), by utilizing the fact that
∑

i∈Bj
Xi = 0, which implies that

max
Tj⊆Bj

|Tj |=kj


∥∥∥∥∥∥
∑
i∈Tj

Xiuj,i

∥∥∥∥∥∥
 = max

Tj⊆Bj

|Tj |=nj−kj


∥∥∥∥∥∥
∑
i∈Tj

Xiuj,i

∥∥∥∥∥∥
 .

Therefore, if Mj is the result of an MSN bounding algorithm (such as RTI) on the nj × nj Gram
matrix of the samples in the jth bucket, we have the bound

max
Tj⊆Bj

|Tj |=kj


∥∥∥∥∥∥
∑
i∈Tj

Xiuj,i

∥∥∥∥∥∥
 ≤ min {Mj(kj),Mj(nj − kj)} .

Similarly, we may bound the other terms. Using equation (13), we have

(
I − Σ̂S

)
e =

ΣT +
∑
j∈[m]

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Xiuj,i

⊺ e =

=
∑
i∈T

Xi ⟨Xi, e⟩+
∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈T∩Bj

Xiuj,i

 ∑
i∈T∩Bj

⟨Xi, e⟩uj,i

 (15)

As usual, we bound the norm of the first term
∑

i∈T Xi ⟨Xi, e⟩ using an MSN-bounding algorithm,

and for each bucket, we bound
∥∥∥∑i∈T∩Bj

Xiuj,i

∥∥∥ and
∣∣∣∑i∈T∩Bj

⟨Xi, e⟩uj,i

∣∣∣ as a function of
kj = |T ∩Bj |. We then combine these bounds using the triangle inequality, and the same symmetry
and dynamic programming algorithm as above.

Finally, to bound
∥∥∥∑i∈S X̂iR̂i

∥∥∥, we use the same analytic techniques to write

∑
i∈S

X̂iR̂i =
∑
j∈[m]

∑
i∈Bj∩S

(Xi − xjuj,i)R̂i = · · ·

· · · =
∑
i∈T

XiRi +
∑
j∈[m]

1

∥uj,S∥2

 ∑
i∈Bj∩T

Xiuj,i

 ∑
i∈Bj∩T

Riuj,i

 (16)

which can be bounded by the same MSN + symmetry + dynamic programming above.
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A.4 THE OHARE ALGORITHM

Algorithm 4: The OHARE Algorithm

Input: Samples Xi ∈ Rd (s.t. X⊺X = I ∈ Rd×d) and residuals Ri ∈ R for i ∈ [n], vector
e ∈ Rd, separation of the samples into buckets b : [n]→ [m] (based on some additional
categorical feature), weights w ∈ Rn (by default all 1s).

Output: U,L ∈ Rn that bound the removal effects ∆k(e).
/* Step 1: Split the samples and residuals by their b value

into buckets B1, . . . , Bm ⊆ [n] */
1 for j ← 1 to m do
2 for kj ← 1 to |Bj | do
3 Compute boundj(kj) = dj(kj) +

cj(kj)
|Bj |−kj

with cj and dj as defined above;

/* Step 2: Compute Influences using the 1D Dynamic Programming
Algorithm */

4 Use the “1D Dynamic Programming Algorithm” defined above to compute the bounds on the
direct influences and store the result as Influences;
/* Step 3: Compute upper bounds on Mkj, Ukj, ρkj, and ζkj for

each bucket */
5 for j ← 1 to m do
6 Use an MSN bounding algorithm to compute an upper bound on

Mkj ≥ maxT⊆Bj ,|T |=kj

∥∥∑
i∈T Xi

∥∥ for all kj ∈ [|Bj |];
7 Use a sort + cumulative sum to compute Ukj = 1−maxT⊆Bj ,|T |=kj

{∑
i∈T u2

i,j

}
;

8 Use a similar sort + cumulative sum to compute ρkj = maxT⊆Bj ,|T |=kj

{∑
i∈T |Riui,j |

}
;

9 Use a similar sort + cumulative sum to compute ζkj
= maxT⊆Bj ,|T |=kj

{∑
i∈T |Ziui,j |

}
;

10 Use the symmetry to refine our bounds
Mkj

:= min
{
Mkj

,Mnj−kj

}
; ρkj

:= min
{
ρkj

, ρnj−kj

}
; ζkj

:= min
{
ζkj

, ζnj−kj

}
;

/* Step 4: Compute indirect contributions using the 2D Dynamic
Programming Algorithm */

11 Use 3 calls to the 2D Dynamic Programming Algorithm 6 to generate arrays from k, u to the
maximum over the choice of k1, . . . , km with total k of which u are non-zero of:

1. Indirect CS Contribution:
∑

j∈[m]

M2
kj

Ukj

2. Indirect XR Contribution:
∑

j∈[m]

Mkj
ρkj

Ukj

3. Indirect XZ Contribution:
∑

j∈[m]

Mkj
ζkj

Ukj

/* Step 5: Compute direct contributions using the KU Triangle
Inequality */

12 Use the KU Triangle Inequality 5 to also compute upper bounds on the Direct CS, XR, and XZ
Contributions;
/* Step 6: Compute final bounds and return the result */

13 return Uk, Lk = Influences±maxu
|Direct XR+Indirect XR|×|Direct XZ+Indirect XZ|

1−Direct CS−Indirect CS

A.5 SUPPLEMENTARY ALGORITHMS

We begin by an extension of the RTI Algorithm 2 that bounds the triangle inequality terms as a
function of k (number of removals) and u (number of unique buckets from which samples were
removed). The basic idea is the same as with the original RTI algorithm and requires only minor
adaptations to track which row-column pairs are largest in their respective buckets.
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Algorithm 5: KU Triangle Inequality
Input: Gram matrix G of size n× n where Gij = ⟨vi, vj⟩ representing an MSN-bounding

problem
Output: Matrix V of size umax × kmax, where Vu,k is an upper bound on the ℓ2 norm of the

sum of k vectors taken from u unique buckets.
/* Split each row of G into the largest and the non-largest

entries per bucket. */
1 Initialize m as the number of buckets;
2 Initialize n as the number of vectors;
3 Compute bucket indices from bucket sizes;
4 for j ← 1 to m do
5 Sort entries in each bucket j in decreasing order;
6 Store the largest entry of each bucket in best_entries;
7 Remove these entries from the Gram matrix;
/* Compute the cumulative contributions of the largest and

non-largest entries per bucket. */
8 Compute best_u_contributions as cumulative sums of sorted best_entries;
9 Compute best_kmu_contributions as cumulative sums of the modified Gram matrix;
/* Compute the contributions of each sample for the triangle

inequality. */
10 Initialize sample_contributions as an array of −∞;
11 for u← 1 to min(umax, kmax) do
12 for k ← u to kmax do
13 Compute contributions by combining best_u_contributions and

best_kmu_contributions;

/* Enforce the constraint that T must use exactly u separate
buckets. */

14 for j ← 1 to m do
15 Move the largest elements of each bucket to the start using partition;
16 Copy the largest elements to best_contributions;
17 Remove these elements from sample_contributions;
18 Sort best_contributions and compute their cumulative sums as cumsum_best_contributions;
/* Compute the norms squared using the constraints. */

19 Initialize norms_squared as an array of −∞;
20 for u← 1 to umax do
21 for k ← u to kmax do
22 Compute sum over k − u largest elements of sample_contributions and u largest

elements of cumsum_best_contributions;
23 Update norms_squared[u, k];

/* Compute the norms and handle invalid values. */
24 Compute norms as the square root of norms_squared;
25 return norms;

We also adapt Algorithm 3 to the case where we wish to keep track of both the total number of
removals and the number of unique buckets from which we remove samples.
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Algorithm 6: Dynamic Programming 2D
Input: A list of bucket scores B
Output: A table V where V [u, k] is the maximal score for using u unique buckets with total

budget k
/* Initialize parameters and dynamic programming table */

1 Compute cumulative sums of bucket lengths;
2 Initialize dp_table with −∞ and set dp_table[:, 0, 0] = 0;
/* Fill the dynamic programming table */

3 for j ← 1 to length of B do
4 Get the current bucket B[j];
5 Set u as min(m, j);
6 Set k as min(n, cumsum_bucket_lengths[j]);

/* Base case for the first bucket */
7 if j == 0 then
8 Set dp_table[0, 1, : k] = B[0][: k];
9 else

/* Case where we do not update the table with new bucket
values */

10 Set dp_table[j, 1 : u, : k] = dp_table[j − 1, 1 : u, : k];
/* Case where we add values from the new bucket */

11 for δk ← 1 to min(length of B[j], k)− 1 do
12 Update dp_table[j, 1 : u, δk : k] with the maximum of the current value and

dp_table[j − 1, : u− 1, : k − δk] +B[j][δk];

13 return dp_table[−1, :, :];

A.6 PROOF OF CLAIM A.1

The main analytic idea we use in the OHARE algorithm is an alternative description of what happens
when we perform a linear regression while controlling for a categorical feature. We formalise this
process in Claim A.1, which we prove here:

Proof of Claim A.1. Let X = (F | U) be the covariates for the original regression. Consider the
Gram-Schmidt orthogonalization process, and define

X̂ =
(
F −D−1U⊺F | U

)
where D = U⊺U is the diagonal matrix whose jth entry is ∥uj∥.

X̂ now has a block-diagonal covariance matrix

Σ̂ = X̂⊺X̂ =

(
(F −D−1U⊺F )⊺(F −D−1U⊺F ) 0

0 D

)

Similarly, let Ŷ = Ŷ = Y − D−1U⊺Y . These labels are now also perpendicular to the dummy
variables U . Therefore, for X̂ = F −D−1U⊺F , Σ̂ = X̂⊺X̂ , we have

β̂ = Σ̂−1X̂⊺Ŷ

=

(
(F −D−1U⊺F )⊺(F −D−1U⊺F ) 0

0 D

)−1(
F −D−1U⊺F

U

)⊺ (
Y −D−1U⊺Y

)
=

(
Σ̃−1X̃⊺Ỹ

D−1U⊺
(
Y −D−1U⊺Y

)) =

(
β̂
⋆

) (17)
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B ADDITIONAL MSN-BOUNDING ALGORITHMS

B.1 SPECTRAL DECOMPOSITION

At a high-level, this algorithm similarly tries to bound
∥∥∑

i∈T Zi

∥∥2 = 1⊺TG1T for the same Gram
matrix G, but here we use a spectral decomposition. We refine on the standard spectral algorithms
which might output ∥1T ∥maxλ(G) =

√
kmaxλ(G), by computing naive bounds on the inner

products between 1G and each of the top eigenvalues using a standard greedy algorithm.

Algorithm 7: Spectral Bound Algorithm
Input: A matrix G of size n× n representing a Gram matrix of a set of vectors Gi,j = ⟨Zi, Zj⟩
Output: A vector V whose kth entry is an upper bound on max|T |=k

∥∥∑
i∈T Zi

∥∥
1 Compute eigenvalues λ1 ≥ · · · ≥ λn and corresponding eigenvectors v1, . . . , vn of G;
2 for k = 1 to n− 1 do

/* For each of the eigenvectors, compute upper and lower
bounds on αi = ⟨1T , vi⟩. To do this, we note that αi is the
sum of k entries of vi, so it is bounded from below by ℓi =
sum over k smallest entries of vi and from above by ui =
sum over k largest entries of vi. */

3 Sort the entries of each vi in ascending order and store the cumulative sum in ℓi;
4 Sort the entries of each vi in descending order and store the cumulative sum in ui;

/* Compute upper bound on αi
2 ≤ max{ℓ2i , u2

i }. */
5 Compute bi = max{ℓ2i , u2

i };
/* Combine this with bound on overall weight of spectral

decomposition
∑

i αi
2 = k. */

6 If
∑

j≤i bi ≥ k, set bi = max{0, k −
∑

j<i bi};
7 Set Vk =

√∑
i λibi;

8 return V ;

B.2 GREEDY LOWER BOUND

In order to get some additional diagnostic capabilities and improve the interpretability of our results,
we also implemented a simple greedy algorithm that helps us generate lower-bounds on the MSNs.
Algorithm 8 initializes candidate set T to contain the longest vector vi in our MSN instance, and
greedily adds vectors to this set in an attempt to increase

∥∥∑
i∈T vi

∥∥ as fast as possible.
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Algorithm 8: Greedy Algorithm for Lower Bound and Candidate Set
Input: A matrix G of size n× n representing a Gram matrix of a set of vectors, where

Gi,j = ⟨vi, vj⟩
Output: An ordering of the indices T , and a series of lower bounds

Lk = 1⊺T:k
G1T:k

≤ max
T ′∈([n]

k )
1⊺T ′G1T ′

1 Initialize an empty list T := [];
2 Initialize the scores array ∆ where ∆i = Gi,i for all i ∈ [n];
/* ∆ maps each index i ∈ [n] to the change in 1⊺TG1T caused by

adding i to T. */
3 Initialize L0 := 0;
4 while |T | < n do
5 Select i := argmaxj /∈T ∆j ;

/* Choose the index i not in T with the maximum change in
score. */

6 Add i to T and update Lk = Lk−1 +∆i;
/* Update the lower bounds by adding the score of the newly

added index. */
7 Update the scores ∆ := ∆+ 2Gi,:;

/* Adjust ∆ to reflect the change in 1⊺TG1T after adding i to
T. */

8 return T and L;

In real-world datasets, we found that the upper bounds obtained by Algorithms 2 and 7 tend to be
very close to the greedy lower bounds on their respective MSNs.

Moreover, when analyzing the Cash Transfer study (see Section C.3), we noticed that our analysis
behaved poorly in some regimes. Using this greedy lower bound technique, we were able to identify
that this behaviour was caused by a small number of households (< 0.5%) dominating the variance
in land-ownership (> 80%), which was included in the study in linear scale. Converting the land-
ownership to a logarithmic scale resolved this issue (allowing us to certify robustness to removing
many more samples).

C APPLIED EXPERIMENTS

Our main experimental results are detailed in Table 1:

Paper n d AMIP KZC21 OHARE Runtime Memory
Nightlights 3895 209 136 110 29 25 s 3.81 GiB
Cash Transfer 4543 18 5 5 5 6 s 1.78 GiB

3769 18 21 21 17 4 s 2.80 GiB
4191 18 26 26 20 5 s 1.73 GiB

10781 18 225 224 119 50 s 11.20 GiB
9489 18 321 314 126 24 s 5.37 GiB

10368 18 570 555 178 29 s 6.59 GiB
OHIE 23361 18 257 257 77 9 m 5 s 34.19 GiB

23361 18 149 149 40 9 m 10 s 43.50 GiB
23407 18 184 184 52 9 m 10 s 43.55 GiB
21881 18 72 72 21 7 m 39 s 38.64 GiB
21384 18 84 84 25 7 m 17 s 45.77 GiB
21601 18 118 118 31 7 m 20 s 46.21 GiB
23147 18 116 116 32 8 m 57 s 51.53 GiB

Table 1: A comparison of the lower bounds on ksign(e) produced by OHARE vs the corresponding
upper bounds produced by AMIP and KZC. In all cases, no non-trivial lower bound was previously
known. The runtimes listed are for a single core AMD processor.
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Throughout this section, we will present the details of the data analysis and experimental procedures
used to generate Table 1

C.1 METHODOLOGY OF TABLE 1

In Table 1, we compare several bounds on ksign(e) (the number of removals required to flip the sign of
the “main” coefficient e) for a several regressions taken from highly influential econometrics datasets.

Before delving into the source of each regression we give a brief overview of the methodology used
to construct each column of the table.

Metadata The first few columns (“Paper”, “Regression”, n and d) give some of the metadata for
the regression.

The paper column details which paper each regression was drawn from, and for papers with multiple
regressions we list the name of each regression in the paper. For more details about each of these
papers see the following subsections.

The n and d columns list the number of samples and the dimension of each regression.

AMIP The AMIP algorithm by Broderick et al. Broderick et al. (2020) can be used to estimate
the robustness of a linear regression in one of two ways. The fastest option is to compute the AMIP
gradients / influence scores, and estimate that the number of samples one must remove in order to
change the fit by a certain amount by taking a cummulative sum over the sorted gradients.

However, this method both typically tends to overestimate the robustness of a dataset, and despite this
does not even provide a formal upper bound on ksign or k2σ . Instead, for our experiments we sort the
samples from most influential to least influential and remove them one at a time until the fit crosses
the threshold we are considering.

KZC The robustness estimation algorithm by Kusching et al. Kuschnig et al. (2021) utilizes a
greedy approach – at each point we select the sample whose removal would have the greatest effect
on our metric of interest and remove that sample. We repeat this process until the decision boundary
has been crossed (in our case, until the sign of the regression coefficient has been flipped).

As with AMIP, we report the size of the smallest set produced by the algorithm that actually produced
a sign flip.

OHARE Assume WLOG that our coefficient of interest is positive in the original regression
⟨β, e⟩ > 0 (otherwise we set e′ = −e).

Running the OHARE algorithm yields a series of upper bounds Uk on the removal effects. In
particular, we know that for k = ksign, we must have ∆k(e) > ⟨β, e⟩, so by computing

kOHARE(e) = min {k ∈ [n] | Uk > ⟨β, e⟩}

yields a lower bound as ksign(e) ≥ kOHARE(e).

Computational Resources In the columns “Runtime” and “Memory”, we list the total runtime and
memory cost of running the OHARE algorithm in this case. All experiments were run on a single
core of an AMD EPYC 9654 96-Core Processor.

C.2 HOW MUCH SHOULD WE TRUST THE DICTATOR’S GDP GROWTH ESTIMATES?

C.2.1 PAPER OVERVIEW

Reliable estimates of GDP figures are crucial for analysts to assess the performance of an economy.
However, leaders often have a variety of political and financial incentives manipulate GDP figures in
order to improve their perception. Therefore, economists often use proxies to obtain independent
estimates of these figures that may be harder to manipulate. One such method which has gained a lot
of attention in recent years is to simply measure the amount of light emitted from a region at night
(nightlights or NTL), as observed by satellite imaging Henderson et al. (2012).
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Martinez Martinez (2022) uses this proxy in conjunction with several well-known measures for
the democracy of a country (such as the freedom-in-the-world or FiW metric), in an effort to find
evidence of GDP figure manipulation in autocratic regimes. One methods used by Martinez is to
measure the “autocracy gradient in the NTL elasticity of GDP”. In practice, this translates to running
a regression of the form

ln(GDP)i,t = µi+ δt+ϕ0 ln(NTL)i,t+ϕ1FiWi,t+ϕ2FiW2
i,t+ϕ3[ln(NTL)×FiW]i,t+ εi,t (18)

where i represents the index of a country, t the year from which this sample was taken, µi and
δt control for country-specific or time-specific effects, ϕ0, ϕ1, ϕ2 control for the direct correlation
between nightlights and GDP, as well as for any ≤ 2nd order dependence between GDP and
democracy. ϕ3 is the main effect we wish to observe, and a positive value of ϕ3 could be explained
by autocratic regimes being more prone to embellishing their GDP figures.

Martinez reports a statistically significant positive value of ϕ3, as well as additional evidence for
GDP figure manipulation in autocratic regimes (such as a larger difference between NTL-based
estimates and reported GDP in years leading up to IMF evaluations of autocratic regimes). Martinez
hypothesises that the separation of powers and cross-examination of figures by opposition contribute
to making GDP figures more reliable in democratic countries.

C.2.2 ROBUSTNESS

Martinez uses the AMIP tool Broderick et al. (2020) to assess the robustness of the regression (18).
AMIP finds a set of 136 samples whose removal flips the sign of the OLS fit on the [ln(NTL)×FiW]i,t
term. Kusching et al. Kuschnig et al. (2021) improve this upper bound on the stability by finding a
set of 110 samples that flip the sign of the fit parameter.

Running our continuous regression toolkit on the Martinez dataset can only certify robustness to the
removal of at most 7 samples, as the dataset contains a one-hot encoding of the country and it contains
only 8 samples from Monetenegro. To overcome this, we apply our one-hot aware algorithms to the
same data, and are able to certify the sign of this parameter in Martinez’ regression requires at least
ksign ≥ 29 to overturn.

C.3 INDIRECT EFFECTS OF AN AID PROGRAM: HOW DO CASH TRANSFERS AFFECT
INELIGIBLES’ CONSUMPTION?

C.3.1 PAPER OVERVIEW

Angelucci and De Giorgi Angelucci & De Giorgi (2009) study the indirect effect of the Progresa
welfare program in Mexico. This program gave financial aid to eligible households within “treated”
villages, and did not give aid to ineligible households or households from “untreated” villages.

Angelucci and De Giorgi then track spending patterns of eligible and ineligible households from both
treated and untreated villages. They then use linear regressions to estimate the treatment effects on
both eligible and ineligible households when controlling on various other features.

C.3.2 MINOR DIFFICULTIES IN USING THE DATA

We found two different regression formula that have been attributed to this paper. The formula use
slightly different control, with one option controlling for: head of household age, sex, literacy and
education level, household poverty index and amount of land owned, local poverty index, number of
households in the village and “average shock” (to the best of our knowledge, this was the regression
used in Angelucci and De Giorgi’s original paper). The regression used in the later paper by Broderick
et al. Broderick et al. (2020) also controls for head of household marital status and which region
the samples came from (using a one-hot encoding). Ultimately, these additional controls had very
little effect on the fit parameters or their error bars, and we chose to focus on the latter to maintain
consistency with previous benchmarks.

A more significant issue is that the dataset also contained many clear outliers. For instance, almost all
the entries of the column for head of household sex were either “hombre” or “mujer” with a very
small fraction (roughly 16 out of 59455 samples) having the value 9.0, and many columns had entries
of “nr” (presumably no response).
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We removed these “bad samples” for the sake of our analysis (both to avoid regressing over a clearly
problematic dataset, and also because not doing so would cause the regression to include nearly empty
categories in several different one-hot encodings which is beyond the scope of the OHARE algorithm).
This had only a minor effect on the regression results.

Column Values Removed Samples Removed
hhhsex 9.0, nr 16
hhhalpha nr 21
hhhspouse nr, 2.0 546
p16 nr 146
hhhage 97 y más, no sabe, nr 205
Total 921

Table 2: Number and values of outliers we removed from each of the covariates in Angelucci and De
Giorgi’s study Angelucci & De Giorgi (2009).

C.3.3 ROBUSTNESS

We ran our tools on the 6 regressions from Angelucci and De Giorgi’s paper (treatment effects on
eligible / ineligible over 3 periods). Our robustness lower bounds nearly match the AMIP upper
bound for the ineligible studies, but left room for improvement on the eligible regressions.

To find the root of this gap, we first noted that the main component of our bound that failed was that
after removing ≈ 50 samples, our bound on max

{
λ(Σ−1

S )
}

becomes very large. Using Algorithm 8,
we were able to find the samples responsible for these loose bounds: ≈ 50 households (out of
> 10000) that account for more than 80% of the variance in the amount of land owned by each
household.

When one of the columns of a linear regression is heavy-tailed, it is not uncommon to replace this
column with its logarithm. This presented a slight challenge in this case, as many of the household
in the eligible studies owned no land at all. To overcome this, we replace the hectacres (amount
of land owned) column with log (hectacres + median hectacres). We then reran the regression and
robustness analysis to see the effects of this change to produce the results in Table 1 and Figure 2.

C.4 THE OREGON HEALTH INSURANCE EXPERIMENT: EVIDENCE FROM THE FIRST YEAR

C.4.1 PAPER OVERVIEW

The Oregon Health Insurance Experiment provides a unique opportunity to assess the effects of
expanding access to public health insurance on low-income adults using a randomized controlled
design. In 2008, Oregon implemented a lottery to select uninsured low-income adults to apply for
Medicaid. This random assignment allows researchers to compare the outcomes of the treatment
group (those selected by the lottery) with the control group (those not selected).

Finkelstein et al. Finkelstein et al. (2012) analyze data from the first year after the lottery to evaluate
the impacts on health care utilization, financial strain, and health outcomes. The study finds that
individuals in the treatment group were about 25 percentage points more likely to have health
insurance compared to the control group. The results show that the treatment group experienced higher
health care utilization, including increased primary and preventive care visits, and hospitalizations.
They also faced lower out-of-pocket medical expenditures and medical debt, evidenced by fewer bills
sent to collection agencies.

Moreover, the treatment group reported better physical and mental health than the control group. The
authors suggest that the increase in health care utilization due to insurance coverage led to improved
health outcomes and reduced financial strain. These findings provide significant evidence on the
benefits of expanding Medicaid coverage to low-income populations.

C.4.2 REGRESSION ANALYSIS

The regression analysis conducted by Finkelstein et al. utilized instrumental variable (IV) regression
to estimate the impact of Medicaid coverage on various health and financial outcomes. They used a
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treatment variable as the instrument and several dummy variable controls corresponding to different
medical metrics (e.g., “Not bad days physical”).

IV regression is particularly useful in this context as it helps address potential endogeneity issues,
where the treatment (Medicaid enrollment) might be correlated with unobserved factors affecting the
outcomes. By using the lottery selection as an instrument for Medicaid enrollment, they ensured a
more accurate estimation of the causal effect.

The IV regression can be computed as the ratio of two ordinary least squares (OLS) regressions: one
estimating the relationship between the instrument (lottery selection) and the endogenous variable
(Medicaid enrollment), and the other estimating the relationship between the instrument and the
outcome (health or financial metrics). This implies that if both OLS regressions are robust to sign
changes, so is their ratio. In this study, the correlation between the instrument and the endogenous
variable was very strong and robust, making the primary robustness concern the OLS regression
between the endogenous variable and the outcome.

Finkelstein et al. used weighted OLS regressions with several dummy variables, some of which had
very sparse categories. This sparsity caused singularities after 13-14 removals, making it difficult to
certify robustness with the ACRE algorithm. Therefore, the OHARE algorithm was used to certify
the robustness of these regressions.

Outcome Type ACRE OHARE AMIP KZC21

Health genflip Instrument vs Endogenous 14 752 ≥ 10% ≥ 10%
Instrument vs Outcome 14 77 257 257

Health notpoor Instrument vs Endogenous 14 752 ≥ 10% ≥ 10%
Instrument vs Outcome 14 40 149 149

Health change flip Instrument vs Endogenous 14 755 ≥ 10% ≥ 10%
Instrument vs Outcome 14 52 184 184

Not bad days total Instrument vs Endogenous 13 685 ≥ 10% ≥ 10%
Instrument vs Outcome 13 21 72 72

Not bad days physical Instrument vs Endogenous 13 669 ≥ 10% ≥ 10%
Instrument vs Outcome 13 25 84 84

Not bad days mental Instrument vs Endogenous 13 676 ≥ 10% ≥ 10%
Instrument vs Outcome 13 31 118 118

Nodep Screen Instrument vs Endogenous 14 742 ≥ 10% ≥ 10%
Instrument vs Outcome 14 32 116 116

D SYNTHETIC DATA EXPERIMENTS

D.1 METHODOLOGY

We evaluate the performance of the ACRE algorithm on synthetic datasets drawn from two distinct
distributions:

Normally Distributed Regressions As a baseline, we test the algorithm on normally distributed
covariates. Specifically, the covariates are drawn i.i.d. from a standard normal distribution, N (0, 1).

Power-Law Distribution To stress-test the algorithm, we evaluate its performance on covariates
drawn i.i.d. from a heavy-tailed power-law (Pareto) distribution. In this setting, we set the power
b = 4 and draw covariates Xi,j i.i.d. from a distribution with density:

f(x) ∝ 1|x|≥1 · |x|−(b+1) .

This distribution has finite first, second, and third moments, but its fourth moment diverges, making it
a challenging test case.

Target Variable In both cases, the target variables (labels) Yi are drawn independently from a
standard normal distribution: Yi ∼ N (0, 1).

26



Published as a conference paper at ICLR 2025

D.2 RESULTS

D.2.1 COMPARISON OF KNOWN BOUNDS

We evaluate the performance of the ACRE algorithm on synthetic regression datasets drawn from the
two distributions described earlier, with n = 4000 samples and d = 50 covariates. Specifically, we
compare the upper bounds produced by ACRE, denoted Uk, with the state-of-the-art upper bounds by
Freund and Hopkins, as well as the lower bounds produced by AMIP and KZC (see Figure 3).

As shown in the results, ACRE produces significantly tighter bounds than Freund and Hopkins across
both normally distributed and power-law distributed covariates. Furthermore, ACRE’s upper bounds
closely approach the lower bounds from AMIP and KZC for values of k up to removal effects that
push the regression outside the 2σ confidence interval2 k2σ .
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(a) Normally distributed covariates.
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(b) Power-law distributed covariates.

Figure 3: Comparison of the upper bounds Uk produced by the ACRE algorithm with the state-of-
the-art bounds from Freund and Hopkins and the lower bounds from AMIP and KZC. Each dataset
consists of n = 4000 samples and d = 50 covariates, with covariates drawn i.i.d. from either a
normal distribution (Figure 3a) or a power-law distribution (Figure 3b). For each figure, we plot two
versions of the ACRE algorithm: one that uses RTI as its MSN bounding component in the backend,
and another that uses a spectral algorithm. On these synthetic datasets, the spectral bound slightly
outperforms the RTI backend, but has a longer runtime.

D.2.2 SCALING OF kthreshold WITH n

In this experiment, we aim to analyze how kthreshold (the maximal value of k for which the bounds of
ACRE are close to tight) scales with the number of samples n.

We fix the dimension d = 20 and draw nmax = 5000 samples with covariates drawn i.i.d. from either
a normal or a power-law distribution. The ACRE algorithm is then run on a series of regressions,
corresponding to subsets of this dataset, with the number of samples varying from n = 7d to
n = nmax.

For each regression, we compute the ACRE upper and lower bounds, Uk and Lk, and use a heatmap
to visualize the ratio Uk

Lk
as a function of k and the sample size n. Contour plots indicate the regions

where Uk

Lk
falls below specific thresholds (e.g., 1.1), highlighting the values of k for which our bounds

are close to tight.

As shown in Figure 4, for both normally and power-law distributed covariates, kthreshold appears to
scale approximately linearly with n. This is consistent with the scaling predicted by Theorem 1.2,

2ksign is not an appropriate metric for this experiment, as it is directly influenced by our choice of the ground
truth model.
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which gives:

kthreshold = Ω̃

(
min

{
n√
d
,
n2

d2

})
≈ n√

d
.
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Figure 4: The ratio Uk

Lk
between the upper and lower bounds produced by ACRE for synthetic linear

regressions with covariates drawn from either a normal distribution (Figure 4a) or a power-law
distribution (Figure 4b). Heatmaps show the tightness of the bounds as a function of k and the
number of samples n. Contour plots indicate regions where Uk

Lk
is below specific thresholds (e.g., 1.1),

highlighting the scaling of kthreshold. In both cases, kthreshold scales roughly linearly with n, consistent
with the theoretical prediction of Theorem 1.2.

D.2.3 SCALING OF kthreshold WITH d

Finally, we examine how kthreshold (the maximal value of k for which the bounds of ACRE are close
to tight) scales with the dimension d of the regression for a fixed number of samples n.

In this experiment, we fix the number of samples to n = 4000 and sample a regression with n
samples and dmax = 500 features, where the covariates are drawn i.i.d. from either a normal or a
power-law distribution. We then vary d by limiting each regression to subsets of the features, varying
the dimension from d = 5 to d = dmax.

Theoretically, we expect kthreshold to scale as:

kthreshold = Ω̃

(
min

{
n√
d
,
n2

d2

})
,

which predicts two regimes:

• For relatively small d, the first term dominates and we have kthreshold ≈ n√
d

.

• For larger d, the second term dominates and we have kthreshold ≈ n2

d2 .
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Figure 5: The ratio Uk

Lk
between the upper and lower bounds produced by ACRE for synthetic linear

regressions with covariates drawn from either a normal distribution (Figure 5a) or a power-law
distribution (Figure 5b). Contour plots illustrate the values of kthreshold for some given thresholds,
as a function of the dimension d. For relatively small d (right side of the plot), kthreshold scales
approximately as n√

d
. Conversely, for larger d (left side of the plot), kthreshold decays faster, consistent

with the n2

d2 scaling predicted by our theoretical analysis.

E TIGHTNESS OF ACRE

In this section, we will prove that the ACRE algorithm produces tight bounds on “well-behaved”
distributions, proving Theorem 1.2.

E.1 PRELIMINARIES

Throughout this section, we use Õ/Θ̃/Ω̃ to denote big-O statements that hold up to a factor of
polylog(n). We will make no attempt to optimize the polylog(n) factors in this analysis.

Moreover, we say that a term η is negligible if η−1 = nω(1) is superpolynomial in n. Finally, we say
an event happens with very high probability if it happens with probability 1− η for negligible η.

E.2 MAIN RESULT

Our main goal for this section will be to prove that ACRE produces good bounds with high probability
when the regression data is drawn from a well behaved distribution:
Theorem E.1 (ACRE Bounds are Tight on Well-behaved Data). Let X ∈ Rn×d, Y ∈ Rn be a linear
regression problem such that the covariates (i.e., the rows of X) are drawn iid from a well-behaved
distribution Xi ∼ X and the outcomes Y are drawn iid from Y ∼ N (Xβgt, In).

Then, for any axis e ∈ Sd−1, with very high probability, the upper and lower bounds produced by
ACRE on this regression are close to tight

Uk

Lk
= 1 + Õ

(
d+ k

√
d

n

)
for all k < kthreshold, where kthreshold = Θ̃

(
min

{
n√
d
, n2

d2

})
In particular, if the samples Xi, Yi are drawn iid from some normal distribution N (0,Σ′) (for some
covariance Σ′ ∈ R(d+1)×(d+1)), or if the covariates Xi are drawn iid from the hypercube or unit
sphere and the target variable Yi ∼ ⟨βgt, Xi⟩+N (0, σR) are drawn iid from a normal distribution
around some ground truth model, then Theorem E.1 holds for them. Therefore, Theorem 1.2 follows
from Theorem E.1.
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Our goal for the rest of this section will be to prove Theorem E.1.

E.3 PROOF SKETCH

First, we note that if n = Õ(d), Theorem E.1 holds vacuously, as kthreshold < 1. Therefore, we
limit our analysis to the cases where n > nthreshold for some nthreshold = d × polylog(n) (the exact
power of this polylogarithmic factor will depend on the specific constant C in the exponential decay
assumption in Definition 1.

To prove Theorem E.1, we first define a set of condition under which we can prove that ACRE will
produce good bounds:
Definition 2 (ACRE-friendly). Let X,Y be the covariates and target variable of a regression.
Let Σ = X⊺X denote the unnormalized empirical covariance of the covariates, and let R =
Y −XΣ−1XTY denote the residuals.

We say that this regression is ACRE-friendly for direction e ∈ Rd with k removals and parameters
P1, P2, P3, P4, P5 ≥ 0 if

1. The covariates are bounded in Mahalanobis distance maxi∈[n] X
⊺
i Σ

−1Xi ≤ P1
d
n .

2. The inner products of samples are bounded maxi ̸=j∈[n] X
⊺
i Σ

−1Xj ≤ P2

√
d

n .

3. The residuals are bounded maxi∈[n] R
2
i ≤ P3σ

2
R, where σR =

√
1
n

∑
i∈[n] R

2
i .

4. The inner products between the covariates and the axis of interest are bounded
maxi∈[n]

(
e⊺Σ−1Xi

)2 ≤ P4

n

∑
i∈[n]

(
e⊺Σ−1Xi

)2
= P4

n e⊺Σ−1e.

5. Let αi = e⊺Σ−1XiRi be the AMIP influence scores. We require that the sum over the k
largest influence scores is at least

ak = max
T∈([n]

k )

{∑
i∈T

αi

}
≥ 1

P5
σZσRk

where σZ =
√

1
n

∑
i∈[n] Z

2
i , for Zi = e⊺Σ−1Xi.

When P1, . . . , P5 are at most polylogarithmic in n, we say that the regression is ACRE-friendly.

Our proof of Theorem E.1 will have two main components. The first and smaller portion of the
proof will be to show that the bounds produced by ACRE are close to tight when a regression is
ACRE-friendly. It should not be surprising that Definition 2 is sufficient condition for producing
good bounds with ACRE, since ACRE essentially checks a slightly more robust version of these
conditions.
Claim E.2 (ACRE bounds are nearly tight on ACRE-friendly regressions). Let X,Y, e be an ACRE-
friendly regression with parameters P1, . . . , P5 for all k ≤ k0. Then, there exists kthreshold =

Θ
(

min
{

n√
d
, n2

d2
, k0

}
/poly (P1, . . . , P5)

)
such that for all k ≤ kthreshold, the bounds Lk, Uk produced by

ACRE satisfy
Uk

Lk
≤ 1 +O

(
d+ k

√
d

n
× poly (P1, . . . , P5)

)
The second and longer portion of our proof will be devoted to showing that well-behaved distributions
yield ACRE-friendly regressions with high probability.
Claim E.3 (Well-behaved distributions yield ACRE-friendly regressions with high probability). Let
n, d be as above, and let X,Y be as in Theorem E.1.

Then, for any axis e ∈ Sd−1, with very high probability, the regression X,Y is ACRE-friendly for all
k ≤ k0, for k0 = Ω̃(n).

Combined, Claims E.2 and E.3 yield Theorem E.1.
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E.4 SYMMETRIES

Before proceeding to the proofs of Claims E.2 and E.3, we note that our definitions of well-behaved
distributions and of ACRE-friendly regressions are normalized in a way that permits some symmetries.
Indeed, it is easy to see that for any invertible matrix L ∈ Rd×d and positive scalars αe, αy ∈ R+,
a regression X,Y, e is well-behaved / ACRE-friendly if and only if the regression X̃ = XL, Ỹ =
αyY, ẽ = αeLe is well-behaved / ACRE-friendly. Moreover, such a reparametrizations also has no
effect on the robustness of the regression, so we may apply this symmetry on the input and output of
Theorem E.1 or Claims E.2 and E.3.

For Theorem E.1 or Claim E.3, we may apply this symmetry with L = Σ−1/2, where Σ is the ground
truth covariance of the distribution X , resulting in a distribution with covariance identity. Note that
this renormalization is not the same as the renormalization process in the ACRE algorithm. In the
ACRE algorithm, we renormalize by the empirical covariance, whereas the renormalization above
is by the ground-truth covariance. One of the steps of our analysis will be to show that when the
regression is drawn from a well-behaved distribution, the two are close to one another with high
probability, but this is not immediate.

For the proof of Claim E.2, we renormalize the samples according to their empirical covariance. This
would result in a set of samples X such that Σ∗ = X⊺X = I . Moreover, we use the αY symmetry
to ensure that the residuals to have standard deviation σR = 1 and the αe symmetry to ensure that e
has norm 1.

E.5 PROOF OF CLAIM E.2

After this renormalization step above, the conditions on the normalized regression simplify to:

1. The covariates are bounded in ℓ2 norm maxi∈[n] ∥Xi∥2 ≤ P1
d
n

2. The inner products of samples are bounded maxi ̸=j∈[n] ⟨Xi, Xj⟩ ≤ P2

√
d

n

3. The residuals are bounded maxi∈[n] R
2
i ≤ P3.

4. The inner products between the covariates and the axis of interest are bounded
maxi∈[n] ⟨e,Xi⟩2 ≤ P4

n

5. Let αi = ⟨e,Xi⟩Ri be the AMIP influence scores. We require that the sum over the k
largest influence scores is at least

ak = max
T∈([n]

k )

{∑
i∈T

αi

}
≥ 1

P5
× k√

n

We prove Claim E.2, working with the normalized regression. Recall that ACRE produces its bounds
by combining RTI bounds on the following Gram matrices:

1. GX⊗X whose entries are the squared entries of the Gram matrix GX of the original covari-
ates. By our assumptions on the maximal norm and inner products of covariates, we know
that the diagonal entries of this matrix are bounded by d2

n2P
2
1 and its off-diagonal entries are

bounded by d
n2P

2
2 .

2. GXR whose entries are inner products between covariates multiplied by the product of two
residuals. Therefore, the diagonal entries of this matrix are bounded (in absolute value) by
d
nP1P3 and its off-diagonal entries by

√
d

n P2P3.
3. and GXZ whose entries are inner products between covariates, rescaled by the product

of their weights on the axis of interest e. Therefore, its diagonal entries are bounded (in
absolute value) by d

n2P1P4 and its off-diagonal entries by
√
d

n2 P2P4.

Note that the output of the RTI algorithm is an upper bound on the resulting MSN problem. The
output of the RTI algorithm squared is always equal to the sum of k diagonal entries of the Gram
matrix plus fewer than k2 off-diagonal entries. Therefore, we have:

RTI Bound ≤
√
k × Largest Diagonal Entry + k2 × Largest Off-Diagonal Entry (19)
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The X ⊗X Term Let MX⊗X denote the MSN-bound obtained by running the RTI algorithm on
the GX⊗X . Combining equation (19) with our knowledge of the diagonal and off-diagonal entries of
GX⊗X , we clearly have:

MX⊗X ≤
√

k
d2

n2
P 2
1 + k2

d

n2
P 2
2

Therefore, for all k ≤ kthreshold = min
{

n√
dP22

, n2

d2P 2
1 4

}
, MX⊗X is at most

MX⊗X ≤
√

1

2
< 1

The XR and XZ Terms Similarly, let MXR and MXZ denote the MSN bounds obtained by the
RTI algorithm on GXR and GXZ respectively. As before, we combine equation (19) with our bounds
on the diagonal and off-diagonal terms of GXR and GXZ to show that

MXR ≤

√
k
d

n
P1P3 + k2

√
d

n
P2P3 ≤

√
k
d

n
P1P3 +

√
k2
√
d

n
P2P3

and

MXZ ≤

√
k
d

n2
P1P4 + k2

√
d

n2
P2P4 ≤

√
k
d

n2
P1P4 +

√
k2
√
d

n2
P2P4

Wrapping Up Therefore, for all k ≤ kthreshold, we have

bk =
1

1−MX⊗X
MXRMXZ ≤

√
2P3P4√
2− 1

×

(
kd

n3/2
P1 + 2

k3/2d3/4

n3/2

√
P1P2 +

k2
√
d

n3/2
P2

)
= O

(
kd+ k2

√
d

n3/2
× poly (P1, . . . , P4)

)
Finally, applying the 5th condition, we have

Uk

Lk
=

ak + bk
ak − bk

= 1 +O

(
bk
ak

)
= 1 +O

(
d+ k

√
d

n
× poly (P1, . . . , P5)

)
completing the proof of Claim E.2.

E.6 PROOF OF CLAIM E.3

We now move on to the main portion of the proof which will be devoted to showing that when
the covariates Xi ∼ X are drawn from a well-behaved distribution and the target variable Yi ∼
N(X⊺

i βgt, 1) are drawn from a normal distribution around some ground truth linear model, the
resulting regression is ACRE-friendly with very high probability (i.e., to prove Claim E.3). Recall
that as we showed in Section E.4, it suffices to prove this result for the case where the ground-truth
covariance of the distribution X is equal to identity.

Main Challenge and Proof Strategy The main challenge will be that the requirements of Defini-
tion 2 (ACRE-friendly) require statements like v⊺Σ−1w = small, where v and w are related to the
samples of the regression (e.g., v, w might be two samples Xi, Xj) and from here on out, Σ = X⊺X
denotes the unnormalized empirical covariance (recall that we normalized the ground truth covariance
to be the identity).

Because of our assumption that n > d× polylog(n), we can use matrix Bernstein to prove that the
empirical covariance is close to its expectation Σ ≈ nI , but even for moderate dimensions d, our
bounds on the overall error of this approximation (i.e., ∥Σ− nI∥) would not be strong enough to
prove Claim E.3. For any fixed v, w ∈ Rd that do not depend on the sample distributions, we can
easily prove sufficiently strong concentration bounds on v⊺Σ−1w. However, the v, w pairs for which
we will need to prove our concentration bounds do depend on the samples, creating the potential for
an alignment between the large eigenvectors of Σ− nI and this pair.

Our proof strategy will be to expand Σ−1 into terms that depend on v, w and terms that do not. The
terms that do not depend on v, w can be tightly bounded using simple concentration bounds, and the
terms that do depend on v, w will be so small to begin with that we can bound them very loosely
using the matrix Bernstein inequality (see Lemma E.4).
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E.6.1 MATRIX BERNSTEIN INEQUALITY

Throughout our analysis we will often make use of the matrix Bernstein inequality:

Lemma E.4 (Matrix Bernstein Tropp et al. (2015)). Let Z1, . . . , Zn be independently-distributed
random symmetric d × d matrices with mean E [Zi] = 0. Moreover, assume that ∥Zi∥ ≤ L and∥∥∥∑i∈[n] E

[
Z2
i

]∥∥∥ ≤ σ2, then

Pr

∥∥∥∥∥∥
∑
i∈[n]

Zi

∥∥∥∥∥∥ ≥ t

 ≤ 2d · exp
(
−t2/2

σ2 + Lt/3

)

In many cases however, our input will not directly fit the assumptions of this inequality and instead of
a statement of the form ∥Zi∥ ≤ L, we will only have a statement of the form Pr [∥Zi∥ ≥ L] ≤ δ for
some negligible probability δ. Therefore it will be useful for us to have an extension of this theorem
to cases when the assumption fails, but with a very small probability:

Lemma E.5 (Approximate Matrix Bernstein). Let Z1, . . . , Zn be independently-distributed random
symmetric d× d matrices with mean E [Zi] = 0. Moreover, assume that for all i, Pr [∥Zi∥ ≥ L] ≤ δ

and
∥∥E [Z2

i

]∥∥ ≤ τ2, and that
∥∥∥∑i∈[n] E

[
Z2
i

]∥∥∥ ≤ σ2, then

Pr

∥∥∥∥∥∥
∑
i∈[n]

Zi

∥∥∥∥∥∥ ≥ t+ nτ
√
δ

 ≤ 2d · exp
(
−t2/2

σ2 + Lt/3

)
+ nδ

Proof of Lemma E.5. Let Sd =
{
Z ∈ Rd×d

∣∣Z = ZT
}

denote the space of symmetric real valued
d× d matrices.

Consider the random variable ζi = Zi × 1∥Zi∥≤L. At first it might seem like we can directly apply
the matrix Bernstein inequality to these new variables, and then use the fact that Zi = ζi for all i w.p.
≥ 1− nδ.

The issue is that we no longer know that these ζi maintain the other assumptions of the matrix
Bernstein inequality. In particular, we will bound ∥E [ζi]∥ and

∥∥∥∑i∈[n] E
[
ζi

2
]∥∥∥ from above.

Let fi denote the probability density function of Zi, and consider

E [ζi] = E [ζi]− E [Zi] =

∫
∥Z∥>L

Zfi(Z)

Let v, w ∈ Sd−1 be any two points on the unit sphere. Using the CS inequality, we have

v⊺E [ζi]w =

∫
∥Z∥>L

v⊺Zwfi(Z) =

∫
Z∈Sd

1∥Z∥>Lv
⊺Zwfi(Z) ≤

√∫
Z∈Sd

1∥Z∥>Lfi(Z)×

√∫
Z∈Sd

(v⊺Zw)
2
fi(Z)

The first term in the RHS is bounded by√∫
Z∈Sd

1∥Z∥>Lfi(Z) =
√
Pr [∥Zi∥ ≥ L] ≤

√
δ

For the latter term, we use the CS inequality again:√∫
Z∈Sd

(v⊺Zw)
2
fi(Z) ≤

√∫
Z∈Sd

∥Zv∥2 ∥w∥2 fi(Z) =

√∫
Z∈Sd

v⊺Z2vfi(Z) =
√
v⊺E [Z2

i ]v ≤ τ

Therefore
∥E [ζi]∥ ≤ τ

√
δ
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Finally, we bound the change in the variance of these variables.

Cov (ζi) = E
[
ζ2i
]
− E [ζi]

2 ⪯ E
[
ζ2i
]
⪯ E

[
Z2
i

]
⇒

∥∥∥∥∥∥
∑
i∈[n]

Cov (ζi)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
i∈[n]

E
[
Z2
i

]∥∥∥∥∥∥ ≤ σ2

Therefore, we may apply the matrix Bernstein inequality (Lemma E.4) on the matrices zi = ζi−E [ζi]
to obtain the bound

Pr

∥∥∥∥∥∥
∑
i∈[n]

ζi

∥∥∥∥∥∥ ≥ t+ nτ
√
δ

 ≤ Pr

∥∥∥∥∥∥
∑
i∈[n]

ζi −
∑
i∈[n]

E [ζi]

∥∥∥∥∥∥ ≥ t

 ≤ 2d · exp
(
−t2/2

σ2 + Lt/3

)
,

yielding the main claim.

E.6.2 A USEFUL COROLLARY OF LEMMA E.5

Recall that we defined a “well-behaved distribution” to be a distribution whose tails decay rapidly
when projected on any direction. It will be beneficial to our use-case to work with a more relaxed
condition on the decay of these tails, by allowing an additional poly(n) factor. Note that any
well-behaved distribution is clearly also almost well-behaved.

Definition 3. We say that a mean-zero distribution X on Rd is almost well-behaved with respect to
the scaling parameter n, if it has exponentially decaying tails in the sense that

∃C > 0 ∀v ∈ Sd−1, t > 0 Pr
X∼X

[∣∣∣〈v,Σ−1/2X
〉∣∣∣ > t

]
≤ poly(n)× exp

(
−Ω

(
tC
))

where
Σ = E

X∼X
[XX⊺] = Covariance(X )

In the previous section, we proved a generalisation of the matrix Bernstein inequality that can deal
with a small probability that the norm bound assumption of the Bernstein inequality is violated.
A corollary of this result is that almost well-behaved distributions are closed to summation over
polynomially many iid samples. More concretely:

Lemma E.6. LetX be a distribution that is almost well-behaved with respect to the scaling parameter
n. Let k = poly(n) and let X1, . . . , Xk ∼ X be iid random variables in Rd, drawn from X .

Then, the distribution of their empirical mean (i.e., of the variable X̂ = 1
k

∑
i∈[k] Xi) is also almost

well-behaved.

Proof of Lemma E.6. Let X̂ denote the distribution of X̂ .

First, we note that from linearity of expectation E
[
X̂
]
= 1

k

∑
i∈[k] E [Xi] = 0, so X̂ is indeed a

mean zero distribution. Let Σ = EX∼X [XX⊺]. Again, using linearity of expectation, we have

Σ̂ = E
X∼X̂

[XX⊺] =
1

k2

∑
i∈[k]

Σ =
1

k
Σ

Finally, we need to show that the tails of X̂ are bounded. Let v ∈ Sd−1 be any vector on the unit
sphere. From our assumption that X is well-behaved, for any t > 0, we have

Pr
X∼X

[∣∣∣〈v,Σ−1/2X
〉∣∣∣ ≥ t

]
≤ poly(n)× exp

(
−Ω

(
tC
))

Now, consider

Z =
〈
v, Σ̂−1/2X̂

〉
=

1√
k

∑
i∈[k]

〈
v,Σ−1/2Xi

〉
.
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We would like to bound the probability that |Z| is greater than some threshold T .

Let Zi =
〈
v,Σ−1/2Xi

〉
. These are iid random variables and our goal is to prove a concentration

bound on their sum, so we may try to use Bernstein-type inequalities to do so.

Since E [Xi] = 0 and E [XiX
⊺
i ] = Σ, we have that E [Zi] = 0 and E [Zi]

2
= 1. Moreover, from

the assumption that X is well behaved, we have concentration bounds on these individual variables.
Indeed, for any t, we have that

δt
def
= Pr [|Xi| ≥ t] = poly(n)× exp

(
−Ω

(
tC
))

Therefore, from the d = 1 dimensional case of the approximate matrix Bernstein inequality
(Lemma E.5), we have that

Pr
[∣∣∣〈v, Σ̂−1/2X̂

〉∣∣∣ ≥ τ + k
√

δt

]
≤ exp

(
−

1
2τ

2k

k + 1
3 tτ
√
k

)
+ k × poly(n)× exp

(
−Ω

(
tC
))

Setting t =
√

T
2 , we consider two regimes. When t < tthreshold = Θ

(
log(n)1/C

)
, the bound

Pr
[∣∣∣〈v, Σ̂−1/2X̂

〉∣∣∣ ≥ T
]
≤ poly(n)× exp

(
−Ω

(
tC
))

holds vacuously, since the RHS is greater than 1 and the LHS is a probability.

When t ≥ tthreshold, we can ensure that δt < 1/k2 = 1/poly(n). Therefore in this case for τ = t2,
we have

Pr
[∣∣∣〈v, Σ̂−1/2X̂

〉∣∣∣ ≥ T
]
≤ Pr

[∣∣∣〈v, Σ̂−1/2X̂
〉∣∣∣ ≥ τ + k

√
δt

]
≤ exp

(
−Ω

(
τ1/2

))
+k×poly(n)×exp

(
−Ω

(
τC/2

))
completing our proof of Lemma E.6.

E.6.3 RENORMALIZATION

Our goal in this portion of the proof will be to show that the empirical covariance matrix Σ = X⊺X
is not far from the expectation Σgt = EX∼Xn [X⊺X] = nI . In particular, we prove the following
claim:
Claim E.7. Let X1, . . . , Xn ∼ X be samples drawn iid from an almost well-behaved distribution X
with covariance identity. Let Σ =

∑
i∈[n] XiX

⊺
i denote the unnormalized empirical covariance, and

set Σgt
def
= E [Σ] = nI . Then,

With very high probability, ∥Σ− Σgt∥ < Õ
(√

nd+ d
)
= o(n).

Moreover, for all i, we have
∥∥∥E [∥Xi∥2 XiX

⊺
i

]∥∥∥ = O (d) and with very high probability ∥Xi∥2 =

Õ (d).

Proof of Claim E.7. We prove Claim E.7 using our adaptation of the matrix Bernstein inequality
(see Lemma E.5). We will apply this inequality for the Zi = XiX

⊺
i − Id, allowing us to obtain

probabilistic bounds on

Σ− Σgt =

n∑
i=1

Zi

To use the approximate matrix Bernstein, we begin by proving a bound on the norm of maxi ∥Zi∥
that holds with probability 1− 1

superpoly(n) . Note that

∥Zi∥ ≤ ∥XiX
⊺
i ∥+ ∥I∥ = ∥Xi∥2 + 1 =

∑
j∈[d]

⟨ej , Xi⟩2
+ 1
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Next, we use the fact that Xi is drawn from a well-behaved distribution X to prove strong tail
bounds on the distribution of its norm. In particular for any primary axis ej (for j ∈ [d]), we have
⟨ej , Xi⟩ ≤ polylog(n) with very high probability. Therefore, using the union bound over all i, j, we
also have that with very high probability

max
i∈[n]
j∈[d]

{
⟨ej , Xi⟩2

}
≤ polylog (n) .

Therefore, with very high probability

∥Zi∥ ≤ Õ (d) (20)

Next, we consider the second moment of Zi.

E
[
Z2
i

]
= E

[
∥Xi∥2 XiX

⊺
i − 2XiX

⊺
i + I

]
= E

[
∥Xi∥2 XiX

⊺
i

]
− I

Fix some pair of primary axis es and unit vector v ∈ Sd−1. Recall that by our definition of X being a
well-behaved distribution, we have an exponentially decaying concentration bound on the projection
of our samples onto either of these axes

Pr
X∼X

[max {|⟨X, es⟩|, |⟨X, v⟩|} ≥ t] = exp
(
−Ω

(
tC
))

Therefore, a similar exponential tail bound also holds on the square of the product of these projections

Pr
X∼X

[
|⟨X, es⟩|2|⟨X, v⟩|2 ≥ t

]
= exp

(
−Ω

(
tC/4

))
In particular, we can conclude the far milder bound that the expectation of the squared product of
these projections has bounded mean:

E
X∼X

[
|⟨X, es⟩|2|⟨X, v⟩|2

]
=

∫
t∈[0,∞)

Pr
X∼X

[
|⟨X, es⟩|2|⟨X, v⟩|2 ≥ t

]
≤
∫
t∈[0,∞)

exp
(
−Ω

(
tC/4

))
= O(1)

(21)

Note that equation (21) is no longer a concentration bound that holds with high probability, but a
bound on the expectation of a random variable, that holds for any such pair v, es. In particular, we
have

max
v,es∈Sd−1

{
E

X∼X

[
|⟨X, es⟩|2|⟨X, v⟩|2

]}
= O(1)

Therefore, for any v ∈ Sd−1,

v⊺E
[
∥Xi∥2 XiX

⊺
i

]
v = E

[
⟨v,Xi⟩2 ∥Xi∥2

]
= E

∑
s∈[d]

⟨v,Xi⟩2 ⟨es, Xi⟩2
 =

∑
s∈[d]

E
[
⟨v,Xi⟩2 ⟨es, Xi⟩2

]
= O(d)

and since this holds for all v, it is also true when maximizing over the unit sphere∥∥∥E [∥Xi∥2 XiX
⊺
i

]∥∥∥ = max
v∈Sd−1

{
v⊺E

[
∥Xi∥2 XiX

⊺
i

]
v
}
= O(d)

Therefore ∥∥∥∥∥∥
∑
i∈[n]

E
[
Z2
i

]∥∥∥∥∥∥ ≤
∑
i∈[n]

∥∥E [Z2
i

]∥∥ = O(nd) (22)

Combining equations (20) and (22) with Lemma E.5 yields Claim E.7
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E.6.4 MAXIMAL NORM

We now proceed to prove that each of the conditions required for the regression to be well-
behaved occurs with very high probability. The first (and easiest to prove) is the condition that
maxi∈[n] X

⊺
i Σ

−1Xi is bounded.

Claim E.8. Let X1, . . . , Xn ∼ X be samples drawn iid from an almost well-behaved distribution X
with covariance identity. Let Σ =

∑
i∈[n] XiX

⊺
i denote the unnormalized empirical covariance, and

set Σgt
def
= E [Σ] = nI .

Then, with very high probability

max
i∈[n]

{
X⊺

i Σ
−1Xi

}
= Õ

(
d

n

)

Proof of Claim E.8. Let λ denote the spectrum of a matrix. In the proof of Claim E.7, we already
showed that with very high probability ∥Σ− Σgt∥ = o(n) = o (minλ (Σgt)). When this holds, we
also have

λ
(
Σ−1

)
⊆ (1± o(1))× 1

n
.

Moreover, the second part of Claim E.7 states that with very high probability maxi∈[n] ∥Xi∥2 =

Õ(d).

Combining these results, we have that with very high probability

max
i∈[n]

{
X⊺

i Σ
−1Xi

}
≤ maxλ

(
Σ−1

)
×max

i∈[n]

{
∥Xi∥2

}
= Õ

(
d

n

)

E.6.5 BOUNDED INNER PRODUCTS

For the next step of our proof, we show that the second condition of ACRE-friendliness of the
regression holds with very high probability. In particular, we will show that

Claim E.9. Let X1, . . . , Xn ∼ X be samples drawn iid from an almost well-behaved distribution X
with covariance identity. Let Σ =

∑
i∈[n] XiX

⊺
i denote the unnormalized empirical covariance, and

set Σgt
def
= E [Σ] = nI .

Then, with very high probability

max
i̸=j∈[n]

{∣∣X⊺
i Σ

−1Xj

∣∣} = Õ

(√
d

n

)
.

Proof of Claim E.9. Denote A = Σ−XiX
⊺
i = Σ[n]\{i}, and v = Xi. Note that from Claim E.7, we

know that with very high probability v⊺A−1v ≤ ∥Xi∥2
∥∥A−1

∥∥ = Õ
(
d
n

)
= o(1).

Therefore, in this regime we may apply the Sherman-Morrison formula to show that

Σ−1 = (A+ vv⊺)
−1

= A−1 − A−1vv⊺A−1

1 + v⊺A−1v⊺
.

Note that neither A nor Xj depend on Xi, so from our assumption that X is well behaved, with very
high probability ∣∣X⊺

i A
−1Xj

∣∣ = Õ
(∥∥A−1Xj

∥∥) = Õ

(√
d

n

)
.
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Similarly, for our target expression, with very high probability,∣∣X⊺
i Σ

−1Xj

∣∣ = ∣∣∣∣X⊺
i

(
A−1 − A−1XiX

⊺
i A

−1

1 +X⊺
i A

−1X⊺
i

)
Xj

∣∣∣∣ =
=

(
1− X⊺

i A
−1Xi

1−X⊺
i A

−1Xi

) ∣∣X⊺
i A

−1Xj

∣∣ = Õ

(√
d

n

)

E.6.6 PROJECTION ON THE e AXIS

For the next property of well-behaved regressions, we will want to show that with very high probability
e⊺Σ−1Xi is bounded for all i. Note that from the exponential decay assumption due to X being
well-behaved would suffice to give a good bound on e⊺Σ̂−1Xi, but as before, the challenge will be to
show that Σ−1 doesn’t rotate Xi onto e.
Claim E.10. Let X1, . . . , Xn ∼ X be samples drawn iid from an almost well-behaved distribution
X with covariance identity. Let Σ =

∑
i∈[n] XiX

⊺
i denote the unnormalized empirical covariance,

and set Σgt
def
= E [Σ] = nI . Let e ∈ Sd−1 be any fixed vector independent of the Xi.

Then, with very high probability

∀i ∈ [n] e⊺Σ−1Xi =
e⊺Xi

n
± o

(
1

n

)
.

In particular, with very high probability

max
i∈[n]

∣∣〈Σ−1Xi, e
〉∣∣ = Õ

(
1

n

)
=

√
Õ

(
1

n

)
× e⊺Σ−1e

Proof of Claim E.10. As in the proof of Claim E.9, let v = Xi and A = Σ−vv⊺. Moreover, because
with very high probability v⊺A−1v = o(1) < 1, we may apply the Sherman-Morrison formula

Σ−1 = (A+ vv⊺)
−1

= A−1 − A−1vv⊺A−1

1 + v⊺A−1v⊺
.

Therefore, with high very high probability,

e⊺Σ−1Xi = e⊺A−1Xi −
e⊺A−1XiX

⊺
i A

−1X⊺
i

1 +X⊺
i A

−1Xi
=

= e⊺Σ−1
gt Xi + e⊺

(
A−1 − Σ−1

gt

)
Xi −

e⊺A−1XiX
⊺
i A

−1X⊺
i

1 +X⊺
i A

−1Xi

From Claim E.7, we know that with very high probability∥∥A−1 − Σ−1
gt

∥∥ ≤ 1

2n2
∥A− Σgt∥ = Õ

(
d+
√
nd

n2

)

X⊺
i A

−1Xi ≤ ∥Xi∥2
∥∥A−1

∥∥ = Õ

(
d

n

)
.

Therefore, using the fact that Xi is well-behaved and independent of e and A, we have that with very
high probability∣∣e⊺Σ−1Xi − e⊺Σ−1

gt Xi

∣∣ ≤ ∣∣e⊺ (A−1 − Σ−1
gt

)
Xi

∣∣+∣∣∣∣e⊺A−1XiX
⊺
i A

−1X⊺
i

1 +X⊺
i A

−1Xi

∣∣∣∣ = Õ

(
d+
√
nd

n2

)
= o

(
1

n

)
.
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E.6.7 BOUNDED RESIDUALS

For the next step of our analysis we will show that the residuals are bounded with very high
probability. Recall that under the assumptions of Claim E.3, we assume that the labels are drawn
from the distribution

Y = Xβgt + ζ ∼ Xβgt +N
(
0⃗, In

)
Therefore, we clearly have that with very high probability maxi∈[n] |ζi| ≤ log(n) = Õ(1) as required.
The issue is that the residuals of the regression are not necessarily equal to ζ.

Recall that the residuals are equal to

R
def
= Y −XΣ−1X⊺Y = ζ −XΣ−1X⊺ζ

Claim E.11. With very high probability

∀i |Ri − ζi| = o(1)

Proof of Claim E.11. Fix some index i ∈ [n].

Ri = ζi −X⊺
i Σ

−1X⊺ζ = ζi −
∑
j

X⊺
i Σ

−1Xjζj = ζi − ζiX
⊺
i Σ

−1Xi −
∑
j ̸=i

ζjX
⊺
i Σ

−1Xj (23)

Therefore, from Claim E.8, we have

|Ri − ζi| =

∣∣∣∣∣∣
∑
j ̸=i

ζjX
⊺
i Σ

−1Xj

∣∣∣∣∣∣+ Õ

(
d

n

)
=

∣∣∣∣∣∣
∑
j ̸=i

ζjX
⊺
i Σ

−1Xj

∣∣∣∣∣∣+ o(1)

This leaves us with the task of analyzing the term

X⊺
i Σ

−1

∑
j ̸=i

ζjXj

 =
∑
j ̸=i

Zj

where Zj = X⊺
i Σ

−1Xjζj . To bound this term, we view the process of generating the samples as first
generating the covariates Xi, and then after fixing some values for the Xi, it generates the errors ζj .

In other words, we will show that with very high probability over the Xi

Pr
ζj∼N (0,1)

∣∣∣∣∣∣
∑
j ̸=i

Zj

∣∣∣∣∣∣ > o(1)

 <
1

super-poly(n)
.

In particular, with very high probability over the covariates, we have

∀j ̸= i
(
X⊺

i Σ
−1Xj

)2
= Õ

(
d

n2

)
⇒

∑
j∈[n]\{i}

(
X⊺

i Σ
−1Xj

)2
= Õ

(
d

n

)
.

Therefore, fixing the covariates Xi, and viewing
∑

j ̸=i Zj as a random variable dependent on the
randomness of the errors ζj , we have

∑
j ̸=i

Zj ∼ N

0,
∑

j∈[n]\{i}

(
X⊺

i Σ
−1Xj

)2 = N
(
0, Õ

(
d

n

))
,

yielding the claim.
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E.6.8 LARGE INFLUENCE SCORES

For the final step of our proof of Claim E.3, we will show that with very high probability, there are
many samples in the regression that have relatively high AMIP influence scores.

Claim E.12. Let αi = e⊺Σ−1XiRi denote the AMIP influence score of the ith sample. Then with
very high probability, there are is a set T0 ⊆ [n] of least k0 = Ω̃(n) “influential samples” – i.e., such
that ∀i ∈ T αi ≥ 1

10n .

Proving Claim E.12 will also conclude our proof of Claim E.3, as this will show that all conditions
required for a regression to be well-behaved are fulfilled with very high probability.

Proof of Claim E.12. To prove Claim E.12 we first show that a very large number of samples must
have a relatively high inner product with the axis of interest. In other words, we will show that with
very high probability ∣∣∣∣{i∣∣∣∣∣∣e⊺Σ−1Xi

∣∣ ≥ 1

2n

}∣∣∣∣ = Ω̃(n) (24)

To prove equation (24), note that:

• e⊺Σ−1e = 1±o(1)
n (this follows immediately from Claim E.7).

•
∑

i∈[n]

∣∣e⊺Σ−1Xi

∣∣2 =
∑

i∈[n] e
⊺Σ−1XiX

⊺
i Σ

−1e = e⊺Σ−1e.

• In Claim E.10, we showed that wvhp ∀i
(
e⊺Σ−1Xi

)2 ≤ Õ
(
1
n

)
× e⊺Σ−1e.

Therefore, we must have at least Ω̃(n) samples with
∣∣e⊺Σ−1Xi

∣∣ ≥ 1
2n . Let i be the index of such a

sample. If sign
(
e⊺Σ−1Xi

)
×Ri ≥ 1

5 , then we will also have αi ≥ 1
10n .

In the proof of Claim E.11, we showed that wvhp |Ri − ζi| = o(1) for all i (where ζi = Yi −X⊺
i βgt

are the “ground truth residuals”, and are drawn iid from a normal distribution). In particular, wvhp
∀i |Ri − ζi| < 1

4 −
1
5 , so as long as sign

(
e⊺Σ−1Xi

)
ζi ≥ 1

4 , we have αi ≥ 1
10n .

But ζi is drawn iid from a normal distribution, so sign
(
e⊺Σ−1Xi

)
ζi ≥ 1

4 has constant probability
and is independent of Xi. Therefore, applying the Hoeffding-Chernoff bound, we can easily see
that wvhp at least a constant fraction of the Ω̃(n) samples for which

∣∣e⊺Σ−1Xi

∣∣ ≥ 1
2n also have

αi ≥ 1
10n , thus concluding our proof of Claims E.12 and E.3.

F TIGHTNESS OF OHARE

In the previous section, we proved Theorem E.1 which says that for “well-behaved” data, the ACRE
algorithm outputs nearly tight bounds on the removal effects for a range of removal set sizes k. In
this section, we will extend those results to the one-hot aware version of the algorithm – OHARE .

Theorem F.1 (OHARE Bounds are Tight on Well-behaved Data). Consider a linear regression from
a set of continuous features X ∈ Rn×d and a set of m dummy variables, representing a categorical
feature B1 ⊔ · · · ⊔Bm = [n], to a target variable Y .

For any fixed ε > 0, there exists ν ∈ polylog(n) such that:

If nj = |Bj | denote the number of samples that take the value j in the categorical feature, and for all
j ∈ [m], we have

nε + ν
√
d < nj < 0.49n ,

that the dimension of the continuous features d is at most d ≤ n4/5/ν, and that the continuous
features are then drawn iid from a well-behaved distribution Xi ∼ X independently of their value on
the categorical feature.
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And if the outcomes Y are drawn iid from a normal distribution around a linear model of the features

Yi ∼ µj(i)︸︷︷︸
categorical contribution

+ ⟨Xi, βgt⟩︸ ︷︷ ︸
continuos contribution

+N (0, 1)︸ ︷︷ ︸
error

,

for some unknown ground truth linear model (µ, βgt) ∈ Rm+d.

Then, for any axis e ∈ Sd−1, with very high probability, the upper and lower bounds produced by
OHARE on this regression are close to tight

Uk

Lk
= 1 +O

(
polyloglog(n)√

log(n)

)
for all k < kthreshold, where

kthreshold = Θ̃

(
min

{
n√
d
,
n2

d2
, n1−ε

})
.

Our goal for the rest of this section will be to prove Theorem F.1.

F.1 MAIN CHALLENGES AND PROOF STRUCTURE

Recall from Section F that the key idea of the OHARE algorithm is to analyse a process that is
equivalent to the regression with a one-hot encoding. In this alternative formulation of one-hot
controlled regression, we first split our samples into buckets Bj ⊆ [n] corresponding to each of the
potential values of the categorical feature, reaverage the samples in each bucket

X̃i = Xi − E
i′∈Bj(i)

[Xi′ ] ∈ Rd

Ỹi = Yi − E
i′∈Bj(i)

[Yi′ ] ∈ R

and perform a regression with just the reaveraged continuous features. The OHARE algorithm then
computes the same MSN bounds as the ACRE algorithm would, but on these reaveraged continous
features and combines them with terms corresponding to the effect a removal might have on the
reaveraging process.

Our proof of Theorem F.1 will follow a similar path. We will first prove a claim very similar to
Claim E.3 adapted to the OHARE case:
Claim F.2 (Well-behaved distributions yield well-behaved regressions with high probability after
reaveraging). Let n, d,m,X, Y be as in Theorem F.1.

Then, for any axis e ∈ Sd−1, with very high probability, the regression X̃, Ỹ is ACRE-friendly for all
k ≤ k0, for k0 = Ω̃(n1−ε).

Note that Claim F.2 does not follow immediately from the corresponding Claim E.3 for ACRE, since
the continuous features X̃ are no longer drawn iid from a well-behaved distribution as the reaveraging
step could have changed them and similarly the reaveraged labels Ỹ are not drawn iid from a normal
distribution around a linear combination of the continous features. The proof of Claim F.2 will follow
a very similar path to the proof of Claim E.3, but will also have to account for these additional
corrections.

Finally, we will prove that the additional corrections taken into account by OHARE will not change
the upper and lower bounds too much, yielding Theorem F.1.

F.2 PROOF OF CLAIM F.2

We begin by adapting the analysis from the continuous features (Claim E.3) to the reaveraged samples.
Throughout this section, let X ∈ Rn×d denote just the continuous covariates and X̃ ∈ Rn×d denote
the reaveraged continuous covariates.
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As in the proof of Claim E.3, we normalize our samples so that the ground truth covariance of the
continuous features is equal to the identity, and denote by Σ = X⊺X ∈ Rd×d the unnormalized
empirical covariance of X and by Σ̃ = X̃⊺X̃ ∈ Rd×d denote the unnormalized empirical covariance
of the reaveraged samples covariates.

F.2.1 REAVERAGING

The first step of our analysis will be to show that with very high probability the reaveraging step
makes only a small change to the covariates as well as the target variable. Let j ∈ [m] be the index of
any bucket of samples and let

ξj =
1

nj

∑
i∈Bj

Xi = E
i∈Bj

[Xi]

yj =
1

nj

∑
i∈Bj

Yi = E
i∈Bj

[Yi]

denote the averaging effect for this bucket.
Claim F.3. The mean and covariance of ξj are

E [ξj ] = 0

E
[
ξjξ

⊺
j

]
=

1

nj
I

Moreover, with very high probability

∥ξj∥ ≤ Õ

(√
d/nj

)
= o(
√
d)

|yj − µj − ⟨ξj , βgt⟩| ≤ Õ
(
1/
√
nj

)
= o(1)

Finally, the fourth moments of ξj are also bounded∥∥∥E [∥ξj∥2 ξjξ⊺j ]∥∥∥ = O

(
d

n2
j

)

Proof of Claim F.3. First, recall that our covariate distribution X was normalized to have mean 0
and covariance identity, yielding the first part of Claim F.3 immediately from the fact that ξj is the
empirical average of nj iid samples drawn from X .

Recall that we assumed the target variable was drawn from a normal distribution

Yi ∼ µj + ⟨Xi, βgt⟩+N (0, 1)

In particular,
E

i∈Bj

[Yi]− µj − E
i∈Bj

[⟨Xi, βgt⟩]

is the empirical average over nj samples of this normal distribution, yielding the claim that with very
high probability

|yj − µj − ⟨ξj , βgt⟩| ≤ Õ
(
1/
√
nj

)
= o(1) .

The rest of Claim F.3 will follow from a combination of Claim E.7 (which bounds the norms and
higher moments of well-behaved distributions), and Lemma E.6 (which states that the sum over iid
samples from a well-behaved distribution is also well-behaved).

Indeed ξj is the empirical average over nj = poly(n) samples from a well-behaved distribution X ,
so Lemma E.6 ensures that for all j, the variable√njξj is well behaved, and, as noted above, it has
covariance identity. Therefore, it follows from Claim E.7 that∥∥∥E [∥ξj∥2 ξjξ⊺j ]∥∥∥ ≤ O

(
d

n2
j

)
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and that with very high probability

∥ξj∥ ≤ Õ

(√
d/nj

)

F.2.2 RENORMALIZATION

Let Σ = X⊺X =
∑

i∈[n] XiX
⊺
i be the unnormalized empirical covariance of the continuous features,

and let Σgt = nI = E [Σ] be the ground truth mean of these features. We continue along the same
lines as the proof of Claim E.3 by adapting Claim E.7 to the reaveraged setting:

Claim F.4. With very high probability,
∥∥∥Σ̃− Σ

∥∥∥ = Õ (d+m).

In particular, due to Claim E.7 and the triangle inequality∥∥∥Σ̃− Σgt

∥∥∥ ≤ ∥∥∥Σ̃− Σ
∥∥∥+ ∥Σ− Σgt∥ = Õ

(√
nd+ d+m

)
= Õ

(√
nd+m

)
= o(n)

Proof of Claim F.4. We have

Σ̃ =
∑
i∈[n]

X̃iX̃
⊺
i =

∑
i∈[n]

(
Xi − ξj(i)

) (
Xi − ξj(i)

)⊺
=
∑
i∈[n]

XiX
⊺
i −
∑
i∈[n]

ξj(i)ξ
⊺
j(i) = Σ−

∑
j∈[m]

njξjξ
⊺
j

Therefore, it only remains to bound∥∥∥∥∥∥
∑
i∈[n]

ξj(i)ξ
⊺
j(i)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
j∈[m]

njξjξ
⊺
j

∥∥∥∥∥∥
We do this using our approximate matrix Bernstein inequality – Lemma E.5. Let Zj = njξj(i)ξ

⊺
j(i).

In Claim F.3, we showed that E [Zj ] = I , that E
[
Z2
j

]
= E

[
n2
j ∥ξj∥

2
ξjξ

⊺
j

]
has bounded norm∥∥∥E [n2

j ∥ξj∥
2
ξjξ

⊺
j

]∥∥∥ = O (d) ,

and that with very high probability

∥Zj∥ = nj ∥ξj∥2 = Õ(d) .

Therefore, from Lemma E.5, with very high probability∥∥∥∥∥∥
∑
j∈[m]

Zj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
∑
j∈[m]

Zj −
∑
j∈[m]

E [Zj ]

∥∥∥∥∥∥+m = Õ
(
d+
√
md+m

)
= Õ (d+m)

Finally, recall that we assumed to have at least nε samples in the smallest category. Therefore,
m ≤ n1−c ≪ n, completing the proof.

F.2.3 MAXIMAL NORM

We proceed to prove that each of the conditions required for the regression to be well-behaved occurs
with very high probability. The first (and easiest to prove) is the condition that maxi∈[n] X

⊺
i Σ

−1Xi

is bounded.
Claim F.5. With very high probability

max
i∈[n]

{
X̃⊺

i Σ̃
−1X̃i

}
= Õ

(
d

n

)
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Proof of Claim F.5. Let λ denote the spectrum of a matrix. In the proof of Claim F.4, we already
showed that with very high probability

∥∥∥Σ̃− Σgt

∥∥∥ = o(n) = o (minλ (Σgt)) (where Σgt = nI).
When this holds, we also have

λ
(
Σ̃−1

)
⊆ (1± o(1))× 1

n
.

Moreover, in Claim E.7 we show that with very high probability maxi∈[n] ∥Xi∥2 = Õ(d). Combined

with Claim F.3 and the triangle inequality, we can derive a bound on
∥∥∥X̃i

∥∥∥ < ∥Xi∥ +
∥∥ξj(i)∥∥ =

Õ
(√

d
)

with very high probability.

Therefore, with very high probability

max
i∈[n]

{
X̃⊺

i Σ̃
−1X̃i

}
≤ max

{
λ
(
Σ̃−1

)}
×max

i∈[n]

{∥∥∥X̃i

∥∥∥2} = Õ

(
d

n

)

F.2.4 BOUNDED INNER PRODUCTS

For the next step of our proof, we show that the second condition of ACRE-friendliness of the
regression holds with very high probability. In particular, we will show that

Claim F.6. For M ∈
{
Σ−1, Σ̃−1

}
, the following inequalities hold with very high probability

•

max
j1 ̸=j2∈[m]

{∣∣ξ⊺j1Mξj2
∣∣} = Õ

( √
d

n
√
nj1nj2

×
(
1 +

d
√
nj1

n

))
•

∀i ∈ [n], j ∈ [m] |X⊺
i Mξj | = Õ

( √
d

n
√
nj

+
d

nnj
1i∈Bj

)
•

max
i1 ̸=i2∈[n]

{∣∣∣X̃⊺
i1
M−1X̃i2

∣∣∣} = Õ

(√
d

n

)

Claim E.9 proves the third inequality of Claim F.6 for the case where M = Σ−1. The following
Lemma F.7 will prove the first inequality for this same case.
Lemma F.7. Let j1 ̸= j2 ∈ [m] be the indices of two distinct buckets, and let Σ = X⊺X =∑

i∈[n] XiX
⊺
i denote the unnormalized empirical covariance of the unaveraged samples.

With very high probability∣∣ξ⊺j1Σ−1ξj2
∣∣ = Õ

( √
d

√
nj1nj2 × n

×
(
1 +

d
√
nj1

n

))
.

The proof of Lemma F.7 is very long and technical, and we devote Section F.3 to it. For now, let us
continue with our proof of the rest of the inequalities in Claim F.6 assuming Lemma F.7.

Proof of Claim F.6. We begin by bounding the inner product between the bucket averages through
the covariance Σ̃−1. Define

η
def
= max

j1,j2


∣∣∣ξ⊺j1Σ̃−1ξj2

∣∣∣
√
d√

nj1nj2×n ×
(
1 +

d
√
nj1

n

)
 .

Our first goal will be to show that with very high probability η = Õ(1).
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Consider the following identity (where A and B are d × d matrices such that A and A − B are
invertible):

A = (A−B) +B .

Multiplying this equation by (A−B)
−1 from the left and A−1 yields the following identity that we

will use in our analysis.
(A−B)

−1
= A−1 + (A−B)

−1
BA−1 (25)

We apply equation (25) for A = Σ, B = Σ− Σ̃ =
∑

j∈[m] njξjξ
⊺
j , giving us the identity

Σ̃−1 = Σ−1 +
∑
j∈[m]

Σ̃−1ξjnjξ
⊺
j Σ

−1 .

Therefore, from the triangle inequality,

η ×
√
d

√
nj1nj2n

×
(
1 +

d
√
nj1

n

)
=
∣∣∣ξ⊺j1Σ̃−1ξj2

∣∣∣ ≤ ∣∣ξ⊺j1Σ−1ξj2
∣∣+ ∑

j∈[m]

∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣ .
For all j ̸= j1, j2, from Lemma F.7, with very high probability∣∣∣ξ⊺j1Σ̃−1ξjnjξ

⊺
j Σ

−1ξj2

∣∣∣ = Õ

(
η

d

n2√nj1nj2

(
1 +

d2nj

n2

))
.

Therefore, with very high probability∑
j ̸=j1,j2

∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣ = Õ

(
md

n2√nj1nj2

+
d3

n3√nj1nj2

)
× η = Õ

( √
d

√
nj1nj2n

η

)
,

where the last step utilized our assumptions that m ≤ n
nmin
≪ n√

d
and that n4 ≫ d5.

When j = j1, we have∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣ = ∣∣∣ξ⊺j1Σ̃−1ξj1nj1ξ
⊺
j1
Σ−1ξj2

∣∣∣ = Õ

(
d

n× nj1

× nj1 ×
√
d

√
nj1nj2

(
1 +

d
√
nj1

n

))
=

= Õ

( √
d

√
nj1nj2

(
1 +

d
√
nj1

n

))
.

Similarly, for j = j2, we have∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣ = ∣∣∣ξ⊺j1Σ̃−1ξj2nj2ξ
⊺
j2
Σ−1ξj2

∣∣∣ = Õ

(
d

n× nj2

× nj2 ×
√
dη

√
nj1nj2

(
1 +

d
√
nj1

n

))
=

= o

( √
dη

√
nj1nj2

(
1 +

d
√
nj1

n

))
.

Therefore, with very high probability

η =

∣∣∣ξ⊺j1Σ̃−1ξj2

∣∣∣
√
d√

nj1
nj2

n ×
(
1 +

d
√
nj1

n

) ≤
∣∣ξ⊺j1Σ−1ξj2

∣∣+∑j∈[m]

∣∣∣ξ⊺j1Σ̃−1ξjnjξ
⊺
j Σ

−1ξj2

∣∣∣
√
d√

nj1
nj2

n ×
(
1 +

d
√
nj1

n

) = Õ (1)+o(η) .

Therefore, with very high probability η = Õ (1), proving the first portion of our claim.

Next, consider a term of the form X⊺
i Σ̃

−1ξj . To bound this term, we open Σ̃−1 again using
equation (25). Indeed, we have∣∣∣X⊺

i Σ̃
−1ξj

∣∣∣ ≤ ∣∣X⊺
i Σ

−1ξj
∣∣+∑

j′

∣∣∣X⊺
i Σ

−1ξj′nj′ξ
⊺
j′Σ̃

−1ξj

∣∣∣ .
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Define

ζi,j = ξj −
1

nj
Xi1i∈Bj

=

{
ξj − 1

nj
Xi i ∈ Bj

ξj i /∈ Bj

ζi,j over Bj bucket had the Xi sample been replaced with the 0 vector. Note that with very high
probability ∣∣X⊺

i Σ
−1 (ξj − ζi,j)

∣∣ ≤ 1i∈Bj

nj
∥Xi∥2

∥∥Σ−1
∥∥ = Õ

(
d1i∈Bj

nnj

)
.

To proceed, we apply the Sherman-Morrison identity with v = Xi and A = Σ[n]\{i} = Σ− vv⊺, to
show that

Σ−1 = A−1 − A−1vv⊺A−1

1− v⊺A−1v
.

Moreover, because both A and ζi,j are independent of the ith sample and X is well-behaved, with
very high probability ∣∣X⊺

i A
−1ζi,j

∣∣ = Õ
(∥∥A−1ζi,j

∥∥) = Õ

( √
d

√
njn

)

Combining this with the Sherman-Morrison formula, we have∣∣X⊺
i Σ

−1ζi,j
∣∣ = (1− X⊺

i A
−1Xi

1−X⊺
i A

−1Xi

) ∣∣X⊺
i A

−1ζi,j
∣∣ = Õ

( √
d

√
njn

)
.

Therefore, for all j ∈ [m], with very high probability∣∣X⊺
i Σ

−1ξj
∣∣ = Õ

( √
d

√
njn

+
1i∈Bj

d

njn

)
.

Therefore, with very high probability∑
j′∈[m]

∣∣∣X⊺
i Σ

−1ξj′nj′ξ
⊺
j′Σ̃

−1ξj

∣∣∣ ≤
≤
∑

j′∈[m]

Õ

(( √
d

n
√
nj′

+
d1i∈Bj′

nnj′

)
× nj′ ×

( √
d

√
njnj′n

(
1 +

d
√
nj′

n

)
+

1j=j′d√
njnj′n

))
=

=
∑

j′∈[m]

Õ

(
d

n2√nj
+

d2
√
nj′

n3√nj
+

d3/21j=j′√
njn2

+
d3/21i∈Bj′√
njnj′n2

×
(
1 +

d
√
nj′

n

)
+

d21i∈Bj
1j=j′

njn2

)
=

= Õ

( √
d

√
njn

+
1i∈Bj

d

njn

)
+ Õ

(
md

n2√nj
+

√
mnd2

n3√nj
+

d3/2
√
nj′n2

+
d1i∈Bj

nnj

)
= Õ

( √
d

√
njn

+
1i∈Bj

d

nnj

)
,

where the last step utilizes our assumptions that m = Õ
(

n√
d

)
and that d5 = Õ

(
n4
)
.

Finally, let i1 ̸= i2 be the indices of two samples. From Claim E.9, we have that with very high
probability

∣∣X⊺
i1
Σ−1Xi2

∣∣ = Õ
(√

d
n

)
. Opening Σ̃−1 again using equation (25), we see that with very

high probability∣∣∣X⊺
i1
Σ̃−1Xi2

∣∣∣ ≤ ∣∣X⊺
i1
Σ−1Xi2

∣∣+ ∑
j∈[m]

∣∣∣X⊺
i1
Σ−1ξjnjξ

⊺
j Σ̃

−1Xi2

∣∣∣ =
= Õ

(√
d

n

)
+
∑
j∈[m]

Õ

(( √
d

√
njn

+
1i1∈Bjd

njn

)
×

( √
d

√
njn

+
1i2∈Bjd

njn

)
× nj

)
=

= Õ

(√
d

n

)
+ Õ

(
md

n2
+

d2

n2nmin

)
= Õ

(√
d

n

)
.
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where nmin
def
= minj∈[m] {nj} = Ω̃

(√
d
)

.

F.2.5 PROJECTION ON THE e AXIS

For the next property of well-behaved regressions, we will want to show that with very high probability
e⊺Σ−1Xi is bounded for all i. Note that from the exponential decay assumption due to X being
well-behaved would suffice to give a good bound on e⊺Σ−1

gt Xi (where Σgt = nI), but as before, the
challenge will be to show that Σ−1 doesn’t rotate Xi onto e.
Claim F.8. With very high probability

∀i ∈ [n]
〈
Σ̃−1X̃i, e

〉
=

e⊺Xi

n
± o

(
1

n

)
.

In particular, with very high probability

max
i∈[n]

∣∣∣〈Σ̃−1X̃i, e
〉∣∣∣ = Õ

(
1

n

)
=

√
Õ

(
1

n

)
× e⊺Σ̃−1e

Our proof of Claim F.8, will make use of the following Lemma F.9 that will also be proved in
Section F.3.
Lemma F.9. For any j ∈ [m], with very high probability,∣∣e⊺Σ−1ξj

∣∣ = Õ

(
1

n
√
nj
×
(
1 +

d
√
nj

n

))
.

Proof of Claim F.8. As in the proof of Claim F.6, we will use the matrix identity in equation (25) to
show that

Σ̃−1 = Σ−1 +Σ−1CΣ̃−1 ,

where C = Σ− Σ̃ =
∑

j∈[m] njξjξ
⊺
j .

Define
η

def
= max

j∈[m]

{∣∣∣e⊺Σ̃−1ξj

∣∣∣}
Using Lemma F.9, we see that with very high probability

η =
∣∣∣e⊺Σ̃−1ξj

∣∣∣ ≤ ∣∣e⊺Σ−1ξj
∣∣+∑

j′

∣∣∣e⊺Σ−1ξj′nj′ξ
⊺
j′Σ̃

−1ξj

∣∣∣ = Õ

(
1

n
×

(
m
√
d+ d

n
√
nj

))
= Õ

(
1

n
√
nj

)
.

Opening Σ̃−1 again, we have∣∣∣e⊺Σ̃−1Xi − e⊺Σ−1Xi

∣∣∣ = ∑
j∈[m]

∣∣∣e⊺Σ̃−1ξjnjξ
⊺
j Σ

−1Xi

∣∣∣
From Claim E.10, we know that with very high probability∣∣∣∣e⊺Σ−1Xi −

e⊺Xi

n

∣∣∣∣ = o

(
1

n

)
.

Therefore, from Claim F.6, with very high probability∣∣∣e⊺Σ̃−1Xi − e⊺Σ−1Xi

∣∣∣ ≤ ∑
j∈[m]

∣∣∣e⊺Σ̃−1ξjnjξ
⊺
j Σ

−1Xi

∣∣∣ =
=
∑
j∈[m]

Õ

(
1

n
√
nj
× nj ×

( √
d

n
√
nj

+
d1i∈Bj

nnj

))
=

= Õ

(√
dm

n2
+

d

n2
√
nmin

)
= o

(
1

n

)
.
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Altogether, we have that with very high probability∣∣∣∣e⊺Σ̃−1X̃i −
e⊺Xi

n

∣∣∣∣ ≤ ∣∣∣e⊺Σ̃−1ξj(i)

∣∣∣+ ∣∣∣e⊺Σ̃−1Xi − e⊺Σ−1Xi

∣∣∣+ ∣∣∣∣e⊺Σ−1Xi −
e⊺Xi

n

∣∣∣∣ = o

(
1

n

)
.

F.2.6 BOUNDED RESIDUALS

Recall that we assumed that the samples of our regression were drawn from a ground truth linear
model plus an iid normally distributed error. Therefore, in order to bound the empirical residuals, it
suffices to show that they are close to the ground truth residuals with very high probability.

In particular, in the setting of Theorem F.1, we assumed that

Yi ∼ µj(i)︸︷︷︸
categorical contribution

+ ⟨Xi, βgt⟩︸ ︷︷ ︸
continuous contribution

+N (0, 1)︸ ︷︷ ︸
error

Define the ground truth residuals to be

Rgt =
(
Yi − µj(i) − ⟨Xi, βgt⟩

)
i∈[n]

,

and the empirical residuals to be

R = Ỹ − X̃β = Ỹ − X̃Σ̃−1X̃⊺Ỹ .

Claim F.10. With very high probability,

∥R−Rgt∥∞ = o(1) .

Proof of Claim F.10. Denote

µ∗
j

def
=

1

nj

∑
i∈Bj

Yi = µj + ξ⊺j βgt +
1

nj

∑
i∈Bj

(Rgt)i

From the definitions of the residuals and the ground truth residuals, we have

Ri − (Rgt)i =
(
Yi − µ∗

j(i)

)
−
(
Xi − ξj(i)

)⊺
β −

(
Yi − µj(i) −X⊺

i βgt
)
=

= −ξ⊺j(i)βgt −
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ −X⊺
i (β − βgt) + ξ⊺j(i)β =

= − 1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ − X̃⊺
i (β − βgt) .

Expanding on the difference between the results of the reaveraged OLS and the ground truth linear
model, we have

β − βgt = Σ̃−1X̃⊺
(
Ỹ − X̃βgt

)
= Σ̃−1X̃⊺

(
Yi − µ∗

j(i) −
(
Yi − µj(i) − (Rgt)i

)
+ ξ⊺j(i)βgt

)
i∈[n]

=

= Σ̃−1X̃⊺

(Rgt)i − ξ⊺j(i)βgt −
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ + ξ⊺j(i)βgt


i∈[n]

=

= Σ̃−1X̃⊺

(Rgt)i −
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′


i∈[n]

.

Therefore,

Ri − (Rgt)i = −
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ − X̃⊺
i Σ̃

−1X̃⊺

(Rgt)i∗ −
1

nj(i∗)

∑
i′∈Bj(i∗)

(Rgt)i′


i∗∈[n]

.
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Summing over the contributions of the second term, we have∑
i∗∈[n]

X̃⊺
i Σ̃

−1X̃i∗

(Rgt)i∗ −
1

nj(i∗)

∑
i′∈Bj(i∗)

(Rgt)i′

 =
∑

i∗∈[n]

X̃⊺
i Σ̃

−1
(
X̃i∗ − ξj(i∗)

)
(Rgt)i∗ ∼

∼ N

0,
∑

i∗∈[n]

(
X̃⊺

i Σ̃
−1
(
X̃i∗ − ξj(i∗)

))2 = N
(
0, Õ

(
d

n
+

d

nnmin
+

d2

n2

))
,

so with very high probability this contribution is bounded in absolute value by o(1).

Similarly,
1

nj(i)

∑
i′∈Bj(i)

(Rgt)i′ ∼ N
(
0,

1

nj(i)

)
= N

(
0, O

(
1

nε

))
,

so with very high probability this term is also o(1), concluding our proof of Claim F.10.

F.2.7 LARGE INFLUENCE SCORES

For the final step of our proof of Claim F.2, we will show that with very high probability, there are
many samples in the regression that have relatively high AMIP influence scores.

Claim F.11. Let αi = e⊺Σ̃−1X̃iRi denote the AMIP influence score of the ith sample. Then with
very high probability, there are is a set T0 ⊆ [n] of least k0 = Ω̃(n1−ε) “influential samples” – i.e.,
such that

∀i ∈ T αi ≥

(√
log(n)

n

)
= ω

(
1

n

)
Proving Claim F.11 will also conclude our proof of Claim F.2, as this will show that all conditions
required for a regression to be well-behaved are fulfilled with very high probability.

Proof of Claim F.11. The proof of Claim F.11 will follow the same approach as our proof of its
ACRE counterpart – Claim E.12. Indeed, we first note that from the definition of Σ̃ and Claim F.4,
with very high probability,∑

i∈[n]

(
e⊺Σ̃−1X̃i

)2
=
∑
i∈[n]

e⊺Σ̃−1X̃iX̃i

⊺
Σ̃−1e = e⊺Σ̃e =

1± o(1)

n
.

Moreover, from Claim F.8, with very high probability, the contribution of each individual sample to
this sum is at most Õ

(
1
n

)
-fraction of this total. Therefore, with very high probability∣∣∣∣{i∣∣∣∣∣∣∣e⊺Σ̃−1X̃i

∣∣∣ ≥ 1

2n

}∣∣∣∣ = Ω̃ (n) .

As in the proof of Claim E.12, we note that Claim F.10 guarantees that with very high probability
∀i
∣∣Ri − (Rgt)i

∣∣ = o(1) < 1
20 . Moreover, because the ground truth residuals (Rgt)i are normally

distributed independently of anything else, it follows that so are ρi
def
= sign

(
e⊺Σ̃−1X̃i

)
× (Rgt)i.

Therefore, with very high probability, at least Ω̃
(
n1−ε

)
of the samples such that

∣∣∣e⊺Σ̃−1X̃i

∣∣∣ ≥ 1
2n

have ρi ≥ Ω(
√
log(n)) (this is because we can set the constants in the Ω to be such that the

probability of each of ρi being above this threshold is≫ n−ε, allowing us to apply Hoeffding on the
Ω̃ (n) iid ρi).

Therefore, for this set of samples it holds that

αi = e⊺Σ̃−1X̃iRi = (1± o(1))
∣∣∣e⊺Σ̃−1X̃i

∣∣∣ρi = Ω

(√
log(n)

n

)
.
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F.3 PROOF OF LEMMAS F.7 AND F.9

Recall the lemma we wish to prove:
Lemma F.12. Let X1, . . . , Xn ∼ X be n iid samples of a well-behaved distribution X with covari-
ance Id×d. Let ξ = 1

k

∑
i∈[k] Xi be the empirical average over the first k < 0.49n of these samples,

and let v ∈ Rd be any vector that is independent of these first k samples (but may depend on the
other samples). Finally, denote by Σ def

=
∑

i∈[n] XiX
⊺
i the unnormalized empirical second moment of

these samples.

Then, with very high probability,∣∣ξ⊺Σ−1v
∣∣ = Õ

(
∥v∥√
kn
×

(
1 +

d
√
k

n

))
.

Clearly, Lemma F.12 implies Lemma F.7 (set ξ = ξj1 and v = ξj2) and Lemma F.9 (set ξ = ξj and
v = e).

F.3.1 PROOF SKETCH

We will split the proof of Lemma F.7 into 3 main steps. To do this, let S =
∑n

i=k+1 XiX
⊺
i = Σ[n]\[k]

be the contributions to the empirical covariance due to samples not amongst the first k, and let
C = Σ− S be the contributions from within the bucket. From a standard analysis, so long as C ≺ S,
we have

Σ−1 = S−1 − Σ−1CS−1 = S−1 − S−1CS−1 −
(
Σ−1 − S−1

)
CS−1 ,

and these components will correspond to the main components of our analysis. We will show that the
inequality C ≺ S holds with very high probability, before proving the following claims over the rest
of this section:
Claim F.13. With very high probability∣∣ξ⊺S−1v

∣∣ = Õ

(
∥v∥√
k × n

)
Claim F.14. Let w ∈ Rd be any vector that does not depend on the first k samples.

Then, with very high probability,∣∣ξ⊺S−1Cw
∣∣ = Õ

(
∥w∥√

k

(
1 +

d
√
k

n

))
Claim F.15. Let w ∈ Rd be any vector that does not depend on the first k samples. Then, with very
high probability, ∣∣ξ⊺ (S−1 − Σ−1

)
Cw
∣∣ = Õ

(
∥w∥√

k

(
1 +

d
√
k

n

))
The proofs of Claims F.13, F.14 and F.15 will grow progressively more complex and each claim will
build on ideas from the previous one. Throughout the latter two, the key challenge will be to deal with
cases where both the ζ

def
= kξ term and the C or Σ multiplicand may depend on the same samples.

In these cases, we will proceed by applying a sort of divide-and-conquer approach by splitting
the bucket into two subsets. For instance, instead of analyzing ζ⊺S−1Cw directly, we will split
the samples in the bucket into two subsets and track their contributions to both ζ = ζ0 + ζ1 and
C = C0 + C1.

ζ⊺S−1Cw = (ζ0 + ζ1)S
−1 (C0 + C1)w =

= ζ⊺0S
−1C0w + ζ⊺1S

−1C1w︸ ︷︷ ︸
diagonal terms

+ ζ⊺1S
−1C0w + ζ⊺0S

−1C1w︸ ︷︷ ︸
off-diagonal terms

(26)

The “off-diagonal” subsets will be relatively simple to bound as they contain inner products of
independent vectors in Rd (and this independence will give us a 1/

√
d scaling to their inner product),
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and the diagonal elements will be split again recursively. This will also leave us with a large number
of “single sample” diagonal elements of the form

X⊺
i S

−1XiX
⊺
i w

These single-sample terms will no longer enjoy the same 1/
√
d scaling the other terms gain due to

independence, but will instead gain a sort of 1/k scaling, because instead of having k2 sample-times-
sample contributions in

ζ⊺S−1C =
∑

i,i′∈[k]

X⊺
i AXi′X

⊺
i′w ,

we have only k terms in the sum ∑
i∈[k]

X⊺
i AXiX

⊺
i w

Finally, in Claim F.15, we will have 2 types of diagonal vs off-diagonal splits. The first will be to track
the cases where ζ and C may depend on the same samples and will be very similar to our analysis
of Claim F.14. The second and much more difficult of the two will be dealing with dependencies
between Σ and ζ.

F.3.2 SETUP AND PROOF OF CLAIM F.13

Recall our assumption from Lemma F.7 that k ≤ 0.49n. Therefore n− k ≥ 0.51n > k +Ω(n).

Let S =
∑

i∈[n]\[k] XiX
⊺
i = Σ[n]\[k]. From Claim E.7, we have that with very high probability

∥S − (n− k) I∥ = o(n) .

Combined with Lemma E.6, which shows that ξ is well-behaved, we have that with high probability∣∣ξ⊺S−1v
∣∣ = Õ

(
1√
k
×
∥∥S−1v

∥∥) = Õ

(
1√
k
×max

{
λ
(
S−1

)}
× ∥v∥

)
= Õ

(
∥v∥√
k × n

)
Our goal for the rest of the proof will be to show a similar bound for ξ⊺Σ−1v. Let S and C = Σ− S
be our “main” and “correction” terms. Applying Claim E.7 again, we have that with very high
probability C ⪯ kI + o(n) ≺ (n − k)I − o(n) ⪯ S, so both S and I ± S−1C are invertible. We
have

Σ−1 = (S + C)
−1

=
(
I + S−1C

)−1
S−1 = S−1−

(
I + S−1C

)−1
S−1CS−1 = S−1−Σ−1CS−1

Therefore, it remains to bound ξ⊺Σ−1CS−1v = ξ⊺Σ−1Cw (where w = S−1v) in absolute value.
To do this, we once again use the intuition that in some sense S ≈ Σ, and first bound ξ⊺S−1CS−1v.
We will then slowly break down the difference between ξ⊺S−1CS−1v and ξ⊺j1Σ

−1CS−1v into a
series of corrections and bound each of these corrections in absolute value.

F.3.3 PROOF OF CLAIM F.14

Before proving Claim F.14, we prove a lemma that will help us in our analysis.
Lemma F.16. With very high probability

∥Cw∥ = Õ
((

k +
√
kd
)
∥w∥

)
.

Proof of Lemma F.16. At first glance, it might seem like Lemma F.16 should follow immediately
from Claim E.7, but this is only true when k = Ω̃ (d), and we will want to apply Lemma F.16 even
when k ≪ d.

We prove Lemma F.16 using the approximate matrix Bernstein inequality (Lemma E.5). Indeed,

Cw =
∑
i∈[k]

XiX
⊺
i w =

∑
i∈[k]

vi ,
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can be written as the sum of k iid vectors vi
def
= XiX

⊺
i w.

From the fact that the Xis are well behaved and independent of w, we have that with very high
probability,

∥vi∥ ≤
√
d ∥w∥ .

Moreover, from our assumption that X has covariance identity, we have that

E [vi] = E [XiX
⊺
i ]w = Iw = w .

Finally, from Claim E.7, we have that

E
[
∥vi∥2

]
= w⊺E

[
∥Xi∥2 XiX

⊺
i

]
w = Õ

(
d ∥w∥2

)
.

Therefore, applying the approximate matrix Bernstein inequality on the standard embedding matrix

Vi =

(
0 v⊺i
vi 0

)
∈ R(d+1)×(d+1) ,

yields the desired result.

We now return to the proof of of Claim F.14.

Proof of Claim F.14. Let ζ def
= kξ =

∑
i∈[k] Xi. Using this notation, we have

ξ⊺S−1Cw =
1

k
ζ⊺S−1Cw (27)

We will bound the RHS of equation (27) by breaking the contributions to ζ and to C into smaller and
smaller subsets of the bucket [k].

We will split the contributions from the first k samples into “clusters” based on their index modulus
some number, and the assumption above is just to ensure that the subsets are of roughly equal size.

Indeed, for any string of bits a = (a0, . . . , at) ∈ {0, 1}∗, define the ath cluster of samples to be the
set of indices from [k] whose bitwise representation ends with the string a:

Ca
def
=
{
i ∈ [k]

∣∣i mod 2t+1 = a0 + a12
1 + · · · at2t

}
If ϵ is the empty string, then Cϵ = [k], and for all a, we have

Ca = Ca0 ⊔ Ca1

Similarly, we may split the contributions of samples in [k] to C and ζ based on their cluster

Ca
def
=
∑
i∈Ca

XiX
⊺
i

ζa
def
=
∑
i∈Ca

Xi

(28)

Moreover, we have the property that Ca = Ca0 + Ca1 and ζa = ζa0 + ζa1. Using this property, we
may begin to split the RHS of equation (27) to smaller components

ζ⊺S−1Cw = (ζ0 + ζ1)A (C0 + C1)w =

= ζ⊺0S
−1C0w + ζ⊺1S

−1C1w︸ ︷︷ ︸
diagonal terms

+ ζ⊺1S
−1C0w + ζ⊺0S

−1C1w︸ ︷︷ ︸
off-diagonal terms

(29)

We split the terms in the RHS of equation (29) into “diagonal” terms which correspond to the
contributions where the C term and the ζ term correspond to the same samples and “off-diagonal”
terms where ζ and C depend on disjoint sets of samples.
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To bound the contribution of the off-diagonal terms, we note that for any bitstring a = (a0, . . . , at),
it holds that ζa is well-behaved (as it is the sum over |Ca| iid samples from X ) and has covariance
|Ca|I = Θ

(
k
2t

)
I (this is because |Ca| ≈ k

2t+1 ). Moreover, the other terms in the product do not
depend on the samples in Ca, so with very high probability∣∣ζ⊺0S−1C1w

∣∣ = Õ
(√

k ×
∥∥S−1C1w

∥∥) .

Moreover, applying Claim E.7, we have that with very high probability

∥S − (n− k)I∥ = o(n)⇒
∥∥S−1

∥∥ = O

(
1

n

)
,

and applying Lemma F.16, we have that with very high probability,

∥C1w∥ = Õ
((

k +
√
kd
)
∥w∥

)
.

Therefore, with very high probability∣∣ζ⊺0S−1C1w
∣∣ = Õ

(√
k ×

∥∥S−1C1w
∥∥) = Õ

(
√
k
k +
√
kd

n
∥w∥

)
,

and similarly for the other off-diagonal term, with very high probability∣∣ζ⊺1S−1C0w
∣∣ = Õ

(
√
k
k +
√
kd

n
∥w∥

)
.

It now remains to bound the diagonal terms. Consider ζ⊺0S
−1C0w. We can open up the next bit of

the indices of the samples to obtain

ζ⊺0S
−1C0w = (ζ00 + ζ01)

⊺
A (C00 + C01)w =

= ζ⊺00S
−1C00w + ζ⊺01S

−1C01w + ζ⊺00S
−1C01w + ζ⊺01S

−1C00w
(30)

We split the RHS of equation (30) again into diagonal and off-diagonal terms. The off-diagonal
terms can be bounded again in exactly the same manner and the off diagonal can again be split by
specifying another bit of the sample indices. Applying this logic recursively, we have

Diagonalϵ = ζ⊺S−1Cw = ζ⊺0S
−1C0w︸ ︷︷ ︸

Diagonal0

+ ζ⊺1S
−1C1w︸ ︷︷ ︸

Diagonal1

+ ζ⊺1S
−1C0w︸ ︷︷ ︸

Off-Diagonal1,0

+ ζ⊺0S
−1C1w︸ ︷︷ ︸

Off-Diagonal0,1

= Diagonal00 + Diagonal01 + Diagonal10 + Diagonal11 + Off-Diagonal1,0 + Off-Diagonal0,1+

+ Off-Diagonal00,01 + Off-Diagonal01,00 + Off-Diagonal10,11 + Off-Diagonal11,10 = · · ·

· · · =
∑
i∈[k]

Diagonali +
t=⌈log2(k)⌉∑

t=1

∑
a∈{0,1}t

Off-Diagonala|0,a|1 + Off-Diagonala|1,a|0

(31)

From the same analysis as the one above, we see that for any bitstring a ∈ {0, 1}t and bit b ∈ {0, 1},
it holds that with very high probability∣∣∣Off-Diagonala|b,a|b

∣∣∣ = Õ

(√
|Ca|
|Ca|+

√
|Ca|d

n
∥w∥

)
= Õ

(
2−t
√
k
k +
√
kd

n
∥w∥

)

Union bounding over the O (2t) = poly(n) off-diagonal combinations, we see that with very high
probability they are all bounded. Summing over these off-diagonal terms gives us∣∣∣∣∣∣

t=⌈log2(k)⌉∑
t=1

∑
a∈{0,1}t

Off-Diagonala|0,a|1 + Off-Diagonala|1,a|0

∣∣∣∣∣∣ ≤
≤

t=⌈log2(k)⌉∑
t=1

2tÕ

(
2−t
√
k
k +
√
kd

n
∥w∥

)
= Õ

(
√
k
k +
√
kd

n
∥w∥

)
.
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Now, consider a Diagonali term X⊺
i S

−1XiX
⊺
i w. Because w is independent of the ith sample Xi,

with very high probability,
|X⊺

i w| = Õ (∥w∥) ,
and from Claim E.7, we have that with very high probability,∣∣X⊺

i S
−1Xi

∣∣ ≤ ∥Xi∥2
∥∥S−1

∥∥ = Õ

(
d

n

)
.

Therefore, from the triangle inequality, with very high probability∣∣∣∣∣∣
∑
i∈[k]

Diagonali

∣∣∣∣∣∣ ≤
∑
i∈[k]

|Diagonali| = Õ

(
kd

n
∥w∥

)
.

Altogether, we have ∣∣ξ⊺S−1Cw
∣∣ = Õ

(
∥w∥√

k
×

(
1 +

d
√
k

n

))
,

concluding the proof of Claim F.14.

F.3.4 PROOF OF CLAIM F.15

In the previous portion of the proof, we bounded ξ⊺S−1Cw, when w is independent of ξ. The rest of
our analysis will be devoted to bounding the effect that replacing S−1 with Σ−1 will not make this
inner product much larger.

As in the previous portion of the proof, we set ζ = kξ, and separate samples into clusters based on
the least significant bits of the bitwise representations of their indices. In particular, for any bitstring
a, let Ca, ζa and Ca be as defined above, and define

Sa = Σ− Ca = Σ[n]\Ca
=

∑
i∈[n]\Ca

XiX
⊺
i

to be the unnormalized empirical covariance of the samples not in the Ca cluster.

As in the proof of Claim F.14, we will separate the contributions to ζ⊺
(
S−1 − Σ−1

)
Cw based on

the cluster of the samples and label these contributions as diagonal or off-diagonal based on whether
or not the same samples were used in ζ and C.

ζ⊺
(
S−1 − Σ−1

)
Cw = (ζ0 + ζ1)

⊺ (
S−1 − Σ−1

)
(C0 + C1)w =

= ζ⊺0
(
S−1 − Σ−1

)
C0w + ζ⊺1

(
S−1 − Σ−1

)
C1w︸ ︷︷ ︸

diagonal terms

+

+ ζ⊺0
(
S−1 − Σ−1

)
C1w + ζ⊺1

(
S−1 − Σ−1

)
C0w︸ ︷︷ ︸

off-diagonal terms

(32)

In other words, we have the recursive formula that for all a ∈ {0, 1}∗,

Diagonal Terma = Diagonal Terma|0 + Diagonal Terma|1+

+ Off-Diagonal Terma|0,a|1 + Off-Diagonal Terma|1,a|0
(33)

Applying equation (33) recursively, we have

ζ⊺
(
S−1 − Σ−1

)
Cw = Diagonal Termϵ = · · · =

∑
i∈[k]

Diagonal Termi+

+

⌈log(k)⌉∑
t=0

∑
a∈{0,1}t

(
Off-Diagonal Terma|0,a|1 + Off-Diagonal Terma|1,a|0

)
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In Claim F.17, we will bound the off-diagonal terms. We will show that with very high probability,∣∣Off-Diagonal Terma,b

∣∣ = Õ

(√
|Ca|
n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥ ×

(
1 +

d
√
k

n

))
=

= Õ

(
2−(|a|+|b|)/2

√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))
.

Since in our case |a| = |b| = t, we may conclude that with very high probability∣∣Off-Diagonal Terma,b

∣∣ = Õ

(
2−t

√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))
.

Applying the triangle inequality, with very high probability the total contribution of all the off-diagonal
terms is of order∣∣∣∣∣∣

⌈log(k)⌉∑
t=0

∑
a∈{0,1}t

(
Off-Diagonal Terma|0,a|1 + Off-Diagonal Terma|1,a|0

)∣∣∣∣∣∣ =
=

⌈log(k)⌉∑
t=0

∑
a∈{0,1}t

∣∣∣Off-Diagonal Terma|0,a|1

∣∣∣+ ∣∣∣Off-Diagonal Terma|1,a|0

∣∣∣ =
=

⌈log(k)⌉∑
t=0

∑
a∈{0,1}t

Õ

(
2−t

√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))
=

=

⌈log(k)⌉∑
t=0

Õ

(√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))
=

= Õ

(√
k

n2
×
(
k +
√
kd
)
× ∥w∥ ×

(
1 +

d
√
k

n

))

This leaves us with only the “single-sample” diagonal terms
Diagonal Termi = X⊺

i

(
S−1 − Σ−1

)
XiX

⊺
i w .

To analyse this term, simply note that from Claim E.7 and the CS inequality, with very high probability,∣∣X⊺
i

(
S−1 − Σ−1

)
Xi

∣∣ ≤ ∥Xi∥2
(∥∥S−1

∥∥+ ∥∥Σ−1
∥∥) = Õ

(
d

n

)
.

Moreover, from our assumption that Xi ∼ X is well-behaved and that w is independent of Xi, we
have that with very high probability

|X⊺
i w| = Õ (∥w∥) .

Therefore, with very high probability

1

k

∑
i∈[k]

|Diagonal Termi| = Õ

(
∥w∥√

k
× d
√
k

n

)
.

Bounding the Off-Diagonal Terms
Claim F.17. Consider the off-diagonal term

ζ⊺a
(
S−1 − Σ−1

)
Cbw ,

where a ̸= b are bitstrings representing disjoint clusters Ca ∩ Cb = ∅.
With very high probability,

ζ⊺a
(
S−1 − Σ−1

)
Cbw = Õ

(√
|Ca|
n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥ ×

(
1 +

d
√
k

n

))
.
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Proof of Claim F.17. Our goal is to bound the following term in absolute value

ζ⊺a
(
S−1 − Σ−1

)
Cbw .

The difficulty in analysing this term is that both ζa and
(
S−1 − Σ−1

)
may depend on the same

samples. To circumvent this, we begin by splitting
(
S−1 − Σ−1

)
into a term that is easy to deal with

and a small correction: (
S−1 − Σ−1

)
=
(
S−1 − S−1

a

)
+
(
S−1
a − Σ−1

)
,

where Sa = Σ− Ca =
∑

i/∈Ca
XiX

⊺
i .

The first component has the property that it does not depend on the samples in Ca, while ζa depends
only on the samples in a. Therefore, because ζa is well-behaved with covariance |Ca|I , with very
high probability ∣∣ζ⊺a (S−1 − S−1

a

)
Cbw

∣∣ = Õ
(√
|Ca|

∥∥(S−1 − S−1
a

)
Cbw

∥∥)
We begin by bounding the norm of

(
S−1 − S−1

a

)
Cbw. First, we note that Lemma F.16, with very

high probability
∥Cbw∥ = Õ

((
|Cb|+

√
|Cb|d

)
∥w∥

)
.

To continue, we bound the norm of
(
S−1 − S−1

a

)
. Let A = Sa and B = Sa−S =

∑
i∈[k]\Ca

XiX
⊺
i .

We utilize the identity
(A−B)

−1 −A−1 = (A−B)
−1

BA−1 ,

as well as Claim E.7 which states that with very high probability
∥∥∥(A−B)

−1
∥∥∥ ,∥∥A−1

∥∥ = O
(
1
n

)
and that ∥B∥ = Õ (k + d) to show that with very high probability∥∥S−1 − S−1

a

∥∥ = Õ

(
k + d

n2

)
Therefore, with very high probability∣∣ζ⊺a (S−1 − S−1

a

)
Cbw

∣∣ = Õ

(√
|Ca| ×

k + d

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
=

= Õ

(√
|Ca|
n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
.

It remains to bound the contribution of the S−1
a −Σ−1 term, which brings with it the added difficulty

that it may depend on the samples in Ca. To bound the effect of this term, we split the contributions
to ζ once more

Hard Terma,b
def
= ζ⊺a

(
S−1
a − Σ−1

)
Cbw =

= (ζa0 + ζa1)
⊺ (

S−1
a − Σ−1

)
Cbw =

= ζ⊺a0
(
S−1
a − S−1

a0

)
Cbw + ζ⊺a1

(
S−1
a − S−1

a1

)
Cbw︸ ︷︷ ︸

Easy Terms

+

+ ζ⊺a0
(
S−1
a0 − Σ−1

)
Cbw + ζ⊺a1

(
S−1
a1 − Σ−1

)
Cbw︸ ︷︷ ︸

Hard Terms

=

= Easy Terma0,b + Easy Terma1,b + Hard Terma0,b + Hard Terma1,b

(34)

We split the right hand side of equation (34) into “easy” terms which can be dealt with using the
same logic above and hard terms which can again be split into smaller easy and hard terms. Applying
equation (34) recursively, we have that:
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Hard Terma,b = Easy Terma,0,b + Easy Terma,1,b + Hard Terma0,b + Hard Terma1,b =

...

=
∑
i∈Ca

Hard Termi,b +

log(|Ca|)+1∑
t=1

∑
a′∈{0,1}t−1

z∈{0,1}

Easy Terma|a′,z,b

(35)

To bound the easy terms, we note that as in the analysis above, the samples included in their ζ are
disjoint from the samples included in their other factors. Therefore, with very high probability∣∣Easy Terma,z,b

∣∣ def
=
∣∣ζ⊺az (S−1

a − S−1
az

)
Cbw

∣∣ = Õ
(√
|Caz| ×

∥∥(S−1
a − S−1

az

)
Cbw

∥∥)
Recall that we showed above that with very high probability

∥Cbw∥ = Õ
((
|Cb|+

√
|Cb|d

)
× ∥w∥

)
.

From here, we set A = Saz and B = Caz = Saz − Sa, and recall the identity

(A−B)
−1 −A−1 = A−1B (A−B)

−1

to obtain the equation
S−1
a − S−1

az = S−1
az CazS

−1
a .

From here, it might be tempting to simply bound the norm of this product, but that would result in
too loose of a bound. Instead, we perform the somewhat finer relaxation∥∥(S−1

a − S−1
az

)
Cbw

∥∥ =
∥∥S−1

az CazS
−1
a Cbw

∥∥ ≤ ∥∥S−1
az

∥∥× ∥∥CazS
−1
a Cbw

∥∥ .

The advantage of this finer analysis is that we can now use Lemma F.16 again, but this time on the
matrix Caz . Indeed, Sa depends only on the samples outside Ca ⊇ Caz , Cb depends only on the
samples in Cb which is disjoint from Ca, and S and w do not depend on the first k samples. Therefore,
Caz is independent of them all, so applying Lemma F.16, we have that with very high probability∥∥CazS

−1
a Cbw

∥∥ = Õ
(
|Caz|+

√
|Caz|d

)
×
∥∥S−1

a Cbw
∥∥ ≤ Õ

(
|Caz|+

√
|Caz|d

)
×
∥∥S−1

a

∥∥ ∥Cbw∥ =

= Õ

(
|Caz|+

√
|Caz|d

n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)

Altogether, we have that with very high probability

∣∣Easy Terma,z,b

∣∣ = Õ

(√
|Ca| ×

|Ca|+
√
|Ca|d

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
.

Therefore, for a′ of length t− 1, we have
∣∣Ca|a′

∣∣ ≈ 2−t|Ca|, so with very high probability

∣∣∣Easy Terma|a′,z,b

∣∣∣ = Õ

√∣∣Ca|a′
∣∣× ∣∣Ca|a′

∣∣+√∣∣Ca|a′
∣∣d

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

 =

= Õ

(
2−t
√
|Ca| ×

2−t/2|Ca|+
√
|Ca|d

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
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Therefore, summing over all of the easy terms and applying the triangle inequality, we have that with
very high probability∣∣∣∣∣∣∣∣∣
log(|Ca|)+1∑

t=1

∑
a′∈{0,1}t−1

z∈{0,1}

Easy Terma|a′,z,b

∣∣∣∣∣∣∣∣∣ ≤
log(|Ca|)+1∑

t=1

∑
a′∈{0,1}t−1

z∈{0,1}

∣∣∣Easy Terma|a′,z,b

∣∣∣ =
= Õ

(√
|Ca|
|Ca|+

√
d|Ca|

n2
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)
=

= Õ

(√
|Ca|
n
×
(
|Cb|+

√
|Cb|d

)
× ∥w∥

)

It remains to bound the single-sample hard terms. That is, we want to bound∣∣∣X⊺
i

(
Σ−1

[n]\{i} − Σ−1
)
Cbw

∣∣∣ .
Using the same matrix identity as in the previous terms, we have that

Σ−1
[n]\{i} − Σ−1 = Σ−1XiX

⊺
i Σ

−1
[n]\{i}

Therefore, with very high probability, we have∣∣∣X⊺
i

(
Σ−1

[n]\{i} − Σ−1
)
Cbw

∣∣∣ ≤ ∥Xi∥
∥∥∥(Σ−1

[n]\{i} − Σ−1
)
Cbw

∥∥∥ =

= ∥Xi∥
∥∥∥Σ−1XiX

⊺
i Σ

−1
[n]\{i}Cbw

∥∥∥ ≤
≤ ∥Xi∥

∥∥Σ−1
∥∥ ∥Xi∥

∣∣∣X⊺
i Σ

−1
[n]\{i}Cbw

∣∣∣ ≤
≤ ∥Xi∥

∥∥Σ−1
∥∥ ∥Xi∥ × Õ

(∥∥∥Σ−1
[n]\{i}Cbw

∥∥∥) =

= Õ
(
∥Xi∥2

∥∥Σ−1
∥∥∥∥∥Σ−1

[n]\{i}

∥∥∥ ∥Cbw∥
)
= Õ

d
(
|Cb|+

√
|Cb|d

)
n2

∥w∥


(36)

Therefore, from the triangle inequality, with very high probability∣∣∣∣∣∑
i∈Ca

Hard Termi,b

∣∣∣∣∣ ≤∑
i∈Ca

|Hard Termi,b| = Õ

(
|Ca|

d
(∣∣Cb +√Cbd∣∣)

n2
∥w∥

)
,

completing our proof of Claim F.17.

F.4 PROOF OF THEOREM F.1

Recall that the OHARE algorithm works by computing each of the MSN style bounds produced
by the ACRE algorithm and then adds a correction term to each one, where these correction terms
correspond to the indirect removal effects due to the change in the reaveraging step.

In the previous subsection, we proved Claim F.2 which shows that with very high probability the
ACRE components of the OHARE algorithm will produce good bounds on well-behaved regressions
with categorical features. In order to conclude Theorem F.1, we would also need to bound the higher
order corrections that OHARE takes into account.

Finally, note that for the case of an unweighted one-hot encoding, we have ui,j = 1i∈Bj
(i.e., the

columns corresponding to the dummy variables are indicators of their respective buckets).
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F.4.1 INDIRECT CONTRIBUTIONS TO THE FIRST ORDER TERM

Analysing the indirect contributions to the first order term in OHARE will require significantly more
care than our analysis of the higher order terms. This is because the first order term is the dominant
one to begin with and the indirect contributions to it are smaller than the main effect by only a√
log(n) factor, forcing us to track polylog(n) factors much more carefully.

Recall from Section A.2, that the OHARE algorithm bounds the first order effect of removals on the
regression result from above/below by

bound±j (kj) = dj(kj) +
c±j (kj)

nj − kj

where dj represents AMIP gradients on the reaveraged samples X̃i:

dj(kj) = max
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Rie
⊺Σ̃−1X̃i ,

and c±j (kj) represents the effect that reaveraging after the removals can have on the AMIP gradients
of the retained samples:

c+j (kj) = max


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

e⊺Σ̃−1X̃i

 ,

 min
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

e⊺Σ̃−1X̃i




c−j (kj) = max


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri


 max

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

e⊺Σ̃−1X̃i

 ,

 max
Tj⊆Bj

|Tj |=kj

∑
i∈Tj

Ri


 min

Tj⊆Bj

|Tj |=kj

∑
i∈Tj

e⊺Σ̃−1X̃i




For kj = nj , there is no reaveraging effect and bound±j (nj) = dj(nj).

Our goal will be to show that dj(kj), which is the contribution of the AMIP gradients to this first
order effect, is the dominant effect. In particular, the main claim we will prove in this subsection is

Claim F.18. Let kthreshold = Ω̃
(
n1−ε

)
be as promised by Claim F.11.

Then, with very high probability

∀k ≤ kthreshold, max
k1+···+km=k

∑
j∈[m]

bound±j (kj)

 =

(
1±O

(
1√

log(n)

))
AMIP(k) ,

where

AMIP(k) = max
T∈([n]

k )

{∑
i∈T

αi

}
is the sum over the k largest AMIP influence scores

αi = e⊺Σ̃−1X̃iRi .

Proof of Claim F.18. We expect dj(kj) to grow roughly linearly with kj , which motivates us to focus
on the expression

Scaled Indirect Effect = ηj(kj)
def
=

max
{∣∣c+j (kj)∣∣, ∣∣c−j (kj)∣∣}
kj(nj − kj)

.

We will bound these ηj in the following lemma:

Claim F.19. There exists some ν = polylog(n) such that for all kj ≤ nj

ν , with very high probability

ηj(kj) = O

(
1

n

)
.
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Moreover, for any ν′ = polylog(n) there exists some threshold τ = polyloglog(n), such that with
very high probability,

|{i ∈ Bj | |Ri| > τ}| < nj

ν′∣∣∣{i ∈ Bj |
∣∣∣e⊺Σ̃−1X̃i

∣∣∣ > τ

n

}∣∣∣ < nj

ν′

In particular, for all kj ≥ nj

ν , with very high probability

max
Tj∈(Bj

kj
)

∑
i∈Tj

αi

 = O

(
polyloglog(n)

n
× kj

)

ηj(kj) = O

(
polyloglog(n)

n

)
,

where αi = e⊺Σ̃−1X̃iRi are the AMIP influence scores.

The first part of Claim F.19 promises that the ηj components to the bound are very small in any
bucket for which there are not too many removals kj <

nj

polylog(n) , while the second portion of the
claim will help us bound the total contribution of buckets from which more than nj

polylog(n) have been
removed.

Let T = argmax
T∈([n]

k )
{∑

i∈T αi

}
denote the set of k samples with largest AMIP influences, and

let κj = |Bj ∩ T | denote the distribution of these samples across the buckets. By definition, we have∑
i∈T

αi = AMIP(k) .

From Claim F.11, we know that with very high probability all the samples in T must have influence

at least mini∈T {αi} = Ω

(√
log(n)

n

)
. But from the second part of Claim F.19, we know that with

very high probability, for all j, the jth bucket cannot have more than nj

ν such samples, so with very
high probability κj <

nj

ν .

Consider our maximization problem

MaxScore = max
k1+···+km=k

∑
j∈[m]

bound±
j (kj)

 .

This maximization is lower bounded by every valid assignment to k1, . . . , km, so in particular it is
lower bounded by the score of κ1, . . . , κm. Utilising the first part of Claim F.19 to bound ηj(κj), we
have

max
k1+···+km=k

∑
j∈[m]

bound±j (kj)

 ≥ ∑
j∈[m]

bound±j (κj) =
∑
i∈T

αi−
∑
j∈[m]

κjηj(κj) ∈ AMIP(k)−O
(
k

n

)
.

Now, consider any other assignment k1, . . . , km. If we still have kj ≤ nj

ν for all j, then∑
j∈[m] bound±j (kj) will still be bounded by AMIP(k)±O

(
k
n

)
following the same logic as above.

Otherwise, let j1, . . . , jℓ denote the set of buckets for whick kji >
nji

ν , and define k′
def
= k − kj1 −

· · · − kjℓ . From the same analysis as above, we have∑
j∈[m]

bound±j (kj) ≤ AMIP(k′) +
∑
i∈[ℓ]

{
bound±ji(kji)

}
+O

(
k′

n

)
.
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Next, note that we know that with very high probability

AMIP(k) ≥ AMIP(k′) + Ω

(√
log(n) (k − k′)

n

)
,

because Claim F.11 tells us that with very high probability, there are at least kthreshold ≥ k samples,
each of which has a sufficiently large contribution to the AMIP score.

Therefore, using the last part of Claim F.19, which bounds with very high probability every term in
the bounds of buckets with more than nj

ν removals, we have∑
j∈[m]

bound±
j (kj) ≤ AMIP(k′) +

∑
i∈[ℓ]

{
bound±

ji
(kji)

}
+O

(
k′

n

)
≤

≤ AMIP(k) +O

(
polyloglog(n)× (k − k′)

n

)
− Ω

(√
log(n) (k − k′)

n

)
︸ ︷︷ ︸

≤0

±O
(
k′

n

)
≤

≤ AMIP(k) +O

(
k

n

)
.

Altogether, we have bounded our maximization target from above and from below by AMIP(k) +

O
(
k
n

)
=

(
1±O

(
1√

log(n)

))
AMIP(k), completing our proof.

Proof of Claim F.19. If kj <
nj

ν ≪ nj , then we use the bound

∣∣c±j (kj)∣∣ < k2j
nj − kj

max
i∈[n]
{|Ri|}max

i∈[n]

{∣∣∣e⊺Σ̃−1X̃i

∣∣∣} = Õ

(
kj
νn

)
= o

(
kj
n

)
.

Next, note that due to Claim F.10 (which states that with very high probability the empirical residuals
Ri is close to the ground truth residual (Rgt)i), we have that with very high probability for all i:∣∣Ri − (Rgt)i

∣∣ = o(1) < 1 .

From our assumption that the ground truth residuals were normally distributed, we have that

Pr
(Rgt)i∼N (0,1)

[∣∣(Rgt)i
∣∣ > τ − 1

]
<

1

2ν′
.

Combining the two, along with the Hoeffding bound which promises us that with very high probability

|{i ∈ Bj | |Ri| > τ − 1}| ≤ nj Pr
(Rgt)i∼N (0,1)

[∣∣(Rgt)i
∣∣ > τ − 1

]
± Õ

(√
nj

)
,

we have that with very high probability

|{i ∈ Bj | |Ri| > τ}| <
∣∣∣{i ∈ Bj |

∣∣∣R̃i

∣∣∣ > τ − 1
}∣∣∣ = nj

ν′
.

We bound
∣∣∣{i ∈ Bj |

∣∣∣e⊺Σ̃−1X̃i

∣∣∣ > τ
n

}∣∣∣ in much the same manner, by utilizing Claim F.8 which

states that with very high probability
∣∣∣e⊺Σ̃−1X̃i − e⊺Xi

n

∣∣∣ = o
(
1
n

)
, and our assumption that the Xi

are very well behaved, which shows that there can’t be too many samples in a given bucket for which
|e⊺Xi| > polyloglog(n).
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F.4.2 INDIRECT CONTRIBUTIONS TO THE HIGHER ORDER TERMS

Indirect Contributions to the Covariance Shift Term Recall from Section A.3 that we bound the
covariance shift as

max
{
λ
(
Σ̂−1

S

)}
≤ 1

1−max
{
λ
(
Σ̃T

)}
−maxk1+···+km=k

{∑
j∈[m]

1
nj−kj

∥∥∥∑i∈T∩Bj
Σ̃−1/2X̃i

∥∥∥} .

Each component in the denominator is bounded separately by running an MSN-bounding algorithm.
The first MSN is run on the Gram matrix GX⊗X whose i, j entry is:(

X̃⊺
i Σ̃

−1X̃j

)2
.

From Claim F.2, the regression X̃, Ỹ is well-behaved, allowing us to use the same analysis as in
Claim E.2 to bound the output of this MSN by

MX⊗X(k) = Õ

(√
k
d2

n2
+ k2

d

n2

)
.

Similarly, we define Mj to be the MSN bound achieved by RTI on the Gram matrix

Gj [i1, i2] = X̃⊺
i1
Σ̃−1X̃i2 .

Claims F.5 and F.6 promise us that with very high probability the largest diagonal entry of this Gram
matrix is at most Õ

(
d
n

)
and its largest off-diagonal entry is at most Õ

(√
d

n

)
. Therefore, the resulting

MSN bounds are at most

Mj(kj) = Õ


√

kjd+ k2j
√
d

n

 .

Recall that for our actual OHARE bound, we also utilize the symmetry that allows us to replace
Mj(kj) with M j(kj) = min {Mj(kj),Mj(nj − kj)}.
For all kj ≤ nj

2 , we have

M j(kj)
2

(nj − kj)kj
≤ Mj(kj)

2

(nj − kj)kj
= Õ

(
d+ kj

√
d

n(nj − kj)

)
= Õ

(√
d

n

)
,

and for all kj >
nj

2 , we have

M j(kj)
2

(nj − kj)kj
≤ Mj(nj − kj)

2

(nj − kj)kj
= Õ

(√
d

n

)
.

Therefore, for all k < kthreshold

max
k1+···+km=k

∑
j∈[m]

M j(kj)
2

nj − kj

 = Õ

(√
dk

n

)
= o

(
MX⊗X(k)2

)
= o (1) .

Therefore, in this regime the covariance shift term does not contribute a factor of more than 3.

Indirect Contributions to the XR Term Recall from Section A.3 that the residual contributions
to the indirect XR term are bounded by

ρj(kj)
def
= min

 max
Tj∈(Bj

kj
)

∑
i∈Tj

|Ri|

 , max
Tj∈(Bj

kj
)

 ∑
i∈Bj\Tj

|Ri|


 ,

62



Published as a conference paper at ICLR 2025

where Ri are the empirical residuals.

With an analysis similar to the one above, we can utilize Claim F.10 which states that with very high
probability maxi∈[n] {|Ri|} = Õ (1) to show that with very high probability

ρj(kj)√
kj(nj − kj)

= Õ (1) .

Combining this with our bound on Mj(kj)√
kj(nj−kj)

, we have

max
k1+···+km=k

∑
j∈[m]

M j(kj)ρj(kj)

nj − kj

 = Õ

√√d
n

k

 .

Note that this is also smaller than the bound we proved for the direct contribution to the XR term in
Section E.5,

MXR = Õ

√kd

n
+

√√
d

n
k

 ,

and which we can apply after reaveraging due to Claim F.2 which states that X̃, Ỹ is an ACRE-friendly
with very high probability.

Indirect Contributions to the XZ Term Finally, recall from Section A.3 that the Z component of
the indirect effect on the XZ term was bounded by

ζj(kj) = min

 max
Tj∈(Bj

kj
)

∑
i∈Tj

|Zi|

 , max
Tj∈(Bj

kj
)

 ∑
i∈Bj\Tj

|Zi|


 ,

where Zi = e⊺Σ̃−1X̃i

Using the same analysis as above and Claim F.8 which states that with very high probability |Zi| =
Õ
(
1
n

)
for all i ∈ [n], we have that with very high probability

ζj(kj)√
kj(nj − kj)

= Õ

(
1

n

)
.

Combining this with our bound on Mj(kj), we have

max
k1+···+km=k

∑
j∈[m]

M j(kj)ζj(kj)

nj − kj

 = Õ

√√d
n2

k

 .

As before, this is smaller than our bound on the direct effect

MXZ = Õ

√kd

n2
+

k2
√
d

n2

 .

Putting it all together In Claim F.18 and over the last few paragraphs, we have bounded all the
individual terms that go into generating the OHARE bounds. In particular, we have shown that

Uk, Lk = First Order︸ ︷︷ ︸(
1±

(
1√

log(n)

))
×AMIP(k)

±|Direct XR + Indirect XR| × |Direct XZ + Indirect XZ|
1− Direct CS− Indirect CS

=

=

(
1±

(
1√

log(n)

))
× AMIP(k)± Õ

(
kd

n3/2
+

k2
√
d

n3/2

)
=

=

(
1±

(
1√

log(n)

))
× AMIP(k) ,

for all k ≤ kthreshold, concluding our proof of Theorem F.1.
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G ONE-HOT ENCODINGS ARE ALMOST BRITTLE

In this section, we will prove our claim from the introduction that datasets with one-hot encodings
are arbitrarily close to being extremely brittle. In particular, we will show that
Claim G.1. Let X ∈ Rn×d be an array of features and let Y ∈ Rn be some labels, such that one of
the features is 0 on all but kbucket < n− d of the samples. In other words, for some set S ⊆ [n] of
size |S| = n− kbucket, we have

∀i ∈ S Xi,d = 0

Then, for all γ ∈ Rd−1 and for all c > 0, there exists a linear regression X ′, Y ′ such that ∥X ′ −X∥+
∥Y ′ − Y ∥ < c, and OLS (X ′

S , Y
′
S)[d−1] = γ.

The reason regressions become so close to brittle is that with one of the features being always 0, we
can make a very small change to its value, in a way that creates very strong correlations.

Proof of Claim G.1. The proof of Claim G.1 is relatively simple.

First, we want to ensure that the original regression problem has no other degeneracies. We do this to
ensure that the resulting OLS has a unique solution.

Let V ⊆ Rn−kbucket be the linear space spanned by the columns of XS,[d−1] and YS . V is spanned by
d vectors. Therefore, dimV ≤ d.

If dimV = d, we can skip this step, and if this inequality is strict we say that XS,[d−1], YS are
degenerate. If dimV < d, it is easy to see that almost all X ′

S,[d−1], Y
′
S in Bc/2

(
XS,[d−1], YS

)
(i.e. in

the ball of radius c/2 around the original regression) are non-degenerate. Therefore, let X ′
S,[d−1], Y

′
S

be such a non-degenerate pair.

Now, consider the vector R = Y ′
S − X ′

S,[d−1]γ. This is the residual vector for the linear model
Y ′
S ≈ X ′

S,[d−1]γ, and by our assumption that X ′
S,[d−1], Y

′
S are non-degenerate, R ̸= 0 and is not in

the span of the columns of X ′
S,[d−1].

It is only left to decide the values of X ′
S,d. Setting X ′

S,d = c
2∥R∥R, our regression has a perfect fit on

the samples in S

Y ′
S = X ′

S

(
γ

− 2∥R∥
c

)
By our construction, Σ = (X ′

S)
⊺
X ′

S is full rank, making this OLS solution unique.
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