
A Algorithmic Details442

A.1 DNN Structure443

We built our DNN using a Graph Neural Network (GNN) [5]. This is motivated in part by re-444

cent work that has illustrated how to successfully apply GNNs to model the spatial relationship445

between vertices in a DLO [15]. We adapt the default implementation of a graph convolution net-446

work (GCN) [39] found in the PyTorch Geomeric library [40]. GCNs have demonstrated their447

ability to reduce computational costs while effectively extracting informative latent representations448

from graph-structured data. X̂t and V̂ are feature-wise concatenated as (X̂t, V̂) ∈ Rn×6 and are449

the input of the GCN. We set the feature dimension to 32 for message passing, allowing each node450

to receive information from its local neighborhood. We aggregate each node’s neighbors’ features451

using summation. The outputs of the GCN are flattened and decoded by a MLP constructed with452

two linear layers with a Rectified Linear Unit (ReLU) in the middle.453

A.2 Summary and Discussion of Improved Inextensiblity Enforcement with PBD454

Algorithm 2 Enforcing Inextensibility with Mo-
mentum Preserving PBD

Require: X̂t+1 and ϵ > 0
1: while any C(x̂i

t+1, x̂i+1
t+1) > ϵ do

2: for i = 2 to n− 1 do
3: x̂i

t+1 = x̂it+1 + βi∆x̂it+1 ▷ (11)
4: end for
5: end while
6: return : X̂t+1 ▷ Updated Vertices

Algorithm 2 summarizes our proposed method455

to enforce inextensibility while preserving mo-456

mentum. Note that in practice, the while loop457

in Algorithm 2 typically converges after two it-458

erations for ϵ = 0.05. Once we have the output459

from Algorithm 2, we update the velocities of460

the vertices to reflect the new vertex locations461

(i.e., Line 5 of Algorithm 1). Further, as shown462

in Table 6, skipping Algorithm 2 in Algorithm463

1 and relying solely on DNNs to capture the in-464

extensibility of DLOs can lead to simulation instability. This instability arises because modeling465

stiff behavior, such as the inextensibility of DLOs, makes the learning process highly sensitive to466

inputs and hinders effective gradient propagation [8, 11]. On the contrary, our approach explicitly467

imposes inextensibility, and seperates DNNs from the complications associated with learning stiff468

behavior.469

A.3 Training Setup470

Let U1:T−1 denote the set of inputs applied between times t = 1 and t = T − 1, and let X1:T =471

{X1,X2, . . . ,XT} ∈ RT×n×3 denote the associated ground truth trajectory of the DLO from times472

t = 1 to t = T. With known X1, V1 and U1:T−1, Algorithm 1 can be applied recursively to generate473

predicted associated trajectory X̂2:T. Let ϕ denote parameters of DNN. The objective of training is474

to solve the following optimization problem:475

min
α,ϕ

T−1∑
t=1

∥Xt+1 − X̂t+1∥2 (13)

By taking advantage of DEFORM’s differentiability, T can be set to values greater than 2 to capture476

long-term behavior. This multi-step training pipeline results in higher prediction accuracy than the477

single-step training pipeline, as shown in Table 6.478

B Experiemental Details479

B.1 Hardware Parameters480

We use an OptiTrack motion capture (Mocap) system to obtain the ground truth vertex locations for481

DLOs as depicted in Figure 6. Spherical markers with a diameter of 7.9 mm and weight of 0.4 g, are482

attached to the DLOs using the OptiTrack tracking system. Ten Flex3 cameras capture the motion of483

13

RGB-D
Camera

Mocap
Cameras

Kinova Gen3
Robot Franka Emika

Panda Robot
DLOMocap

Markers

DLO 1

DLO 2

DLO 3

DLO 4

DLO 5

Figure 6: Left: An illustration of the experimental setup. Right: An illustration of the DLOs that are used to
evaluate and compare the performance of DEFORM with various state-of-the-art DLO modeling methods.

the markers at a frequency of 100Hz, with a positional error of less than 0.3mm. For perception with484

an RGB-D camera, we use an Azure Kinect DK with a resolution of 720 x 1080 and a frequency485

of 30 Hz. Three distinct cables and two distinct ropes were constructed as shown in Figure 6. The486

physical properties of each wire are outlined in Table 4. These properties include the length, weight,487

and stiffness of each DLO, as well as the number of Mocap markers attached to it. The stiffness of488

each DLO is ranked on a relative scale.489

Table 4: Material Properties

Name Length [m] Weight [g] Stiffness # Mocap
Markers

DLO 1 1.152 34.5 3 13
DLO 2 0.996 65.2 4 12
DLO 3 0.998 96.8 5 12
DLO 4 0.973 22.0 1 12
DLO 5 0.988 19.2 2 12

B.2 Software Implementation:490

All experiments were conducted in Python, on an Ubuntu 20.04 machine equipped with an AMD491

Ryzen PRO 5995WX CPU, 256GB RAM, and 128 cores. All training pipelines were built within492

the PyTorch training framework. We implement DEFORM with PyTorch and use the Levenberg-493

Marquardt algorithm as the solver for Theseus. We utilize PyTorch for training and Numpy for non-494

batched prediction. We initialize the length and mass parameters of the DLO according to Table 4.495

The other material properties are initialized randomly and learned during the training process. We496

use SGD optimizer with 10−4 learning rate for training.497

B.3 Ablation Study: DLO4 and DLO5498

As a supplement for Table 2, the ablation study of DLO4 and DLO5 is shown in Table 5.499

B.4 Ablation Study: Inextensibility Enforcement with Learning and Single-step Training500

We conducted a further ablation study on training DEFORM without the improved inextensibility501

enforcement and training DEFORM using only a single-step prediction as shown in Table 6. When502

DEFORM is trained without enforcing inextensibility, simulation instability results in very high503

prediction loss, highlighting the importance of properly enforcing inextensibility over long time504

horizons. Additionally, training DEFORM using only a single-step prediction results in lower long-505

term prediction accuracy compared to training DEFORM using a 100-step prediction, demonstrating506

the importance of DEFORM’s differentiability for accurate long-term predictions.507

14

Table 5: Ablation Study with DLO 4 and DLO 5.

Accuracy (10−2m)
Method 4 5

DER 1.50 1.65
W/O Residual Learning 1.33 1.26
W/O System ID 1.02 1.10
Original Inextensibility 1.29 1.58
DEFORM 0.850 0.987

Table 6: Additional Ablation Study.

Accuracy (10−2m)
Method 1 2 3

W/O Enforcing Inextensibility with PBD 7.7× 105 260× 105 310× 105

Single Step Prediction Training 1.82 1.74 1.79
DEFORM 1.01 0.97 0.77

B.5 ARMOUR508

To perform a shape matching task, we rely upon ARMOUR[41], an optimization-based motion509

planning and control framework. The goal of the shape matching task is to use a robot arm to ma-510

nipulate the DLO from an initial configuration to a predefined target configuration. To accomplish511

this goal, ARMOUR performs planning in a receding horizon fashion. During each planning iter-512

ation, ARMOUR selects a trajectory to follow by solving an optimization problem. More details513

about ARMOUR’s trajectory parameterization and associated closed loop controller can be found in514

[41, Section IX]. The cost function minimizes the distance between the predicted DLO configuration515

given a chosen robot trajectory and a target DLO configuration. The predicted state of the DLO is516

computed via a DLO modeling technique.517

C DLO Tracking with Modeling518

This section first discusses the difficulties of incorporating existing framework with modeling for519

long-time DLO tracking under occlusion. It then proposes a novel perception pipeline, which is520

utilized in Section 5.2.521

C.1 DLO Tracking Review522

If a DLO is fully observable, then current state-of-the-art methods estimate the location of the DLO’s523

vertices by applying a Gaussian Mixture Model (GMM), performing clustering, and then using524

Expectation-Maximization [42, 43, 44, 45, 46, 47, 48, 49]. The output of this GMM algorithm is525

the mean locations in R3 of each of the Gaussians, which is then set equal to the vertex locations526

of the DLO. However, in practical applications, occlusion of DLOs during manipulation often leads527

to perception challenges, which complicates accurate prediction. In particular, due to occlusions,528

one cannot simply set the number of mixtures in the GMM equal to the number of vertices of the529

DLO. Doing so results in the vertices being incorrectly distributed only to the unoccluded parts of530

the DLO. Some of the aforementioned methods[45, 46] have been applied to perform tracking of531

DLOs under occlusion. Typically, this is done by leveraging short time horizon prediction with532

geometric regularization using prior observations. [45, 46, 47, 48, 49] Though powerful, to work533

accurately, these methods require frequent measurement updates and can struggle in the presence534

of occlusions for long time horizons. Recent research has explored particle filtering within a lower-535

dimensional latent space embedding and applied learning-based techniques for shape estimation536

under occlusion [50, 51]. Each of these methods rely upon different models for DLOs that tend to537

have numerical instabilities when used for prediction. As a result, these perception methods require538

high frequency sensor measurement updates to behave accurately. This paper illustrates that our539

15

Algorithm 3 State Estimation with Presence of Occlusion

Inputs: X̂t+1 ▷ Algorithm. 1
1: ST+1 ← RGB-D Camera
2: S̃T+1 ← filter(X̂t+1,ST+1)

3: Unoccluded X̂t+1 ← Depth Matching(S̃T+1, X̂t+1)
4: ñ + 1 groups← DBSCAN(S̃T+1)
5: for each group do
6: GMM Number j←Match(Unoccluded X̂t+1, group)
7: Mixture Center← GMM(group, j)
8: end for
9: for each X̂t+1 do

10: if Observed then
11: Vertex← Associated Mixture Center
12: else
13: Vertex← Predicted Vertex
14: end if
15: end for
16: return : Vertices

Algorithm 4 Tracking DLO with Modeling
Initial State Estimation
Require: S1 ← RGB-D Camera

1: DLO Initial Guess← S1

2: while DLO not Static do
3: Execute DEFORM ▷ Algorithm. 1
4: end while
5: Return X̂1, V̂1 = 0

Tracking DLO under Manipulation
1: while Tracking DLO do
2: while Predicting DLO do
3: Execute DEFORM ▷ Algorithm. 1
4: end while
5: State Estimation and Correction
6: end while

proposed model allows us to adapt DEFORM’s long time horizon prediction capability to relax the540

frequency of sensor updates, which reduces the overall computational cost of tracking DLOs in the541

presence of occlusions.542

C.2 DLO Tracking with DEFORM543

This section describes how we can use DEFORM to perform robust DLO tracking. Notably, DE-544

FORM enables us to deal with occlusions without requiring a frame-by-frame sensor update of the545

state of the DLO. In particular, this is possible due to our model accurately predicting the state of546

the DLO over long time horizons. As a result, we utilize a GMM model because it is independent547

of time. The state estimation approach is outlined in Algorithm 3. Additionally, Algorithm 4 sum-548

marizes the perception pipeline that describes the tracking of DLOs with state estimation and initial549

state estimation using DEFORM.550

C.3 State Estimation in the Presence of Occlusions551

Suppose that we are given access to an RGB-D sensor observing our DLO during manipulation and552

suppose that we translate these measurements at time step t into a point cloud which we denote by553

St = {s1t , smt , . . . , sMt } ∈ RM×3.554

16

To address the limitations of the algorithms discussed in Section 2, we leverage our predictions555

generated by applying Algorithm 1 as follows. We first filter the point cloud at time t using our556

predicted data. If any element of the point cloud is beyond some distance from our prediction, X̂t,557

then we remove it. Let S̃t denote the remaining points in the point cloud. Next, we detect which of558

the vertices of the DLO are unoccluded from the RGB-D sensor by checking if their predicted depth559

is close to their observed depth in the sensor. Suppose the number of vertices that are unoccluded is560

ñ.561

Once this is done, we apply DBSCAN to group S̃t into ñ+1 groups. Next, we associate each of the562

unoccluded vertices with one of the groups by finding the group to which its predicted location is563

smallest. We then take each group and perform GMM on the group with a number of mixtures equal564

to the number of vertices j that were associated with that group. Note, each mixture is associated with565

an unoccluded vertex of the DLO. The new predicted location of the vertex generated by DEFORM566

is updated by setting the new vertex location equal to the mean of its associated mixture. If a567

particular vertex was occluded, then its predicted location is left equal to its output from Algorithm 1.568

C.4 Initial State Estimation under Occlusion569

Note that in many instances, it can be difficult to estimate the location of the vertices when the sensor570

turns on and the DLO is occluded. Unfortunately, Algorithm 1 and the state estimation algorithm571

from the previous subsection require access to a full initial state. Fortunately, we can address this572

problem by making the following assumption: When the sensor measurements begin, the DLO is573

static and is only subject to gravity and/or the manipulators which are holding its ends. Under the574

above assumption, we initialize the DLO using an initial guess that aligns with observed vertices.575

This initial guess is then forward simulated using Algorithm 1 repeatedly until the DLO reaches a576

static state. This steady state is then used as the predicted state for all the vertices, including the577

occluded vertices.578

17

	Algorithmic Details
	DNN Structure
	Summary and Discussion of Improved Inextensiblity Enforcement with PBD
	Training Setup

	Experiemental Details
	Hardware Parameters
	Software Implementation:
	Ablation Study: DLO4 and DLO5
	Ablation Study: Inextensibility Enforcement with Learning and Single-step Training
	ARMOUR

	DLO Tracking with Modeling
	DLO Tracking Review
	DLO Tracking with DEFORM
	State Estimation in the Presence of Occlusions
	Initial State Estimation under Occlusion

