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A Detailed Derivation of the SEEDS Design Space406

In Sections 2 and 3 we proposed a simplified presentation of the design space of diffusion models407

and of the ingredients that constitute our proposed SEEDS methodology. In this section, we further408

develop our presentation in a technical manner, making explicit the formalization of our design409

choices.410

A.1 The Isotropic General SDE framework411

In Section 2, we presented a parametric family of differential equations (2) driving the generative412

process for DPMs, based on time-reversing the forward noising diffusion process (1). While doing413

so, we presented two parameters - the noise schedule �t and the scaling ↵t - for which the effects on414

DPMs have been widely studied in [12].415

As the shape of the trajectories of (1) and (2) (for ` = 0, 1) are defined by ↵t and �t, we start by416

writing down, for the scaling xt = ↵tbxt, the scaled generalization of the proposed SDEs in [12, Eq.417

103] which unifies in a single framework the forward and reverse trajectories:418

dx±
t =


↵̇t

↵t
x±
t � ↵

2
t �̇t�trx±

t
log p(bx±

t ;�t)± ↵
2
t �̇t�trx±

t
log p(bx±

t ;�t)

�
dt+ ↵t�t

r
2
�̇t

�t
d!±

t .

(17)
Following [12], the previous VP, VE, iDDPM, DDIM and EDM frameworks all are unified as different419

choices of ↵t, �t, among other choices presented in [12, Tab. 1] and we will use this as a basis for all420

the proofs contained in this Appendix. In particular, forward time means taking x+
t for which the421

score vanishes in this context. Now set xt = x�
t .422

The formulation in (2) involves a family of backwards differential equations controlled by a parameter423

` 2 [0, 1] which all yield reverse-time processes for (1), a fact that can be obtained by studying the424

Fokker-Planck equation for marginals p(bx+
t ;�t) of (17).425

When ` = 1, (2) the obtained SDE is known as the reverse SDE (RSDE) and, when ` = 0, we obtain426

an ODE that is known as the Probability Flow ODE (PFO):427

dxt =


↵̇t

↵t
xt � ↵

2
t �̇t�trxt log p(bxt;�t)

�
dt. (18)
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Now, finding a minimum for the loss function in [12, Eq. 51] is formulated as a convex optimization428

problem. As such, for the ideal model D(xt;�t) = argminD L(D;xt,�t), the score function with429

scaled input is expressed as430

rxt log p(bxt;�t) =
D(bxt;�t)� bxt

↵t�
2
t

.

This ideal model is usually subtracted by a raw network F in the form of a time-dependent precondi-431

tioning:432

D(xt;�t) := c1(t)xt + c2(t)F (c3(t)xt; c4(t)), ci(t) 2 Rd
, i = 1, . . . , 4.

As such, we can express the score function as two parameterizations involving D or F as follows:433

rxt log p(bxt;�t) =
D(bxt;�t)� bxt

↵t�
2
t

=
(c1(t)� 1)bxt + c2(t)F (c3(t)bxt; c4(t))

↵t�
2
t

. (19)

Let us now denote D
1
✓,t := D✓(bxt;�t) for a pre-trained network approximating the ideal denoiser434

and let D2
✓,t := F✓(c3(t)bxt; c4(t)) be the corresponding raw pre-trained network. Substituting the435

score function in the RSDE and the PFO with each of these models yields four different differential436

equations with a neural network as one of their components. These are given, for i = 1, 2, by437

dxt = [Ai(t)xt +B
i(t)Di

✓,t]dt+ g(t)d!̄t, (20)

dxt = [Ai+2(t)xt +B
i+2(t)Di

✓,t]dt. (21)

When D
1
✓,t (resp. D2

✓,t) is employed to replace the score function in (17) using (19), the resulting438

SDE (20) will be called data (resp. noise) prediction neural SDE. Proceeding analogously for the439

PFO (18) yield two ODEs (21) which will be called data (resp. noise) prediction neural PFO. The440

general form of the A
i and B

i coefficients determining each of these DEs is as follows:441

A
1(t) =

↵̇t

↵t
+ 2

�̇t

�t
B

1(t) = �2↵t
�̇t

�t
(DP NRSDE)

A
2(t) =

↵̇t

↵t
+ 2

�̇t

�t
(1� c1(t)) B

2(t) = �2↵t
�̇t

�t
c2(t) (NP NRSDE)

A
3(t) =

↵̇t

↵t
+

�̇t

�t
B

3(t) = �↵t
�̇t

�t
(DP NPFO)

A
4(t) =

↵̇t

↵t
+

�̇t

�t
(1� c1(t)) B

4(t) = �↵t
�̇t

�t
c2(t) (NP NPFO)

442

Remark A.1. At first glance, it would seem misleading to differentiate four DEs as these essentially443

correspond to different choices of ↵t, �t, c1(t), . . . , c4(t). But the reason why we do so is that, after444

applying the variation of constants formula, each of these DEs will yield a different representation445

of their exact solutions (see (22) and (23) below). As we will see below, constructing exponential446

integrators heavily depends on such representation and will show to lead to four different modes of447

SEEDS solvers, each one showing different behavior and performance for sampling from pre-trained448

DPMs. As such, we will articulate this difference already at the DE formulation.449

For t < s, the variation of constants formulae for NSDEs allows to represent the exact solutions of450

(20) as451

xt = �i(t, s)xs +

Z t

s
�i(t, ⌧)Bi(⌧)Di

✓,⌧d⌧ +

Z t

s
�i(t, ⌧)g(⌧)d!̄t, i = 1, 2 (22)

and those for NPFOs (21) as452

xt = �i(t, s)xs +

Z t

s
�i(t, ⌧)Bi(⌧)Di�2

✓,⌧ d⌧, i = 3, 4 (23)

where453

�Ai(t, s) = exp

✓Z t

s
A

i(⌧)d⌧

◆
(24)
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is called the transition matrix associated with A
i(t) and is defined as the solution to454

@

@t
�Ai(t, s) = A

i(t)�Ai(t, s), �Ai(s, s) = Id.

When A
i(t) is constant and B

i(t) = 1, there is a well-established literature on exponential ODE455

and SDE solvers with explicit stiff order conditions and prescribed by different forms of Butcher456

tableaux. When A
i(t) is not constant, for the expression in (24) to make sense in the usual sense (in457

terms of exponential series expansion) instead of having to make use of time-ordered exponentials/458

Magnus expansions, the f(t) := A
i(t) coefficients must satisfy [f (k)(t), f (l)(s)] = 0. This condition459

is trivially satisfied here as the A
i(t) considered here are d-dimensional diagonal matrices.460

Notice that, if Ai
6= A

j for some i 6= j, their associated transition matrices will not be equal. In461

particular, if A1
6= A

2, then the variances of the stochastic integrals in (22) are different for i = 1462

and i = 2. This is the first step in explaining the statement in Rem. A.1, and we refer the reader to463

the proof of Proposition 4.4 where we put into evidence its validity.464

A.2 Re-framing and Generalizing Previous Exponential Solvers465

A.2.1 The VP case466

Let ↵̃t :=
R t
0 (�d⌧ � �m)d⌧ = 1

2�dt
2 + �mt, where �d > �m > 0. Set467

f(t) :=
d log↵t

dt
, g(t) = ↵t

r
d[�2

t ]

dt
, �t =

p
e↵̃t � 1, ↵t = e

� 1
2 ↵̃t =

1p
�2
t + 1

.

Recall that in the VP case, and the noise prediction mode, [15] construct exponential solvers on the468

base of the following ODE469

dxt =


f(t)xt +

g
2(t)

2�̄t
✏✓(xt; t)

�
dt, t 2 [T, 0], (25)

where �̄t := ↵t�t. The ODE (25) identifies with that in [12] for the VP case for which the authors470

identify the preconditioning471

c1(t) = 1, c2(t) = ��t, c3(t) =
1p

�2
t + 1

, c4(t) = (M � 1)��1(�t) = (M � 1)t.

As such, we obtain the following coefficients for the NP NPFO:472

A
4(t) =

↵̇t

↵t
, B

4(t) = ↵t�̇t, �4(t, s) =
↵t

↵s

and473

rxt log p(bxt;�t) =
D✓(bxt;�t)� bxt

↵t�
2
t

=
(c1(t)� 1)bxt + c2(t)F (c3(t)bxt; c4(t))

↵t�
2
t

=
��tF✓(xt, (M � 1)t)

↵t�
2
t

.

A.2.2 Proof of Proposition 3.1474

First of all, denote F✓(xt, (M � 1)t) = ✏✓(xt, t). We have475

f(t) =
d log↵t

dt
, g

2(t) = 2�̄2
t

✓
d log �̄t

dt
�

d log↵t

dt

◆
= �2�̄2

t
d�t

dt
,

�̄t

↵t
= e

��t .

This way, one can directly relate �t with the signal-to-noise ratio SNR(t) = ↵
2
t /�̄

2
t , also being used476

in [15]. As such, SNR(t) is strictly monotonically decreasing in time. Thus, the analytic solution to477
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(2) yields478

xt = e

R t
s f(⌧)d⌧xs +

Z t

s

✓
e

R t
⌧ f(r)dr g

2(⌧)

�̄⌧
✏✓(x⌧ , ⌧)

◆
d⌧ +

Z t

s

⇣
e

R t
⌧ f(r)dr

g(⌧)
⌘
d!̄(⌧)

=
↵t

↵s
xs + ↵t

Z t

s

g
2(⌧)

↵⌧ �̄⌧
✏✓(x⌧ , ⌧)d⌧ + ↵t

Z t

s

g(⌧)

↵⌧
d!̄(⌧)

=
↵t

↵s
xs � ↵t

Z t

s

2�2
⌧

↵⌧ �̄⌧

d�⌧

d⌧
✏✓(x⌧ , ⌧)d⌧ + ↵t

Z t

s

g(⌧)

↵⌧
d!̄(⌧)

=
↵t

↵s
xs � 2↵t

Z t

s

�̄⌧

↵⌧

d�⌧

d⌧
✏✓(x⌧ , ⌧)d⌧ + ↵t

Z t

s

g(⌧)

↵⌧
d!̄(⌧)

=
↵t

↵s
xs � 2↵t

Z t

s
e
��⌧

d�⌧

d⌧
✏✓(x⌧ , ⌧)d⌧ �

p
2↵t

Z t

s
e
��⌧

r
d�⌧

d⌧
d!̄(⌧).

By using the change of variables to �(t), our equation now reads479

xt =
↵t

↵s
xs � 2↵t

Z �t

�s

e
��✏̂✓(bx�,�)d��

p
2↵t

Z �t

�s

e
��d!̄(�) (26)

Finally, notice that ↵t =
q

1
1+e�2�t

and �̄t =
q

1
1+e2�t

so that (26) is equivalent to480

bx�t =
↵̂�t

↵̂�s

bx�s � 2↵̂�t

Z �t

�s

e
��✏̂✓(bx�,�)d��

p
2↵̂�t

Z �t

�s

e
��d!̄(�).

This finishes the proof.481

A.2.3 Proof of Proposition 4.2482

Recall that the functions 'k are the integrals483

'k+1(t) =

Z 1

0
e
(1��)t �

k

k!
d�,

which satisfy 'k(0) =
1
k! . The truncated Itô-Taylor expansion of b✏✓ with respect to � reads484

b✏✓(bx�,�) =
nX

k=0

(�� �s)k

k!
b✏(k)✓ (bx�s ,�s) +Rn+1.

where here b✏(k)✓ denotes the L
k
t operators defined in (58) applied to b✏✓. On the one hand, since485

R �t

�s
e
��

d� =
�̄t

↵t
(eh � 1), we obtain by iteratively integrating by parts486

Z �t

�s

e
��b✏✓(bx�,�)d� =

nX

k=0

b✏(k)✓ (bx�s ,�s)

Z �t

�s

e
�� (�� �s)k

k!
d�+Rn+2

=
�̄t

↵t

nX

k=0

b✏(k)✓ (bx�s ,�s)h
k+1

'k+1(h) +Rn+2.

On the other hand, we have s > t, h = �t � �s > 0. Note that since the stochastic integrals487 R �t

�s
e
��d!̄(�) are measurable with respect to (!̄(�)�!̄(�s), 0  �  �t��s), they are independent488

on disjoint time intervals by the independence of increments property of Brownian motion. Thus the489

random variable ✏ := ✏s,t in our algorithms are independent on disjoint time intervals. We then write490

Z �t

�s

e
��d!̄(�) = N

 
0,

Z �t

�s

e
�2�d�

!

=
1
p
2

p
e�2�s � e�2�t✏, ✏ ⇠ N (0, Id)

=
1
p
2

s✓
�̄s

↵s
�

�̄t

↵t

◆✓
�̄s

↵s
+

�̄t

↵t

◆
✏, ✏ ⇠ N (0, Id)

=
1
p
2

�̄t

↵t

p
e2h � 1✏, ✏ ⇠ N (0, Id).
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In conclusion, the truncated Itô-Taylor expansion of the analytic expression491

xt =
↵t

↵s
xs � 2↵t

Z �t

�s

e
��b✏✓(bx�,�)d��

p
2↵t

Z �t

�s

e
��d!̄(�) (27)

simplifies to492

xt =
↵t

↵s
xs � 2�̄t

nX

k=0

h
k+1

'k+1(h)b✏(k)✓ (bx�s ,�s)� �̄t

p
e2h � 1✏+Rn+2, ✏ ⇠ N (0, Id).

This finishes the proof.493

A.2.4 Generalization to the remaining data prediction and deterministic modes494

Propositions 3.1 and 4.2 consist on the first steps for crafting SEEDS solvers in the VP case associated495

to the noise prediction neural RSDE (NP NRSDE). Generalizing the above procedure for crafting496

SEEDS for the 4 modes associated to (22) and (23) yields the following sets of coefficients497

A
1(t) =

↵̇t

↵t
+ 2

�̇t

�t
B

1(t) = �2↵t
�̇t

�t
(DP NRSDE)

A
2(t) =

↵̇t

↵t
B

2(t) = 2↵t�̇t (NP NRSDE)

A
3(t) =

↵̇t

↵t
+

�̇t

�t
B

3(t) = �↵t
�̇t

�t
(DP NPFO)

A
4(t) =

↵̇t

↵t
B

4(t) = ↵t�̇t (NP NPFO)

We readily obtain498

�2(t, s) = �4(t, s) =
↵t

↵s
, �3(t, s) =

�̄t

�̄s
, �1(t, s) =

�
2
t↵t

�2
s↵s

.

Then, by setting the simpler change of variables �t := � log(�t), we obtain499

Z t

s
�4(t, ⌧)B4(⌧)d⌧ = ↵t

Z t

s

1

↵⌧
↵⌧ �̇⌧d⌧ = ↵t

Z t

s
�̇⌧d⌧ = �↵t

Z �t

�s

e
��d� = ��̄t(e

h
� 1).

By recursion we obtain500

Z t

s
�4(t, ⌧)B4(⌧)F✓,⌧d⌧ = ��̄t

n�1X

k=0

h
k+1

'k+1(h)F
(k)
✓,s +O(hn+1).

In the same way, we obtain501

Z t

s
�3(t, ⌧)B3(⌧)d⌧ = �t↵t

Z t

s

�1

↵⌧�⌧
↵⌧

�̇⌧

�⌧
d⌧ = �t↵t

Z t

s

��̇⌧

�2
⌧

d⌧

= �t↵t

Z �t

�s

e
�d� = �↵t(e

�h
� 1).

Next,502 Z t

s
�2(t, ⌧)B2(⌧)d⌧ = ↵t

Z t

s

2

↵⌧
↵⌧ �̇⌧d⌧ = �2�̄t(e

h
� 1),

and finally, as already shown in Propositions 3.1 and 4.2:503

Z t

s
�1(t, ⌧)B1(⌧)d⌧ = �

2
t↵t

Z t

s

�2�̇⌧

�3
⌧

d⌧ = �
2
t↵t

Z t

s
�2

d�⌧

d⌧
e
2�⌧d⌧

= �
2
t↵t

Z �t

�s

e
2�d� = �↵t(e

�2h
� 1).
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Now, since g
2(t) = 2↵2

t �̇t�t, the stochastic integrals
R t
s �i(t, ⌧)g(⌧)d!̄⌧ , for i = 1, 2, have zero504

mean and variances:505
Z t

s
(�1(t, ⌧))2g2(⌧)d⌧ = �

4
t↵

2
t

Z t

s

1

�4
⌧↵

2
⌧

g
2(⌧)d⌧ = �̄

2
t (1� e

�2h)

Z t

s
(�2(t, ⌧))2g2(⌧)d⌧ = ↵

2
t

Z t

s
2�̇⌧�⌧d⌧ = ��̄2

t (e
2h
� 1).

We deduce from this the SEEDS-1 schemes in all four modes as given by iterates:506

ext =
�
2
t↵t

�2
s↵s

exs � ↵t(e
�2h
� 1)D✓(exs, s) + �̄t

p
1� e�2h✏ ✏ ⇠ N (0, Id) (28)

ext =
↵t

↵s
exs � 2�̄t(e

h
� 1)✏✓(exs, s)� �̄t

p
e2h � 1✏ ✏ ⇠ N (0, Id) (29)

ext =
�̄t

�̄s
exs � ↵t(e

�h
� 1)D✓(exs, s) (30)

ext =
↵t

↵s
exs � �̄t(e

h
� 1)✏✓(exs, s). (31)

Notice that the iterates (30) and (31) are exactly the iterates of the first stage solvers in [15] and [16]507

with F✓(xt; (M � 1)t) = ✏✓(xt, t). The iterates (29) coincide with the SEEDS-1 method presented508

in (14) and (28) consist on our SEEDS-1 method in the data prediction mode, which we will use in509

the following section.510

A.2.5 Proof of Proposition 4.4511

We will write in bold the statement to be proven.512

If we set g = 0 in (15), the resulting SEEDS solvers do not yield DPM-Solver. Indeed, if we set513

g = 0 in (15), then the method (29) does not contain a noise contribution and we readily see that it514

cannot be equal to (31). As the latter has been shown to be DPM-Solver-1, the conclusion follows.515

If we parameterize (15) in terms of the data prediction model D✓, the resulting SEEDS solvers516

are not equivalent to their noise prediction counterparts defined in Alg. 1 to 4.517

One can check that the SEEDS solver are not the same between the noise and data prediction modes518

by simply noticing that the noise contributions in (28) and (29) do not equate.519

The gDDIM solver [27] Theorem 1, for ` = 1, is equal to SEEDS-1 in the data prediction mode.520

As shown in (29), our proposed method SEEDS-1 in the data prediction mode for the VP case has521

iterates of the form522

ext =
�
2
t↵t

�2
s↵s

exs � ↵t(e
�2h
� 1)D✓(exs, s) + �̄t

p
1� e�2h✏, (32)

where ✏ ⇠ N (0, Id), �̄t = ↵t�t and h = log
�s

�t
. As our notation and that of [27, Theorem 1]523

overlap, we will use blue color when referring to their notation.524

On the one hand, gDDIM constructs iterates over a representation of the exact solution of the525

following family of neural differential equations:526

dut =


f(t)ut +

1 + �
2

2

g
2(t)

p
1� ↵t

✏✓(ut; t)

�
dt+ �g(t)d!̄t (33)

where ↵t decreases from ↵0 = 1 to ↵T = 0, and coefficients527

f(t) :=
1

2

d log↵t

dt
, g(t) =

r
�
d log↵t

dt

In particular, they choose an approximation, for ⌧ 2 [t��t, t], given by528

s✓(u, ⌧) =
✏✓(u⌧ , ⌧)
p
1� ↵t

⇡
1� ↵t

1� ↵⌧

r
↵⌧

↵t
s✓(u(t), t)�

1

1� ↵⌧
(u�

r
↵⌧

↵t
u(t)).
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The gDDIM iterates, for � = 1 = `, are then written as follows:529

u(t��t) =

r
↵t��t

↵t
u(t) +


�

r
↵t��t

↵t

p
1� ↵t +

q
1� ↵t��t � �2

t

�
✏✓(u(t), t) + �t✏

(34)
where ✏ ⇠ N (0, Id) and where530

�
2
t = (1� ↵t��t)


1�

✓
1� ↵t��t

1� ↵t

◆✓
↵t

↵t��t

◆�
. (35)

Now set (s, t) (t, t��t). Then531

�
2
s = (1� ↵t)


1�

✓
1� ↵t

1� ↵s

◆✓
↵s

↵t

◆�
,

u(t) =

r
↵t

↵s
u(s) +

p
1� ↵t � �2

s �

r
↵t

↵s

p
1� ↵s

�
✏✓(u(s), s) + �s✏.

Now set ↵t =
p
↵t, and �̄t =

p
1� ↵t. Then the variance of the noise in (35) is532

�
2
s = �̄

2
t

"
1�

✓
�̄t

�̄s

◆2✓
↵s

↵t

◆2
#
= �̄

2
t

"
1�

✓
↵t�t

↵s�s

◆2✓
↵s

↵t

◆2
#

= �̄
2
t

"
1�

✓
�t

�s

◆2
#

= �̄
2
t (1� e

�2h).

Hence, by denoting ext = u(t), the gDDIM iterate (34) reads, for ✏ ⇠ N (0, Id):533

ext =
↵t

↵s
exs +

q
�̄2
t � �̄2

t (1� e�2h)�
↵t

↵s
�̄s

�
✏✓(exs, s) +

q
�̄2
t (1� e�2h)✏

=
↵t

↵s
exs +

h
�̄t

p

e�2h � ↵t�s

i
✏✓(exs, s) + �̄t

p
1� e�2h✏

=
↵t

↵s
exs + �̄t


�t

�s
�

�s

�t

�
✏✓(exs, s) + �̄t

p
1� e�2h✏. (36)

On the other hand, the data and noise prediction models in our case are related by the following534

equation:535

D✓(exs, s) = c1(s)
exs

↵s
+ c2(s)✏✓(exs, s) =

exs

↵s
� �s✏✓(exs, s).

As such, and as h = �t � �s = log
�s

�t
, one can rewrite (32) in terms of ✏✓ as follows:536

ext =
�
2
t↵t

�2
s↵s

exs � ↵t(e
�2h
� 1)D✓(exs, s) + �̄t

p
1� e�2h✏

=
�
2
t↵t

�2
s↵s

exs � ↵t

✓
�
2
t

�2
s

� 1

◆
exs

↵s
� �s✏✓(exs, s)

�
+ �̄t

p
1� e�2h✏

=


�
2
t↵t

�2
s↵s
�

↵t

↵s

✓
�
2
t

�2
s

� 1

◆�
exs + ↵t

✓
�
2
t

�2
s

� 1

◆
�s✏✓(exs, s) + �̄t

p
1� e�2h✏

=
↵t

↵s
exs + �̄t

✓
�
2
t

�2
s

� 1

◆
�s

�t
✏✓(exs, s) + �̄t

p
1� e�2h✏

=
↵t

↵s
exs + �̄t

✓
�t

�s
�

�s

�t

◆
✏✓(exs, s) + �̄t

p
1� e�2h✏,

which coincides with the gDDIM iterate in Equation (36).537
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A.2.6 The VE, DDIM and iDDPM cases538

Following [12, Eq. 217], here ↵t = 1 and c1(t) = 1 and so the only possibilities incurring into539

semi-linear differential equations are540

A
1(t) = 2

�̇t

�t
B

1(t) = �2
�̇t

�t
(DP SDE)

A
3(t) =

�̇t

�t
B

3(t) = �
�̇t

�t
. (DP PFO)

We obtain, again with the choice �t = � log(�t) and setting h = �t � �s, the following:541

�1(t, s) =
�
2
t

�2
s

, �3(t, s) =
�t

�s
,

542
Z t

s
�1(t, ⌧)B1(⌧)d⌧ = ��

2
t

Z �t

�s

e
2�d� =

1

2
(e�2h

� 1)

Z t

s
�3(t, ⌧)B3(⌧)d⌧ = ��t

Z �t

�s

e
�d� = e

�h
� 1.

Next,543

Z t

s
(�1(t, ⌧))2g2(⌧)d⌧ = �

4
t

Z t

s

1

�4
⌧

�
2
⌧2

�̇⌧

�⌧
d⌧ = �

4
t

Z t

s

2̇�⌧

�3
⌧

d⌧ = �
2
t (e

�2h
� 1).

We readily see that these cases are identical to the VP case with ↵t = 1. In particular, the obtained544

SEEDS-1 iterates are545

ext =
�
2
t

�2
s

exs � (e�2h
� 1)D✓(exs;�s) + �t

p
1� e�2h✏.

ext =
�t

�s
exs � (e�h

� 1)D✓(exs;�s)

Now denote s1 = t�(�s+ rh), for 0 < r 6 1, where t� = e
��. There are two families of single-step546

one-parameter two-stage exponential ODE schemes:547

ext =
�t

�s
exs � (e�h

� 1)

✓
1�

1

2r

◆
D✓(exs;�s) +

1

2r
D✓(ex1;�s1)

�

ext =
�t

�s
exs � (e�h

� 1)D✓(exs;�s) +
1

r

✓
e
�h
� 1

h
+ 1

◆
[D✓(ex1;�s1)�D✓(exs;�s)],

with same supporting value548

ex1 =
�s1

�s
exs � (e�rh

� 1)D✓(exs;�s).

In the same vein we define a single-step two stage exponential SDE scheme:549

ex1 =
�
2
s1

�2
s

exs � (e�2rh
� 1)D✓(exs;�s) + �s1

p
e�2rh � 1✏1

ext =
�
2
t

�2
s

exs � (e�2h
� 1)

✓
1�

1

2r

◆
D✓(exs;�s) +

1

2r
D✓(ex1;�s1)

�

+�t

hp
e�2h � e�2rh✏1 +

p
e�2rh � 1✏2

i
.

A.2.7 The EDM case550

In the EDM-preconditioned case [12, App. B.6], we set �t := t and ↵t := 1. We denote �d := �data551

the variance of the considered initial dataset and we set552

c1(t) =
�
2
d

t2 + �2
d

, c2(t) =
t�dp
t2 + �2

d

, c3(t) =
1p

t2 + �2
d

, c4(t) =
1

4
log(t),
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so we obtain the following coefficients:553

A
1(t) =

2

t
B

1(t) = �
2

t
(DP NRSDE)

A
2(t) =

2

t

✓
1�

�
2
d

t2 + �2
d

◆
B

2(t) =
�2�dp
t2 + �2

d

(NP NRSDE)

A
3(t) =

1

t
B

3(t) = �
1

t
(DP NPFO)

A
4(t) =

1

t

✓
1�

�
2
d

t2 + �2
d

◆
B

4(t) =
��dp
t2 + �2

d

(NP NPFO)

In particular, the data prediction neural SDE/PFO are identical to those in the VE case with �t = t.554

So let us concentrate on the noise prediction regime, leading us to prove Proposition 3.2.555

A.2.8 Proof of Proposition 3.2556

In the Noise Prediction case, we have557

�2(t, s) =
t
2 + �

2
d

s2 + �2
d

, �4(t, s) =

s
t2 + �2

d

s2 + �2
d

,

so we readily compute:558

Z t

s
�2(t, ⌧)B2(⌧)d⌧ = (t2 + �

2
d)

Z t

s

1

⌧2 + �2
d

·
�2�dp
⌧2 + �2

d

d⌧,

Z t

s
�4(t, ⌧)B4(⌧)d⌧ =

q
t2 + �2

d

Z t

s

�dp
⌧2 + �2

d

·
�1p
⌧2 + �2

d

d⌧.

Let us consider two different changes of variables:559

�t := � log

✓
arctan

✓
t

�d

◆◆
and �t := � log

 
t

�d

p
t2 + �2

d

!
, (37)

that will be used for the (NP NPFO) and (NP NRSDE), respectively. For the former case, we have560

e
��td�t = �

1
�d

dt

1 + t2

�2
d

= �
�ddt

�2
d + t2

.

Therefore, we can deduce that561

Z t

s
�4(t; ⌧)B4(⌧)d⌧ =

Z t

s

s
t2 + �2

d

⌧2 + �2
d

.
��dp
⌧2 + �2

d

d⌧

=
q
t2 + �2

d

Z �t

�s

��d

⌧2 + �2
d

d⌧

=
q
t2 + �2

d

Z �t

�s

e
��d�

=
q
t2 + �2

d arctan

✓
t

�d

◆
(eh � 1).

For the latter case, we have562

e
��td�t = �

�d

p
t2 + �2

d � t�d
tp

t2 + �2
d

�2
d(t

2 + �2
d)

= �
�
2
d

�d(t2 + �2
d)
p

t2 + �2
d

= �
�d

(t2 + �2
d)
p
t2 + �2

d

.
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We then obtain563

Z t

s
�2(t; ⌧)B2(⌧)d⌧ =

Z t

s

t
2 + �

2
d

⌧2 + �2
d

·
�2�dp
⌧2 + �2

d

d⌧

= 2(t2 + �
2
d)

Z t

s
e
��d�

=
2t
p
t2 + �2

d

�d
(eh � 1).

The stochastic integral
R t
s �2(t, ⌧)g(⌧)d!̄⌧ in noise prediction case is a Gaussian random variable564

with zero mean and whose variance can be computed by Itô isometry as565

Z s

t
[�2(t; ⌧)g2(⌧)]2d⌧ = (t2 + �

2
d)

2

Z s

t

1

[⌧2 + �2
d]

2
2⌧d⌧

= (t2 + �
2
d)

2

Z s

t

1

[⌧2 + �2
d]

2
d⌧2

= (t2 + �
2
d)

2

✓
�

1

s2 + �2
d

+
1

t2 + �2
d

◆

=
(t2 + �

2
d)(s

2
� t

2)

(s2 + �2
d)

.

Putting everything together, we obtain the analytic solution at time t of (2) with coefficients (11) and566

initial value xs for the (NP NRSDE):567

xt =
t
2 + �

2
d

s2 + �2
d

xs + 2(t2 + �
2
d)

Z �t

�s

e
��

F̂✓(bx�,�)d��
p
2(t2 + �

2
d)

Z �t

�s

e
��d!�, (38)

where �t := � log


t

�d

p
t2+�2

d

�
. For the (NP NPFO), it is given by568

xt =

s
t2 + �2

d

s2 + �2
d

xs +
q
t2 + �2

d

Z �t

�s

e
��

F̂✓(bx�,�)d�, �t := � log


arctan


t

�d

��
. (39)

This finishes the proof.569

570

Remark A.2. From the above proof, we immediately deduce the SEEDS-1 iterates in the EDM-571

preconditioned noise prediction case. These are given, for the (NP NPFO) and (NP NRSDE)572

respectively, by573

ext =

s
t2 + �2

d

s2 + �2
d

exs +
q
t2 + �2

d arctan

✓
t

�d

◆
(eh � 1)✏✓(exs, s), (40)

ext =
t
2 + �

2
d

s2 + �2
d

exs +
2t
p
t2 + �2

d

�d
(eh � 1)✏✓(exs, s) +

s
(t2 + �2

d)(s
2 � t2)

(s2 + �2
d)

✏, (41)

where ✏ ⇠ N (0, Id).574

575

B Convergence Proofs576

In this Section, we give detailed proofs of Theorem 4.1 and Corollary 4.3 stated in the main part of577

this paper. Let us start recalling its framework. We start by considering the NP NRSDE (15) with VP578
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coefficients:579

dxt =


f(t)xt +

g
2(t)

�̄t
✏✓(xt, t)

�
dt+ g(t)d!̄t (42)

=


f(t)xt +

2↵2
t �̇t�t

�̄t
✏✓(xt, t)

�
dt+ g(t)d!̄t

=


d log↵t

dt
xt + 2↵t�̇t✏✓(xt, t)

�
dt+ ↵t

r
d[�2

t ]

dt
d!̄t

Denote t� the inverse of �t := � log(�t) (which is a strictly decreasing function of t) and denote580

bx� := x(t�(�)), ✏̂✓(bx�,�) := ✏✓(x(t�(�)), t�(�)). We consider a time discretization {ti}
M+1
i=0581

going backwards in time starting from t0 = T to tM+1 = 0 and to ease the notation we will always582

denote t < s for two consecutive time-steps ti < ti�1. The analytic solution at time t of the RSDE583

(2) with coefficients (7) and initial value xs reads584

xt =
↵t

↵s
xs � 2↵t

Z �t

�s

e
��✏̂✓(bx�,�)d��

p
2↵t

Z �t

�s

e
��d!̄(�) (43)

Given an initial condition ext0 = xT , the SEEDS-1 iterates read, for hi = �ti � �ti�1 = �t � �s,585

ext =
↵t

↵s
exs � 2�̄t(e

hi � 1)✏✓(exs, s)� �̄t

p
e2hi � 1✏ ✏ ⇠ N (0, Id).

586

Assumption B.1.587

1. The function ✏✓(x, t) is continuous (and hence bounded) on [0, T ], Lipschitz with respect to588

x and there is a constant C such that, for t, s 2 [0, T ] with t < s, we have589

|✏✓(x, t)� ✏✓(y, t)|
2 6 L1|x� y|2 (44)

|✏✓(x, t)|
2
_ |g(t)|2 6 L2(1 + |x|2) (45)

|✏✓(x, t)� ✏✓(x, s)|
2 6 L3(1 + |x|2)|t� s|

2 (46)

2. h = max1iM |hi| ⇠ O(1/M), where hi = �ti � �ti�1 .590

Let Cl
P (Rd

,R) denote the family of L times continuously differentiable real-valued functions on Rd591

whose partial derivatives of order 6 l have polynomial growth and let Ck,l
P (I ⇥ Rd

,R) be the space592

of functions g(·, ·) such that, for all (t, x) 2 I ⇥ Rd, g(·, x) 2 C
k(I,R) and g(t, ·) 2 C

l
P (Rd

,R).593

594

Assumption B.2. In addition to Assumption B.1, assume that all the components of ✏✓ belong to595

C
4,2
P (Rd

⇥ [0, 1],R).596

Before going into the proofs, we give some context that lead us to necessitate such assumptions.597

B.1 Preliminaries598

For an interval I = [t0, T ], let x = (x(t))I the solution of the following SDE599

dx(t) = f(x(t), t)dt+ g(t)d!(t), (47)

where g(t) = ĝ(t) · Idd is considered here as a diagonal matrix with identical diagonal entries ĝ(t).600

Suppose that f, g are continuous, and satisfy a linear growth and Lipschitz condition so that the601

conditions of the Existence and Uniqueness Theorem are fulfilled for the SDE (47).602

Let Ih = {t0, . . . , tM} be a time discretization of I with step sizes hn = tn+1 � tn for n =603

0, . . . ,M � 1 and let h = max06n<M hn. A time discrete approximation scheme bx = (bxn)Ih will604

be defined as a sequence bx0 = x(t0) and605

bxn+1 = �(bxn, hn, In) n = 0, . . . ,M � 1
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where I0 is independent of bx0, with In = !(tn+1 � tn) Wiener increments drawn from the nor-606

mal distributions with zero mean and variance hn and which are independent of bx0, . . . , bxn and607

I0, . . . , In�1.608

A scheme bx converges in the strong (resp. weak) sense, with global order p > 0, to the solution x of609

the SDE (47) if there is a constant C > 0, independent of h and � > 0, such that, for each h 2]0, �],610

we have611

(E[|x(T )�bxM |
2])1/2  Ch

p
, (resp .|E[G(x(T ))]�E[G(bxM )]|  Ch

p
, 8G 2 C

2(p+1)
P (Rd

,R)).

Notice that if (E[|x(T ) � bxM |
2])1/2 = O(hp) then for every function f satisfying a Lipschitz612

condition, we have |E[f(x(T ))]� E[f(bxM )]| = O(hp). Nevertheless, this is not enough to infer the613

optimal weak order of convergence of such method.614

Strong convergence is concerned with the precision of the path, while the weak convergence is with615

the precision of the moments. As, for DPMs, the center of attention is the evolution of the probability616

densities rather than that of the noising process of single data samples, weak convergence is enough to617

guarantee the well-conditioning of our numerical schemes. Moreover, when the diffusion coefficient618

vanishes, then both strong and weak convergence (with the choice G = id) reduce to the usual619

deterministic convergence criterion for ODEs.620

Let us now state some useful results that will be used later on.621

622

Assumption B.3. All moments of the initial value bx0 exist, f is continuous, satisfy a linear growth623

and globally Lipschitz condition.624

In particular, since I is a closed finite interval in R, f(·, x) and g are bounded by some constant.625

626

Theorem B.4 ([18]). In addition to B.3, suppose that627

|E[x(t1)� bx1]| 6 Ch
p1

(E[|x(t1)� bx1|
2])1/2 6 Ch

p2

with p2 > 1/2 and p1 > p2 + 1/2. Then bx is of strong global order p = p2 � 1/2.628

629

Assumption B.5. All moments of the initial value bx0 exist, f is continuous, satisfy a linear growth630

and Lipschitz condition with all their components belonging to C
p+1,2(p+1)
P (I ⇥ Rd

,R) and g 2631

C
p+1(I,R).632

633

Theorem B.6 ([18]). In addition to B.5, suppose that634

1. for large enough r 2 N, the moments E[|bxn|
2r] exist and are uniformingly bounded with635

respect to M and n = 0, . . . ,M636

2. for all G 2 C
2(p+1)
P (Rd

,R), if bxn = x(tn), then for some K 2 C
0
P (Rd

,R), we have637

|E[G(x(tn+1))]� E[G(bxn+1)]|  K(bxn)h
p+1

.

Then bx is of weak global order p.638

639

Lemma B.7. Suppose that bx0 has moments of all orders and that, for h < 1,640

|E[�(bxn, hn, In)� bxn]| 6 K(1 + |bxn|)h

|�(bxn, hn, In)� bxn| 6 Xn(1 + |bxn|)h
1/2

where Xn has moments of all orders. Then Condition 1 in Theorem B.6 is fulfilled.641

642
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B.2 Convergence of SEEDS-1643

In this section we will prove that that SEEDS-1 as described above is of global strong order 1.0.644

B.2.1 Strong Itô-Taylor approximation645

Then the truncated Itô-Taylor expansion of the analytic solution xt of the VP NP NRSDE starting646

from xs is given, for ✏ ⇠ N (0, 1), by647

xt =
↵t

↵s
xs � 2↵t

Z �t

�s

e
��b✏✓(bx�,�)d��

p
2↵t

Z �t

�s

e
��d!�

=
↵t

↵s
xs � 2�̄t(e

h
� 1)✏✓(xs, s)� �̄t

p
e2h � 1✏+R1

=
↵t

↵s
xs � 2�̄t(e

h
� 1)✏✓(xs, s)� �̄t

p
e2h � 1✏+O(h)

where the symbol O(hp) represent terms u such that kuk 6 |K(xs)|hp, for K 2 C
0
P (Rd

,R) and648

small h > 0. The SEEDS-1 scheme corresponds to such truncated Itô-Taylor expansion containing649

only the time and Wiener integrals of multiplicity one. As such, since Gtg(t) = 0 and assuming650

Lipschitz and linear growth conditions on ✏✓ as in Assumption B.1, xt can be interpreted as an order651

1.0 strong Itô-Taylor approximation [13, Theorem 10.6.3] of the solution to (42).652

B.2.2 Continuous approximation of SEEDS-1653

Let ↵̃t :=
1
2�dt

2 + �mt, where �d = �max � �min = 19.9, �m = �min = 0.1. We have654

�t =
p
e↵̃t � 1, ↵t = e

� 1
2 ↵̃t =

1p
�2
t + 1

so, in particular, as T = 1, we have ↵̃t0 = ↵̃1 = 1
2 (�max��min)+�min = 1

2 (�max+�min) ⇡ 10.05655

and ↵̃tM+1 = ↵̃0 = 0. We deduce ↵t0 = ↵1 ⇡ e
� 10.05

2 < 1, ↵tM+1 = ↵0 = 1. Next, �t0 = �1 ⇡656
p
e10.05 � 1 > 1 and �tM+1 = �0 = 0. As such, �t0 = � log(�1) := �L0 < 0 and �t �!

t!tM+1

+1.657

As such, we will set tM = tM+1 + " the end time so that �tM = L0 is finite. This implies that, for658

� 2 [�L0,+1[, 0 < e
�L0 6 e

�
< 1 < e

�tM and, for T̂ = �tM � �t0 , eh = e
�t��s 6 e

T̂ . Now659

set, for � 2 [�L0,+1[,660

↵̂� :=

r
1

1 + e�2�
, �̂� :=

r
1

1 + e+2�

Then, as � increases, ↵̂� increases starting from 0 < ↵̂�t0
< 1 and ↵̂� �!

�!+1
1 while at the same661

time �̂� decreases starting from 0 < �̂�t0
< 1 and �̂� �!

�!+1
0. As such, we can rewrite the exact662

solution (43) as663

bx�t =
↵̂�t

↵̂�s

bx�s � 2↵̂�t

Z �t

�s

e
��✏̂✓(bx�,�)d��

p
2↵̂�t

Z �t

�s

e
��d!̄(�). (48)

Notice that ↵̂�t
↵̂�s

is bounded for all t, s by664

↵̂�t

↵̂�s

6 1

↵̂�t0

and 0 < ↵̂� < 1 for all � 2 [�L0,+1[.665

Recall that the SEEDS-1 is defined recursively as666

yt0  xT ,yti  
↵ti

↵ti�1

yti�1 � 2�̄ti(e
hi � 1)✏✓(yti�1 , ti�1)� �̄ti

p
e2hi � 1✏i

and, for simplicity, we will denote y�ti
for the iterates (48).667
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Define a continuous approximation of SEEDS-1 as follows. For ĥ = t � s, we write ŝ = [s/ĥ]ĥ668

where [x] denotes the largest integer lesser or equal to x and I[A] is the indicator function associated669

to a set A. We define the step function:670

by(�) :=
X

k>0

I[�tk
,�tk+1

[y�tk

and the continuous approximation671

y(t) :=
↵t

↵t0

y(t0)� 2↵t

Z �t

�t0

e
��̂✏̂✓(by(�), �̂)d��

p
2↵t

Z �t

�t0

e
��d!�,

672

Proposition B.8. There are two constants C1, C2 independent of h such that, for all t 2 [0, T ], we673

have674

E


sup
t06t6tM

|y(t)|2
�

6 C1

E
h
|y(t)� by(t)|2

i
6 C2h

2
.

675

Proof. Recall the standard inequality (a+ b+ c)2 6 3(a2 + b
2 + c

2) for a, b, c 2 R. Then:676

|y(t)|2 6 3

2

4
����
↵t

↵t0

yt0

����
2

+ 4↵2
t

�����

Z �t

�t0

e
��̂

✏̂✓(by(�), �̂)d�

�����

2

+ 2↵2
t

�����

Z �t

�t0

e
��d!�

�����

2
3

5

Using the fact that ↵t 6 1, we have, by writing T̂ = �tM � �t0 and taking the expectation:677

E


sup
t06t6tM

|y(t)|2
�

6 3

2

4
����
↵t

↵t0

����
2

E
h
|yt0 |

2
i
+ 4E

2

4
�����

Z �t

�t0

e
��̂

✏̂✓(by(�), �̂)d�

�����

2
3

5+ 2↵2
tE

2

4
�����

Z �t

�t0

e
��d!�

�����

2
3

5

3

5

6 3

"����
↵t

↵t0

����
2

E
h
|yt0 |

2
i
+ 4T̂E

"Z �t

�t0

|e
��̂

|
2
���✏̂✓(by(�), �̂)

���
2
d�

#
+ 2↵2

tE
"Z �t

�t0

|e
��

|
2d�

##

6 3

"����
↵t

↵t0

����
2

E
h
|yt0 |

2
i
+ 4T̂

Z �t

�t0

|e
��̂

|
2E
���✏̂✓(by(�), �̂)

���
2
�
d�+ 2↵2

t

Z �t

�t0

e
�2�d�

#

6 3K

"
E
h
|yt0 |

2
i
+ 4T̂

Z �t

�t0

E
���✏̂✓(by(�), �̂)

���
2
�
d�+

⇣
e
2(�t��t0 ) � 1

⌘#

6 3K

"
E
h
|yt0 |

2
i
+ 4T̂L2

Z �t

�t0

⇣
1 + E

h
|by(�)|2

i⌘
d�+ (e2T̂ � 1)

#

6 3K

"
E
h
|yt0 |

2
i
+ 4T̂L2T̂ + e

2T̂
� 1 + 4T̂L2

Z �t

�t0

E
h
|by(�)|2

i
d�

#

6 3K
⇣
E
h
|yt0 |

2
i
+ 4T̂L2T̂ + e

2T̂
� 1
⌘
+ 3K4T̂L2

Z �t

�t0

E
h
|by(�)|2

i
d�

6 3K
⇣
E
h
|x(t0)|

2
i
+ 4T̂ 2

L2 + e
2T̂
� 1
⌘
+ 12KT̂L2

Z �t

�t0

E


sup
�06r6�

|y(r)|2
�
d�

where we used the linearity of expectation, Hölder’s inequality, Doob’s martingale inequality, Itô678

isometry, the linear growth condition of ✏̂✓, and we set K = max

✓��� ↵t
↵t0

���
2
, |e

L0 |
2
, �̄

2
t , 1

◆
. As we679
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know that E
h
|x(t0)|

2
i
<1, we apply Grönwall’s inequality in the last line to obtain680

E


sup
t06t6tM

|y(t)|2
�
6 C1, C1 := 3K

h
E
h
|x(t0)|

2
i
+ 4T̂ 2

L2 + e
2T̂
� 1
i
e
12KT̂L2 .

Second, we have, for s = ti, u = ti+1 and t 2 [t�(u), t�(s)[,681

y(t)� by(t) =
✓
↵t

↵s
� 1

◆
ys � 2↵t

Z �t

�s

e
��̂

✏̂✓(y�s ,�s)d�,

so that, using Hölder’s inequality, we get682

|y(t)� by(t)|2 6 3

"����
↵t

↵s
� 1

����
2

|ys|
2 + 4h

Z �t

�s

|e
��̂

|
2
|✏̂✓(y�s ,�s)|

2 d�

#
.

Now using Itô isometry we obtain:683

E
h
|y(t)� by(t)|2

i
6 3

"����
↵t

↵s
� 1

����
2

E
h
|ys|

2
i
+ 4hE

"Z �t

�s

|e
��̂

|
2
|✏̂✓(y�s ,�s)|

2 d�

##
.

Now, using the bound E
h
max |yt|

2
i
6 C1, the fact that ✏✓ is bounded and the same arguments as684

above, we get685

E
h
|y(t)� by(t)|2

i
6 3

"����
↵t

↵s
� 1

����
2

C1 + 4KhE
"Z �t

�s

|✏̂✓(y�s ,�s)|
2 d�

##

6 3

"����
↵t

↵s
� 1

����
2

C1 + 4KhL2

Z �t

�s

(1 + C1)d�

#

6 3

"����
↵t

↵s
� 1

����
2

C1 + 4Kh
2
L2(1 + C1)

#
.

Finally, as we have686

e
h =

�s

�t
=

↵t

↵s

p
1� ↵2

sp
1� ↵2

t

,

and 1 <

p
1�↵2

sp
1�↵2

t

�!
M!1

1, we obtain
���↵t
↵s
� 1
���
2
⇠ |e

h
� 1|2 ⇠ O(h2). Now, by denoting |e

h
� 1|2 6687

K2h
2, we conclude that688

E
h
|y(t)� by(t)|2

i
6 C2h

2
,

with C2 := 3K2C1 + 4KL2(1 + C1). This finishes the proof.689

690

B.2.3 Proof of Theorem 4.1691

Let’s now take a look at the approximation given yt0 = xt0 . We have692

yt � xt = 2↵t

Z �t

�t0

h
e
��b✏✓(bx�,�)� e

��̂b✏✓(by�, �̂)
i
d�.

Using the inequality ↵t  1, the Lipschitz property of b✏✓, Assumption (B.1), and Hölder’s inequality693

we deduce the bound:694

|yt � xt|
2 6 2

2

44

�����

Z �t

�t0

h
e
��b✏✓(bx�,�)� e

��̂b✏✓(by�, �̂)
i
d�

�����

2
3

5

6 8T̂

Z �t

�t0

���e��b✏✓(bx�,�)� e
��̂b✏✓(by�, �̂)

���
2
d�.
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Taking the expectation yields695

E


sup
t06s6t

|ys � xs|
2

�

6 8T̂E
"Z �t

�t0

���e��b✏✓(bx�,�)� e
��̂b✏✓(by�, �̂)

���
2
d�

#
.

Now, for the first integral, by writing:696

e
��b✏✓(bx�,�)� e

��̂b✏✓(by�, �̂)

= e
��b✏✓(bx�,�)� e

��̂b✏✓(bx�,�) + e
��̂b✏✓(bx�,�)� e

��̂b✏✓(bx�, �̂)

+e
��̂b✏✓(bx�, �̂)� e

��̂b✏✓(y�, �̂) + e
��̂b✏✓(y�, �̂)� e

��̂b✏✓(by�, �̂)

= (e��
� e

��̂)b✏✓(bx�,�) + e
��̂
⇣
b✏✓(bx�,�)� b✏✓(bx�, �̂)

⌘

+e
��̂
⇣
b✏✓(bx�, �̂)� b✏✓(y�, �̂) + b✏✓(y�, �̂)� b✏✓(by�, �̂)

⌘
,

we can state the following inequalities:697

E
"Z �t

�t0

���e��b✏✓(bx�,�)� e
��̂b✏✓(by�, �̂)

���
2
d�

#

6 3

Z �t

�t0

|e
��
� e

��̂
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2E
h
|b✏✓(bx�,�)|

2
i
d�+ 3E
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|
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���
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d�

#

+3E
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��̂

|
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���
2
d�

#

6 3

Z �t

�t0

|e
��
� e

��̂
|
2E
h
|b✏✓(bx�,�)|

2
i
d�+ 3KL3E

"Z �t

�t0

(1 + |bx�|
2)|(�� �̂)|2d�

#

+3E
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�t0

|e
��̂

|
2
���b✏✓(bx�, �̂)� b✏✓(y�, �̂) + b✏✓(y�, �̂)� b✏✓(by�, �̂)

���
2
d�

#

6 3L2

Z �t

�t0

|e
��̂

|
2
|e

���̂
� 1|2(1 + E[|bx�|

2])d�+ 3KL3h
2E
Z �t

�t0

(1 + |bx�|
2)d�

+3KL1

Z �t

�t0

E
h
|bx� � y� + y� � by�|

2
i
d�.

Thus, we obtain698

E
"Z �t

�t0

���e��b✏✓(bx�,�)� e
��̂b✏✓(by�, �̂)

���
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d�

#

6 3L2KT̂ |e
h
� 1|2(1 + C1) + 3L3h

2
K(1 + C1)T̂

+3KL1

Z �t

�t0

E
h
|bx� � y� + y� � by�|

2
i
d�

6 3L2KT̂ |e
h
� 1|2(1 + C1) + 3L3h

2
K(1 + C1)T̂

+6KL1

Z �t

�t0

E
h
|bx� � y�|

2 + |y� � by�|
2
i
d�
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699

6 3L2KT̂ |e
h
� 1|2(1 + C1) + 3L3h

2
K(1 + C1)T̂

+6KL1T̂C2h
2 + 6KL1

Z �t

�t0

E
⇥
|bx� � y�|

2
⇤
d�

6 3L2KT̂ |e
h
� 1|2(1 + C1) + 3L3h

2
K(1 + C1)T̂

+6KL1T̂C2h
2 + 6KL1

Z �t

�t0

E


sup
�06r6�

|bx(r)� y(r)|2
�
d�

6 3KT̂ (1 + C1)[L2|e
h
� 1|2 + L3h

2] + 6KL1T̂C2h
2

+6KL1

Z �t

�t0

E


sup
�06r6�

|bx(r)� y(r)|2
�
d�.

Putting everything together yields700

E


sup
t06s6t

|ys � xs|
2

�

6 8T̂ [3KT̂ (1 + C1)[L2|e
h
� 1|2 + L3h] + 6KL1T̂C2h

2]

+8T̂6KL1

Z �t

�t0

E


sup
�06r6�

|bx(r)� y(r)|2
�
d�

6 24KT̂
2(1 + C1)[L2|e

h
� 1|2 + L3h

2] + 48KL1T̂
2
C2h

2

+48T̂KL1

Z �t

�t0

E


sup
�06r6�

|bx(r)� y(r)|2
�
d�.

Now, by denoting |e
h
� 1|2 6 K2h

2, we apply the continuous version of the Grönwall Lemma to701

obtain:702

E


sup
t06s6t

|yt � xt|
2

�
6 C0h

2
,

where703

C0 = [24KT̂
2(1 + C1)[L2K2 + L3] + 48KT̂

2
L1C2]e

48T̂KL1 .

Finally, using Lyapunov’s inequality we obtain, for C =
p
C0704

E[|yT � xT |] 6
�
E[|yT � xT |

2]
�1/2 6 Ch.

In other words, for C as stated above, we have the following inequality705
s

E


sup
t06t6tM

|ext � xt|
2

�
6 Ch, as h �! 0.

706

Remark B.9. From the above, it is easy to induce that the following order for the one step error707

E[|x(t1)� y1|
2] = O(h3).

Now, since Gtg(t) = 0 in this case (additive noise), it is easy to see from the truncated Itô-Taylor708

expansion of x that |E[x(t1) � y1]| = O(h2). As such, we apply Theorem B.4 to conclude that709

SEEDS-1 has strong convergence of global order 1.0.710

711

B.2.4 Discrete-time approximation712

By Theorem 4.1, we know that SEEDS-1, being of strong order 1.0, it is immediately also of weak713

order 1. Nonetheless, let’s give a discrete approach of this statement that we will use for the proofs of714

convergence for the remaining solvers as stated in Corollary 4.3. Define the discrete time process:715

yt0  xT ,yti  
↵ti

↵ti�1

yti�1 � 2�ti(e
hi � 1)✏(yti�1 , ti�1)�

p
2↵ti

Z �ti

�ti�1

e
�sd!̄(s).
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We will prove that E[|ytM �xtM |] is of order h as h �! 0. Note that (yti)i has the same distribution716

as (exti)i described in Algorithm 2 since the stochastic integrals
⇣R �ti

�ti�1
e
�sd!̄(s)

⌘

i
are independent717

and each
R �ti
�ti�1

e
�sd!̄(s) is distributed as 1p

2

�ti
↵ti

p
e2hi � 1✏ with hi = �ti��ti�1 , ✏ ⇠ N (0, Id).718

We have:719

yti � xti =
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Z �ti
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e
��(b✏(bx�,�)� ✏(yti�1 , ti�1))d�.

For simplicity, in what follows C will denote a constant not dependent on the subdivision of [0, T ]720

that may change from one line to the next by systematically denoting the maximum value of the721

different constants appearing in the line before. Using the inequality ↵t  1, the Lipschitz property722

of ✏, we deduce the bound:723
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Notice that724
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and recall that bxu = xt�(u). Using the fact that t� is increasing and Lemma B.11, we have:725

E[
Z �ti

�ti�1

e
��

|bx� � xti�1 |d�]  C

Z �ti

�ti�1

e
�u
p
|t� � ti�1|d�  Ch

3/2
.

Introduce Ui = E[|yti � xti |]. Since
R �ti
�ti�1

e
��

|t�(�)� ti�1|d�  Ch
2:726

Ui 

✓
↵ti

↵ti�1

+ Ch

◆
Ui�1 + Ch

2
.

Let ai =
↵ti

↵ti�1
+ Ch and bi = Ch

2. By applying Lemma B.12, we have: UM  AMU0 +727

PM
k=1 Ak,nbk with AM =

QM
k=1 ak and Ak,M = AM/Ak =

QM
i=k+1 ai. Note that U0 = 0 since728

yt0 = xT and so:729

UM  Ch
2
M�1X

k=0

( sup
1iM

ai)
k
.

Using our hypothesis, we can bound:730

M�1X

k=0

( sup
1iM

ai)
k


M�1X

k=0

(exp(Ch) + Ch)k =
(exp(Ch) + Ch)1/h � 1

(exp(Ch) + Ch)� 1
.

The quantity on the right is of order C/h. Indeed, as h goes to 0, exp(Ch) + Ch� 1 is equivalent731

to 2Ch and (exp(Ch) + Ch)1/h converges to a constant. This gives the bound UM  Ch, when732

h! 0 and by using Proposition B.8 and Theorem B.6 we conclude that SEEDS-1 is convergent of733

weak order 1.734

735

B.2.5 Useful Lemmas736

Lemma B.10. (Continuous Grönwall Lemma) Let I = [a, b] denote a compact interval of the737

real line with a < b. Let ↵,�, u be continuous real-valued functions defined on I . Assume � is738

non-negative, ↵ is non-decreasing and u satisfies the integral inequality739

u(t)  ↵(t) +

Z t

a
�(s)u(s) ds, 8t 2 I.
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Then740

u(t)  ↵(t) exp

✓Z t

a
�(s) ds

◆
, 8t 2 I.

741

Lemma B.11. Assume the following forward SDE is satisfied dXt = F (t,Xt)dt+G(t)dWt, t 2742

[0, T ], where T > 0, F (t, x) is Lipschitz with respect to (t, x), G is continuous and X0 is an743

integrable random variable. Then, there exists C > 0 such that for all s < t 2 [0, T ] with t� s  1,744

E[|Xt �Xs|]  C
p
t� s.

745

Proof. We take s = 0 and apply the triangular inequality:746

|Xt �X0| 

Z t

0
|F (u,Xu)� F (0, X0))|du+ |

Z t

0
G(u)dWu|+ t|F (0, X0)|.

Setting u(t) = E[|Xt �X0|] and taking the expectation, we deduce:747

u(t)  K
t
2

2
+ tE[|F (0, X0)|] + E[(

Z t

0
G(u)dWu)

2]
1
2 +K

Z t

0
u(s)ds,

where K is a positive constant. Note that E[(
R t
0 G(u)dWu)2]

1
2 = [

R t
0 G

2(s)ds]
1
2 by the Itô isometry748

property which is less than C
p
t since G is continuous. Thus, we have proved that:749

u(t)  ↵(t) +K

Z t

0
u(s)ds,

where ↵(t) = K
t2

2 + tE[|F (0, X0)|] + C
p
t is non-decreasing. By Lemma B.10: u(t) 750

↵(t) exp(Kt)  ↵(t) exp(KT ). Since ↵(t)  C
p
t for t 2 [0, 1], the lemma holds.751

752

Lemma B.12. (Discrete Grönwall Lemma) Consider a real number sequence (un)n such that753

un+1  an+1un + bn+1, n � 0

where (an) and (bn)n are two given sequences such that bn is positive. Then754

un  Anu0 +
nX

k=1

Ak,nbk,

where An =
Qn

k=1 ak and Ak,n = An/Ak =
Qn

i=k+1 ai.755

756

B.3 Proof of Corollary 4.3757

B.3.1 Convergence of SEEDS-2:758

Let {yti}i be the discrete stochastic process defined as follows:759

yt0  xT ,yti  
↵ti

↵ti�1

yti�1 � 2↵ti

Z �ti

�ti�1

e
�u✏(ui, si)du�

p
2↵ti

Z �ti

�ti�1

e
�sd!̄(s),

with si  t�

�
�ti�1 +

hi
2

�
and760

ui  
↵si

↵ti�1

yti�1 � 2�si

⇣
e

hi
2 � 1

⌘
✏(yti�1 , ti�1)�

p
2↵si

Z �si

�ti�1

e
�sd!̄(s),
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Then {yti}i has the same distribution as {exti}i in Algorithm 3. We can compute the difference:761

yti � xti =
↵ti

↵ti�1

(yti�1 � xti�1) + �;� = �1 + �2

and:762

�1 = �2↵ti

Z �ti

�ti�1

e
�u [✏(ui, si)� ✏(xsi , si)] du

�2 = �2↵ti

Z �ti

�ti�1

e
�u [✏(xsi , si)� b✏(bxu, u)] du

Similarly to the case k = 1, E[|�2|]  Ch
2. Note that E[|�1|]  Ch�i with �i = E[|ui � xsi |].763

Introduce: Ui = E[|yti � xti |]. We will bound �i by a function of Ui�1. For this, recall:764

ui =
↵si

↵ti�1

yti�1 � 2↵si

Z �si

�ti�1

e
��✏(yti�1 , ti�1)d��

p
2↵si

Z �si

�ti�1

e
��d!̄(�),

and write the difference:765

ui � xsi =
↵si

↵ti�1

(yti�1 � xti�1) + 2↵ti

Z �ti

�ti�1

e
�u(b✏(bxu, u)� ✏✓(yti�1 ,�ti�1))d�.

By the triangular inequality:766

|b✏(bxu, u)� ✏(yti�1 ,�ti�1)|  C(|xt�(u) � xti�1 |+ |xti�1 � yti�1 |+ |t�(u)� ti�1|),

and so: E[|b✏(bxu, u)� ✏(yti�1 ,�ti�1)|]  C(
p
h+ Ui�1 + h). Finally:767

�i 
↵si

↵ti�1

Ui�1 + Ch

⇣p
h+ Ui�1 + h

⌘
 Ui�1 + Ch

⇣p
h+ Ui�1

⌘
,

and E[|�1|]  Ch
5/2 + C(h+ h

2)Ui�1. This gives the bound:768

Ui  Ch
2 + (

↵ti

↵ti�1

+ Ch+ Ch
2)Ui�1.

Now using Theorem B.6, the proof can now be finished following as in proof in Section B.2.4.769

770

B.3.2 Convergence of SEEDS-3:771

Continuing with the same notations as before, we will prove by analogy that:772

Ui  Ch
2 + (

↵ti

↵ti�1

+ Ch+ Ch
2 + Ch

3)Ui�1, (49)

so that, by Theorem B.6, we obtain the desired result.773

Let yti = exti . We have:774

yti =
↵ti

↵ti�1

yti�1 � 2↵ti

Z �ti

�ti�1

e
��✏(yti�1 , ti�1)d�

775

�
2↵ti

hir2

Z �ti

�ti�1

e
��(�� �ti�1)(✏(u2i, s2i)� ✏(yti�1 , ti�1))d�+ Noise,

and xti =
↵ti

↵ti�1
xti�1 � 2↵ti

R �ti
�ti�1

e
��b✏(bx�,�)d� + Noise, where Noise is the same in both776

equations. From the proof for k = 1, it suffices to bound:777

� =
1

hi

Z �ti

�ti�1

e
��(�� �ti�1)(✏(u2i, s2i)� ✏(yti�1 , ti�1))d�,
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in the L
1 norm. By the Lipschitz property of ✏:778

E[|�|]  Ch(E[|u2i � xs2i |] + E[|xti�1 � xs2i |] + E[|yti�1 � xti�1 |]) + Ch
2

 Ch(E[|u2i � xs2i |] +
p

h+ Ui�1) + Ch
2
.

Now, let us bound E[|u2i � xs2i |] and for this, write779

u2i =
↵s2i

↵ti�1

yti�1 � 2↵s2i

Z �s2i

�ti�1

e
��✏(yti�1 , ti�1)d�

780

�2↵s2i

Z �s2i

�ti�1

e
��(�� �ti�1)

✏(u2i�1, s2i�1)� ✏(yti�1 , ti�1)

r1hi
d�+ Noise

and781

xs2i =
↵s2i

↵ti�1

xti�1 � 2↵s2i

Z �s2i

�ti�1

e
��b✏(bx�,�)d�+ Noise,

where Noise is the same in both equations. So782

u2i � xs2i =
↵s2i

↵ti�1

(yti�1 � xti�1)� 2↵s2i

Z �s2i

�ti�1

e
��(✏(yti�1 , ti�1)� b✏(bx�,�))d�

�2↵s2i

Z �s2i

�ti�1

e
��(�� �ti�1)Dd�,

where D =
✏(u2i�1,s2i�1)�✏(yti�1 ,ti�1)

r1hi
. From the convergence proof of SEEDS-1, and the Lipschitz783

property of ✏, we obtain:784

E[|u2i � xs2i |]  Ui�1 + ChUi�1 + Ch
2 + ChE[|u2i�1 � yti�1 |].

Again, by the triangular inequality:785

E[|u2i�1 � yti�1 |]  E[|u2i�1 � xs2i�1 |] + C

p

h+ Ui�1,

and since786

u2i�1 � xs2i�1 =
↵s2i�1

↵ti�1

(yti�1 � xti�1)� 2↵s2i�1

Z �s2i�1

�ti�1

e
��(b✏(bx�,�)� ✏(yti�1 , ti�1)d�,

we have, as before,787

E[|u2i�1 � xs2i |]  Ui�1 + ChUi�1 + Ch
2
.

Combining the previous inequalities leads to (49). This finishes the proof of Corollary 4.3.788

C Implementation Details789

The SEEDS solvers used in our experiments are exactly the variants we described in Algorithms790

2, 3, 4 in the main part of the paper. In particular, SEEDS-2 and SEEDS-3 solvers are completely791

determined by one-parameter families of deterministic exponential integrators from [10] of order 2792

and 3 respectively and prescribed by the following Butcher tableaux:793

0
c2 c2'1,2⇣

1� 1
2c2

⌘
'1

1
2c2

'1

0 0 0 0
c2 c2'1,2 0 0
2
3

2
3'1,3 �

4
9c2

'2,3
4

9c2
'2,3 0

'1 �
3
2'2 0 3

2'2

In all experiments we fix the parameter c2 = 0.5 for SEEDS-2 and c2 = 1
3 for SEEDS-3. We point794

out that the Butcher tableau here associated to SEEDS-3 is the result of a weakening of the stiff order795

conditions so it might suffer from order reduction in the deterministic case. We also point out that a796

full theory of stiff order conditions for stochastic exponential Runge-Kutta methods for semi-linear797

DEs with a time-varying linear coefficient have not been yet developed to the authors knowledge. As798

such, this is only an analogy whose purpose is to clarify how our solvers relate to well-known solvers799

from the literature, but such Butcher tableaux do not rigorously reflect their convergence order.800

801
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C.1 Stabilization of the exponential terms802

In the proposed algorithms, one subtle detail is to re-arrange all equations in order for them to make803

use only of the expm1(h) function which computes eh � 1 with great numerical stability, specially804

for small values of h. We have for values r1 = 1/3, r2 = 2/3, the following identity805

p
e2hi � ehizi +

p
ehi � 1vi =

p
ehi � 1

⇣p
ehizi + vi

⌘

=
p
ehi � 1

⇣
e

hi
2 zi + vi

⌘

=
p
expm1(hi)

✓✓
expm1

✓
hi

2

◆
+ 1

◆
zi + vi

◆

=
p
expm1(hi)

✓
expm1

✓
hi

2

◆
+ 1

◆
zi +

p
expm1(hi)vi.

Now by using806

e
2(r2�r1)hi = e

2( 2
3�

1
3 )hi = e

2 1
3hi = e

r2hi ,

we now compute807

p
e2r2hi � er2hiz

1
i +

p
er2hi � 1z2i =

p
er2hi � 1

⇣p
er2hiz

1
i + z

2
i

⌘

=
p
er2hi � 1

⇣
e

hi
3 z

1
i + z

2
i

⌘

=
p
expm1(r2hi)((expm1(r1hi) + 1)z1i + z

2
i )

p
e2hi � e2r2hiz

1
i =

p
e3r2hi � e2r2hiz

1
i

= e
r2hi

p
er2hi � 1z1i

=
p
expm1(r2hi)(expm1(r2hi) + 1)z1i .

Finally, we obtain808

p
e2hi � e2r2hiz

1
i +

p
e2r2hi � er2hiz

2
i +

p
er2hi � 1z3i

=
p
expm1(r2hi)((expm1(r2hi) + 1)z1i + (expm1(r1hi) + 1)z2i + z

3
i ).

809

C.2 Noise schedules parameterizations810

The inverses of �(t) are given in the (VP) linear and cosine schedules respectively by811

t�(�) =
2 log(e�2� + 1)p

�2
min + 2(�max � �min) log(e�2� + 1) + �min

,

t�(�) =
2(1 + s)

⇡
arccos

✓
exp
⇣
�

1

2
log(e�2� + 1) + log cos

� ⇡s

2(1 + s)

�⌘◆
� s.

In EDM Noise Prediction case, the inverses of �(t), as given in (37), with respect to the NPFO and812

NRSDE are respectively given by813

t�(�) = �d tan(e
��) and t�(�) =

�dq
1

�2
de

�2� � 1
.

814
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C.3 EDM discretization815

We follow Karras et al. [12] to implement the EDM discretization timesteps {ti}Mi=0 as ti = �
�1(�i)816

such that, for ⇢ > 0,817

�i<M =

✓
�

1
⇢
max +

i

N � 1

✓
�

1
⇢

min � �

1
⇢
max

◆◆⇢

and �N = 0.

From the definition, we note that �0 = �max and �M�1 = �min, where �min and �max denote the818

minimum and maximum noise magnitude, respectively. We also keep default value ⇢ = 7 as in819

[12]. However, we figured out that when using EDM discretization with linear schedule, the noise820

schedule improvement in iDDPM pre-trained models would result in two consecutive time steps of821

the same value, i.e. tj = tj+1 for some index j = 1, . . . ,M � 1 and large steps (M � 61). Thus, for822

SEEDS-3 and DPM-Solver-3 [15], the usage of the function '2(h) =
e
h
� h� 1

h2
(see Appendix823

D for more details) will cause zero division error where h = �tj+1 � �tj = 0. Therefore, in our824

implementation, we ignore the noise schedule improvement of iDDPM models when using solvers of825

order three.826

827

C.4 Final sampling step828

The sampling phase in DPMs using SEEDS follows the RSDE, which requires gradual computing829

through discretization time steps {ti}
M
i=0 and the latter goes from t0 = T to tM = 0. In our830

implementation, to avoid the logarithm of zero error at the last step, i.e. log �tM = log(0), we stop831

the sampling phase at step (M � 1). Hence, the NFE used in a run will be given as832

NFE = k ⇥ (M � 1),

where k represents the order of the solver. We also do not use the “denoising” trick, i.e., ignoring the833

random noise at the last step and leave it to further research.834

D Reminders on Stochastic Exponential Integrators835

Let us consider a SDE of the form836

dx(t) = [a(t)x(t) + c(t)f(x(t), t)]dt+ g(t)d!(t), (50)

where a, c : [0, T ]! R and g : [0, T ]! Rd⇥d. In other words we concentrate to high-dimensional837

semi-linear non autonomous SDEs with additive noise. The objective of this section is to construct838

explicit stochastic exponential derivative-free methods for the above equation following the Runge-839

Kutta (RK) approach. These methods ideally should fulfill the following properties:840

1. If f ⌘ 0, then (50) can be solved exactly;841

2. If g ⌘ 0, then a SEEDS method for (50) identifies with an exponential RK (ERK) method;842

3. If a ⌘ 0, then a SEEDS method for (50) identifies with a stochastic RK (SRK) method and843

if moreover g ⌘ 0 then it identifies with a classical RK ODE method.844

Before tackling the aimed SEEDS problem let us rapidly recall elementary constructions of RK, ERK,845

weak and strong SRK methods. We will not deal with time-adaptive methods here.846

847

D.1 Derivative-free exponential ODE schemes848

D.1.1 Runge-Kutta approach849

Derivative-free schemes are obtained by comparing the Itô-Taylor expansion of the above paragraph850

with expressions of x(t) in terms of its intermediate evaluations between s and t = s + h and the851

Taylor expansions of such evaluations. As a simple example, in the ODE regime852

dx(t) = f(x(t), t)dt. (51)
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As such, analytic solutions to the above equations are of the form853

x(t) = x(s) +

Z t

s
f(x(⌧), ⌧)d⌧.

Now, Taylor expansion gives, up to order 2:854

x(t) = x(s) + hx0(s) +
h
2

2
x00(s) +O(h3)

= x(s) + hf(x(s), s) +
h
2

2
(x0(s)@xf(x(s), s) + @tf(x(s), s)) +O(h3)

= x(s) + hf(x(s), s) +
h
2

2
(f(x(s), s)@xf(x(s), s) + @tf(x(s), s)) +O(h3).

A straightforward recursion yields a Taylor expansion855

x(t) = x(s) +
nX

k=1

h
k

k!
L
k�1
t f(x(t), t) +

Z t

s
· · ·

Z ⌧

s
L
n
t f(x(⌧), ⌧)d⌧

n+1
,

where we denote the generalized infinitesimal operator of the solution x of (51) by856

Lt(•) = @t(•) + f(x(t), t) · @x(•).

Derivative-free methods seek to get rid of the derivatives in Lt by computing Taylor expansions of f857

at well-chosen points. In the explicit one-step case, this amounts of defining858

bx(t) = bx(s) + h

nX

k=1

�(bx(s), s, h),

where the � function does not contain derivatives of f . The general high order case is given by859

well-tuned coefficients in the following scheme860

bx(t) := bx(s) + h

nX

i=1

↵if(xi, s+ cih)

xi = bx(s) + h

nX

j=1

ai,jf(xj , s+ cjh).

By denoting ↵ = [↵1 . . .↵n], c = [c1 . . . cn]T and A = (ai,j), these can be represented by a Butcher861

tableau of the form862
c A

↵

In the following sections we will present extended version of this tableau for representing more863

involved numerical schemes. As such, the Euler, midpoint, Heun and general second order explicit864

methods are respectively:865

0 0
1

0 0 0
1/2 1/2 0

0 1

0 0 0
1 1 0

1/2 1/2

0 0 0
c2 c2 0

1� 1
2c2

1
2c2

866

D.1.2 Exponential Runge-Kutta approach867

We now concentrate on a non-autonomous semi-linear ODE of the form868

dx(t) = [f(t)x(t) + g(x(t), t)]dt, (52)

where f(t) = f̄(t) · Idd and g(x(t), t) = ḡ(x(t), t) · Idd are diagonal time-dependent matrices with869

identical diagonal coefficients. In particular, we have [f (k)(t), f (l)(s)] = 0, a property we will need870

to facilitate exponential matrix multiplications. As f(s) is a d-dimensional diagonal matrix, the871
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fundamental matrix for (52), usually given by the Peano-Baker series, simplifies in this case to the872

form873

�(t; s) := e

R t
s f(r)dr =

1X

n=0

1

n!

✓Z t

s
f(r)dr

◆n

,

which satisfies �0(t; s) = f(t)�(t; s) and �(s; s) = 1. Then the exact solution for (52) is given, via874

the variation of constants formula, by875

x(t) = �(t; s)

✓
x(s) +

Z t

s
��1(⌧ ; s)g(x(⌧), ⌧)d⌧

◆
= �(t; s)x(s) +

Z t

s
�(t; ⌧)g(x(⌧), ⌧)d⌧.

In light of this integral form, one can formalize a general class of876

exponential n-stage RK methods877

xi = �i(h, fs)x(s) +
nX

j=1

aij(h, fs)g(xj , s+ cjh)

x(t) = �0(h, fs)x(s) +
nX

i=1

bi(h, fs)g(xi, s+ cih),

where �0, �i, aij , bj are functions of the step-size h, fand fs(r) :=
R r
0 f(s+ ⌧)d⌧ . There are two878

possible approaches to create exponential integrators, namely the exponential time-differencing879

(ETD) approach that uses the variation of constants formula and makes use of the ' functions, and880

the Lawson approach, also know as integrating factor (IF), which makes a change of variables on the881

above SDE thus avoiding the use of the ' functions but computing exponential factors step-wise.882

The Lawson and the ETD approaches for Exponential Euler schemes883

There are two choices one can make when computing first order approximations of884

x(t) = �(t; s)x(s) +

Z t

s
�(t; ⌧)g(x(⌧), ⌧)d⌧.

First, by interpolating g(x(⌧), ⌧) as g(x(s), s) we obtain885

x(t) = �(t; s)x(s) + g(x(s), s)

Z t

s
�(t; ⌧)d⌧.

Now two choices remain. Either
R t
s �(t; ⌧)d⌧ is computed exactly or we again interpolate �(t; ⌧) as886

�(t; s). Taking for simplicity f ⌘ A to be constant and by denoting h = t� s, the first case yields887

the ETD Euler method888

bx(t) = �(t; s)bx(s) + h�1(f, t, s)g(bx(s), s)
= e

Ahbx(s) + h'1(Ah)g(bx(s), s)
= bx(s) + h'1(Ah)[g(bx(s), s)� bx(s)],

and the second yields the IF Euler (also called Lawson-Euler) method889

bx(t) = �(t; s)bx(s) + h�(t; s)g(bx(s), s)
= e

Ah(bx(s) + hg(bx(s), s)).

Now, consider a solution890

x(t) = �(t; s)x(s) +

Z h

0
�(h; ⌧)g(x(s+ ⌧), s+ ⌧)d⌧.

Exponential methods then aim to approximate the term g(x(s + ⌧), s + ⌧) by its interpolation891

polynomial in certain non-confluent quadrature nodes c1, . . . , cn.892

The ETD approach893
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In this case, the variation of constants formula yields894

x(s+ ch) = e

R s+ch
s a(⌧)d⌧x(s) +

Z s+ch

s
e

R s+ch
⌧ a(r)dr

f(x(⌧), ⌧)d⌧.

= e

R ch
0 a(s+⌧)d⌧x(t) +

Z ch

0
e

R ch
⌧�s a(s+r)dr

f(x(s+ ⌧), s+ ⌧)d⌧.

Now, as before, the Taylor expansion of f yields895

f(x(s+ ⌧), s+ ⌧) =
qX

j=1

⌧
j�1

(j � 1)!
f
(j�1)(x(s), s)

+

Z ⌧

0

(⌧ � ⌧1)q�1

(q � 1)!
f
(q)(x(s+ ⌧1), s+ ⌧1)d⌧1.

Recall that the ' functions are given in an integral form as follows896

'k+1(t) =

Z 1

0
e
(1��)t �

k

k!
d�,

which satisfy 'k(0) =
1
k! . Now denote897

'j(t, a) :=
1

tj

Z t

0
e

R t
⌧ a(r)dr ⌧

j�1

(j � 1)!
d⌧, j > 1.

'1(h, a) =
1

h

Z h

0
e

R h
⌧ a(r)drd⌧ =

Z 1

0
e
h
R 1
✓ a(r)drd✓.

The exact solution at s+ ch now reads898

x(s+ ch) = e

R ch
0 a(s+⌧)d⌧x(s) +

qX

j=1

(ch)j'j(ch, a)f
(j�1)(x(s), s)

+

Z ch

0
e

R ch
⌧ a(s+r)dr

✓Z ⌧

0

(⌧ � ⌧1)q�1

(q � 1)!
f
(q)(x(s+ ⌧1), s+ ⌧1)ds

◆
d⌧1.

Using the left endpoint rule yields899

x(t) = e

R h
0 a(s+⌧)d⌧x(s) + f(x(s), s)

Z h

0
e

R h
⌧ a(s+r)drd⌧ +O(h2)

= e

R h
0 a(s+⌧)d⌧x(s) + h'1(h, a)f(x(s), s) +O(h2).

Second order examples:900

The condition b2(z)c2 = '2(z) implies b2 = '2(z)/c2 and we obtain901

bx = e
chAx(s) + ch'1(chA)f(x(s), s)

x(t) = e
hAx(s) + h

✓
'1(hA)�

1

c
'2(hA)

◆
f(x(s), s) +

h

c
'2(hA)f(bx, s+ ch). (53)

A second method is obtained by weakening the above condition to b2(0)c2 = '2(0) = 1/2 giving902

bx = e
chAx(s) + ch'1(chA)f(x(s), s)

x(t) = e
hAx(s) + h'1(hA)

✓
1�

1

2c

◆
f(x(s), s) +

h

2c
'1(hA)f(bx, s+ ch). (54)

In some cases this method can suffer from order reduction and not reach order 2 of convergence.903

Moreover, setting c = 1/2 gives the exponential midpoint method:904

bx = e
chAx(s) + ch'1(chA)f(x(s), s)

x(t) = e
hAx(s) + h'1(hA)f(bx, s+ ch). (55)
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The above order 1 and 2 exponential methods are represented by the following exponential Butcher905

tableaux906

0 0
'1

0
c2 c2'1,2

'1 �
1
c2
'2

1
c2
'2

0
c2 c2'1,2⇣

1� 1
2c2

⌘
'1

1
2c2

'1

0
c2 c2'1,2

0 '1

We check that when formally setting A = 0 then the first two methods are identical and give the907

generic 2nd order RK method, the choice c = 1 gives the Heun method and the choice c = 1/2 gives908

the midpoint method.909

Fourth order methods910

It can be shown that ERK methods need at least 5 stages to achieve order 4. By setting formally911

A = 0 these methods do not have a non-exponential counterpart to our knowledge.912

5-stage sequential We have a fourth-order ERK scheme given by913

0
1
2

1
2'1,2

1
2

1
2'1,3 � '2,3 '2,3

1 '1,4 � 2'2,4 '2,4 '2,4
1
2

1
2'1,5 � 2a5,2 � a5,4 a5,2 a5,2

1
4'2,5 � a5,2

'1 � 3'2 + 4'3 0 0 �'2 + 4'3 4'2 � 8'3

with914

a5,2 = c5'2,5 � '3,4 + c
2
5'2,4 � c5'3,5.

This can also be represented by Rosenbrock-like Butcher tableau915

0
1
2

1
2'1,2

1
2

1
2'1,3 '2,3

1 '1 '2 '2
1
2

1
2'1,5 a5,2 a5,2

1
4'2,5 � a5,2

'1 0 0 4'3 � '2 4'2 � 8'3

with916

a5,2 = c5'2,5 � c3'3,3 + c
2
5'2 � '3.

This traduces into (recall that Di = f(xi, s+ cih)� f(x(s), s))917

x(t) = x(s) + h('1(hA))F (x(s), s) + h(4'3(hA)� '2(hA))D4

+h(4'2(hA)� 8'3(hA))D5

x2 = x(s) + c2h'1(c2hA)F (x(s), s)

x3 = x(s) + hc3'1(c3hA)F (x(s), s) + h'2(c3hA)D2

x4 = x(s) + h'1(hA)F (x(s), s) + h'2(hA)(D2 +D3)

x5 = x(s) + h'1(hA)F (x(s), s) + ha5,2(hA)(D2 +D3) + h(c25'2(c5hA)� a5,2(hA))D4.

Inspired by this, we deduce the following fourth order Algorithm 5 specialized for DPMs in the VP918

noise prediction regime. We highlight the fact that SEEDS can produce any deterministic exponential919

method as in the DPM-Solver approach via the specification of a Butcher tableau this way and most920

of all follow-ups which have been done in [16] can readily be applied for SEEDS such as parallel921

steps schemes and dynamic thresholding. We leave these directions for future work.922

923

D.2 Derivative-free exponential SDE schemes924

Let xt be the path at the continuous limit h ! 0, and {bxt}
tM
t0 be the discretized numerical path,925

computed by a numerical scheme S with M = 1/h steps of length h > 0. Then, S has926

1. strong order of convergence � if there is K > 0 such that927

E[|xtM � bxtM |]  Kh
�
, (56)
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Algorithm 5 DPM-Solver-4
1: def DPM-Solver-4(✏✓, x̃ti�1 , ti�1, ti, r = 0.5):
2: hi  �ti � �ti�1

3: s2  t�

�
�ti�1 + rhi

�
, s3  t�

�
�ti�1 + rhi

�

4: s4  t�

�
�ti�1 + hi

�
, s5  t�

�
�ti�1 + rhi

�

5: k1  ✏✓(x̃ti�1 , ti�1)
6: k2  

↵s2
↵s

x̃ti�1 � �s2(e
rh
� 1)k1

7: k3  
↵s3
↵s

x̃ti�1 � �s3(e
rh
� 1)k1 � �s3

⇣
4 erh�1

h � 2
⌘
[✏✓(k2, s2)� k1]

8: k4  
↵s4
↵s

x̃ti�1 � �s4(e
h
� 1)k1 � �s4

⇣
eh�1
h � 1

⌘
[✏✓(k3, s3) + ✏✓(k2, s2)� 2k1]

9: A = �s5(e
rh
� 1)k1 �

1
4�s5

⇣
eh�1
h � 1

⌘
[k1 + ✏✓(k2, s2) + ✏✓(k3, s3)]

10: B = �s5

⇣
erh�1

h �
1
2

⌘
[k1 + 4✏✓(k2, s2) + 4✏✓(k3, s3)� ✏✓(k4, s4)]

11: C = �s5

⇣
eh�1+4(erh�1)�3h

h2 � 1
⌘
[�k1 � ✏✓(k2, s2)� ✏✓(k3, s3) + ✏✓(k4, s4)]

12: k5  
↵s5

↵ti�1
x̃ti�1 �A�B � C

13: D = �t(eh � 1)k1 � �t

⇣
eh�1
h � 1

⌘
[4✏✓(k5, s5)� ✏✓(k4, s4)� 3k1]

14: E = �t

⇣
4 eh�1�h

h2 � 2
⌘
[k1 + ✏✓(k4, s4)� 2✏✓(k5, s5)]

15: x̃ti  
↵t

↵ti�1
x̃ti�1 �D � E

16: Return xti

2. weak order of convergence � if there is K > 0 and a function class K such that928

|E[�(xtM )]� E[�(bxtM )]|  Kh
�
, 8�(·) 2 K. (57)

Strong convergence is concerned with the precision of the path, while the weak convergence is929

with the precision of the moments. As, for diffusion models, the center of attention is the evolution930

of the probability densities rather than that of the noising process of single data samples, weak931

convergence is enough to guarantee the well-conditioning of our numerical schemes. Moreover,932

when the diffusion coefficient vanishes, then both strong and weak convergence (with the choice933

� = id) reduce to the usual deterministic convergence criterion for ODEs.934

935

D.2.1 Strong and Weak Stochastic Runge-Kutta approach936

In all what follows ! is considered a d-dimensional Wiener process (with identity diffusion matrix).937

Consider the following SDE938

dx(t) = f(x(t), t)dt+ g(t)d!(t),

where g(t) = ĝ(t) · Idd is considered here as a diagonal matrix with identical diagonal entries ĝ(t).939

Given an initial value independent of !, the integral form of x(t) is given by940

x(t) = x(s) +

Z t

s
f(x(⌧), ⌧)d⌧ +

Z t

s
g(⌧)d!(⌧).

The idea underlying stochastic numerical schemes is very similar to the one used in the deterministic941

approach, that is to take expansions of the terms inside the integrals based at the integral’s initial value942

and replace the obtained derivatives that appear by interpolated approximations. A key difference943

here is that as we have to consider Itô-Taylor expansions, the infinitesimal operators are different944

but most importantly most of the stochastic iterated integrals will need to be approximated in an945

appropriate sense, whenever that is possible. We will develop this expansion up to triple integrals.946

947
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D.2.2 Truncated Itô-Taylor expansions948

Applying Itô formula to h = f or g yields949

h(x(t), t) = h(x(s), s) +

Z t

s
g(⌧) · @xh(x(⌧), ⌧)d!(⌧)

+

Z t

s

✓
@th(x(⌧), ⌧) + f(x(⌧), ⌧) · @xh(x(⌧), ⌧) +

g
2(⌧)

2
@
2
x2h(x(⌧), ⌧)

◆
d⌧.

This allows us to define two differential operators L,G as950

Lt = @t + f(x(t), t) · @x +
g
2(t)

2
· @

2
x (58)

Gt = g(t) · @x. (59)

In particular Ltg(t) = @tg(t) and Gtg(t) = 0. With this notation, we have951

h(x(t), t) = h(x(s), s) +

Z t

s
Lth(x(⌧), ⌧)d⌧ +

Z t

s
Gth(x(⌧), ⌧)d!(⌧),

so our solution reads952

x(t) = x(s) +

Z t

s
f(x(⌧1), ⌧1)d⌧1 +

Z t

s
g(⌧1)d!(⌧1)

= x(s) +

Z t

s

✓
f(x(t), t) +

Z ⌧1

s
Ltf(x(⌧2), ⌧2)d⌧2 +

Z ⌧1

s
Gtf(x(⌧2), ⌧2)d!(⌧2)

◆
d⌧1

+

Z t

s

✓
g(t) +

Z ⌧1

s
Ltg(⌧2)d⌧2 +

Z ⌧

s
Gtg(⌧2)d!(⌧2)

◆
d!(⌧1)

= x(s) + f(x(s), s)h+ g(t)(!(t)� !(s)) +R1.

Now Gtg(⌧2) = 0 and953

g(s) +

Z ⌧1

s
Ltg(⌧2)d⌧2 = g(s) +

Z ⌧1

s
@tg(⌧2)d⌧2 = g(s) + g(⌧1)� g(s) = g(⌧1).

So we have954

Z t

s

✓
g(s) +

Z ⌧1

s
Ltg(⌧2)d⌧2 +

Z ⌧

s
Gtg(⌧2)d!(⌧2)

◆
d!(⌧1) = g(s)(!(t)� !(s)),

and now our solution reads955

x(t) = x(s) + f(x(s), s)h+ g(s)(!(t)� !(s)) +R1,

where956

R1 =

Z t

s

Z ⌧1

s
Ltf(x(⌧2), ⌧2)d⌧2d⌧1 +

Z t

s

Z ⌧1

s
Gtf(x(⌧2), ⌧2)d!(⌧2)d⌧1.

Now we have957

Ltf(x(t), t)

= Ltf(x(s), s) +

Z t

s
g(x(⌧), ⌧) · @xLtf(x(⌧), ⌧)d!(⌧)

+

Z t

s

✓
@tLtf(x(⌧), ⌧) + f(x(⌧), ⌧) · @xLtf(x(⌧), ⌧) +

g
2(x(⌧), ⌧)

2
@
2
x2Ltf(x(⌧), ⌧)

◆
d⌧

= Ltf(x(s), s) +

Z t

s
L
2
t f(x(⌧), ⌧)d⌧ +

Z t

s
GtLtf(x(⌧), ⌧)d!(⌧),
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and958

Gtf(x(t), t)

= Gtf(x(s), s) +

Z t

s
g(x(⌧), ⌧) · @xGtf(x(⌧), ⌧)d!(⌧)

+

Z t

s

✓
@tGtf(x(⌧), ⌧) + f(x(⌧), ⌧) · @xGtf(x(⌧), ⌧) +

g
2(x(⌧), ⌧)

2
@
2
x2Gtf(x(⌧), ⌧)

◆
d⌧

= Gtf(x(s), s) +

Z t

s
LtGtf(x(⌧), ⌧)d⌧ +

Z t

s
G

2
t f(x(⌧), ⌧)d!(⌧).

Now, if we denote d!0(⌧) = d⌧ , d!1(⌧) = d!(⌧) and959

I(i) =

Z t

s
d!i(⌧1) I(i,j) =

Z t

s

Z ⌧1

s
d!j(⌧2)d!

i(⌧1) i, j 2 {0, 1},

applying the same procedure to R1 leads to960

R1

=

Z t

s

Z ⌧1

s
Ltf(x(⌧2), ⌧2)d⌧2d⌧1 +

Z t

s

Z ⌧1

s
Gtf(x(⌧2), ⌧2)d!(⌧2)d⌧1

=

Z t

s

Z ⌧1

s


Ltf(x(t), t) +

Z ⌧2

s
L
2
t f(x(⌧3), ⌧3)d⌧3 +

Z ⌧2

s
GtLtf(x(⌧3), ⌧3)d!(⌧3)

�
d⌧2⌧1

+

Z t

s

Z ⌧1

s


Gtf(x(t), t) +

Z ⌧2

s
LtGtf(x(⌧3), ⌧3)d⌧ +

Z ⌧2

s
G

2
t f(x(⌧3), ⌧3)d!(⌧3)

�
d!(⌧2)d⌧1

= Ltf(x(t), t)

Z t

s

Z ⌧1

s
d⌧2d⌧1 +Gtf(x(t), t)

Z t

s

Z ⌧1

s
d!(⌧2)d⌧1

+

Z t

s

Z ⌧1

s

Z ⌧2

s
L
2
t f(x(⌧3), ⌧3)d⌧3d⌧2d⌧1 +

Z t

s

Z ⌧1

s

Z ⌧2

s
GtLtf(x(⌧3), ⌧3)d!(⌧3)d⌧2d⌧1

+

Z t

s

Z ⌧1

s

Z ⌧2

s
LtGtf(x(⌧3), ⌧3)d⌧3d!(⌧2)d⌧1

+

Z t

s

Z ⌧1

s

Z ⌧2

s
G

2
t f(x(⌧3), ⌧3)d!(⌧3)d!(⌧2)d⌧1

= Ltf(x(s), s)I(0,0) +Gtf(x(s), s)I(0,1) + L
2
t f(x(s), s)I(0,0,0) +GtLtf(x(s), s)I(0,0,1)

+LtGtf(x(s), s)I(0,1,0) +G
2
t f(x(s), s)I(1,1,0) +R2,

and with R2 consisting on quadruple integrals. As such, our solution now reads961

x(t) = x(s) + f(x(s), s)h+ g(s)(!(t)� !(s)) + Ltf(x(s), s)I(0,0) +Gtf(x(s), s)I(0,1)

+L
2
t f(x(s), s)I(0,0,0) +GtLtf(x(s), s)I(0,0,1)

+LtGtf(x(s), s)I(0,1,0) +G
2
t f(x(s), s)I(1,1,0) +R2.

Now, in the SDE regime, one cannot get rid of the iterated Itô integral and so stochastic RK methods962

cannot be derived as simple extensions of their deterministic counterparts. In order to continue we963

now take into account the fact that the diffusion SDE has additive and diagonal noise. In this case,964

both the Itô and the Stratonovich SDE coincide.965

Iterated integrals966

Now, for simplicity, set t = 0. We then have I(0) = h, I(0,0) =
R h
0

R ⌧1
0 d⌧2d⌧1 = h2

2 , I(0,0,0) = h3

6 .967

Now notice that968

I(1) := ŵh ⇠ N (0, h)

I(0,1) := ẑh :=

Z h

0

Z ⌧1

0
d!(⌧2)d⌧1 = lim

n!1

h

n

n�1X

i=0

iX

j=1

✏j , ✏j ⇠ N

✓
0,

h

n

◆
.
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Additionally, ŵh and ẑh satisfy E[ŵ2
h] = h,969

E[(ŵhh� ẑh)
2] = E

2

4
 Z h

0
⌧d!(⌧)

!2
3

5 =
1

3
h
3

E[ŵhẑh] = E
"
ŵh

Z h

0
⌧d!(⌧)

#
= E

"Z h

0
⌧d⌧

#
=

1

2
h
2

E[ẑ2h] = E[(ŵhh� ẑh)
2
� h

2
ŵ

2
h + 2hŵhẑh] =

1

3
h
3
.

970

D.2.3 Integral approximations971

Weak Approximations972

When crafting weak stochastic approximations to SDEs one may replace multiple Itô integrals by973

other random variables satisfying the corresponding moment conditions. We will denote Î↵ the974

approximation of I↵ for ↵ a multi-index following [13, Corollary 5.12.1]. Of course, the deterministic975

integrals I(0,...,0) need not to be approximated.976

First order approximations977

The random variable Î(1) must satisfy for some constant K:978

|E[Î(1)]|+ |E[(Î(1))3]|+ |E[(Î(1))2 � h]| 6 Kh
2

Two possible choices for Î(1) are either Î(1) ⇠ N (0, h) or Î(1) is a two-pointed distributed discrete979

random variable with980

P
h
Î(1) = ±

p

h

i
=

1

2
.

Second order approximations981

The random variable Î(1) must satisfy for some constant K:982

|E[Î(1)]|+ |E[(Î(1))3]|+ |E[(Î(1))5]|+ |E[(Î(1))2 � h]|+ |E[(Î(1))4 � 3h2]| 6 Kh
2
.

Two possible choices for Î(1) are either Î(1) ⇠ N (0, h) or Î(1) is a three-pointed distributed random983

variable with984

P
h
Î(1) = ±

p

3h
i
=

1

6
, P[Î(1) = 0] =

2

3
.

The rest follows from the above calculations:985

Î(0,1) =
1

2
hÎ(1), i = 0, 1.

Third order approximations986

One can choose Î(1) ⇠ N (0, h), Î(0,1) ⇠ N
�
0, 1

3h
3
�

satisfying E[Î(1)Î(0,1)] = 1
2h

2.987

Then, one can deduce the following:988

Î(1,0,0) = Î(0,1,0) = Î(0,0,1) =
1

6
h
2
Î(1)

Î(0,1,1) = Î(1,0,1) = Î(1,1,0) =
1

6
h(Î2(1) � h).

Thus, we can write the solution weak approximation as989

x(t) = x(s) + f(x(s), s)h+ g(s)Î(1) + Ltf(x(s), s)
h
2

2
+R2

+Gtf(x(s), s)Î(0,1) + L
2
t f(x(s), s)

h
3

6
+GtLtf(x(s), s)

1

6
h
2
Î(1)

+LtGtf(x(s), s)
1

6
h
2
Î(1) +G

2
t f(x(s), s)

1

6
h(Î2(1) � h). (60)
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An example of such a pair (Î(1), Î(0,1)) = (ŵh, ẑh) can be easily obtained as follows990
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Indeed, for such a pair we have991

E


ŵh
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In light of the above expression, the truncated Taylor expansions we refer in the main part of the992

paper consists on the consideration of only the coefficients in L
k
t . The only noise noise contribution993

we will consider corresponds to g(s)Î(1).994

995

E Experiment Details996

We evaluate the Fréchet inception distance (FID) after generating 50K samples with each solver,997

and compare with the statistics of real-data. In our experiments we make use of the code from [12]998

for continuously trained models as well as their reference FID stats1 and that of [15] for discretely999

trained models.1000

All the experiments of SEEDS for continuous-time models are parameterized within the EDM1001

framework with the discretization of type EDM, linear schedule, and scaling none as described on1002

[12] in noise prediction mode unless explicitly stated. We use the SEEDS-3 method that has 3 NFEs1003

per step and fixed step-size and report FID scores at NFEs divisible by 3.1004

We leverage the explicit Langevin-like “churn” trick using in [12] to add or remove noise in the1005

sampling phase. Specifically, [12] uses 4 hyper-parameters Schurn, Smin, Smax and Snoise in which1006

Schurn controls the overall amount of stochasticity added before giving the input to the SEEDS-31007

method when the noise level (or time step in EDM configuration) ti is contained in the noise interval1008

[Smin, Smax]. It means that the EDM proposed sampler is stochastic under some conditions of those1009

hyper-parameters and deterministic otherwise, while our method is completely stochastic. In our1010

experiments, we set Schurn = 0 except for ImageNet-64 EDM optimized model. We noticed that using1011

the additional stochasticity indeed helps to improve the image quality as in Fig. 1 (c). Moreover,1012

setting Snoise slightly above 1 might correct the errors in earlier steps more effectively as indicated in1013

[12].1014

1015

E.1 Pre-trained model specifications1016

For producing the CIFAR-10 time-continuous results in Table 1, we use the VP DDPM++ continuous1017

architecture. These models are publicly available in conditional2 and unconditional3 versions and1018

were directly derived from [23] under the Apache 2.0 license. On the unconditional mode (Figure1019

1 (a-b)), we first generate the FID curves of 3 types of DPM-Solver (with orders 1, 2 and 3) using1020

the updates from their official implementation4 in noise prediction mode. Taking profit of the tuning1021

advancements proposed by [12], we used a linear noise schedule with �d = 19.1 and �min = 0.1 that1022

slightly differs from the original parameters from [23] but were proven beneficial. We set the end1023

time of sampling " to 1e-4 as recommended by [15, Appendix D.2]. The values of all benchmark1024

models for Figure 1 (b) were taken directly from tables provided by [15].1025

In our FFHQ-64 experiments, we employ the unconditional VP pretrained5 model provided by [12].1026

1
https://nvlabs-fi-cdn.nvidia.com/edm/fid-refs/

2
https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/

baseline-cifar10-32x32-cond-vp.pkl

3
https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/

baseline-cifar10-32x32-uncond-vp.pkl

4
https://github.com/LuChengTHU/dpm-solver

5
https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/

baseline-ffhq-64x64-uncond-vp.pkl
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For the CelebA-64 experiments, we use the pre-trained VP unconditional model whose checkpoint61027

is provided by [22]. We use the Type-1 discretization proposed in [15] to ensure compatibility of our1028

method with the prescribed trained steps of such model.1029

For ImageNet-64, we both use the baseline and the optimized pre-trained models given in [12]. We1030

note that the baseline is trained on the iDDPM class of model (see [12, Tab.1 Col.3] for details), which1031

actually uses different preconditioning and thus the change of variables compared to the optimized1032

model. The Figure 1 (c) was obtained using the EDM-preconditioned checkpoint7. The added noise1033

settings of SEEDS-3 solver were not subject to a grid-search optimization procedure. The chosen1034

hyper-parameters were Schurn = 11, Snoise = 1.003, Smin = 0.05, and Smax = 15 but we are1035

confident that this configuration can be optimized to further improve our results.1036

1037

E.2 Noise vs. Data Prediction approaches1038

In Appendix B of [16], the authors compare DPM-Solver2 and DPM-Solver++(2S), which amounts1039

on comparing in our framework the difference between the obtained exponential integrators for the1040

PFO in the noise and data prediction regimes to detect exactly a coefficient on the non-linear term1041

that is absent in the noise prediction regime. The term they find corresponds exactly to the difference1042

between applying the variation of constants formula before (instead of after) replacing the score1043

function with the desired neural network. In Tab. 2 we report both data and noise prediction SEEDS-3.1044

At low NFEs the DP approach gives better results but stabilizes in high NFEs at a FID score that is1045

worse than the one the NP approach reaches.1046

Table 2: Comparison between noise prediction F✓,t and data prediction D✓,t modes of SEEDS-3 on
CIFAR-10 (VP uncond. cont.).

SAMPLING METHOD / NFE 9 30 60 90 150 165 180

SEEDS-3 DATA PREDICTION 60.75 22.42 12.47 2.95 2.51 2.54 2.55
SEEDS-3 NOISE PREDICTION 471.29 288.20 33.92 3.76 2.40 2.39 2.48

E.3 Low vs. High stage Solvers1047

Similar to DPM-Solver [15], the FID scores in Tab. 3 and 4 show that at low NFEs, higher stage1048

methods performs more poorly while at higher NFEs, DPM-Solver-3 and SEEDS-3 are better than1049

their counterparts with 1 and 2 stages.1050

E.4 Deterministic vs. Stochastic Solver1051

Deterministic solvers as DPM-Solver [15] are fast and well-adapted to applications in which speed is1052

the most concern. As shown in [15], Table 3 and 4, DPM-Solver converges to a local minimum at1053

early steps and cannot be improved in large NFEs. Moreover, preconditioned deterministic solver1054

in EDM gives optimal quality on unconditional CIFAR-10 [12, Fig. 5 (b)]. However, for more1055

complicated datasets as ImageNet-64, the stochasticity indeed helps improve the samples quality [12,1056

Fig. 5 (c)]. We can consider the random noise as a corrector that approaches a better local or even1057

global minimum. At Schurn = 0, our SEEDS-3 with stochasticity gives lower FID score than EDM1058

deterministic Heun on ImageNet-64 (see Fig. 1 (c)). In more detail, for the EDM baseline model, we1059

obtain FID= 2.06 in 210 NFEs, compared to the reported FID= 2.66 at 511 NFEs in [12]. For the1060

EDM-optimized model, our method gives FID=1.66 in 270 NFEs, which is superior to the 2.22 FID1061

score in 511 NFEs [12]. Additionally, SEEDS-3 also reaches the best quality prior to the number1062

steps needed in Euler Maruyama and other solvers as in Table 5.1063

6
https://drive.google.com/file/d/1R_H-fJYXSH79wfSKs9D-fuKQVan5L-GR/view?usp=

sharing

7
https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-imagenet-64x64-cond-adm.pkl

45
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Table 3: FID comparison between SEEDS (Ours) and DPM-Solver for low NFEs on CIFAR-10 VP
uncond. discrete. We recomputed the DPM-Solver score using the "non-deep" model while [15]
reports results for the "deep" architecture. The symbol ? is used when using 1 NFE more and † when
using 1 NFE less because the given NFE cannot be divided by 2 or 3. This corresponds to Figure 1
(a).

METHOD / NFE 10 12 15 20 30 40 50 100

DPM-SOLVER-1 22.90 17.73 13.36 9.78 6.87 5.77 5.17 4.22
DPM-SOLVER-2 12.22 6.52 ?4.55 – 3.75 3.68 3.64 3.60
DPM-SOLVER-3 †66.92 9.72 5.32 ?3.83 3.66 – ?3.61 †3.58
SEEDS-1 303.48 239.79 279.84 192.68 84.78 45.26 28.18 8.24
SEEDS-2 481.09 473.48 ?430.98 305.88 223.01 51.41 11.10 3.19
SEEDS-3 †483.04 482.19 479.63 ?462.61 280.48 †247.44 ?62.62 †3.53

Table 4: FID comparison between SEEDS (Ours) and DPM-Solver for high NFEs on CIFAR-10 VP
uncond. discrete. We recomputed the DPM-Solver score using the "non-deep" model while [15]
reports results for the "deep" architecture. The symbol ? is used when using 1 NFE more because the
given NFE cannot be divided by 2 or 3. This corresponds to Figure 1 (a).

METHOD / NFE 150 200 300 510

DPM-SOLVER-3 3.59 ?3.58 – 3.58
SEEDS-1 – 4.07 3.40 –
SEEDS-3 3.12 ?3.08 3.14 3.24

Table 5: FID comparison between SEEDS-3 (Ours) and other solvers on CIFAR-10 VP uncond.
discrete. The symbol ? is used when using 1 NFE more and † when using 1 NFE less because the
given NFE cannot be divided by 2 or 3. This corresponds to Figure 1 (b).

METHOD / NFE 10 12 15 20 50 200 1000

EULER-MARUYAMA 278.67 246.29 197.63 137.34 32.63 4.03 3.16
ANALYTIC DDPM 35.03 27.69 20.82 15.35 7.34 4.11 3.84
ANALYTIC DDIM 14.74 11.68 9.16 7.20 4.28 3.60 3.86
DDIM 13.58 11.02 8.92 6.94 4.73 4.07 3.95
DPM-SOLVER-3 †6.92 9.72 5.32 ?3.83 ?3.61 ?3.58 –
SEEDS-3 †483.04 482.19 479.63 ?462.61 ?62.62 ?3.08 –

E.5 Hardware configuration1064

During the experiments, we used three Linux-based servers with 60GB memory each and 4 GPUs1065

NVIDIA V100 32GB, 4 GPUs NVIDIA V100 16GB, and 2 GPUs NVIDIA V100 32GB, respectively.1066

Table 6 shows the detail of the configuration utilized for each experiment. We noted that when using1067

the 4 GPUs configuration, the FID results were slightly lower (around 2%), even after using a stacked1068

fixed random seed. We run the experiments multiple times and reported the minimum FID value each1069

time.1070

1071

E.6 Licences1072

Pre-trained models:1073

• CIFAR-10 models by [23]: Apache V2.0 license1074

• FFHQ-64 model by [12]: Creative Commons Attribution-NonCommercial-ShareAlike 4.01075

International License.1076

46



Table 6: Details of GPUs utilized during the experiments.

EXPERIMENT MODEL NUMBER GPU SIZE

CIFAR-10 CONTINUOUS NVIDIA V100 4 16 GB
CIFAR-10 DISCRETE NVIDIA V100 2 32 GB
FFHQ64 NVIDIA V100 4 16 GB
CELEBA64 NVIDIA A100 2 16 GB
IMAGENET64 NVIDIA V100 4 32 GB

• CelebA-64 model by [22]: Apache V2.0 license1077

• ImageNet-64 model by [12]: Apache V2.0 license1078

• Inception-v3 model by [24]: Apache V2.0 license1079

1080

E.7 Supporting samples1081

In this subsection, we report the image grids supporting our claims in the Experiments section.1082

NP

DP

NFE=9 NFE=21 NFE=30 NFE=90 NFE=129 NFE=165

Figure 3: Samples on CIFAR-10 from low to high NFEs by SEEDS-3 in Noise Prediction (NP) and Data
Prediction (DP) modes, using conditional VP continuous baseline model [12].

1083
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NP

DP

NFE=9 NFE=21 NFE=30 NFE=90 NFE=129 NFE=165

Figure 4: Samples on CIFAR-10 from low to high NFEs by SEEDS-3 in Noise Prediction (NP) and Data
Prediction (DP) modes, using unconditional VP continuous baseline model [12].
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NFE=9 NFE=21 NFE=30 NFE=60 NFE=90 NFE=150

Figure 5: Samples on CelebA-64 from low to high NFEs by SEEDS-3 and DPM-Solver-3, using pre-
trained model from [22].
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NP

DP

NFE=9 NFE=21 NFE=30 NFE=60 NFE=90 NFE=150

Figure 6: Samples on FFHQ-64 from low to high NFEs by SEEDS-3 in Noise Prediction (NP) and Data
Prediction (DP) modes, using unconditional VP continuous baseline model [12].

NP

DP

NFE=30 NFE=60 NFE=90 NFE=150 NFE=210 NFE=270

Figure 7: Samples on ImageNet-64 from low to high NFEs in Noise Prediction (NP) and Data Prediction
(DP) modes, using conditional EDM optimized model [12].
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NP

DP

NFE=30 NFE=60 NFE=90 NFE=150 NFE=210 NFE=270

Figure 8: Samples on ImageNet-64 from low to high NFEs in Noise Prediction (NP) and Data Prediction
(DP) modes, using conditional EDM baseline model [12].

Figure 9: Example of samples on CelebA-64 generated by SEEDS-3 in 90 NFEs, using pre-trained model from
[22].
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(a) DPM-Solver-3 at 44 NFE. (b) SEEDS-3 at 201 NFE.

Figure 10: Visual sample quality comparison between DPM-Solver-3 and SEEDS-3 using their optimal settings
and unconditional CIFAR-10 discrete model [23].

(a) DPM-Solver-3 at 80 NFE. (b) EDM at 80 NFE. (c) SEEDS-3 at 150 NFE.

Figure 11: Visual sample quality comparison between DPM-Solver-3, EDM and SEEDS-3 using their optimal
settings and unconditional VP FFHQ-64 continuous model [12].

(a) DPM-Solver-3 at 30 NFE. (b) EDM at 90 NFE. (c) SEEDS-3 at 150 NFE.

Figure 12: Visual sample quality comparison between DPM-Solver-3, EDM and SEEDS-3 using their optimal
settings and conditional VP CIFAR-10 baseline continuous model [12].
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Figure 13: Example of samples on LSUN-Bedroom-256 by SEEDS-3 in 201 NFEs, using pre-trained
model from [5].
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