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Grasping in Large-scale Synthetic Cluttered Scenes
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I. EXPERIMENT DETAILS

We provide additional details on the experiment settings due
to space constraints in the main paper. Sec. delineates how
we evaluate a grasp in a simulator and enumerates some of
the physics parameters involved. Sec. outlines the three
baseline methods benchmarked in the main paper.

A. Evaluation Metric

We evaluate various grasping models by measuring their
simulation success rates in the Isaac Gym simulator. For
each test scene, a model is expected to take a single-view
depth point cloud as input and output one grasp pose G),. If
capable of generating multiple grasps, the model must select
the best proposal, as required in the main paper. Following this,
the evaluator determines whether G, constitutes a successful
grasp. Specifically, a predefined rule is applied to calculate a
pregrasp pose, squeeze pose, and lift pose, thereby establishing
a complete action trajectory 7. Subsequently, 7" is executed
within the simulator, and success is determined by its ability to
lift an object off the table without any initial intersection with
the table or surrounding objects. Consistency is ensured across
all experiments by maintaining the same trajectory generation
rule and physics parameters. Some of the important physics
parameters are listed in Tab. [I]

Parameter Value
object mass 0.1 kg
joint damping 20

Parameter Value
friction coeff 0.2
joint stiffness 800

TABLE I: Physics Parameters

B. Baseline Details

We outline the three baselines compared in the main paper
and detail how we adapted two of them from their original
setting of single-object grasping to our cluttered scenarios.

HGC-Net [16]. HGC-Net is a two-stage method for grasp-
ing in cluttered scenes. Initially, a segmentation model divides
the scene point cloud into graspable points and ungraspable
points. Following this, a deterministic model predicts a grasp
pose near each graspable point. Given that this method already
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focuses on cluttered scenes, minimal modifications were re-
quired. The only change made was switching their end effector
from the HIT-DLR II hand to the LEAP hand.

ISAGrasp [4]. ISAGrasp is a regressive method designed
for grasping single objects. It employs a PointNet++ en-
coder [22] to encode the object point cloud into a global
feature vector. Subsequently, an MLP is utilized to predict
the wrist translation, wrist quaternions, and joint angles. We
extensively modified this method to adapt it for cluttered
scenes: (1) We replaced their PointNet++ encoder with a
ResUNet14 encoder-decoder and incorporated a seed point
proposal module based on point-wise graspness prediction,
similar to our method. (2) During inference, this modified
model predicts the grasp parameters from the local feature
vector of the proposed seed point, instead of the global
feature vector obtained from their original point cloud encoder.
(3) During training, each grasp label is associated with its
corresponding point rather than its target object. We designate
the modified model as ISAGrasp'. It is worth noting that this
adaptation already rectifies a major suboptimal aspect of their
original baseline by integrating one of our key designs: replac-
ing global conditioning with local conditioning. Consequently,
the adapted method differs from our model solely in the use
of a regressive model to predict the wrist pose, whereas we
employ a conditional generative model.

GraspTTA [14]. GraspTTA utilizes a CVAE for grasping
single objects. It leverages PointNet [21] to encode the object
point cloud into a global feature vector, which serves as
conditioning for the CVAE to predict the distribution of the
wrist translation, wrist axis angles, and joint angles. We adapt
it for cluttered scenes using the same approach as ISAGrasp',
and denote the adapted version as GraspTTA'. Furthermore,
we discard the test-time optimization of the original method
because it relies on the full point cloud, which is an invalid
assumption in our task settings.

II. ADDITIONAL EXPERIMENTS
A. Ablation Studies on Model Design and Training Data

Our method aims to model the complex distribution of
dexterous grasping while achieving higher generalization effi-
ciency by leveraging a generative model that conditions on
local features. To better analyze the effectiveness of each
module, we construct three ablated versions of our method:
(1) ablate local feature, during training, each grasp label
corresponds to the global feature vector of the scene point
cloud (output by the encoder) instead of the local feature



GraspNet-1Billion ShapeNet

Method Dense Random  Loose ‘ Dense Random  Loose
local feature 16.8 10.9 4.8 21.3 17.6 10.9

decomposed model 84.2 80.7 71.3 74.9 72.5 66.4

random scene 90.0 84.1 68.2 78.9 78.8 71.3

Ours 90.6 83.7 73.2 81.0 85.4 74.2

TABLE II: Ablation studies on model design and training data. Ablation studies are conducted on three aspects as shown in
the lower half of the table. Each Dense scene contains 8-11 obiects, and each Random scene contains 1-10 objects, obtained
by deleting objects from Dense scenes, and each Loose scene contains 1-2 objects.

vector of the grasp’s corresponding point (one of the point-
wise vectors output by the decoder); (2) ablate decomposed
pose modeling, using a single conditional generative model
to fit the joint distribution p(7T), R, 8| f5); (3) ablate randomly-
packed training scenes, training solely on densely-packed
scenes. As shown in Tab. substituting local feature con-
ditioning with global ones yields poor performance. To il-
lustrate, global conditioning relies on scene-level variations
to generalize, which are limited in number, whereas point-
wise local features derive numerous diverse geometry patches
(with paired grasp labels), greatly enhancing generalization
efficiency. Moreover, replacing decomposed pose modeling
with the combined modeling of (R,T,6) also leads to a
perceivable decline in performance due to the incompatibility
of the Euclidean space with SO(3) space. Finally, our dataset
design that incorporates scenes with random object numbers
proves to be effective in improving performance.

B. Ablate Rotation Representation

Our method employs the rotation matrix to represent wrist
rotation and applies SVD [15] to orthogonalize network pre-
dictions. We compared this design against several alternatives:
Euler Angle (representing rotation as 3D Euler angles), Axis
Angle (rotation represented by the angle of rotation multi-
plied by the rotation axis), Quaternion (represented as a 4D
quaternion), and 6D (using the first two rows of the rotation
matrix). The results in Tab. demonstrate that our choice
outperforms all other methods across the evaluated task. As
discussed in [15], rotation representations in Euclidean space
with fewer than five dimensions, such as Euler angles, axis-
angle, and quaternions, are inherently discontinuous. Although
the 6D representation circumvents this issue, it is coordinate-
dependent. Introducing small noises in different directions
to the rotation in a 6D representation results in changes of
varying magnitudes. In contrast, our 9D representation is both
continuous and coordinate-independent, thereby outperform-
ing other rotation representations.

C. Ablate Ranking Strategy

During inference, we rank all predicted samples to identify
the best one using a linear combination of the graspness scores
of the seed points and the estimated log probabilities of the
wrist poses. We ablate this ranking strategy by removing the
graspness score, the log probability, or both. Tab. |[V| presents
the results. Our method (Ours), which ranks samples based
on a combination of graspness scores and log probabilities,

consistently outperforms the other strategies. Ranking solely
by graspness scores (Graspness) or log probabilities (Log
Probability) yields moderate performances, while selecting
samples randomly (Random) results in the lowest success
rates. These findings underscore the efficacy of our proposed
ranking strategy in identifying optimal grasp poses.

Interesting to note, despite the theoretical challenges in
defining a probability density function p(7,R|fs) on a
6-dimensional data manifold embedded within a higher-
dimensional parameter space (12D), experiments demonstrate
that our estimated log probabilities consistently enhance the
performance of our ranking strategy. Nevertheless, we ac-
knowledge this theoretical inelegance and defer the solution to
future studies, such as exploring the use of normalizing flows
on SE(3) or employing manifold diffusion methods.

D. Scaling the Dataset for Grippers

Proportion of Total Grasps Used
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Fig. 1: AP metric evaluated on models trained with down-
scaled dataset. Top: downscaling the number of grasp labels
in each scene. Bottom: downscaling number of scenes trained
on

We scale down the training data of parallel gripper by
(1) reducing the number of grasps in each scene, and (2)



GraspNet-1Billion ShapeNet

Method Dense Random  Loose ‘ Dense Random  Loose
Euler Angle 87.6 82.0 73.0 78.0 76.4 75.2

Ablation Axis Aqgle 86.4 81.7 70.5 79.0 76.4 74.1
Quaternion 87.9 81.5 72.0 78.6 77.0 72.9
6D 88.2 81.5 71.9 80.2 79.0 73.0
Ours 90.6 83.7 73.2 81.0 85.4 74.2

TABLE III: Ablation studies for representations of rotation. Euler Angle represents rotation as 3D Euler angle; Axis Angle
represents rotation in 3D as the angle of rotation multiplies the rotation axis; Quaternion represents rotation as 4D quaternion;
6D represents rotation with the first two rows of the rotation matrix. Ours represents the rotation as the rotation matrix.

GraspNet-1Billion ShapeNet

Method Dense  Random  Loose ‘ Dense Random  Loose
Graspness 81.8 76.6 68.0 73.7 71.3 64.4

Ablation Log Probability 78.1 78.4 75.1 72.4 71.6 74.6
Random 65.1 62.0 57.2 61.7 58.9 56.4
Ours 90.6 83.7 73.2 81.0 85.4 74.2

TABLE IV: Ablation studies for sampling strategy. Graspness ranks samples by graspness score only; Log Probability
ranks samples by log probability only; Random randomly draws from sampled poses; Ours ranks samples by combination of

graspness scores and log probabilities.

Fraction of Grasps ‘ Success Rate
1/100(42k) 81.3
1(4.2M) 924

TABLE V: Success Rate of real-world experiment on Ours
model trained over downscaled dataset. We train Ours
model with random 1/100 fraction of grasp labels and the
entire grasp pose dataset, amounting 42k and 4.2M labels,
respectively.

decreasing the number of training scenes. We evaluate the AP
metric in simulation for each setting and success rate in real
world.

As shown in Fig.|l| although under the full-data setting our

generative model only slightly outperforms GSNet by +1.4 AP,
the AP metric of GSNet drops by a significant amount of 35.4
as we downscale the number of grasps by 100, whereas our
generative pipeline drops by only 2.2. This suggests that our
generative pipeline is significantly more sample-efficient than
GSNet. Both methods are robust to downscaling of number
of training scenes at the scope of our experiment, with only
slightly dropped AP.
The resulting statistics in terms of AP is much to our surprise,
as being trained with 1/100 total grasp labels, namely only 42k
grasp labels, our generative model seems to still reatin strong
performance. In order to validate this counter-intuitive result,
we carry out real-robot experiments with Ours models trained
with downscaled number of grasps and report success rate in
Tab. [V] With 42k training labels, our generative model achieve
81.5% success rate in real-woorld cluttered scenes as shown
in Fig. 2] which is affirmative to the AP statistics.

In summary, the experiments in this section give strong
evidence that the distribution of valid grasp poses does exist
and the amount of data required to simulate at least a valid
support of such a distribution may prove to be much smaller
than previously been conjectured.

Depth Restoration ‘ Diffuse  Trans  Hybrid
With 94.1 80.0 90.7
Without 94.1 50.0 86.4

TABLE VI: Real-world cluttered scene dexterous grasping
with/without depth restoration. Diffuse includes only diffuse
objects, Trans comprises only transparent or specular objects,
and Hybrid includes scenes used in the main paper, consisting
of a mixture of diffuse, transparent, and specular objects for
comparison.

E. Using Raw Depth in the Real World

In our real-world experiments, we integrated depth restora-
tion techniques [23|] to facilitate grasping transparent and
specular objects amidst cluttered scenes. Here, we conduct
additional experiments to demonstrate that our method do
not rely on depth restoration when grasping diffuse objects.
We constructed four additional cluttered scenes in the real
world: two scenes (Diffuse, as shown in Fig. consisting
solely of diffuse objects and two scenes (Trans, as shown
in Fig. containing only transparent and specular objects.
The original five test scenes from the main paper, which
include a mixture of objects, are denoted as Hybrid. We then
evaluated our model on all test groups both with and without
the application of depth restoration techniques. The results in
Tab. demonstrate two key findings: firstly, our model’s
effectiveness in real-world grasping is independent of depth
restoration for Diffuse scenes; secondly, our model exhibits
enhanced robustness to object texture, particularly transparent
and specular surfaces, when depth restoration is applied.

F. Simulation Experiments on Parallel Grasping

To evaluate our method’s performance in parallel grasping
within cluttered scenes, we use the widely adopted Average
Precision (AP) metric from [11] and conduct experiments
on the 90 test scenes from GraspNet-1Billion [11]], which
are uniformly divided into three categories: seen, similar,



Fig. 2: Two Diffuse scenes in real world.

Fig. 3: Two Trans scenes in real world.

and novel. Due to some imperfect grasping poses in the
dataset, we perform filtering and refinement on poses with
scores > 0.9, resulting in 4.2 million grasps. Additionally,
with recent advancements in test-time depth restoration [23]],
the necessity for models to learn to grasp from noisy point
clouds is diminishing. Thus, we render ground truth single-
view point clouds and subsequently train and evaluate our
method alongside GSNet [27]. Fig. [VII] demonstrates that
with the same data, our method is comparable to GSNet and
outperforms other methods. This indicates that our method is
effective for robots with varying morphologies. Additionally, it
shows that as a generative model, we can significantly enhance
model performance by improving data quality, and GSNet can
also benefit from some of our data refinement methods.

G. Discussion on Dexterous Hands vs Parallel Grippers

While grasping systems utilizing parallel grippers have
already achieved impressive robustness in the real world [27}
12]], we advocate that dexterous hands can further enhance
performance. In addition to the 5 test scenes (Normal, as
shown in Fig. @) demonstrated in the main paper, we also
construct an additional scene (Large) consisting of 4 large
objects, as shown in main paper. Real-world experiment results
in Tab. [VIT| indicate that the dexterous hand can grasp each
object in this scene, whereas the parallel gripper cannot grasp
any object. This is because the dexterous hand possesses strong
envelopment capabilities, allowing it to grasp larger objects
effectively.

III. BENCKMARK SPECIFICATIONS

This Section presents further details about the DexGraspNet
2.0 benchmark proposed by this work. Sec. provides
statistics of the DexGraspNet 2.0 benchmark, including both
the Training Set that contains ground truth grasp pose an-
notations and the Test Set with no ground truth provided.

Method AP Seen AP Similar AP Novel
GG-CNN [20] 15.5/16.9 13.3/15.1 5.5/7.4
Chu et al. [6] 16.0/17.6 15.4/17.4 7.6/8.0
GPD [26] 22.9/24.4 21.3/23.2 8.2/9.6
PointGPD [17] 26.0/27.6 22.724.4 9.2/10.7
GraspNet1B[11] 27.6/29.9 26.1/27.8 10.6/11.5
GSNet [27]] 67.1/63.5 54.8/49.2 24.3/19.8
GSNet [27]* 68.7 59.8 24.6
Ours* 56.0 53.2 23.2
Ours # * 66.6/61.5 61.7/53.3 27.4/23.2
GSNet (render)* 78.4 69.7 36.7
Ours (render) # * 77.4 72.5 39.1

TABLE VII: Experiment results on GraspNet-1Billion. *
means using grasps that scores over > 0.9. # means using
refined poses, and render means using rendered depth images.
Statistics in the table follows a RealSense/Kinect format,
where results with a single number uses Realsense setting.

End Effector | Normal Large
Parallel Gripper 924 0.0
Dexterous Hand 81.5 100.0

TABLE VIII: Comparison of real-world grasping performance
using a parallel gripper or a dexterous hand across different
scene types. The five Normal scenes consist of typical clut-
tered environments, while the Large scene includes 4 large
objects.

Sec. identifies the objects used to generate our benck-
mark. Sec. [[lI-C| presents the pipeline used to generate training
scenes with selected objects. Sec. [[ll-D elaborates the protocol
of generating test scenes and how we divide them into different
splits.

A. Benchmark Statistics

Tab[[Xlillustrates the overall statistics. The entire benchmark
encompasses two components: a Training Set used to train
our models and a Test Set to evaluate dexterous grasping
pose generation models on. Note that ground truth grasp pose
annotations are only provided for training set. In total, the
benchmark contains 8270 scenes, 1319 objects and 426.6M
grasp pose annotations.

Training Set contains 7600 scenes and 60 objects in total.
all training objects are from the GraspNet-1Billion [[11] dataset

Test Set contains 670 scenes and 1319 objects in total. the
88 objects from the GraspNet-1Billion [11] dataset are used
to compose 450 of the test scenes, and 1231 objects picked
from ShapeNet [1] are used to compose the remaining 220
test scenes

B. Object Selection

The 60 objects in Training Set are those appeared in
GraspNet-1Billion [11]] scenes 0000-0099. The Test Set con-
tains 1319 objects, 88 of them are all the objects in GraspNet-
1Billion [11]], and the remaining 1231 objects are picked from
ShapeNetSem [[1]].



Splits number of objects number of scenes
Training 60(GraspNet1B) 100(seminal)+7500(augmented)
Test 88(GraspNetlB) + 1231(ShapeNet) 670

Total 88(GraspNetlB) + 1231(ShapeNet) 8270

TABLE IX: Statistics of the DexGraspNet 2.0 Benchmark

Fig. 4: Five Normal test scenes for gripper in the main paper.

C. Training Scenes Specification

In the 7600 training scenes, 100 are called seminal scenes,
which corresponds to the Scenes 0000-0099 in the GraspNet-
1Billion [11] dataset composed and rendered using their offi-
cial meshes and annotations. We augment each seminal scenes
75 times by randomly deleting objects in the scene. In each
augmented scene, the number of objects deleted is uniformly
sampled from [1,k-1], where k is the number of objects in the
original scene. In total, we generate 7500 augmented training
scenes with 100 seminal scenes, totalling 7600 scenes in the
entire training set.

D. Test Set Scenes Specification

As shown in Tab. 1 of the main paper, the Test Set is divided
into 6 splits. In the following, we specify each of these splits.

GraspNet-1Billion Dense composes of 90 scenes that
correspond to the Scenes 0100-0189 in the GraspNet-
1Billion [11] dataset. Each scene contains 8-11 objects.

GraspNet-1Billion Random composes of 180 scenes. This
split is generated by augmenting each GraspNet-1Billion
Dense split scenes twice with the process as described in
Seclll=Cl

GraspNet-1Billion Loose composes of 180 scenes by aug-
menting each GraspNet-1Billion Dense split scenes twice with
the process as described in Sec[llI-C] with only 1-2 random
objects remaining in the scene.

The three ShapeNet splits are generated by dropping objects
on a 30cmx50cm physics paratop. In specific, we follow the
scene generation process of DREDS [9] with the material
randomization function disabled. We run the scene generation
process in PyBullet [7] and filter physically sphysics para ones
in IsaacGym [18]]. The Dense/Random/Loose splits are divided
according to the number of objects appearing in each scenes.

ShapeNet Dense composes of 100 scenes, each containing
8-11 objects

ShapeNet Random composes of 90 scenes, each containing
5-9 objects

ShapeNet Loose composes of 30 scenes, each containing
1-2 objects

IV. GRASP LABEL GENERATION

Statistics of single object grasp generation

= initial grasps
= valid poses

obj code

0.0 02 0.4 06 08 10
num of grasps 1e7

Fig. 5: Number of per-object initial grasp poses. The
proportion corresponding to valid grasps after optimization are
colored green.

This section elaborates our pipeline for generating dexterous
grasping poses on single objects. First, we define initial hand
poses by retargeting GraspNet-1Billion [I1] annotations to
dexterous hand. Then we run physics-based optimization to
generate stable grasps. To maximally diversify the produced
data, we adopt two different methods, [2] which targets Grasp
Wrench Space (GWS) optimality, and [28] which targets force-
closure, as optimization algorithms, each generating half of
the dataset. Lastly, we filter stable and collision-free grasps via
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Fig. 6: Valid Rate of single object grasp synthesis in sorted
order. Yellow and Blue curves present per-object valid rates for
our force-closure based optimization method (Sec[TV-B2) and
GWS-based optimization method (Sec[IV-BI), respectively.
Averaged success rates are drawn in dotted line, with values
24.19% and 7.91% respectively.

simulation in the IsaacGym [18] simulator. As shown in Fig.[5]
in total we generate 44.9M stable grasp poses for 88 objects
from 280M initial poses. Even in the face of our very strict
friction coefficient ©=0.2, our method still maintains overall
success rate of 16.07%. In the following subsections we detail
each of these components.

A. Hand Pose Initialization

As discovered in [28]], the success rate of dexterous grasp
generation is very sensitive to initial hand pose. Moreover, we
aim to cover valid grasp modes for each object as compre-
hensively as possible. Therefore, we initialize dexterous hand
poses by retargeting the exhaustive GraspNet-1Billion [11]
gripper anntations.

In specific, we filter points where stable gripper grasp poses
are annotated in [11] as grasp points. As shown in Fig. [/| for
each grasp point, we align the +y axis (pointing forward out of
the palm) of dexterous hand with the +x axis of gripper pose
annotation, retreat the center of palm a fixed distance from
grasp point in the approacting direction, initialize hand joint
gpos with a set of predifined values and exhaustively apply
transformations corresponding to 256 approaching directions,
4 depths and 12 in-plane angles as defined in [11].

B. Grasp Pose Optimization

1) GWS-based optimization (adapted version of [2]]): We
reimplement [2] on the CuRobo [25] framework for better
computation parallelism. We set the target Task Wrench Space
(TWS) as a unit sphere in 6D wrench space such that the task
objective is identical to forming a force-closure grasp, and run
600 iterations with naive gradient descent.

2) force-closure-based optimization (adapted version of
[28]): We adopt [28]] with modification in its definition of
force-closure energy, and reimplement the modified algorithm
on the CuRobo [25] framework as well.

We observe that the force-closure energy used in [28]
assumes unit contact force is applied to each contact point,

whereas human naturally adjust contact forces applied to
different contact points in order to maintain a firm grasp.
The above assumption limits the objective of optimization
in [28] onto a submanifold of the space of all valid grasp
poses, hurting the quality and diversity of generated data.
Following the notations in [28]], we relax the unit-contact force
assumption by reformulating the force closure energy as the
following bilevel form:

e At each timestep, given the current hand pose, we solve
the optimal contact forces applied to current contact points
such that the total wrench imposed on the object is minimized.
We formulate this intuition into the following linear program:

P, :H}\in IG(At @ ¢)]]2
s.t.max(A); =1
(\)i > 0,i=1,2, ...

Where P, has the physical meaning as the total wrench
applied to the object when the combination of contact force
magnitude, A\, is applied to the contact points. ® means
element-wise product. Note this linear program admits closed-
form solution therefore imposes neglectable computation bur-
den.

e Across timesteps, we optimize the differentiable force-
closure metric in awareness of the plausibility of the current
hand pose:

G\ ©@0)ll2, if P <7rc,
min(A¢); > T,
Erc = g (D
and B=1
IGell2, otherwise

Where tpc, ) are predefined thresholds, and B is a binary
random variable with P(B =1) =0.9.

If the current hand pose is already capable of forming a
force-closure grasp on the object, mathematically defined as
P, < tp¢ (total wrench acceptably small) and min(A); > 7
(a minimum contact force is applied to each contact point),
then we decide the current pose is good enough in terms of
force-closure property. In this case, we scale the force closure
energy to prevent overoptimization. In effect, the force closure
energy now works as a regularization term. Otherwise, if the
current hand pose is not stable enough, we keep searching for
more stable poses by optimizing the force closure metric with
original energy term. In addition, even for the former case, we
stochastically use the original energy term with probability 0.1
to encourage forming more robust grasp poses.

Note in the above formulation, the global minimum set of
hand poses for E'r¢ are the poses for which there exists a non-
trivial contact force combination such that the total wrench
executed to the object is zero. This global minimum set exactly
corresponds to the original definition of force closure in [S§].

C. Filtering Stable and Collision-Free grasps

We perform grasp filtering in the IsaacGym simulator. First,
we check for each grasp pose if the penetration between hand



mesh and object mesh is below 2 mm. For all collision-free
grasps, we execute the grasp with a predefined heuristic and
simulate for 60 timesteps at 60Hz. The grasp pose is validated
as stable if it can deny gravity in all 6 axis-aligned directions.
The friction coefficient p for both hand and objects are set to
0.2, making the filtering process very strict.

Fig. |§] shows the Valid Rate for each object, which is
defined as the portion of generated grasps that are both
collision-free and stable. The overall success rate is 16.07%,
as we generate in total 44.9M valid grasp poses out of 280M
grasp pose initializations. The method-specific valid rate for
[2] and [28] are 7.91% and 24.19% respectively.

Fig. 7: Initial dexterous hand pose superimposed with
gripper grasp label at the same grasp point. We retarget gripper
annotation in GraspNet-1Billion [11] to initial 6D wrist pose
of dexterous hand, and use a predefined set of joint gpos for
initialization.

V. IMPLEMENTATION DETAILS FOR DEXTEROUS HANDS

In this section, we elaborate on the data organization
(Sec. [V=A) and model architecture (Sec. [V-B)) of our method
for dexterous grasping.

A. Data

Data Reblancing In each training scene, the numbers of
grasp labels on graspable objects may be uneven. Randomly
sampling grasp labels uniformly across all valid ones in each
scene could slow down the learning of grasping objects that
have fewer labels. To address this, we implement a two-stage
sampling approach to rebalance the training process: first, we
randomly sample a graspable object, and then we randomly
sample one of its labels.

Data Augmentation. We implement data augmentation by
rotating the scene point cloud and grasp labels around the
camera axis with a random angle uniformly sampled from the
interval [0, 27). No further augmentations are needed.

Ground-truth Graspness Definition. For each training
scene, we define a graspness score for the surface points
of each object to represent its graspability. This score is
determined by identifying a seed point and then assigning
graspness to the nearby points. For an object o in this scene,

we denote all valid grasp labels that target o as G, = {g’},
and the surface points of o as P, = {p’}. We then define a
grasp cone with ¢ being the apex, vector cm being the axis
and an aperture of 60°, as shown in Fig. [§] Subsequently,
we compute the projected distance of vector cp? along cm,
denoted as d, and the spanning angle 6 between cp’ and
cm. Using these quantities, the value of f(g’,pJ) is defined
in Eq. 2} Numerically, this function is designed to attenuate
exponentially with response to 6 and d, halving at 10° or
1.5 cm. Then the seed point is defined as the point with the
largest f as shown in Eq. 3

Finally, the seed point assigns graspness to nearby points
with exponential decay and the graspness score of p is
computed as the logarithm of the sum of all contributed
graspness, as in Eq. 5} Empirically, this score reflects the
number of valid grasp labels near p?.

From another perspective, this correspondence implicitly
defines a grasp distribution conditioned on a point within
a scene. Although articulating this distribution in precise
mathematical terms is difficult, we contend that it objectively
exists. This distribution represents the target distribution that
the grasp generation module approximates.

AC

»
B el LT .
[ Sy,
v,

e
-
T

‘m

Fig. 8: Grasp cone for the graspness definition.
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B. Model

Network Structure. In the following paragraph, we elabo-
rate on the network structures of our feature extractor, denois-



ing model, graspness MLP, and joint MLP. First, our feature
extractor employs the ResUNetl4 architecture implemented
with MinkowskiEngine [5] to derive point-wise feature vectors
f» € R5'2 from a scene point cloud P, which is quantized
into sparse voxels. This network resembles the one utilized
in GSNet [27]]. Second, our denoising model vg (gL, fs,t) is
implemented as an MLP with layer sizes (524, 512, 256, 12)
and Mish activations [19]. This model embeds ¢ into R>!2
using sinusoidal position embedding, adds this embedding
with fs, concatenates the resulting sum with g%, and feeds this
concatenation into the MLP to predict the velocity. Third, our
graspness MLP comprises a single-layer linear transformation,
which maps f, to three values. The first two are interpreted
as binary classification logits indicating whether this point is
an object point, while the thid value represents the predicted
graspness score G'F,. Fourth, our joint MLP is a 6-layered
MLP with ReLU activations and residual block designs fol-
lowing [10].

Detailed Diffusion Dynamics. The forward and backward
processes of the diffusion each consist of Tiy,in and Tipference
time steps, respectively, evenly distributed within the interval
[0, 1]. Additionally, the number of time steps of the backward
process is required to be a divisor of that of the forward
process. We denote the interval between two neighboring time
steps of the backward process as dt = 1/Tipference- The
DDPM [13] scheduler is employed to schedule the forward

process variances (3; for each time step ¢t = i/Tirain,? =
1a 27 ce aTtrain:
B = fin + = (Bmax — i) ©)
t — Mmin Ttrain — 1 ‘max min

where Bumin, Bmax are hyper-parameters. Then we define a; =
1 — B; and its cumulative product as &; = H;‘:l O/ Tyrain - At
each training step, o is utilized to determine the magnitude
of noise to be added to the sample, as detailed in the main
paper. At each inference step, we denoise a noisy sample gt
into a less noisy sample gﬁ;dt by solving the following ODE

with ¢ from 1 to O:

oAt Ttrainﬂt\/at
=dip = —F—
2\/ 1-— Qg
Moreover, [3} 24] introduce a PDE to estimate the probability
pgelfs):
01 Gt | fs v
08P(Iplfs) _ oy (00
ot 99t
Ttrainﬂt \ ay
21—
Based on the above equation, we can approximate a sam-
ple’s probability p(gg|fs) with numerical integration during
the backward process. We rank each output g of the grasp
generation module using a linear combination of the estimated

probability p(gg|fs) of the wrist pose gg and the predicted
graspness G.S of the seed point s:

rank(g) = p(ge|fs) +nGS; )

~ ~t—dt

g%‘ — 9k U@(gtE'vfsat)dt (7N

®)

where ’Dt = U@(gtEu fS7 t)

Inference Speed and Memory Cost. Our model efficiently
processes a scene point cloud comprising 40,000 points,
generating 128 grasp poses and ranking them all within 0.5
seconds. The maximum memory usage during this inference
is approximately 3 GB. These evaluations were conducted on
an NVIDIA 4090 graphics card.

VI. IMPLEMENTATION DETAILS FOR PARALLEL GRIPPERS

A. Data Filtering and Refinement

As our generative model considers all grasping poses from
the dataset as successful, and since the original GraspNet-
1Billion dataset [[11]] includes some imperfect poses, we intro-
duce a data filtering and refinement process before training.
We retain only the grasping poses with a score of > 0.9 to
ensure that all can successfully grasp the object with a friction
coefficient of 0.2. To simplify motion planning, we assume that
all grasps can be achieved by moving along the approaching
vector and filtering out poses that would result in collisions
during this movement. We also fix the depth to 4 cm and adjust
the translation accordingly.

To handle poses that collide with the object and the table,
we calculate the upper (u) and lower (I) bounds of the distance
between the fingers along the original approaching vector. If
the distance between any finger and the object is u — [ < 1.5
cm, we discard the pose. We then uniformly sample new finger
positions from the adjusted lower bound I’ = [ + s and the
adjusted upper bound v’ = I’ + min(0.01, (v — I — 0.01) —
2s), where s = min(0.01, %). This ensures the fingers
maintain a safe distance from the object without being too far.
Finally, we calculate the intersection point of the object mesh
and the new approaching vector, setting it as the seed point.
Poses without a valid seed point are filtered out.

B. Graspness Definition for Gripper

For parallel grippers, after we define the intersection point
as the seed point, we assign the graspness to nearby points
with Eq. 4| and compute the total graspness for each point
with Eq. 5] same as the dexterous hand experiments.

C. Sampling Poses from Prediction

Given the variability in graspness among different objects,
we developed a new sampling strategy to maintain diversity
and select high-quality grasping poses. First, we identify all
seed points within the top 1% for graspability. For each
of these seed points, we collect all points within a 2 cm
radius. We then select the top 10% of these points based on
graspability as new seed points and calculate grasping poses
with them.

D. Real-World Experiments

As a lot of the objects in the LEAP Hand’s experiment are
too large for our parallel gripper, we use different scenes in
those two experiments as shown in Fig.



Hyper-parameter Value Hyper-parameter Value  Hyper-parameter  Value
Scene in each Batch 8 Grasp in each Scene 64 Init LR le-3
LR Scheduler Cosine Tter 50000 Point Num 40000
Voxel side length 0.005 m FKtrans 25 Tirain 1000
Tinference 200 Brmin 0.0001 Bmin 0.02
Ao 1 Ag 1 Ad 10
Ao 1 n 10

TABLE X: Hyper-parameter Setup

VII. ADDITIONAL VISUALIZATIONS

In Fig. 9] we present more scenes with the predictions
of our network. All point clouds are colored with heatmap
of model predicted graspness, with lighter color meaning
higher graspness. Each scene is also dubbed with the predicted
grasping pose corresponding to highest rank.

In Fig.[T0]we show some renderings of test scenes composed
of objects from ShapeNet [[1].
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Fig. 9: Gallery visualization of test scenes in our benchmark,
corresponding to scenes 0100-0159 in GraspNet-1Billion [11].
All point clouds are colored with heatmap of model predicted
graspness, with lighter color meaning higher graspness. Each
scene is also dubbed with the predicted grasping pose corre-
sponding to highest rank.
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Fig. 10: Test scenes composed of objects from ShapeNet [T].
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